1
|
Yi XM, Lei YL, Li M, Zhong L, Li S. The monkeypox virus-host interplays. CELL INSIGHT 2024; 3:100185. [PMID: 39144256 PMCID: PMC11321328 DOI: 10.1016/j.cellin.2024.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Monkeypox virus (MPXV) is a DNA virus belonging to the Orthopoxvirus genus within the Poxviridae family which can cause a zoonotic infection. The unexpected non-endemic outbreak of mpox in 2022 is considered as a new global threat. It is imperative to take proactive measures, including enhancing our understanding of MPXV's biology and pathogenesis, and developing novel antiviral strategies. The host immune responses play critical roles in defensing against MPXV infection while the virus has also evolved multiple strategies for immune escape. This review summarizes the biological features, antiviral immunity, immune evasion mechanisms, pathogenicity, and prevention strategies for MPXV.
Collapse
Affiliation(s)
- Xue-Mei Yi
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ya-Li Lei
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Mi Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Li Zhong
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
2
|
Sharma AK, Mal S, Sahu SK, Bagchi S, Majumder D, Chakravorty D, Saha S, Kundu M, Basu J. Mycobacterial peptidyl prolyl isomerase A activates STING-TBK1-IRF3 signaling to promote IFNβ release in macrophages. FEBS J 2024. [PMID: 39288201 DOI: 10.1111/febs.17261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/23/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Peptidyl prolyl isomerases (PPIases) are well-conserved protein-folding enzymes that moonlight as regulators of bacterial virulence. Peptidyl prolyl isomerase A, PPiA (Rv0009) is a secretory protein of Mycobacterium tuberculosis that possesses sequence and structural similarity to eukaryotic cyclophilins. In this study, we validated the interaction of PPiA with stimulator of interferon genes (STING) using both, Escherichia coli-based and mammalian in vitro expression systems. In vitro pull-down assays confirmed that the cytosolic domain of STING interacts with PPiA, and moreover, we found that PPiA could induce dimerization of STING in macrophages. In silico docking analyses suggested that the PXXP (PDP) motif of PPiA is crucial for interaction with STING, and concordantly, mutations in the PDP domain (PPiA MUT-II) abrogated this interaction, as well as the ability of PPiA to facilitate STING dimerization. In agreement with these observations, fluorescence microscopy demonstrated that STING and wild-type PPiA, but not PPiA MUT-II, could colocalize when expressed in HEK293 cells. Highlighting the importance of the PDP domain further, PPiA, but not PPiA MUT-II could activate Tank binding kinase 1 (TBK1)-interferon regulatory factor 3 (IRF3) signaling to promote the release of interferon-beta (IFNβ). PPiA, but not PPiA MUT-II expressed in Mycobacterium smegmatis induced IFNβ release and facilitated bacterial survival in macrophages in a STING-dependent manner. The PPiA-induced release of IFNβ was c-GAS independent. We conclude that PPiA is a previously undescribed mycobacterial regulator of STING-dependent type I interferon production from macrophages.
Collapse
Affiliation(s)
| | - Soumya Mal
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | | | - Shreya Bagchi
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | | | | | - Sudipto Saha
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | | | - Joyoti Basu
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
3
|
Yu L, Liu P. cGAS/STING signalling pathway in senescence and oncogenesis. Semin Cancer Biol 2024; 106-107:87-102. [PMID: 39222763 DOI: 10.1016/j.semcancer.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The cGAS/STING signaling pathway is a crucial component of the innate immune system, playing significant roles in sensing cytosolic DNA, regulating cellular senescence, and contributing to oncogenesis. Recent advances have shed new lights into the molecular mechanisms governing pathway activation in multiple pathophysiological settings, the indispensable roles of cGAS/STING signaling in cellular senescence, and its context-dependent roles in cancer development and suppression. This review summarizes current knowledge related to the biology of cGAS/STING signaling pathway and its participations into senescence and oncogenesis. We further explore the clinical implications and therapeutic potential for cGAS/STING targeted therapies, and faced challenges in the field. With a focus on molecular mechanisms and emerging pharmacological targets, this review underscores the importance of future studies to harness the therapeutic potential of the cGAS/STING pathway in treating senescence-related disorders and cancer. Advanced understanding of the regulatory mechanisms of cGAS/STING signaling, along with the associated deregulations in diseases, combined with the development of new classes of cGAS/STING modulators, hold great promises for creating novel and effective therapeutic strategies. These advancements could address current treatment challenges and unlock the full potential of cGAS/STING in treating senescence-related disorders and oncogenesis.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
He W, Chang H, Li C, Wang C, Li L, Yang G, Chen J, Liu H. STRAP upregulates antiviral innate immunity against PRV by targeting TBK1. Virol J 2024; 21:197. [PMID: 39182136 PMCID: PMC11344311 DOI: 10.1186/s12985-024-02474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Serine/threonine kinase receptor-associated protein (STRAP) serves as a scaffold protein and is engaged in a variety of cellular activities, although its importance in antiviral innate immunity is unknown. We discovered that STRAP works as an interferon (IFN)-inducible positive regulator, facilitating type I IFN signaling during pseudorabies virus infection. Mechanistically, STRAP interacts with TBK1 to activate type I IFN signaling. Both the CT and WD40 7 - 6 domains contribute to the function of STRAP. Furthermore, TBK1 competes with PRV-UL50 for binding to STRAP, and STRAP impedes the degradation of TBK1 mediated by PRV-UL50, thereby increasing the interaction between STRAP and TBK1. Overall, these findings reveal a previously unrecognized role for STRAP in innate antiviral immune responses during PRV infection. STRAP could be a potential therapeutic target for viral infectious diseases.
Collapse
Affiliation(s)
- Wenfeng He
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hongtao Chang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chen Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chenlong Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Longxi Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guoqing Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jing Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huimin Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Ding X, Sun M, Guo F, Qian X, Yuan H, Lou W, Wang Q, Lei X, Zeng W. Picrasidine S Induces cGAS-Mediated Cellular Immune Response as a Novel Vaccine Adjuvant. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310108. [PMID: 38900071 PMCID: PMC11348072 DOI: 10.1002/advs.202310108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/26/2024] [Indexed: 06/21/2024]
Abstract
New adjuvants that trigger cellular immune responses are urgently needed for the effective development of cancer and virus vaccines. Motivated by recent discoveries that show activation of type I interferon (IFN-I) signaling boosts T cell immunity, this study proposes that targeting this pathway can be a strategic approach to identify novel vaccine adjuvants. Consequently, a comprehensive chemical screening of 6,800 small molecules is performed, which results in the discovery of the natural compound picrasidine S (PS) as an IFN-I inducer. Further analysis reveals that PS acts as a powerful adjuvant, significantly enhancing both humoral and cellular immune responses. At the molecular level, PS initiates the activation of the cGAS-IFN-I pathway, leading to an enhanced T cell response. PS vaccination notably increases the population of CD8+ central memory (TCM)-like cells and boosts the CD8+ T cell-mediated anti-tumor immune response. Thus, this study identifies PS as a promising candidate for developing vaccine adjuvants in cancer prevention.
Collapse
Affiliation(s)
- Xiaofan Ding
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Mengxue Sun
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xinmin Qian
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Haoyu Yuan
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Wenjiao Lou
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Qixuan Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
- Institute of Cancer ResearchShen Zhen Bay LaboratoryShen Zhen518107China
| | - Wenwen Zeng
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineTaiyuan030001China
- Tsinghua‐Peking Center for Life SciencesBeijing100084China
| |
Collapse
|
6
|
Wang J, Dong Y, Zheng X, Ma H, Huang M, Fu D, Liu J, Yin Q. Host Factors Modulate Virus-Induced IFN Production via Pattern Recognition Receptors. J Inflamm Res 2024; 17:3737-3752. [PMID: 38882189 PMCID: PMC11180453 DOI: 10.2147/jir.s455035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Innate immunity is the first line of defense in the human body, and it plays an important role in defending against viral infection. Viruses are identified by different pattern-recognition receptors (PRRs) that activate the mitochondrial antiviral signaling protein (MAVS) or transmembrane protein 173 (STING), which trigger multiple signaling cascades that cause nuclear factor-κB (NF-κB) and interferon regulatory factor 3 (IRF3) to produce inflammatory factors and interferons (IFNs). PRRs play a pivotal role as the first step in pathogen induction of interferon production. Interferon elicits antiviral activity by inducing the transcription of hundreds of IFN-stimulated genes (ISGs) via the janus kinase (JAK) - signal transducer and activator of transcription (STAT) pathway. An increasing number of studies have shown that environmental, pathogen and host factors regulate the IFN signaling pathway. Here, we summarize the mechanisms of host factor modulation in IFN production via pattern recognition receptors. These regulatory mechanisms maintain interferon levels in a normal state and clear viruses without inducing autoimmune disease.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Yirui Dong
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Xuewei Zheng
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Haodi Ma
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Mengjiao Huang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Dongliao Fu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Jiangbo Liu
- Department of General Surgery, First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Qinan Yin
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People's Republic of China
| |
Collapse
|
7
|
Krause M, Samolej J, Yakimovich A, Kriston-Vizi J, Huttunen M, Lara-Reyna S, Frickel EM, Mercer J. Vaccinia virus subverts xenophagy through phosphorylation and nuclear targeting of p62. J Cell Biol 2024; 223:e202104129. [PMID: 38709216 PMCID: PMC11076808 DOI: 10.1083/jcb.202104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/13/2023] [Accepted: 02/12/2024] [Indexed: 05/07/2024] Open
Abstract
Autophagy is an essential degradation program required for cell homeostasis. Among its functions is the engulfment and destruction of cytosolic pathogens, termed xenophagy. Not surprisingly, many pathogens use various strategies to circumvent or co-opt autophagic degradation. For poxviruses, it is known that infection activates autophagy, which however is not required for successful replication. Even though these complex viruses replicate exclusively in the cytoplasm, autophagy-mediated control of poxvirus infection has not been extensively explored. Using the prototypic poxvirus, vaccinia virus (VACV), we show that overexpression of the xenophagy receptors p62, NDP52, and Tax1Bp1 restricts poxvirus infection. While NDP52 and Tax1Bp1 were degraded, p62 initially targeted cytoplasmic virions before being shunted to the nucleus. Nuclear translocation of p62 was dependent upon p62 NLS2 and correlated with VACV kinase mediated phosphorylation of p62 T269/S272. This suggests that VACV targets p62 during the early stages of infection to avoid destruction and further implies that poxviruses exhibit multi-layered control of autophagy to facilitate cytoplasmic replication.
Collapse
Affiliation(s)
- Melanie Krause
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Jerzy Samolej
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Artur Yakimovich
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Moona Huttunen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Eva-Maria Frickel
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Jason Mercer
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
8
|
Yang J, Wang Y, Hou Y, Sun M, Xia T, Wu X. Evasion of host defense by Brucella. CELL INSIGHT 2024; 3:100143. [PMID: 38250017 PMCID: PMC10797155 DOI: 10.1016/j.cellin.2023.100143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Brucella , an adept intracellular pathogen, causes brucellosis, a zoonotic disease leading to significant global impacts on animal welfare and the economy. Regrettably, there is currently no approved and effective vaccine for human use. The ability of Brucella to evade host defenses is essential for establishing chronic infection and ensuring stable intracellular growth. Brucella employs various mechanisms to evade and undermine the innate and adaptive immune responses of the host through modulating the activation of pattern recognition receptors (PRRs), inflammatory responses, or the activation of immune cells like dendritic cells (DCs) to inhibit antigen presentation. Moreover, it regulates multiple cellular processes such as apoptosis, pyroptosis, and autophagy to establish persistent infection within host cells. This review summarizes the recently discovered mechanisms employed by Brucella to subvert host immune responses and research progress on vaccines, with the aim of advancing our understanding of brucellosis and facilitating the development of more effective vaccines and therapeutic approaches against Brucella .
Collapse
Affiliation(s)
- Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yue Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yuanpan Hou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Mengyao Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Tian Xia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xin Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| |
Collapse
|
9
|
Cao LB, Ruan ZL, Yang YL, Zhang NC, Gao C, Cai C, Zhang J, Hu MM, Shu HB. Estrogen receptor α-mediated signaling inhibits type I interferon response to promote breast carcinogenesis. J Mol Cell Biol 2024; 15:mjad047. [PMID: 37442610 PMCID: PMC11066933 DOI: 10.1093/jmcb/mjad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/22/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023] Open
Abstract
Estrogen receptor α (ERα) is an important driver and therapeutic target in ∼70% of breast cancers. How ERα drives breast carcinogenesis is not fully understood. In this study, we show that ERα is a negative regulator of type I interferon (IFN) response. Activation of ERα by its natural ligand estradiol inhibits IFN-β-induced transcription of downstream IFN-stimulated genes (ISGs), whereas ERα deficiency or the stimulation with its antagonist fulvestrant has opposite effects. Mechanistically, ERα induces the expression of the histone 2A variant H2A.Z to restrict the engagement of the IFN-stimulated gene factor 3 (ISGF3) complex to the promoters of ISGs and also interacts with STAT2 to disrupt the assembly of the ISGF3 complex. These two events mutually lead to the inhibition of ISG transcription induced by type I IFNs. In a xenograft mouse model, fulvestrant enhances the ability of IFN-β to suppress ERα+ breast tumor growth. Consistently, clinical data analysis reveals that ERα+ breast cancer patients with higher levels of ISGs exhibit higher long-term survival rates. Taken together, our findings suggest that ERα inhibits type I IFN response via two distinct mechanisms to promote breast carcinogenesis.
Collapse
Affiliation(s)
- Li-Bo Cao
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan 430072, China
| | - Zi-Lun Ruan
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan 430072, China
| | - Yu-Lin Yang
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan 430072, China
| | - Nian-Chao Zhang
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan 430072, China
| | - Chuan Gao
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan 430072, China
| | - Cheguo Cai
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan 430072, China
| | - Jing Zhang
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan 430072, China
| | - Ming-Ming Hu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan 430072, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan 430072, China
| |
Collapse
|
10
|
Hu MM, Shu HB. Mitochondrial DNA-triggered innate immune response: mechanisms and diseases. Cell Mol Immunol 2023; 20:1403-1412. [PMID: 37932533 PMCID: PMC10687031 DOI: 10.1038/s41423-023-01086-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023] Open
Abstract
Various cellular stress conditions trigger mitochondrial DNA (mtDNA) release from mitochondria into the cytosol. The released mtDNA is sensed by the cGAS-MITA/STING pathway, resulting in the induced expression of type I interferon and other effector genes. These processes contribute to the innate immune response to viral infection and other stress factors. The deregulation of these processes causes autoimmune diseases, inflammatory metabolic disorders and cancer. Therefore, the cGAS-MITA/STING pathway is a potential target for intervention in infectious, inflammatory and autoimmune diseases as well as cancer. In this review, we focus on the mechanisms underlying the mtDNA-triggered activation of the cGAS-MITA/STING pathway, the effects of the pathway under various physiological and pathological conditions, and advances in the development of drugs that target cGAS and MITA/STING.
Collapse
Affiliation(s)
- Ming-Ming Hu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| |
Collapse
|
11
|
Huang C, Yin Y, Pan P, Huang Y, Chen S, Chen J, Wang J, Xu G, Tao X, Xiao X, Li J, Yang J, Jin Z, Li B, Tong Z, Du W, Liu L, Liu Z. The Interaction between SARS-CoV-2 Nucleocapsid Protein and UBC9 Inhibits MAVS Ubiquitination by Enhancing Its SUMOylation. Viruses 2023; 15:2304. [PMID: 38140545 PMCID: PMC10747396 DOI: 10.3390/v15122304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Severe COVID-19 patients exhibit impaired IFN-I response due to decreased IFN-β production, allowing persistent viral load and exacerbated inflammation. While the SARS-CoV-2 nucleocapsid (N) protein has been implicated in inhibiting innate immunity by interfering with IFN-β signaling, the specific underlying mechanism still needs further investigation for a comprehensive understanding. This study reveals that the SARS-CoV-2 N protein enhances interaction between the human SUMO-conjugating enzyme UBC9 and MAVS. Increased MAVS-UBC9 interaction leads to enhanced SUMOylation of MAVS, inhibiting its ubiquitination, resulting in the inhibition of phosphorylation events involving IKKα, TBK1, and IRF3, thus disrupting IFN-β signaling. This study highlights the role of the N protein of SARS-CoV-2 in modulating the innate immune response by affecting the MAVS SUMOylation and ubiquitination processes, leading to inhibition of the IFN-β signaling pathway. These findings shed light on the complex mechanisms utilized by SARS-CoV-2 to manipulate the host's antiviral defenses and provide potential insights for developing targeted therapeutic strategies against severe COVID-19.
Collapse
Affiliation(s)
- Congcong Huang
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China (J.W.); (J.Y.)
- Institute of Virology, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Yiping Yin
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China (J.W.); (J.Y.)
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100054, China
| | - Pan Pan
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yanping Huang
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China (J.W.); (J.Y.)
| | - Siwei Chen
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China (J.W.); (J.Y.)
| | - Junkai Chen
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China (J.W.); (J.Y.)
| | - Ju Wang
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China (J.W.); (J.Y.)
| | - Guoqing Xu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China (J.W.); (J.Y.)
| | - Xuan Tao
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China (J.W.); (J.Y.)
| | - Xiao Xiao
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China (J.W.); (J.Y.)
- Institute of Virology, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Jian Li
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China (J.W.); (J.Y.)
- Institute of Virology, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Jing Yang
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China (J.W.); (J.Y.)
- Institute of Virology, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Zhixiong Jin
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China (J.W.); (J.Y.)
- Institute of Virology, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Bei Li
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China (J.W.); (J.Y.)
- Institute of Virology, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100054, China
| | - Weixing Du
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China (J.W.); (J.Y.)
| | - Long Liu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China (J.W.); (J.Y.)
- Institute of Virology, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Zhixin Liu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China (J.W.); (J.Y.)
- Institute of Virology, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
12
|
Zeng X, Liu C, Fan J, Zou J, Guo M, Sun G. RNF138 Downregulates Antiviral Innate Immunity by Inhibiting IRF3 Activation. Int J Mol Sci 2023; 24:16110. [PMID: 38003298 PMCID: PMC10671598 DOI: 10.3390/ijms242216110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
A viral infection activates the transcription factors IRF3 and NF-κB, which synergistically induces type I interferons (IFNs). Here, we identify the E3 ubiquitin ligase RNF138 as an important negative regulator of virus-triggered IRF3 activation and IFN-β induction. The overexpression of RNF138 inhibited the virus-induced activation of IRF3 and the transcription of the IFNB1 gene, whereas the knockout of RNF138 promoted the virus-induced activation of IRF3 and transcription of the IFNB1 gene. We further found that RNF138 promotes the ubiquitination of PTEN and subsequently inhibits PTEN interactions with IRF3, which is essential for the PTEN-mediated nuclear translocation of IRF3, thereby inhibiting IRF3 import into the nucleus. Our findings suggest that RNF138 negatively regulates virus-triggered signaling by inhibiting the interaction of PTEN with IRF3, and these data provide new insights into the molecular mechanisms of cellular antiviral responses.
Collapse
Affiliation(s)
- Xianhuang Zeng
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Chaozhi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jinhao Fan
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Jiabin Zou
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Guihong Sun
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan 430071, China
| |
Collapse
|
13
|
Evangelista-Leite D, Carreira ACO, Nishiyama MY, Gilpin SE, Miglino MA. The molecular mechanisms of extracellular matrix-derived hydrogel therapy in idiopathic pulmonary fibrosis models. Biomaterials 2023; 302:122338. [PMID: 37820517 DOI: 10.1016/j.biomaterials.2023.122338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/20/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a progressively debilitating lung condition characterized by oxidative stress, cell phenotype shifts, and excessive extracellular matrix (ECM) deposition. Recent studies have shown promising results using decellularized ECM-derived hydrogels produced through pepsin digestion in various lung injury models and even a human clinical trial for myocardial infarction. This study aimed to characterize the composition of ECM-derived hydrogels, assess their potential to prevent fibrosis in bleomycin-induced IPF models, and unravel their underlying molecular mechanisms of action. Porcine lungs were decellularized and pepsin-digested for 48 h. The hydrogel production process, including visualization of protein molecular weight distribution and hydrogel gelation, was characterized. Peptidomics analysis of ECM-derived hydrogel contained peptides from 224 proteins. Probable bioactive and cell-penetrating peptides, including collagen IV, laminin beta 2, and actin alpha 1, were identified. ECM-derived hydrogel treatment was administered as an early intervention to prevent fibrosis advancement in rat models of bleomycin-induced pulmonary fibrosis. ECM-derived hydrogel concentrations of 1 mg/mL and 2 mg/mL showed subtle but noticeable effects on reducing lung inflammation, oxidative damage, and protein markers related to fibrosis (e.g., alpha-smooth muscle actin, collagen I). Moreover, distinct changes were observed in macroscopic appearance, alveolar structure, collagen deposition, and protein expression between lungs that received ECM-derived hydrogel and control fibrotic lungs. Proteomic analyses revealed significant protein and gene expression changes related to cellular processes, pathways, and components involved in tissue remodeling, inflammation, and cytoskeleton regulation. RNA sequencing highlighted differentially expressed genes associated with various cellular processes, such as tissue remodeling, hormone secretion, cell chemotaxis, and cytoskeleton engagement. This study suggests that ECM-derived hydrogel treatment influence pathways associated with tissue repair, inflammation regulation, cytoskeleton reorganization, and cellular response to injury, potentially offering therapeutic benefits in preventing or mitigating lung fibrosis.
Collapse
Affiliation(s)
- Daniele Evangelista-Leite
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil; School of Medical Sciences, State University of Campinas, Campinas, São Paulo, 13083-970, Brazil.
| | - Ana C O Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil; NUCEL (Cell and Molecular Therapy Center), School of Medicine, University of São Paulo, São Paulo, 05360-130, Brazil; Center for Human and Natural Sciences, Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil.
| | - Milton Y Nishiyama
- Laboratory of Applied Toxinology, Butantan Institute, São Paulo, 05503-900, Brazil.
| | - Sarah E Gilpin
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil.
| | - Maria A Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil.
| |
Collapse
|
14
|
Zhong N, Wang C, Weng G, Ling T, Xu L. ZNF205 positively regulates RLR antiviral signaling by targeting RIG-I. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1582-1591. [PMID: 37580950 PMCID: PMC10577479 DOI: 10.3724/abbs.2023136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/19/2023] [Indexed: 08/16/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is a cytosolic viral RNA receptor. Upon viral infection, the protein recognizes and then recruits adapter protein mitochondrial antiviral signaling (MAVS) protein, initiating the production of interferons and proinflammatory cytokines to establish an antiviral state. In the present study, we identify zinc finger protein 205 (ZNF205) which associates with RIG-I and promotes the Sendai virus (SeV)-induced antiviral innate immune response. Overexpression of ZNF205 facilitates interferon-beta (IFN-β) introduction, whereas ZNF205 deficiency restricts its introduction. Mechanistically, the C-terminal zinc finger domain of ZNF205 interacts with the N-terminal tandem caspase recruitment domains (CARDs) of RIG-I; this interaction markedly promotes K63 ubiquitin-linked polyubiquitination of RIG-I, which is crucial for RIG-I activation. Thus, our results demonstrate that ZNF205 is a positive regulator of the RIG-I-mediated innate antiviral immune signaling pathway.
Collapse
Affiliation(s)
- Ni Zhong
- />College of Life ScienceJiangxi Normal UniversityNanchang330022China
| | - Chen Wang
- />College of Life ScienceJiangxi Normal UniversityNanchang330022China
| | - Guangxiu Weng
- />College of Life ScienceJiangxi Normal UniversityNanchang330022China
| | - Ting Ling
- />College of Life ScienceJiangxi Normal UniversityNanchang330022China
| | - Liangguo Xu
- />College of Life ScienceJiangxi Normal UniversityNanchang330022China
| |
Collapse
|
15
|
Li WW, Fan XX, Zhu ZX, Cao XJ, Zhu ZY, Pei DS, Wang YZ, Zhang JY, Wang YY, Zheng HX. Tyrosine phosphorylation of IRF3 by BLK facilitates its sufficient activation and innate antiviral response. PLoS Pathog 2023; 19:e1011742. [PMID: 37871014 PMCID: PMC10621992 DOI: 10.1371/journal.ppat.1011742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/02/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Viral infection triggers the activation of transcription factor IRF3, and its activity is precisely regulated for robust antiviral immune response and effective pathogen clearance. However, how full activation of IRF3 is achieved has not been well defined. Herein, we identified BLK as a key kinase that positively modulates IRF3-dependent signaling cascades and executes a pre-eminent antiviral effect. BLK deficiency attenuates RNA or DNA virus-induced ISRE activation, interferon production and the cellular antiviral response in human and murine cells, whereas overexpression of BLK has the opposite effects. BLK-deficient mice exhibit lower serum cytokine levels and higher lethality after VSV infection. Moreover, BLK deficiency impairs the secretion of downstream antiviral cytokines and promotes Senecavirus A (SVA) proliferation, thereby supporting SVA-induced oncolysis in an in vivo xenograft tumor model. Mechanistically, viral infection triggers BLK autophosphorylation at tyrosine 309. Subsequently, activated BLK directly binds and phosphorylates IRF3 at tyrosine 107, which further promotes TBK1-induced IRF3 S386 and S396 phosphorylation, facilitating sufficient IRF3 activation and downstream antiviral response. Collectively, our findings suggest that targeting BLK enhances viral clearance via specifically regulating IRF3 phosphorylation by a previously undefined mechanism.
Collapse
Affiliation(s)
- Wei-Wei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xu-Xu Fan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zi-Xiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xue-Jing Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zhao-Yu Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Dan-Shi Pei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yi-Zhuo Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Ji-Yan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yan-Yi Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hai-Xue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
16
|
He QQ, Huang Y, Nie L, Ren S, Xu G, Deng F, Cheng Z, Zuo Q, Zhang L, Cai H, Wang Q, Wang F, Ren H, Yan H, Xu K, Zhou L, Lu M, Lu Z, Zhu Y, Liu S. MAVS integrates glucose metabolism and RIG-I-like receptor signaling. Nat Commun 2023; 14:5343. [PMID: 37660168 PMCID: PMC10475032 DOI: 10.1038/s41467-023-41028-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
MAVS is an adapter protein involved in RIG-I-like receptor (RLR) signaling in mitochondria, peroxisomes, and mitochondria-associated ER membranes (MAMs). However, the role of MAVS in glucose metabolism and RLR signaling cross-regulation and how these signaling pathways are coordinated among these organelles have not been defined. This study reports that RLR action drives a switch from glycolysis to the pentose phosphate pathway (PPP) and the hexosamine biosynthesis pathway (HBP) through MAVS. We show that peroxisomal MAVS is responsible for glucose flux shift into PPP and type III interferon (IFN) expression, whereas MAMs-located MAVS is responsible for glucose flux shift into HBP and type I IFN expression. Mechanistically, peroxisomal MAVS interacts with G6PD and the MAVS signalosome forms at peroxisomes by recruiting TNF receptor-associated factor 6 (TRAF6) and interferon regulatory factor 1 (IRF1). By contrast, MAMs-located MAVS interact with glutamine-fructose-6-phosphate transaminase, and the MAVS signalosome forms at MAMs by recruiting TRAF6 and TRAF2. Our findings suggest that MAVS mediates the interaction of RLR signaling and glucose metabolism.
Collapse
Affiliation(s)
- Qiao-Qiao He
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Longyu Nie
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Sheng Ren
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gang Xu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Feiyan Deng
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhikui Cheng
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qi Zuo
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lin Zhang
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Huanhuan Cai
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Qiming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Fubing Wang
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, China
| | - Hong Ren
- Shanghai Children's Medical Center, Affiliated Hospital to Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Huan Yan
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ke Xu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Zhibing Lu
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China.
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| |
Collapse
|
17
|
Huang JP, Yang YX, Chen T, Wang DD, Li J, Xu LG. TRAF7 negatively regulates the RLR signaling pathway by facilitating the K48-linked ubiquitination of TBK1. Virol Sin 2023:S1995-820X(23)00043-3. [PMID: 37086853 DOI: 10.1016/j.virs.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/17/2023] [Indexed: 04/24/2023] Open
Abstract
TANK-binding kinase 1 (TBK1) is a nodal protein involved in multiple signal transduction pathways. In RNA virus-mediated innate immunity, TBK1 is recruited to the prion-like platform formed by MAVS and subsequently activates the transcription factors IRF3/7 and NF-κB to produce type I interferon (IFN) and proinflammatory cytokines for the signaling cascade. In this study, TRAF7 was identified as a negative regulator of innate immune signaling. TRAF7 interacts with TBK1 and promotes K48-linked polyubiquitination and degradation of TBK1 through its RING domain, impairing the activation of IRF3 and the production of IFN-β. In addition, we found that the conserved cysteine residues at position 131 of TRAF7 are necessary for its function toward TBK1. Knockout of TRAF7 could facilitate the activation of IRF3 and increase the transcript levels of downstream antiviral genes. These data suggest that TRAF7 negatively regulates innate antiviral immunity by promoting the K48-linked ubiquitination of TBK1.
Collapse
Affiliation(s)
- Jing-Ping Huang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Ya-Xian Yang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Tian Chen
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Dan-Dan Wang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Jing Li
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Liang-Guo Xu
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
18
|
Song J, Yang RR, Chang J, Liu YD, Lu CH, Chen LF, Guo H, Zhang YH, Fan ZS, Zhou JY, Zhou GZ, Zhang KK, Luo XM, Chen KX, Jiang HL, Zhang SL, Zheng MY. Discovery and characterization of a novel cGAS covalent inhibitor for the treatment of inflammatory bowel disease. Acta Pharmacol Sin 2023; 44:791-800. [PMID: 36229599 PMCID: PMC10043009 DOI: 10.1038/s41401-022-01002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor, acts as a nucleotidyl transferase that catalyzes ATP and GTP to form cyclic GMP-AMP (cGAMP) and plays a critical role in innate immunity. Hyperactivation of cGAS-STING signaling contributes to hyperinflammatory responses. Therefore, cGAS is considered a promising target for the treatment of inflammatory diseases. Herein, we report the discovery and identification of several novel types of cGAS inhibitors by pyrophosphatase (PPiase)-coupled activity assays. Among these inhibitors, 1-(1-phenyl-3,4-dihydro-1H-pyrrolo[1,2-a]pyrazin-2-yl)prop-2-yn-1-one (compound 3) displayed the highest potency and selectivity at the cellular level. Compound 3 exhibited better inhibitory activity and pathway selectivity than RU.521, which is a selective cGAS inhibitor with anti-inflammatory effects in vitro and in vivo. Thermostability analysis, nuclear magnetic resonance and isothermal titration calorimetry assays confirmed that compound 3 directly binds to the cGAS protein. Mass spectrometry and mutation analysis revealed that compound 3 covalently binds to Cys419 of cGAS. Notably, compound 3 demonstrated promising therapeutic efficacy in a dextran sulfate sodium (DSS)-induced mouse colitis model. These results collectively suggest that compound 3 will be useful for understanding the biological function of cGAS and has the potential to be further developed for inflammatory disease therapies.
Collapse
Affiliation(s)
- Jia Song
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Rui-Rui Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, Shanghai Tech University, Shanghai, 200031, China
| | - Jie Chang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ya-Dan Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cheng-Hao Lu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li-Fan Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Guo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Hui Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Sheng Fan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing-Yi Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Gui-Zhen Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ke-Ke Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Min Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kai-Xian Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hua-Liang Jiang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, Shanghai Tech University, Shanghai, 200031, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Su-Lin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ming-Yue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
19
|
Kasravi M, Ahmadi A, Babajani A, Mazloomnejad R, Hatamnejad MR, Shariatzadeh S, Bahrami S, Niknejad H. Immunogenicity of decellularized extracellular matrix scaffolds: a bottleneck in tissue engineering and regenerative medicine. Biomater Res 2023; 27:10. [PMID: 36759929 PMCID: PMC9912640 DOI: 10.1186/s40824-023-00348-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Tissue-engineered decellularized extracellular matrix (ECM) scaffolds hold great potential to address the donor shortage as well as immunologic rejection attributed to cells in conventional tissue/organ transplantation. Decellularization, as the key process in manufacturing ECM scaffolds, removes immunogen cell materials and significantly alleviates the immunogenicity and biocompatibility of derived scaffolds. However, the application of these bioscaffolds still confronts major immunologic challenges. This review discusses the interplay between damage-associated molecular patterns (DAMPs) and antigens as the main inducers of innate and adaptive immunity to aid in manufacturing biocompatible grafts with desirable immunogenicity. It also appraises the impact of various decellularization methodologies (i.e., apoptosis-assisted techniques) on provoking immune responses that participate in rejecting allogenic and xenogeneic decellularized scaffolds. In addition, the key research findings regarding the contribution of ECM alterations, cytotoxicity issues, graft sourcing, and implantation site to the immunogenicity of decellularized tissues/organs are comprehensively considered. Finally, it discusses practical solutions to overcome immunogenicity, including antigen masking by crosslinking, sterilization optimization, and antigen removal techniques such as selective antigen removal and sequential antigen solubilization.
Collapse
Affiliation(s)
- Mohammadreza Kasravi
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran ,grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Amirhesam Babajani
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Radman Mazloomnejad
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Mohammad Reza Hatamnejad
- grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- grid.19006.3e0000 0000 9632 6718Department of Surgery, University of California Los Angeles, Los Angeles, California USA
| | - Soheyl Bahrami
- grid.454388.60000 0004 6047 9906Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran.
| |
Collapse
|
20
|
Liu Y, Abula A, Xiao H, Guo H, Li T, Zheng L, Chen B, Nguyen HC, Ji X. Structural Insight Into hnRNP A2/B1 Homodimerization and DNA Recognition. J Mol Biol 2023; 435:167920. [PMID: 36528084 DOI: 10.1016/j.jmb.2022.167920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) has been identified as a nuclear DNA sensor. Upon viral infection, hnRNP A2/B1 recognizes pathogen-derived DNA as a homodimer, which is a prerequisite for its translocation to the cytoplasm to activate the interferon response. However, the DNA binding mechanism inducing hnRNP A2/B1 homodimerization is unknown. Here, we show the crystal structure of the RNA recognition motif (RRM) of hnRNP A2/B1 in complex with a U-shaped ssDNA, which mediates the formation of a newly observed protein dimer. Our biochemical assays and mutagenesis studies confirm that the hnRNP A2/B1 homodimer forms in solution by binding to pre-generated ssDNA or dsDNA with a U-shaped bulge. These results depict a potential functional state of hnRNP A2/B1 in antiviral immunity and other cellular processes.
Collapse
Affiliation(s)
- Yue Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China
| | - Abudureyimu Abula
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China; School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| | - Haonan Xiao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China
| | - Hangtian Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China
| | - Tinghan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China
| | - Le Zheng
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China
| | - Biqing Chen
- Research Center of Chinese Medicine/Central Laboratory, Jiangsu Province Hospital of Chinese Medicine/ the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| | - Henry C Nguyen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China; Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, People's Republic of China.
| |
Collapse
|
21
|
Guo Y, Zhang XN, Su S, Ruan ZL, Hu MM, Shu HB. β-adrenoreceptor-triggered PKA activation negatively regulates the innate antiviral response. Cell Mol Immunol 2023; 20:175-188. [PMID: 36600052 PMCID: PMC9886936 DOI: 10.1038/s41423-022-00967-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Upon viral infection, cytoplasmic pattern recognition receptors detect viral nucleic acids and activate the adaptor protein VISA/MAVS- or MITA/STING-mediated innate antiviral response. Whether and how the innate antiviral response is regulated by neuronal endocrine functions is unclear. Here, we show that viral infection reduced the serum levels of the β-adrenergic hormones epinephrine and norepinephrine as well as the cellular levels of their receptors ADRB1 and ADRB2. We further show that an increase in epinephrine/norepinephrine level inhibited the innate antiviral response in an ADRB1-/2-dependent manner. Mechanistically, epinephrine/norepinephrine stimulation activated the downstream kinase PKA, which catalyzed the phosphorylation of MITA at S241, S243 and T263, inhibiting MITA activation and suppressing the innate immune response to DNA virus. In addition, phosphorylation of VISA at T54 by PKA antagonized the innate immune response to RNA virus. These findings reveal the regulatory mechanisms of innate antiviral responses by epinephrine/norepinephrine and provide a possible explanation for increased host susceptibility to viral infection in stressful and anxiety-promoting situations.
Collapse
Affiliation(s)
- Yi Guo
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xia-Nan Zhang
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shan Su
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zi-Lun Ruan
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ming-Ming Hu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
22
|
Baillo A, Villena J, Albarracín L, Tomokiyo M, Elean M, Fukuyama K, Quilodrán-Vega S, Fadda S, Kitazawa H. Lactiplantibacillus plantarum Strains Modulate Intestinal Innate Immune Response and Increase Resistance to Enterotoxigenic Escherichia coli Infection. Microorganisms 2022; 11:microorganisms11010063. [PMID: 36677354 PMCID: PMC9863675 DOI: 10.3390/microorganisms11010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Currently, probiotic bacteria with not transferable antibiotic resistance represent a sustainable strategy for the treatment and prevention of enterotoxigenic Escherichia coli (ETEC) in farm animals. Lactiplantibacillus plantarum is among the most versatile species used in the food industry, either as starter cultures or probiotics. In the present work, the immunobiotic potential of L. plantarum CRL681 and CRL1506 was studied to evaluate their capability to improve the resistance to ETEC infection. In vitro studies using porcine intestinal epithelial (PIE) cells and in vivo experiments in mice were undertaken. Expression analysis indicated that both strains were able to trigger IL-6 and IL-8 expression in PIE cells in steady-state conditions. Furthermore, mice orally treated with these strains had significantly improved levels of IFN-γ and TNF-α in the intestine as well as enhanced activity of peritoneal macrophages. The ability of CRL681 and CRL1506 to beneficially modulate intestinal immunity was further evidenced in ETEC-challenge experiments. In vitro, the CRL1506 and CRL681 strains modulated the expression of inflammatory cytokines (IL-6) and chemokines (IL-8, CCL2, CXCL5 and CXCL9) in ETEC-stimulated PIE cells. In vivo experiments demonstrated the ability of both strains to beneficially regulate the immune response against this pathogen. Moreover, the oral treatment of mice with lactic acid bacteria (LAB) strains significantly reduced ETEC counts in jejunum and ileum and prevented the spread of the pathogen to the spleen and liver. Additionally, LAB treated-mice had improved levels of intestinal IL-10 both at steady state and after the challenge with ETEC. The protective effect against ETEC infection was not observed for the non-immunomodulatory TL2677 strain. Furthermore, the study showed that L. plantarum CRL1506 was more efficient than the CRL681 strain to modulate mucosal immunity highlighting the strain specific character of this probiotic activity. Our results suggest that the improved intestinal epithelial defenses and innate immunity induced by L. plantarum CRL1506 and CRL681 would increase the clearance of ETEC and at the same time, protect the host against detrimental inflammation. These constitute valuable features for future probiotic products able to improve the resistance to ETEC infection.
Collapse
Affiliation(s)
- Ayelen Baillo
- Laboratory of Technology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman CP4000, Argentina
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman CP4000, Argentina
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Correspondence: (J.V.); (S.F.); (H.K.)
| | - Leonardo Albarracín
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman CP4000, Argentina
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman CP4000, Argentina
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Sandra Quilodrán-Vega
- Laboratory of Food Microbiology, Faculty of Veterinary Sciences, University of Concepción, Chillán 3820572, Chile
| | - Silvina Fadda
- Laboratory of Technology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman CP4000, Argentina
- Correspondence: (J.V.); (S.F.); (H.K.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Correspondence: (J.V.); (S.F.); (H.K.)
| |
Collapse
|
23
|
Aditi, McKinnon PJ. Genome integrity and inflammation in the nervous system. DNA Repair (Amst) 2022; 119:103406. [PMID: 36148701 PMCID: PMC9844216 DOI: 10.1016/j.dnarep.2022.103406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023]
Abstract
Preservation of genomic integrity is crucial for nervous system development and function. DNA repair deficiency results in several human diseases that are characterized by both neurodegeneration and neuroinflammation. Recent research has highlighted a role for compromised genomic integrity as a key factor driving neuropathology and triggering innate immune signaling to cause inflammation. Here we review the mechanisms by which DNA damage engages innate immune signaling and how this may promote neurological disease. We also consider the contributions of different neural cell types towards DNA damage-driven neuroinflammation. A deeper knowledge of genome maintenance mechanisms that prevent aberrant immune activation in neural cells will guide future therapies to ameliorate neurological disease.
Collapse
Affiliation(s)
- Aditi
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
24
|
He WR, Yuan J, Ma YH, Zhao CY, Yang ZY, Zhang Y, Han S, Wan B, Zhang GP. Modulation of Host Antiviral Innate Immunity by African Swine Fever Virus: A Review. Animals (Basel) 2022; 12:2935. [PMID: 36359059 PMCID: PMC9653632 DOI: 10.3390/ani12212935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 08/27/2023] Open
Abstract
African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious and fatal disease found in swine. However, the viral proteins and mechanisms responsible for immune evasion are poorly understood, which has severely hindered the development of vaccines. This review mainly focuses on studies involving the innate antiviral immune response of the host and summarizes the latest studies on ASFV genes involved in interferon (IFN) signaling and inflammatory responses. We analyzed the effects of candidate viral proteins on ASFV infection, replication and pathogenicity and identified potential molecular targets for novel ASFV vaccines. These efforts will contribute to the construction of novel vaccines and wonder therapeutics for ASF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Wan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Gai-Ping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
25
|
Endocytosis triggers V-ATPase-SYK-mediated priming of cGAS activation and innate immune response. Proc Natl Acad Sci U S A 2022; 119:e2207280119. [PMID: 36252040 PMCID: PMC9618142 DOI: 10.1073/pnas.2207280119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The current view of nucleic acid-mediated innate immunity is that binding of intracellular sensors to nucleic acids is sufficient for their activation. Here, we report that endocytosis of virus or foreign DNA initiates a priming signal for the DNA sensor cyclic GMP-AMP synthase (cGAS)-mediated innate immune response. Mechanistically, viral infection or foreign DNA transfection triggers recruitment of the spleen tyrosine kinase (SYK) and cGAS to the endosomal vacuolar H+ pump (V-ATPase), where SYK is activated and then phosphorylates human cGASY214/215 (mouse cGasY200/201) to prime its activation. Upon binding to DNA, the primed cGAS initiates robust cGAMP production and mediator of IRF3 activation/stimulator of interferon genes-dependent innate immune response. Consistently, blocking the V-ATPase-SYK axis impairs DNA virus- and transfected DNA-induced cGAMP production and expression of antiviral genes. Our findings reveal that V-ATPase-SYK-mediated tyrosine phosphorylation of cGAS following endocytosis of virus or other cargos serves as a priming signal for cGAS activation and innate immune response.
Collapse
|
26
|
Deng Y, Wang Y, Li L, Miao EA, Liu P. Post-Translational Modifications of Proteins in Cytosolic Nucleic Acid Sensing Signaling Pathways. Front Immunol 2022; 13:898724. [PMID: 35795661 PMCID: PMC9250978 DOI: 10.3389/fimmu.2022.898724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
The innate immune response is the first-line host defense against pathogens. Cytosolic nucleic acids, including both DNA and RNA, represent a special type of danger signal to initiate an innate immune response. Activation of cytosolic nucleic acid sensors is tightly controlled in order to achieve the high sensitivity needed to combat infection while simultaneously preventing false activation that leads to pathologic inflammatory diseases. In this review, we focus on post-translational modifications of key cytosolic nucleic acid sensors that can reversibly or irreversibly control these sensor functions. We will describe phosphorylation, ubiquitination, SUMOylation, neddylation, acetylation, methylation, succinylation, glutamylation, amidation, palmitoylation, and oxidation modifications events (including modified residues, modifying enzymes, and modification function). Together, these post-translational regulatory modifications on key cytosolic DNA/RNA sensing pathway members reveal a complicated yet elegantly controlled multilayer regulator network to govern innate immune activation.
Collapse
Affiliation(s)
- Yu Deng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ying Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lupeng Li
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Edward A. Miao
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Pengda Liu,
| |
Collapse
|
27
|
Cai X, Zhou Z, Zhu J, Liu X, Ouyang G, Wang J, Li Z, Li X, Zha H, Zhu C, Rong F, Tang J, Liao Q, Chen X, Xiao W. Opposing effects of deubiquitinase OTUD3 in innate immunity against RNA and DNA viruses. Cell Rep 2022; 39:110920. [PMID: 35675783 DOI: 10.1016/j.celrep.2022.110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/29/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Retinoic acid-inducible-I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and cyclic GMP-AMP synthase (cGAS) genes encode essential cytosolic receptors mediating antiviral immunity against viruses. Here, we show that OTUD3 has opposing role in response to RNA and DNA virus infection by removing distinct types of RIG-I/MDA5 and cGAS polyubiquitination. OTUD3 binds to RIG-I and MDA5 and removes K63-linked ubiquitination. This serves to reduce the binding of RIG-I and MDA5 to viral RNA and the downstream adaptor MAVS, leading to the suppression of the RNA virus-triggered innate antiviral responses. Meanwhile, OTUD3 associates with cGAS and targets at Lys279 to deubiquitinate K48-linked ubiquitination, resulting in the enhancement of cGAS protein stability and DNA-binding ability. As a result, Otud3-deficient mice and zebrafish are more resistant to RNA virus infection but are more susceptible to DNA virus infection. These findings demonstrate that OTUD3 limits RNA virus-triggered innate immunity but promotes DNA virus-triggered innate immunity.
Collapse
Affiliation(s)
- Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Ziwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junji Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huangyuan Zha
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinghua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China; Hubei Hongshan Laboratory, Wuhan 430070, P. R. China.
| |
Collapse
|
28
|
Zhang Y, Li Z, Su W, Zhong G, Zhang X, Wu Y, Situ B, Xiao Y, Yan X, Zheng L. A highly sensitive and versatile fluorescent biosensor for pathogen nucleic acid detection based on toehold-mediated strand displacement initiated primer exchange reaction. Anal Chim Acta 2022; 1221:340125. [DOI: 10.1016/j.aca.2022.340125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 01/03/2023]
|
29
|
Pone EJ, Hernandez-Davies JE, Jan S, Silzel E, Felgner PL, Davies DH. Multimericity Amplifies the Synergy of BCR and TLR4 for B Cell Activation and Antibody Class Switching. Front Immunol 2022; 13:882502. [PMID: 35663959 PMCID: PMC9161726 DOI: 10.3389/fimmu.2022.882502] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Sustained signaling through the B cell antigen receptor (BCR) is thought to occur only when antigen(s) crosslink or disperse multiple BCR units, such as by multimeric antigens found on the surfaces of viruses or bacteria. B cell-intrinsic Toll-like receptor (TLR) signaling synergizes with the BCR to induce and shape antibody production, hallmarked by immunoglobulin (Ig) class switch recombination (CSR) of constant heavy chains from IgM/IgD to IgG, IgA or IgE isotypes, and somatic hypermutation (SHM) of variable heavy and light chains. Full B cell differentiation is essential for protective immunity, where class switched high affinity antibodies neutralize present pathogens, memory B cells are held in reserve for future encounters, and activated B cells also serve as semi-professional APCs for T cells. But the rules that fine-tune B cell differentiation remain partially understood, despite their being essential for naturally acquired immunity and for guiding vaccine development. To address this in part, we have developed a cell culture system using splenic B cells from naive mice stimulated with several biotinylated ligands and antibodies crosslinked by streptavidin reagents. In particular, biotinylated lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) agonist, and biotinylated anti-IgM were pre-assembled (multimerized) using streptavidin, or immobilized on nanoparticles coated with streptavidin, and used to active B cells in this precisely controlled, high throughput assay. Using B cell proliferation and Ig class switching as metrics for successful B cell activation, we show that the stimuli are both synergistic and dose-dependent. Crucially, the multimerized immunoconjugates are most active over a narrow concentration range. These data suggest that multimericity is an essential requirement for B cell BCR/TLRs ligands, and clarify basic rules for B cell activation. Such studies highlight the importance in determining the choice of single vs multimeric formats of antigen and PAMP agonists during vaccine design and development.
Collapse
|
30
|
The Contribution of Viral Proteins to the Synergy of Influenza and Bacterial Co-Infection. Viruses 2022; 14:v14051064. [PMID: 35632805 PMCID: PMC9143653 DOI: 10.3390/v14051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
A severe course of acute respiratory disease caused by influenza A virus (IAV) infection is often linked with subsequent bacterial superinfection, which is difficult to cure. Thus, synergistic influenza-bacterial co-infection represents a serious medical problem. The pathogenic changes in the infected host are accelerated as a consequence of IAV infection, reflecting its impact on the host immune response. IAV infection triggers a complex process linked with the blocking of innate and adaptive immune mechanisms required for effective antiviral defense. Such disbalance of the immune system allows for easier initiation of bacterial superinfection. Therefore, many new studies have emerged that aim to explain why viral-bacterial co-infection can lead to severe respiratory disease with possible fatal outcomes. In this review, we discuss the key role of several IAV proteins-namely, PB1-F2, hemagglutinin (HA), neuraminidase (NA), and NS1-known to play a role in modulating the immune defense of the host, which consequently escalates the development of secondary bacterial infection, most often caused by Streptococcus pneumoniae. Understanding the mechanisms leading to pathological disorders caused by bacterial superinfection after the previous viral infection is important for the development of more effective means of prevention; for example, by vaccination or through therapy using antiviral drugs targeted at critical viral proteins.
Collapse
|
31
|
Modulation of innate immune response to viruses including SARS-CoV-2 by progesterone. Signal Transduct Target Ther 2022; 7:137. [PMID: 35468896 PMCID: PMC9035769 DOI: 10.1038/s41392-022-00981-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022] Open
Abstract
Whether and how innate antiviral response is regulated by humoral metabolism remains enigmatic. We show that viral infection induces progesterone via the hypothalamic-pituitary-adrenal axis in mice. Progesterone induces downstream antiviral genes and promotes innate antiviral response in cells and mice, whereas knockout of the progesterone receptor PGR has opposite effects. Mechanistically, stimulation of PGR by progesterone activates the tyrosine kinase SRC, which phosphorylates the transcriptional factor IRF3 at Y107, leading to its activation and induction of antiviral genes. SARS-CoV-2-infected patients have increased progesterone levels, and which are co-related with decreased severity of COVID-19. Our findings reveal how progesterone modulates host innate antiviral response, and point to progesterone as a potential immunomodulatory reagent for infectious and inflammatory diseases.
Collapse
|
32
|
Zheng ZQ, Fu YZ, Wang SY, Xu ZS, Zou HM, Wang YY. Herpes simplex virus protein UL56 inhibits cGAS-Mediated DNA sensing to evade antiviral immunity. CELL INSIGHT 2022; 1:100014. [PMID: 37193132 PMCID: PMC10120305 DOI: 10.1016/j.cellin.2022.100014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 05/18/2023]
Abstract
After herpes simplex virus type 1 (HSV-1) infection, the cytosolic sensor cyclic GMP-AMP synthase (cGAS) recognizes DNA and catalyzes synthesis of the second messenger 2'3'-cGAMP. cGAMP binds to the ER-localized adaptor protein MITA (also known as STING) to activate downstream antiviral responses. Conversely, HSV-1-encoded proteins evade antiviral immune responses via a wide variety of delicate mechanisms, promoting viral replication and pathogenesis. Here, we identified HSV-1 envelop protein UL56 as a negative regulator of cGAS-mediated innate immune responses. Overexpression of UL56 inhibited double-stranded DNA-triggered antiviral responses, whereas UL56-deficiency increased HSV-1-triggered induction of downstream antiviral genes. UL56-deficiency inhibited HSV-1 replication in wild-type but not MITA-deficient cells. UL56-deficient HSV-1 showed reduced replication in the brain of infected mice and was less lethal to infected mice. Mechanistically, UL56 interacted with cGAS and inhibited its DNA binding and enzymatic activity. Furthermore, we found that UL56 homologous proteins from different herpesviruses had similar roles in antagonizing cGAS-mediated innate immune responses. Our findings suggest that UL56 is a component of HSV-1 evasion of host innate immune responses by antagonizing the DNA sensor cGAS, which contributes to our understanding of the comprehensive mechanisms of immune evasion by herpesviruses.
Collapse
Affiliation(s)
- Zhou-Qin Zheng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Zhi Fu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Su-Yun Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhi-Sheng Xu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hong-Mei Zou
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Yi Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Zhang Y, Dai Y, Wang J, Xu Y, Li Z, Lu J, Xu Y, Zhong J, Ding SW, Li Y. Mouse circulating extracellular vesicles contain virus-derived siRNAs active in antiviral immunity. EMBO J 2022; 41:e109902. [PMID: 35343600 PMCID: PMC9156966 DOI: 10.15252/embj.2021109902] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/29/2022] Open
Abstract
Induction and suppression of antiviral RNA interference (RNAi) has been observed in mammals during infection with at least seven distinct RNA viruses, including some that are pathogenic in humans. However, while the cell-autonomous immune response mediated by antiviral RNAi is gradually being recognized, little is known about systemic antiviral RNAi in mammals. Furthermore, extracellular vesicles (EVs) also function in viral signal spreading and host immunity. Here, we show that upon antiviral RNAi activation, virus-derived small-interfering RNAs (vsiRNAs) from Nodamura virus (NoV), Sindbis virus (SINV), and Zika virus (ZIKV) enter the murine bloodstream via EVs for systemic circulation. vsiRNAs in the EVs are biologically active, since they confer RNA-RNA homology-dependent antiviral activity in both cultured cells and infant mice. Moreover, we demonstrate that vaccination with a live-attenuated virus, rendered deficient in RNAi suppression, induces production of stably maintained vsiRNAs and confers protective immunity against virus infection in mice. This suggests that vaccination with live-attenuated VSR (viral suppressor of RNAi)-deficient mutant viruses could be a new strategy to induce immunity.
Collapse
Affiliation(s)
- Yuqiang Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yunpeng Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiaxin Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Xu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhe Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jinfeng Lu
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA.,Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Yongfen Xu
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jin Zhong
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Yang Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Heat Shock-Binding Protein 21 Regulates the Innate Immune Response to Viral Infection. J Virol 2022; 96:e0000122. [DOI: 10.1128/jvi.00001-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The innate immune system is the first-line host defense against microbial pathogen invasion. The physiological functions of molecular chaperones, involving cell differentiation, migration, proliferation and inflammation, have been intensively studied.
Collapse
|
35
|
Zhang ZD, Zhong B. Regulation and function of the cGAS-MITA/STING axis in health and disease. CELL INSIGHT 2022; 1:100001. [PMID: 37192983 PMCID: PMC10120319 DOI: 10.1016/j.cellin.2021.100001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 05/18/2023]
Abstract
The innate immune systems detect pathogens via pattern-recognition receptors including nucleic acid sensors and non-nucleic acid sensors. Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS, also known as MB21D1) is a cytosolic DNA sensor that recognizes double-stranded DNA (dsDNA) and catalyzes the synthesis of 2',3'-cGAMP. Subsequently, 2',3'-cGAMP binds to the adaptor protein mediator of IRF3 activation (MITA, also known as STING, MPYS, ERIS, and TMEM173) to activate downstream signaling cascades. The cGAS-MITA/STING signaling critically mediates immune responses against DNA viruses, retroviruses, bacteria, and protozoan parasites. In addition, recent discoveries have extended our understanding of the roles of the cGAS-MITA/STING pathway in autoimmune diseases and cancers. Here, we summarize the identification and activation of cGAS and MITA/STING, present the updated functions and regulatory mechanisms of cGAS-MITA/STING signaling and provide a comprehensive understanding of the cGAS-MITA/STING axis in autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Zhi-Dong Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| |
Collapse
|
36
|
SOX9 negatively regulates the RLR antiviral signaling by targeting MAVS. Virus Genes 2022; 58:122-132. [PMID: 35103914 DOI: 10.1007/s11262-022-01886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
Mitochondrial virus-induced signal adaptor (MAVS), also known as VISA, IPS-1, and Cardif, is a crucial adaptor protein in the RIG-I-like receptor (RLR) signaling pathway. Upon viral infection, RIG-I recognizes viral dsRNA and further transfers it to mitochondria, where it binds to MAVS through its CARD domain, generating a series of signal cascades. Transduction through this signaling cascade leads to phosphorylation and nuclear translocation of interferon regulatory factor 3/7 (IRF3/IRF7) and activation of NF-κB, which ultimately produces type I interferon (IFN) and proinflammatory cytokines. Here, our experiments demonstrated that overexpression of SRY-related high-mobility group protein 9 (SOX9) significantly inhibited Sendai virus (SeV)-induced and MAVS-mediated activation of the IFN-β promoter and ISRE. However, knocking out the expression of SOX9 in cells promoted SeV-induced IFN-β promoter and ISRE activation. Further studies have shown that SOX9 interacts with MAVS and targets MAVS to inhibit the association of MAVS-TRAF2, thereby inhibiting MAVS-mediated TRAF2 ubiquitination. Taken together, these results indicate that SOX9 downregulates IFN-β expression and antiviral signal transduction by targeting MAVS.
Collapse
|
37
|
Yu C, Wang B, Zhu Y, Zhang C, Ren L, Lei X, Xiang Z, Zhou Z, Huang H, Wang J, Zhao Z. ID2 inhibits innate antiviral immunity by blocking TBK1- and IKKε-induced activation of IRF3. Sci Signal 2022; 15:eabh0068. [PMID: 34982578 DOI: 10.1126/scisignal.abh0068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Congci Yu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chongyang Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaobo Lei
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zichun Xiang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University Genome Editing Research Center, School of Life Sciences,, Peking University, Beijing, China
| | - He Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhendong Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,CAMS-Oxford University International Center for Translational Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
38
|
Ran Y, Li D, Xiong MG, Liu HN, Feng T, Shi ZW, Li YH, Wu HN, Wang SY, Zheng HX, Wang YY. African swine fever virus I267L acts as an important virulence factor by inhibiting RNA polymerase III-RIG-I-mediated innate immunity. PLoS Pathog 2022; 18:e1010270. [PMID: 35089988 PMCID: PMC8827485 DOI: 10.1371/journal.ppat.1010270] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/09/2022] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
ASFV is a large DNA virus that is highly pathogenic in domestic pigs. How this virus is sensed by the innate immune system as well as why it is so virulent remains enigmatic. In this study, we show that the ASFV genome contains AT-rich regions that are recognized by the DNA-directed RNA polymerase III (Pol-III), leading to viral RNA sensor RIG-I-mediated innate immune responses. We further show that ASFV protein I267L inhibits RNA Pol-III-RIG-I-mediated innate antiviral responses. I267L interacts with the E3 ubiquitin ligase Riplet, disrupts Riplet-RIG-I interaction and impairs Riplet-mediated K63-polyubiquitination and activation of RIG-I. I267L-deficient ASFV induces higher levels of interferon-β, and displays compromised replication both in primary macrophages and pigs compared with wild-type ASFV. Furthermore, I267L-deficiency attenuates the virulence and pathogenesis of ASFV in pigs. These findings suggest that ASFV I267L is an important virulence factor by impairing innate immune responses mediated by the RNA Pol-III-RIG-I axis. African swine fever virus (ASFV) is a large DNA virus that is highly contagious and pathogenic in domestic pigs with a lethality rate up to 100%. Infection of ASFV has become a global threat with devastating economic and ecological consequences. Unfortunately, commercially available, safe and efficacious vaccines are still lacking so far. How this virus is sensed by the host innate immune system as well as why this virus is so virulent remains enigmatic. Understanding some basic aspects of ASFV-host interaction is helpful for vaccine development. In this study, we found that the highly AT-enriched ASFV genomic DNA is sensed by DNA-directed RNA polymerase III (Pol-III) that transcribes the AT-rich genomic DNA into RNA, which is then recognized by the pattern recognition receptor RIG-I, leading to innate immune responses. This represents one of few examples whereby a DNA virus is primarily sensed by the Pol-III-RIG-I axis. ASFV early gene-encoded protein I267L antagonizes RIG-I-mediated innate immune responses. I267L interacts with Riplet, an E3 ligase essential for RIG-I activation. This disrupts the interaction of Riplet with RIG-I, and impairs Riplet-mediated K63-linked polyubiquitination and activation of RIG-I. Consistently, I267L-deficient ASFV induces higher levels of IFN-β and displays compromised replication both in primary porcine alveolar macrophages (PAMs) and pigs comparing with wild-type ASFV. Furthermore, I267L-deficiency attenuates the virulence and pathogenesis of ASFV in pigs. These results reveal a critical mechanism responsible for the virulence of ASFV, and suggest that deletion of I267L may serve as a strategy to develop attenuated vaccines for ASFV.
Collapse
Affiliation(s)
- Yong Ran
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- African Swine Fever Regional Laboratory of China, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mei-Guang Xiong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- African Swine Fever Regional Laboratory of China, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences Beijing, China
| | - Hua-Nan Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tao Feng
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zheng-Wang Shi
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yu-Hui Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- African Swine Fever Regional Laboratory of China, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences Beijing, China
| | - Huang-Ning Wu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- African Swine Fever Regional Laboratory of China, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences Beijing, China
| | - Su-Yun Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- African Swine Fever Regional Laboratory of China, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hai-Xue Zheng
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- * E-mail: (HXZ); (YYW)
| | - Yan-Yi Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- African Swine Fever Regional Laboratory of China, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (HXZ); (YYW)
| |
Collapse
|
39
|
Aditi, Downing SM, Schreiner PA, Kwak YD, Li Y, Shaw TI, Russell HR, McKinnon PJ. Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair. Neuron 2021; 109:3962-3979.e6. [PMID: 34655526 PMCID: PMC8686690 DOI: 10.1016/j.neuron.2021.09.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022]
Abstract
Aicardi-Goutières syndrome (AGS) is a monogenic type I interferonopathy characterized by neurodevelopmental defects and upregulation of type I interferon signaling and neuroinflammation. Mutations in genes that function in nucleic acid metabolism, including RNASEH2, are linked to AGS. Ribonuclease H2 (RNASEH2) is a genome surveillance factor critical for DNA integrity by removing ribonucleotides incorporated into replicating DNA. Here we show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes and neuroinflammation. Cerebellar defects after RNASEH2B inactivation are rescued by p53 but not cGAS deletion, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology. Coincident inactivation of Atm and Rnaseh2 further affected cerebellar development causing ataxia, which was dependent upon aberrant activation of non-homologous end-joining (NHEJ). The loss of ATM also markedly exacerbates cGAS-dependent type I interferon signaling. Thus, DNA damage-dependent signaling rather than type I interferon signaling underlies neurodegeneration in this class of neurodevelopmental/neuroinflammatory disease.
Collapse
Affiliation(s)
- Aditi
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Susanna M Downing
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick A Schreiner
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Young Don Kwak
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yang Li
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Helen R Russell
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
40
|
Zhong L, Shu HB. Mitotic inactivation of the cGAS‒MITA/STING pathways. J Mol Cell Biol 2021; 13:721-727. [PMID: 34609492 PMCID: PMC8718187 DOI: 10.1093/jmcb/mjab061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
The cyclic guanosine monophosphate‒adenosine monophosphate synthase (cGAS)‒mediator of interferon response factor 3 activation/stimulator of interferon genes (MITA/STING) axis has emerged as a major pathway, which senses microbial or mislocated cellular DNA in the cytosol to trigger innate immune responses. cGAS senses cytosolic DNA without a preference of self- or nonself-DNA. How the cGAS‒MITA/STING axis is inactivated upon nuclear envelope breakdown (NEBD) at mitotic entry in vertebrate cells to avoid self-DNA sensing remains unclear until very recently. In this review, we summarize the recent advances on how cGAS responds to chromosomes upon NEBD and the mechanisms involved in the inactivation of the cGAS‒MITA/STING pathways in mitosis.
Collapse
Affiliation(s)
- Li Zhong
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases of the Chinese Academy of Medical Sciences, Wuhan 430071, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases of the Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
41
|
Liao CY, Lei CQ, Shu HB. PCBP1 modulates the innate immune response by facilitating the binding of cGAS to DNA. Cell Mol Immunol 2021; 18:2334-2343. [PMID: 32415261 PMCID: PMC8484664 DOI: 10.1038/s41423-020-0462-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is a key sensor critical for the recognition of DNA in the cytosol and catalyzes the synthesis of the second messenger cyclic GMP-AMP (cGAMP), which binds to the adapter protein MITA (also known as STING, MPYS, and ERIS) to initiate the innate immune response. How the binding of DNA to and the activation of cGAS are regulated remains poorly understood. Using a biochemical purification approach, we identified poly(rC)-binding protein 1 (PCBP1) as a cGAS-associated protein. PCBP1 was recruited to cGAS in a viral infection-dependent manner. PCBP1 directly bound to DNA and enhanced cGAS binding to its ligands, which was important for cGAS activation. Consistently, PCBP1 deficiency inhibited cytosolic DNA- and DNA virus-triggered transcription of downstream effector genes. These findings suggest that PCBP1 plays an important role in the cGAS-mediated innate immune response to DNA virus infection by promoting the binding of cGAS to viral DNA.
Collapse
Affiliation(s)
- Chen-Yang Liao
- grid.49470.3e0000 0001 2331 6153Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, 430071 Wuhan, China
| | - Cao-Qi Lei
- grid.49470.3e0000 0001 2331 6153Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, 430071 Wuhan, China
| | - Hong-Bing Shu
- grid.49470.3e0000 0001 2331 6153Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, 430071 Wuhan, China
| |
Collapse
|
42
|
Wu Q, Cui D, Chao X, Chen P, Liu J, Wang Y, Su T, Li M, Xu R, Zhu Y, Zhang Y. Transcriptome Analysis Identifies Strategies Targeting Immune Response-Related Pathways to Control Enterotoxigenic Escherichia coli Infection in Porcine Intestinal Epithelial Cells. Front Vet Sci 2021; 8:677897. [PMID: 34447800 PMCID: PMC8383179 DOI: 10.3389/fvets.2021.677897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of post-weaning diarrhea (PWD) worldwide, resulting in huge economic losses to the swine industry worldwide. In this study, to understand the pathogenesis, the transcriptomic analysis was performed to explore the biological processes (BP) in porcine intestinal epithelial J2 cells infected with an emerging ETEC strain isolated from weaned pigs with diarrhea. Under the criteria of |fold change| (FC) ≥ 2 and P < 0.05 with false discovery rate < 0.05, a total of 131 referenced and 19 novel differentially expressed genes (DEGs) were identified after ETEC infection, including 96 upregulated DEGs and 54 downregulated DEGs. The Gene Ontology (GO) analysis of DEGs showed that ETEC evoked BP specifically involved in response to lipopolysaccharide (LPS) and negative regulation of intracellular signal transduction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that immune response-related pathways were mainly enriched in J2 cells after ETEC infection, in which tumor necrosis factor (TNF), interleukin 17, and mitogen-activated protein kinase (MAPK) signaling pathways possessed the highest rich factor, followed by nucleotide-binding and oligomerization domain-like receptor (NLRs), C-type lectin receptor (CLR), cytokine–cytokine receptor interaction, and Toll-like receptor (TLR), and nuclear factor kappa-B (NF-κB) signaling pathways. Furthermore, 30 of 131 referenced DEGs, especially the nuclear transcription factor AP-1 and NF-κB, participate in the immune response to infection through an integral signal cascade and can be target molecules for prevention and control of enteric ETEC infection by probiotic Lactobacillus reuteri. Our data provide a comprehensive insight into the immune response of porcine intestinal epithelial cells (IECs) to ETEC infection and advance the identification of targets for prevention and control of ETEC-related PWD.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Defeng Cui
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Xinyu Chao
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Peng Chen
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jiaxuan Liu
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yiding Wang
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Tongjian Su
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Meng Li
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ruyu Xu
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yaohong Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yonghong Zhang
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
43
|
Zhang Y, Xu Y, Dai Y, Li Z, Wang J, Ye Z, Ren Y, Wang H, Li WX, Lu J, Ding SW, Li Y. Efficient Dicer processing of virus-derived double-stranded RNAs and its modulation by RIG-I-like receptor LGP2. PLoS Pathog 2021; 17:e1009790. [PMID: 34343211 PMCID: PMC8362961 DOI: 10.1371/journal.ppat.1009790] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/13/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The interferon-regulated antiviral responses are essential for the induction of both innate and adaptive immunity in mammals. Production of virus-derived small-interfering RNAs (vsiRNAs) to restrict virus infection by RNA interference (RNAi) is a recently identified mammalian immune response to several RNA viruses, which cause important human diseases such as influenza and Zika virus. However, little is known about Dicer processing of viral double-stranded RNA replicative intermediates (dsRNA-vRIs) in mammalian somatic cells. Here we show that infected somatic cells produced more influenza vsiRNAs than cellular microRNAs when both were produced by human Dicer expressed de novo, indicating that dsRNA-vRIs are not poor Dicer substrates as previously proposed according to in vitro Dicer processing of synthetic long dsRNA. We report the first evidence both for canonical vsiRNA production during wild-type Nodamura virus infection and direct vsiRNA sequestration by its RNAi suppressor protein B2 in two strains of suckling mice. Moreover, Sindbis virus (SINV) accumulation in vivo was decreased by prior production of SINV-targeting vsiRNAs triggered by infection and increased by heterologous expression of B2 in cis from SINV genome, indicating an antiviral function for the induced RNAi response. These findings reveal that unlike artificial long dsRNA, dsRNA-vRIs made during authentic infection of mature somatic cells are efficiently processed by Dicer into vsiRNAs to direct antiviral RNAi. Interestingly, Dicer processing of dsRNA-vRIs into vsiRNAs was inhibited by LGP2 (laboratory of genetics and physiology 2), which was encoded by an interferon-stimulated gene (ISG) shown recently to inhibit Dicer processing of artificial long dsRNA in cell culture. Our work thus further suggests negative modulation of antiviral RNAi by a known ISG from the interferon response. The function and mechanism of the interferon-regulated antiviral responses have been extensively characterized. Recent studies have demonstrated induction of antiviral RNA interference (RNAi) in somatic cells against several mammalian RNA viruses rendered incapable of RNAi suppression. However, little is known about Dicer-mediated production of virus-derived small-interfering RNAs (vsiRNAs) in these cells active in the type I interferon response. Here we show that the dsRNA precursors of influenza vsiRNAs were processed more efficiently than cellular precursor microRNA hairpins by wild-type human Dicer expressed de novo in Dicer-knockout somatic cells. We found that infection of two strains of suckling mice with wild-type Nodamura virus (NoV) was associated with production of silencing-active vsiRNAs and direct sequestration of duplex vsiRNAs by its RNAi suppressor protein B2. Our findings from in vivo infection with Sindbis virus recombinants expressing NoV B2 or carrying a vsiRNA-targeted insert provide evidence for an antiviral function of the induced RNAi response. Interestingly, NoV infection induces expression of RIG-I-like receptor LGP2 to inhibit vsiRNA biogenesis and promote virulent infection in suckling mice. Our findings together reveal efficient Dicer processing of vsiRNA precursors in interferon-competent somatic cells and suckling mice in contrast to synthetic long dsRNA examined previously by in vitro dicing.
Collapse
Affiliation(s)
- Yuqiang Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yunpeng Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhe Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiaxing Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhi Ye
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanxin Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hua Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wan-xiang Li
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, United States of America
| | - Jinfeng Lu
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, United States of America
- * E-mail: (LJ); (S-WD); (YL)
| | - Shou-Wei Ding
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, United States of America
- * E-mail: (LJ); (S-WD); (YL)
| | - Yang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (LJ); (S-WD); (YL)
| |
Collapse
|
44
|
Ji ZX, Wang XQ, Liu XF. NS1: A Key Protein in the "Game" Between Influenza A Virus and Host in Innate Immunity. Front Cell Infect Microbiol 2021; 11:670177. [PMID: 34327148 PMCID: PMC8315046 DOI: 10.3389/fcimb.2021.670177] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Since the influenza pandemic occurred in 1918, people have recognized the perniciousness of this virus. It can cause mild to severe infections in animals and humans worldwide, with extremely high morbidity and mortality. Since the first day of human discovery of it, the “game” between the influenza virus and the host has never stopped. NS1 protein is the key protein of the influenza virus against host innate immunity. The interaction between viruses and organisms is a complex and dynamic process, in which they restrict each other, but retain their own advantages. In this review, we start by introducing the structure and biological characteristics of NS1, and then investigate the factors that affect pathogenicity of influenza which determined by NS1. In order to uncover the importance of NS1, we analyze the interaction of NS1 protein with interferon system in innate immunity and the molecular mechanism of host antagonism to NS1 protein, highlight the unique biological function of NS1 protein in cell cycle.
Collapse
Affiliation(s)
- Zhu-Xing Ji
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiao-Quan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiu-Fan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| |
Collapse
|
45
|
Li C, Feng L, Luo WW, Lei CQ, Li M, Shu HB. The RNA-binding protein LUC7L2 mediates MITA/STING intron retention to negatively regulate innate antiviral response. Cell Discov 2021; 7:46. [PMID: 34155193 PMCID: PMC8217528 DOI: 10.1038/s41421-021-00277-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/22/2021] [Indexed: 11/09/2022] Open
Abstract
MITA (also known as STING) is an ER-located adaptor protein, which mediates DNA-triggered innate immune response and is critically involved in autoimmune diseases and tumorigenesis. MITA is regulated by post-translational modifications, but how post-transcriptional mechanisms are involved in the regulation of MITA is still largely unknown. Here, we identified the RNA-binding protein LUC7L2 as a negative regulator of DNA virus-triggered innate immune response. LUC7L2-deficient mice exhibited resistance to lethal herpes simplex virus 1 (HSV-1) infection and reduced HSV-1 loads in the brain. Mechanistically, LUC7L2 directly bound to intron 3 of MITA precursor messenger RNA, inhibited its splicing and promoted its nonsense-mediated decay, leading to its downregulation at protein level. LUC7L2-deficient cells had markedly increased MITA level, leading to heightened innate antiviral response. Finally, LUC7L2 was induced following HSV-1 infection. Our findings reveal a feedback negative post-transcriptional regulatory mechanism for regulation of MITA-mediated innate immune response to viral and aberrant cellular DNA.
Collapse
Affiliation(s)
- Chen Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Research Unit of Innate Immune and Inflammatory Diseases of Chinese Academy of Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Lu Feng
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Research Unit of Innate Immune and Inflammatory Diseases of Chinese Academy of Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wei-Wei Luo
- Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei, Wuhan, China
| | - Cao-Qi Lei
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Research Unit of Innate Immune and Inflammatory Diseases of Chinese Academy of Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Mi Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Research Unit of Innate Immune and Inflammatory Diseases of Chinese Academy of Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Research Unit of Innate Immune and Inflammatory Diseases of Chinese Academy of Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
46
|
Yang YX, Huang JP, Li SN, Li J, Ling T, Xie T, Xu LG. HSPBP1 facilitates cellular RLR-mediated antiviral response by inhibiting the K48-linked ubiquitination of RIG-I. Mol Immunol 2021; 134:62-71. [PMID: 33713958 DOI: 10.1016/j.molimm.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/23/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Retinoic acid-inducible gene I (RIG-I) plays a critical role in the recognition of intracytoplasmic viral RNA. Upon binding to the RNA of invading viruses, the activated RIG-I translocates to mitochondria, where it recruits adapter protein MAVS, causing a series of signaling cascades. In this study, we demonstrated that Hsp70 binding protein 1 (HSPBP1) promotes RIG-I-mediated signal transduction. The overexpression of HSPBP1 can increase the stability of RIG-I protein by inhibiting its K48-linked ubiquitination, and promote the activation of IRF3 and the production of IFN-β induced by Sendai virus. Knockdown and knockout of HSPBP1 leads to down-regulation of virus-induced RIG-I expression, inhibits IRF3 activation, and reduces the production of IFNB1. These results indicate that HSPBP1 positively regulates the antiviral signal pathway induced by inhibiting the K48-linked ubiquitination of RIG-I.
Collapse
Affiliation(s)
- Ya-Xian Yang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Jing-Ping Huang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Sheng-Na Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Jing Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Ting Ling
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Tao Xie
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Liang-Guo Xu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China.
| |
Collapse
|
47
|
He WR, Cao LB, Yang YL, Hua D, Hu MM, Shu HB. VRK2 is involved in the innate antiviral response by promoting mitostress-induced mtDNA release. Cell Mol Immunol 2021; 18:1186-1196. [PMID: 33785841 PMCID: PMC8093274 DOI: 10.1038/s41423-021-00673-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/07/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial stress (mitostress) triggered by viral infection or mitochondrial dysfunction causes the release of mitochondrial DNA (mtDNA) into the cytosol and activates the cGAS-mediated innate immune response. The regulation of mtDNA release upon mitostress remains uncharacterized. Here, we identified mitochondria-associated vaccinia virus-related kinase 2 (VRK2) as a key regulator of this process. VRK2 deficiency inhibited the induction of antiviral genes and caused earlier and higher mortality in mice after viral infection. Upon viral infection, VRK2 associated with voltage-dependent anion channel 1 (VDAC1) and promoted VDAC1 oligomerization and mtDNA release, leading to the cGAS-mediated innate immune response. VRK2 was also required for mtDNA release and cGAS-mediated innate immunity triggered by nonviral factors that cause Ca2+ overload but was not required for the cytosolic nucleic acid-triggered innate immune response. Thus, VRK2 plays a crucial role in the mtDNA-triggered innate immune response and may be a potential therapeutic target for infectious and autoimmune diseases associated with mtDNA release.
Collapse
Affiliation(s)
- Wen-Rui He
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Li-Bo Cao
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yu-Lin Yang
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Duo Hua
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ming-Ming Hu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
48
|
Yu L, Liu P. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Signal Transduct Target Ther 2021; 6:170. [PMID: 33927185 PMCID: PMC8085147 DOI: 10.1038/s41392-021-00554-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Sensing invasive cytosolic DNA is an integral component of innate immunity. cGAS was identified in 2013 as the major cytosolic DNA sensor that binds dsDNA to catalyze the synthesis of a special asymmetric cyclic-dinucleotide, 2'3'-cGAMP, as the secondary messenger to bind and activate STING for subsequent production of type I interferons and other immune-modulatory genes. Hyperactivation of cGAS signaling contributes to autoimmune diseases but serves as an adjuvant for anticancer immune therapy. On the other hand, inactivation of cGAS signaling causes deficiency to sense and clear the viral and bacterial infection and creates a tumor-prone immune microenvironment to facilitate tumor evasion of immune surveillance. Thus, cGAS activation is tightly controlled. In this review, we summarize up-to-date multilayers of regulatory mechanisms governing cGAS activation, including cGAS pre- and post-translational regulations, cGAS-binding proteins, and additional cGAS regulators such as ions and small molecules. We will also reveal the pathophysiological function of cGAS and its product cGAMP in human diseases. We hope to provide an up-to-date review for recent research advances of cGAS biology and cGAS-targeted therapies for human diseases.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
49
|
Fu YZ, Wang SY, Zheng ZQ, Yi Huang, Li WW, Xu ZS, Wang YY. SARS-CoV-2 membrane glycoprotein M antagonizes the MAVS-mediated innate antiviral response. Cell Mol Immunol 2021; 18:613-620. [PMID: 33110251 PMCID: PMC7588591 DOI: 10.1038/s41423-020-00571-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022] Open
Abstract
A novel SARS-related coronavirus (SARS-CoV-2) has recently emerged as a serious pathogen that causes high morbidity and substantial mortality. However, the mechanisms by which SARS-CoV-2 evades host immunity remain poorly understood. Here, we identified SARS-CoV-2 membrane glycoprotein M as a negative regulator of the innate immune response. We found that the M protein interacted with the central adaptor protein MAVS in the innate immune response pathways. This interaction impaired MAVS aggregation and its recruitment of downstream TRAF3, TBK1, and IRF3, leading to attenuation of the innate antiviral response. Our findings reveal a mechanism by which SARS-CoV-2 evades the innate immune response and suggest that the M protein of SARS-CoV-2 is a potential target for the development of SARS-CoV-2 interventions.
Collapse
Affiliation(s)
- Yu-Zhi Fu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China.
| | - Su-Yun Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Zhou-Qin Zheng
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yi Huang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Wei-Wei Li
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhi-Sheng Xu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Yan-Yi Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
50
|
Weng GX, Ling T, Hou W, Li SN, Chen T, Zhang Z, Wang DD, Xu LG. Mitochondrial DUT-M potentiates RLR-mediated antiviral signaling by enhancing VISA and TRAF2 association. Mol Immunol 2021; 132:117-125. [PMID: 33582548 DOI: 10.1016/j.molimm.2021.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 11/19/2022]
Abstract
Upon recognition of intracytoplasmic viral RNA, activated RIG-I is recruited to the mitochondrion-located adaptor protein VISA (also known as MAVS, CARDIF, and IPS-1). VISA then acts as a central signaling platform for linking RIG-I and downstream signaling components, such as TRAF2, 5, and 6, TBK1, and IKK, leading to activation of the kinases TBK1 and IKK. These activated kinases further phosphorylate the transcription factors IRF3/7 and NF-κB, leading to the induction of downstream antiviral genes. Here, we report a mitochondrial isoform, deoxyuridine triphosphate nucleotidohydrolase (dUTPase), DUT-M, as a positive regulator in RLR-VISA-mediated antiviral signaling. DUT-M interacts with VISA and RIG-I to facilitate the assembly of the VISA-TRAF2 complex and to augment the polyubiquitination of TRAF2, leading to potentiated activation of IRF3 dimerization and phosphorylation of P65, and enhanced VISA-mediated innate immune response. RLR-VISA-mediated IRF3 dimerization and P65 phosphorylation, were inhibited in DUT-knockdown and DUT-deficient 293 cells. Thus, DUT-M is a positive regulator of the RIG-I-VISA-mediated innate immune response to RNA viruses.
Collapse
Affiliation(s)
- Guang-Xiu Weng
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Ting Ling
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Wen Hou
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Sheng-Na Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Tian Chen
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Zhi Zhang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Dan-Dan Wang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Liang-Guo Xu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China.
| |
Collapse
|