1
|
Emeršič T, Bagchi K, Fitz S, Jensen A, Nealey PF, de Pablo JJ. Stable Non-equilibrium Structures in Chiral Nematics under Microfluidic Flow. J Phys Chem B 2024. [PMID: 39527689 DOI: 10.1021/acs.jpcb.4c03965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cholesteric liquid crystals (CLCs) are compelling responsive materials with applications in next-generation sensing, imaging, and display technologies. While electric fields and surface treatments have been used to manipulate the molecular organization and, subsequently, the optical properties of CLCs, their response to controlled fluid flow has remained largely unexplored. Here, we investigate the influence of microfluidic flow on the structure of thermotropic CLCs that can exhibit structural coloration. We demonstrate that the shear forces that arise from microfluidic flow align the helical axis of CLCs; alignment is a prerequisite for harnessing the promising photonic properties of CLCs. Moreover, we show that microfluidic flow can generate non-equilibrium structures exhibiting photonic band gaps that are inaccessible in the stationary cholesteric phase. Our findings have implications for the use of CLCs in applications involving flow processing such as additive manufacturing.
Collapse
Affiliation(s)
- Tadej Emeršič
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kushal Bagchi
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Sullivan Fitz
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Aiden Jensen
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Paul F Nealey
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
2
|
Jain A, Pal S, Li S, Abbott NL, Yang R. Single-step synthesis of shaped polymeric particles using initiated chemical vapor deposition in liquid crystals. SCIENCE ADVANCES 2024; 10:eadp5573. [PMID: 39504375 PMCID: PMC11540036 DOI: 10.1126/sciadv.adp5573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
We elucidate a previously unknown synthesis pathway that leads to polymeric nanospheres, orientation-controlled microgels, or microspheroids via single-step polymerization of divinylbenzene (DVB) using initiated chemical vapor deposition (iCVD) in liquid crystals (LC). iCVD supplies vapor-phase reactants continuously, avoiding the critical limitation of reactant-induced disruption of LC structure that has plagued past LC-templated polymerization processes. LC is leveraged as a real-time display of the polymerization conditions and particle emergence, captured using an in situ long-focal range microscope. Detailed image analysis unravels key LC-guided mechanisms during polymerization. pDVB forms nanospheres due to poor solubilization by nematic LC. The nanospheres partition to the LC-solid interface and further assemble into microgel clusters whose orientation is guided by the LC molecular alignment. On further polymerization, microgel clusters transition to microspheroids that resemble liquid drops. We identify key energetic factors that guide trajectories along the synthesis pathway, providing the fundamental basis of a framework for engineering particle synthesis with shape control.
Collapse
Affiliation(s)
| | | | - Shiqi Li
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Nicholas L. Abbott
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Rong Yang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Dinc RU, Lub J, Kragt AJJ, Schenning APHJ. An l-isosorbide-based reactive chiral dopant with high helical twisting power for cholesteric liquid crystal polymers reflecting left-handed circularly polarized light. Org Chem Front 2024:d4qo01672f. [PMID: 39444415 PMCID: PMC11492181 DOI: 10.1039/d4qo01672f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
For visible light reflective cholesteric liquid crystal polymers, reactive chiral dopant enantiomers with high helical twisting power are attractive. However, a chiral dopant for reflecting left-handed circularly polarized light has been missing so far. Here, we report the synthesis of a reactive, left-handed, l-isosorbide-based chiral dopant with a high helical twisting power of -48 μm-1 that can be used in visible light reflective cholesteric liquid crystal polymers. The right handed dopant enantiomer was also synthesized, showing a helical twisting power of +63 μm-1.
Collapse
Affiliation(s)
- Ramazan Umut Dinc
- Laboratory of Stimuli-responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Johan Lub
- Laboratory of Stimuli-responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Augustinus J J Kragt
- Laboratory of Stimuli-responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Albert P H J Schenning
- Laboratory of Stimuli-responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
4
|
Wang J, Guo Z, Fu F. Locomotion behavior of air bubbles on solid surfaces. Adv Colloid Interface Sci 2024; 332:103266. [PMID: 39153417 DOI: 10.1016/j.cis.2024.103266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
Air bubbles are a common occurrence in both natural and industrial settings and are a significant topic in the fields of physics, chemistry, engineering, and medicine. The physical phenomena of the contact between bubbles and submerged solid surfaces, as well as the locomotion behavior of bubbles, are worth exploring. Bubbles are generated in an unbounded liquid environment and rise due to unbalanced external forces. Bubbles of different diameters follow different ascending paths, after which they approach, touch, collide, bounce, and finally adsorb to the solid surface, forming a stable three-phase contact line (TPCL). The bubbles are in an unstable state due to the unbalanced external forces on the solid surface and the effects generated by the two-phase contact surface, resulting in different locomotion behaviors on the solid surface. Studying the formation, transport, aggregation, and rupture behaviors of bubbles on solid surfaces can enable the controllable operation of bubbles. This, in turn, can effectively reduce the loss of mechanical apparatus in agro-industrial production activities and improve corresponding production efficiency. Recent research has shown that the degree of bubble wetting on a solid surface is a crucial factor in the locomotion behavior of bubbles on that surface. This has led to significant progress in the study of bubble wetting, which has in turn greatly advanced our understanding of bubble behavior. Based on this, exploring the manipulation process of the directional motion of bubbles is a promising research direction. The locomotion behavior of bubbles on solid surfaces can be controlled by changing external conditions, leading to the integration of bubble behavior in various scientific and technological fields. Studying the dynamics of bubbles in liquids with infinite boundaries is worthwhile. Additionally, the manipulation process and mode of these bubbles is a popular research direction.
Collapse
Affiliation(s)
- Jing Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Feiyan Fu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
5
|
Zeng CY, Deng WJ, Zhao KQ, Redshaw C, Donnio B. Phenanthrothiophene-Triazine Star-Shaped Discotic Liquid Crystals: Synthesis, Self-Assembly, and Stimuli-Responsive Fluorescence Properties. Chemistry 2024; 30:e202400296. [PMID: 38427538 DOI: 10.1002/chem.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Lipophilic biphenylthiophene- and phenanthrothiophene-triazine compounds, BPTTn and CPTTn, respectively, were prepared by a tandem procedure involving successive Suzuki-Miyaura coupling and Scholl cyclodehydrogenation reactions. These compounds display photoluminescence in solution and in thin film state, solvatochromism with increasing solvent's polarity, as well as acidochromism and metal ion recognition stimuli-responsive fluorescence. Protonation of BPTT10 and CPTT10 by trifluoroacetic acid results in fluorescence quenching, which is reversibly restored once treated with triethylamine (ON-OFF switch). DFT computational studies show that intramolecular charge transfer (ICT) phenomena occurs for both molecules, and reveal that protonation enhances the electron-withdrawing ability of the triazine core and reduces the band gap. This acidochromic behavior was applied to a prototype fluorescent anti-counterfeiting device. They also specifically recognize Fe3+ through coordination, and the recognition mechanism is closely related to the photoinduced electron transfer between Fe3+ and BPTT10/CPTT10. CPTTn self-assemble into columnar rectangular (Colrec) mesophase, which can be modulated by oleic acid via the formation of a hydrogen-bonded supramolecular liquid crystal hexagonal Colhex mesophase. Finally, CPTTn also form organic gels in alkanes at low critical gel concentration (3.0 mg/mL). Therefore, these star-shaped triazine molecules possess many interesting features and thus hold great promises for information processing, liquid crystal semiconductors and organogelators.
Collapse
Affiliation(s)
- Chong-Yang Zeng
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Wen-Jing Deng
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Carl Redshaw
- Department of Chemistry, University of Hull, School of Natural Sciences, Hull, HU6 7RX, UK
| | - Bertrand Donnio
- Institut de Chimie et Physique des Matériaux de Strasbourg, UMR 7504, CNRS-University of Strasbourg, 67034, Strasbourg, France
| |
Collapse
|
6
|
Piñeres-Quiñones OH, Oñate-Socarras MK, Wang F, Lynn DM, Acevedo-Vélez C. Pickering Emulsions of Thermotropic Liquid Crystals Stabilized by Amphiphilic Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38320298 DOI: 10.1021/acs.langmuir.3c03940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
We report emulsions of thermotropic liquid crystals (LCs) in water that are stabilized using amphiphilic gold nanoparticles (AuNPs) and retain their ability to respond to aqueous analytes for extended periods (e.g., up to 1 year after preparation). These LC emulsions exhibit exceptional colloidal stability that results from the adsorption of AuNPs that are functionalized with thiol-terminated poly(ethylene glycol) (PEG-thiol) and hexadecanethiol (C16-thiol) to LC droplet interfaces. These stabilized LC emulsions respond to the presence of model anionic (SDS), cationic (C12TAB), and nonionic (C12E4) surfactants in the surrounding aqueous media, as evidenced by ordering transitions in the LC droplets that can be readily observed using polarized light microscopy. Our results reveal significant differences in the sensitivity of the stabilized LC droplets toward each of these analytes. In particular, these stabilized droplets can detect the cationic C12TAB at concentrations that are lower than those required for bare LC droplets under similar experimental conditions (0.5 and 2 mM, respectively). These results demonstrate an enhanced sensitivity of the LC toward C12TAB when the PEG/C16-thiol-coated AuNPs are adsorbed at LC droplet interfaces. In contrast, the concentrations of SDS required to observe optical transformations in the stabilized LC droplets are higher than those required for the bare LC droplets, suggesting that the presence of the PEG/C16-thiol AuNPs reduces the sensitivity of the LC toward this analyte. When combined, our results show that this Pickering stabilization approach using amphiphilic AuNPs as stabilizing agents for LC-in-water emulsions provides a promising platform for developing LC droplet-based optical sensors with long-term colloidal stability as well as opportunities to tune the sensitivity and selectivity of the response to target aqueous analytes.
Collapse
Affiliation(s)
- Oscar H Piñeres-Quiñones
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, PR 00681-9000, United States
| | - Maria K Oñate-Socarras
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, PR 00681-9000, United States
| | - Fengrui Wang
- Department of Chemistry, 1101 University Avenue, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - David M Lynn
- Department of Chemistry, 1101 University Avenue, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Claribel Acevedo-Vélez
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, PR 00681-9000, United States
| |
Collapse
|
7
|
Sezer S, Bukusoglu E. Nanoparticle-Assisted Liquid Crystal Droplet Sensors Enable Analysis of Low-Concentration Species in Aqueous Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38296829 DOI: 10.1021/acs.langmuir.3c03598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
We introduce nanoparticle-assisted liquid crystal (LC) droplet-based sensors that allow determination of low-level concentrations of aqueous soluble species. The silica nanoparticles functionalized with mixed monolayers composed of two distinct groups, hydrophobic alkane tail- and charged group-terminated silanes, facilitated ternary physical interactions between the model analytes (methylene blue (MB) or methyl orange (MO)) and the nematic mesogens 5CB (4-cyano-4'-pentylbiphenyl), and the interfacial species of the nanoparticle. The response of the LC droplets was measured upon nanoparticle adsorption as a function of analyte concentration, which was characterized by the optical determination of the configuration distributions of the LC droplets. We highlight the importance of the charging and the composition of the nanoparticle interfaces for analytical purposes that allow accurate determination of the concentration of the analytes on the order of 0.01 ppb. Such a low concentration corresponds to a low interfacial coverage of nanoparticles, indicating the promisingly high sensitivity of the sensor platform to target analytes. Distinct from the past examples of the LC-based sensors, the nanoparticle-assisted LC sensors allow detection of the species that do not directly cause an ordering transition at the LC-water interfaces, which allow a broader range of analytical targets. The sensor platform that we report herein can be easily tunable for a range of target molecules and will find use in the determination of a wide range of micropollutants in aqueous environments.
Collapse
Affiliation(s)
- Selda Sezer
- Department of Chemical Engineering, Middle East Technical University, Dumlupinar Bulvari No. 1, Cankaya, Ankara 06800, Turkey
- Akcadag Vocational School, Laboratory and Veterinary Health Program, Malatya Turgut Ozal University, Dogu Mahallesi No: 42/1, Akcadag, Malatya 44600, Turkey
| | - Emre Bukusoglu
- Department of Chemical Engineering, Middle East Technical University, Dumlupinar Bulvari No. 1, Cankaya, Ankara 06800, Turkey
| |
Collapse
|
8
|
Trân HQ, Kawano S, Thielemann RE, Tanaka K, Ravoo BJ. Calamitic Liquid Crystals for Reversible Light-Modulated Phase Regulation Based on Arylazopyrazole Photoswitches. Chemistry 2024; 30:e202302958. [PMID: 37944022 DOI: 10.1002/chem.202302958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
The design of responsive liquid crystals enables a diversity of technological applications. Especially photochromic liquid crystals gained a lot of interest in recent years due to the excellent spatiotemporal control of their phase transitions. In this work we present calamitic light responsive mesogens based on a library of arylazopyrazole photoswitches. These compounds show liquid-crystalline behavior as shown by differential scanning calorimetry, grazing incidence X-ray diffraction and polarized optical microscopy. UV-vis spectroscopy and NMR analysis confirmed the excellent photophysical properties in solution and thin film. Additionally, polarized optical microscopy studies of the pristine compounds show reversible phase transition upon irradiation with light. Moreover, as a dopant in the commercially available liquid crystal 4-cyano-4'-pentylbiphenyl (5CB), the temperature range was reduced to ambient temperatures while preserving the photophysical properties. Remarkably, this co-assembled system shows reversible liquid-crystalline to isotropic phase transition upon irradiation with light of different wavelengths. The spatiotemporal control of the phase transition of the liquid crystals offers opportunities in the development of optical devices.
Collapse
Affiliation(s)
- Hoàn Quân Trân
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Shinichiro Kawano
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Rebecca E Thielemann
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Kentaro Tanaka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| |
Collapse
|
9
|
Tuinier R, Kuhnhold A. Equation of State of Charged Rod Dispersions. J Phys Chem B 2023; 127:9058-9065. [PMID: 37831936 PMCID: PMC10614191 DOI: 10.1021/acs.jpcb.3c04590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/15/2023] [Indexed: 10/15/2023]
Abstract
We study the accuracy of the theory of Stroobants, Lekkerkerker, and Odijk [Macromolecules 1986, 19, 2232-2238], called SLO theory, to describe the thermodynamic properties of an isotropic fluid of charged rods. By incorporation of the effective diameter of the rods according to SLO theory into scaled particle theory (SPT), we obtain an expression for the rod concentration-dependent free volume fraction and the osmotic pressure of a collection of charged hard spherocylinders. The results are compared to Monte Carlo simulations. We find close agreement between the simulation results and the SLO-SPT predictions for not too large values of the Debye length and for high rod charge densities. The deviations increase with rod density, particularly at concentrations above which isotropic-nematic phase transitions are expected.
Collapse
Affiliation(s)
- Remco Tuinier
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry,
& Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anja Kuhnhold
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| |
Collapse
|
10
|
Concellón A. Liquid Crystal Emulsions: A Versatile Platform for Photonics, Sensing, and Active Matter. Angew Chem Int Ed Engl 2023:e202308857. [PMID: 37694542 DOI: 10.1002/anie.202308857] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/12/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
The self-assembly of liquid crystals (LCs) is a fascinating method for controlling the organization of discrete molecules into nanostructured functional materials. Although LCs are traditionally processed in thin films, their confinement within micrometre-sized droplets has recently revealed new properties and functions, paving the way for next-generation soft responsive materials. These recent findings have unlocked a wealth of unprecedented applications in photonics (e.g. reflectors, lasing materials), sensing (e.g. biomolecule and pathogen detection), soft robotics (e.g. micropumps, artificial muscles), and beyond. This Minireview focuses on recent developments in LC emulsion designs and highlights a variety of novel potential applications. Perspectives on the opportunities and new directions for implementing LC emulsions in future innovative technologies are also provided.
Collapse
Affiliation(s)
- Alberto Concellón
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
11
|
Charlton SG, Bible AN, Secchi E, Morrell‐Falvey JL, Retterer ST, Curtis TP, Chen J, Jana S. Microstructural and Rheological Transitions in Bacterial Biofilms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207373. [PMID: 37522628 PMCID: PMC10520682 DOI: 10.1002/advs.202207373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/20/2023] [Indexed: 08/01/2023]
Abstract
Biofilms are aggregated bacterial communities structured within an extracellular matrix (ECM). ECM controls biofilm architecture and confers mechanical resistance against shear forces. From a physical perspective, biofilms can be described as colloidal gels, where bacterial cells are analogous to colloidal particles distributed in the polymeric ECM. However, the influence of the ECM in altering the cellular packing fraction (ϕ) and the resulting viscoelastic behavior of biofilm remains unexplored. Using biofilms of Pantoea sp. (WT) and its mutant (ΔUDP), the correlation between biofilm structure and its viscoelastic response is investigated. Experiments show that the reduction of exopolysaccharide production in ΔUDP biofilms corresponds with a seven-fold increase in ϕ, resulting in a colloidal glass-like structure. Consequently, the rheological signatures become altered, with the WT behaving like a weak gel, whilst the ΔUDP displayed a glass-like rheological signature. By co-culturing the two strains, biofilm ϕ is modulated which allows us to explore the structural changes and capture a change in viscoelastic response from a weak to a strong gel, and to a colloidal glass-like state. The results reveal the role of exopolysaccharide in mediating a structural transition in biofilms and demonstrate a correlation between biofilm structure and viscoelastic response.
Collapse
Affiliation(s)
- Samuel G.V. Charlton
- Department of Civil, Environmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurich8049Switzerland
- School of EngineeringNewcastle UniversityNewcastle Upon TyneNE1 7RUUK
| | - Amber N. Bible
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN37830USA
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurich8049Switzerland
| | | | - Scott T. Retterer
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN37830USA
- Center for Nanophase Material SciencesOak Ridge National LaboratoryOak RidgeTN37830USA
| | - Thomas P. Curtis
- School of EngineeringNewcastle UniversityNewcastle Upon TyneNE1 7RUUK
| | - Jinju Chen
- School of EngineeringNewcastle UniversityNewcastle Upon TyneNE1 7RUUK
| | - Saikat Jana
- School of EngineeringNewcastle UniversityNewcastle Upon TyneNE1 7RUUK
- School of EngineeringUlster UniversityBelfastBT15 1APUK
| |
Collapse
|
12
|
Bagchi K, Emeršič T, Martínez-González JA, de Pablo JJ, Nealey PF. Functional soft materials from blue phase liquid crystals. SCIENCE ADVANCES 2023; 9:eadh9393. [PMID: 37494446 PMCID: PMC10371026 DOI: 10.1126/sciadv.adh9393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Blue phase (BP) liquid crystals are chiral fluids wherein millions of molecules self-assemble into cubic lattices that are on the order of hundred nanometers. As the unit cell sizes of BPs are comparable to the wavelength of light, they exhibit selective Bragg reflections in the visible. The exploitation of the photonic properties of BPs for technological applications is made possible through photopolymerization, a process that renders mechanical robustness and thermal stability. We review here the preparation and characterization of stimuli-responsive, polymeric photonic crystals based on BPs. We highlight recent studies that demonstrate the promise that polymerized BP photonic crystals hold for colorimetric sensing and dynamic light control. We review using Landau-de Gennes simulations for predicting the self-assembly of BPs and the potential for using theory to guide experimental design. Finally, opportunities for using BPs to synthesize new soft materials, such as highly structured polymer meshes, are discussed.
Collapse
Affiliation(s)
- Kushal Bagchi
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Tadej Emeršič
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - José A Martínez-González
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, San Luis Potosí 78210 SLP, Mexico
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Paul F Nealey
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
13
|
Akman A, Bukusoglu E. Understanding directed assembly of concentrated nanoparticles at energetically heterogeneous interfaces of cholesteric liquid crystal droplets. J Colloid Interface Sci 2023; 649:772-784. [PMID: 37385042 DOI: 10.1016/j.jcis.2023.06.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/13/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Colloidal self-assembly has gained significant interest in scientific and technological advances. We investigated the self-assembly of the colloids at fluidic interfaces that mediate elastic interactions. Whereas past studies have reported the assembly of micrometer- or molecular-sized species at aqueous interfaces of liquid crystals (LCs), herein we study the assembly of intermediate-sized nanoparticles. Specifically, surface-modified silica nanoparticles (50 to 500 nm) were adsorbed at the liquid crystal-water interfaces and their positioning was investigated using electron microscopy after polymerization. The study revealed that the electric double layer forces and the elastic forces caused by LC strain are dominant in the assembly of nanoparticles and their contributions can be tuned to direct the self-assembly guided by the sub-interface symmetry of confined cholesteric LCs. At high ionic strengths, we observed a strong localization of nanoparticles at the defects, whereas intermediate strengths resulted in their partial enrichment into cholesteric fingerprint patterns with an interaction energy of ≈3 kBT. This result is comparable with the calculations based on the strength of the binary interactions of the nanoparticles. The findings also support the role of ion partitioning at the LC-aqueous interfaces on the formation of the assemblies. The results can be utilized for applications in sensors, microelectronics, and photonics.
Collapse
Affiliation(s)
- Ali Akman
- Department of Chemical Engineering, Middle East Technical University, Dumlupınar Bulvarı No.1 Çankaya, Ankara 06800, Turkey
| | - Emre Bukusoglu
- Department of Chemical Engineering, Middle East Technical University, Dumlupınar Bulvarı No.1 Çankaya, Ankara 06800, Turkey.
| |
Collapse
|
14
|
Maiti S, Roh S, Cohen I, Abbott NL. Non-equilibrium ordering of liquid crystalline (LC) films driven by external gradients in surfactant concentration. J Colloid Interface Sci 2023; 637:134-146. [PMID: 36696789 DOI: 10.1016/j.jcis.2022.12.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
HYPOTHESIS Gradients in the concentration of amphiphiles play an important role in many non-equilibrium processes involving complex fluids. Here we explore if non-equilibrium interfacial behaviors of thermotropic (oily) liquid crystals (LCs) can amplify microscopic gradients in surfactant concentration into macroscopic optical signals. EXPERIMENTS We use a milli-fluidic system to generate gradients in aqueous sodium dodecyl sulfate (SDS) concentration and optically quantify the dynamic ordering of micrometer-thick nematic LC films that contact the gradients. FINDINGS We find that the reordering of the LCs is dominated by interfacial shearing by Marangoni flows, thus providing simple methods for rapid mapping of interfacial velocities from a single optical image and investigating the effects of confinement of surfactant-driven interfacial flows. Additionally, we establish that surface advection and surfactant desorption are the two key processes that regulate the interfacial flows, revealing that the dynamic response of the LC can provide rapid and potentially high throughput approaches to measurement of non-equilibrium interfacial properties of amphiphiles. We also observe flow-induced assemblies of microparticles to form at the LC interface, hinting at new non-equilibrium approaches to microparticle assembly. We conclude that dynamic states adopted by LCs in the presence of surfactant concentration gradients provide new opportunities for engineering complex fluids beyond equilibrium.
Collapse
Affiliation(s)
- Soumita Maiti
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Sangchul Roh
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Itai Cohen
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
15
|
Ramou E, Palma SICJ, Roque ACA. A room temperature 9CB‐based chemical sensor. NANO SELECT 2023. [DOI: 10.1002/nano.202200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Affiliation(s)
- Efthymia Ramou
- UCIBIO – Applied Molecular Biosciences Unit Department of Chemistry School of Science and Technology NOVA University Lisbon Caparica Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy School of Science and Technology NOVA University Lisbon Caparica Portugal
| | - Susana I. C. J. Palma
- UCIBIO – Applied Molecular Biosciences Unit Department of Chemistry School of Science and Technology NOVA University Lisbon Caparica Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy School of Science and Technology NOVA University Lisbon Caparica Portugal
| | - Ana Cecília A. Roque
- UCIBIO – Applied Molecular Biosciences Unit Department of Chemistry School of Science and Technology NOVA University Lisbon Caparica Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy School of Science and Technology NOVA University Lisbon Caparica Portugal
| |
Collapse
|
16
|
Kawakami C, Hara M, Nagano S, Seki T. Induction of Highly Ordered Liquid Crystalline Phase of an Azobenzene Side Chain Polymer by Contact with 4'-Pentyl-4-cyanobiphenyl: An In Situ Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:619-626. [PMID: 36545757 DOI: 10.1021/acs.langmuir.2c02950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The orientation of liquid crystal (LC) molecules is significantly governed by solid interfaces and free surfaces, and a variety of functional materials have been developed using these properties. Although LC materials are already in industrial use, particularly for LC display panels, various studies have been conducted in recent years to better grasp the interface behavior of LC molecules. In this work, we succeeded in in situ observations of induction of higher ordered LC phases at the interface between a side-chain LC azobenzene polymer film with a thickness of ∼400 nm and a low-molecular-mass nematic LC, 4'-pentyl-4-cyanobiphenyl of 35 μm thickness, using small-angle X-ray scattering measurements and polarized optical microscopy. It is revealed that the two different mesogens cooperatively form hybrid higher ordered smectic LC phases probably through weak electron transfer immediately after interfacial contact. The induction process consists of three stages in terms of dynamic structure evolutions. Upon UV irradiation, the hybrid smectic LC structure diminished. This study provides new insights into the behavior of LC molecules near the alignment film on the solid substrate.
Collapse
Affiliation(s)
- Chikara Kawakami
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Mitsuo Hara
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Shusaku Nagano
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Takahiro Seki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
17
|
Kim WS, Im JH, Kim H, Choi JK, Choi Y, Kim YK. Liquid Crystalline Systems from Nature and Interaction of Living Organisms with Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204275. [PMID: 35861641 DOI: 10.1002/adma.202204275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Biomaterials, which are substances interacting with biological systems, have been extensively explored to understand living organisms and obtain scientific inspiration (such as biomimetics). However, many aspects of biomaterials have yet to be fully understood. Because liquid crystalline phases are ubiquitously found in biomaterials (e.g., cholesterol, amphiphile, DNA, cellulose, bacteria), therefore, a wide range of research has made attempts to approach unresolved issues with the concept of liquid crystals (LCs). This review presents these studies that address the interactive correlation between biomaterials and LCs. Specifically, intrinsic LC behavior of various biomaterials such as DNA, cellulose nanocrystals, and bacteriaare first introduced. Second, the dynamics of bacteria in LC media are addressed, with focus on how bacteria interact with LCs, and how dynamics of bacteria can be controlled by exploiting the characteristics of LCs. Lastly, how the strong correlation between LCs and biomaterials has been leveraged to design a new class of biosensors with additional functionalities (e.g., self-regulated drug release) that are not available in previous systems is reviewed. Examples addressed in this review convey the message that the intersection between biomaterials and LCs offers deep insights into fundamental understanding of biomaterials, and provides resources for development of transformative technologies.
Collapse
Affiliation(s)
- Won-Sik Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jun-Hyung Im
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyein Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jin-Kang Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yena Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Young-Ki Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
18
|
Xu Y, Yao Y, Deng W, Fang JC, Dupont RL, Zhang M, Čopar S, Tkalec U, Wang X. Magnetocontrollable droplet mobility on liquid crystal-infused porous surfaces. NANO RESEARCH 2022:1-10. [PMID: 36570861 DOI: 10.1007/s12274-022-5239-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/29/2022] [Accepted: 11/13/2022] [Indexed: 05/22/2023]
Abstract
UNLABELLED Magnetocontrollable droplet mobility on surfaces of both solids and simple fluids have been widely used in a wide range of applications. However, little is understood about the effect of the magnetic field on the wettability and mobility of droplets on structured fluids. Here, we report the manipulation of the dynamic behaviors of water droplets on a film of thermotropic liquid crystals (LCs). We find that the static wetting behavior and static friction of water droplets on a 4'-octyl-4-biphenylcarbonitrile (8CB) film strongly depend on the LC mesophases, and that a magnetic field caused no measurable change to these properties. However, we find that the droplet dynamics can be affected by a magnetic field as it slides on a nematic 8CB film, but not on isotropic 8CB, and is dependent on both the direction and strength of the magnetic field. By measuring the dynamic friction of a droplet sliding on a nematic 8CB film, we find that a magnetic field alters the internal orientational ordering of the 8CB which in turn affects its viscosity. We support this interpretation with a scaling argument using the LC magnetic coherence length that includes (i) the elastic energy from the long-range orientational ordering of 8CB and (ii) the free energy from the interaction between 8CB and a magnetic field. Overall, these results advance our understanding of droplet mobility on LC films and enable new designs for responsive surfaces that can manipulate the mobility of water droplets. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (further details of the stability of LCIPS against water-induced dewetting, the interfacial tension and contact angle measurement using a goniometer, the estimation of the thickness of LC wrapping layer at air-water interface on droplets, SEM measurements, the average sliding velocity of a water droplet on 5CB, E7, silicone oil, and mineral oil films with and without a magnetic field, representative force diagram (F d versus time) of a 3-µL water droplet moving at a speed of 0.1 mm/s on a nematic 8CB film, F dynamic acting on 3 µL water droplets moving at speeds of 0.1-1 mm/s on an isotropic 8CB film, the calculated magnetic coherence length as a function of the magnitude of the magnetic field applied to the nematic LCIPS, and the apparent advancing and receding contact angles of a moving water droplet on nematic LCIPS as a function of time, and polarized light micrographs (top view) of a nematic 8CB film between two DMOAP-functionalized glass slides before and after applying a horizontal magnetic field) is available in the online version of this article at 10.1007/s12274-022-5318-y.
Collapse
Affiliation(s)
- Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - Weichen Deng
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Jen-Chun Fang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Robert L Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Meng Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Simon Čopar
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Uroš Tkalec
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Department of Condensed Matter Physics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
- Sustainability Institute, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
19
|
Xu Y, Yao Y, Deng W, Fang JC, Dupont RL, Zhang M, Čopar S, Tkalec U, Wang X. Magnetocontrollable droplet mobility on liquid crystal-infused porous surfaces. NANO RESEARCH 2022; 16:5098-5107. [PMID: 36570861 PMCID: PMC9768411 DOI: 10.1007/s12274-022-5318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/29/2022] [Accepted: 11/13/2022] [Indexed: 05/25/2023]
Abstract
Magnetocontrollable droplet mobility on surfaces of both solids and simple fluids have been widely used in a wide range of applications. However, little is understood about the effect of the magnetic field on the wettability and mobility of droplets on structured fluids. Here, we report the manipulation of the dynamic behaviors of water droplets on a film of thermotropic liquid crystals (LCs). We find that the static wetting behavior and static friction of water droplets on a 4'-octyl-4-biphenylcarbonitrile (8CB) film strongly depend on the LC mesophases, and that a magnetic field caused no measurable change to these properties. However, we find that the droplet dynamics can be affected by a magnetic field as it slides on a nematic 8CB film, but not on isotropic 8CB, and is dependent on both the direction and strength of the magnetic field. By measuring the dynamic friction of a droplet sliding on a nematic 8CB film, we find that a magnetic field alters the internal orientational ordering of the 8CB which in turn affects its viscosity. We support this interpretation with a scaling argument using the LC magnetic coherence length that includes (i) the elastic energy from the long-range orientational ordering of 8CB and (ii) the free energy from the interaction between 8CB and a magnetic field. Overall, these results advance our understanding of droplet mobility on LC films and enable new designs for responsive surfaces that can manipulate the mobility of water droplets. Electronic Supplementary Material Supplementary material (further details of the stability of LCIPS against water-induced dewetting, the interfacial tension and contact angle measurement using a goniometer, the estimation of the thickness of LC wrapping layer at air-water interface on droplets, SEM measurements, the average sliding velocity of a water droplet on 5CB, E7, silicone oil, and mineral oil films with and without a magnetic field, representative force diagram (Fd versus time) of a 3-µL water droplet moving at a speed of 0.1 mm/s on a nematic 8CB film, Fdynamic acting on 3 µL water droplets moving at speeds of 0.1-1 mm/s on an isotropic 8CB film, the calculated magnetic coherence length as a function of the magnitude of the magnetic field applied to the nematic LCIPS, and the apparent advancing and receding contact angles of a moving water droplet on nematic LCIPS as a function of time, and polarized light micrographs (top view) of a nematic 8CB film between two DMOAP-functionalized glass slides before and after applying a horizontal magnetic field) is available in the online version of this article at 10.1007/s12274-022-5318-y.
Collapse
Affiliation(s)
- Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - Weichen Deng
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Jen-Chun Fang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Robert L. Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Meng Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Simon Čopar
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Uroš Tkalec
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Department of Condensed Matter Physics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
- Sustainability Institute, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
20
|
Wettability-based ultrasensitive detection of amphiphiles through directed concentration at disordered regions in self-assembled monolayers. Proc Natl Acad Sci U S A 2022; 119:e2211042119. [PMID: 36252006 PMCID: PMC9618133 DOI: 10.1073/pnas.2211042119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Various forms of ecological monitoring and disease diagnosis rely upon the detection of amphiphiles, including lipids, lipopolysaccharides, and lipoproteins, at ultralow concentrations in small droplets. Although assays based on droplets' wettability provide promising options in some cases, their reliance on the measurements of surface and bulk properties of whole droplets (e.g., contact angles, surface tensions) makes it difficult to monitor trace amounts of these amphiphiles within small-volume samples. Here, we report a design principle in which self-assembled monolayer-functionalized microstructured surfaces coated with silicone oil create locally disordered regions within a droplet's contact lines to effectively concentrate amphiphiles within the areas that dominate the droplet static friction. Remarkably, such surfaces enable the ultrasensitive, naked-eye detection of amphiphiles through changes in the droplets' sliding angles, even when the concentration is four to five orders of magnitude below their critical micelle concentration. We develop a thermodynamic model to explain the partitioning of amphiphiles at the contact line by their cooperative association within the disordered, loosely packed regions of the self-assembled monolayer. Based on this local analyte concentrating effect, we showcase laboratory-on-a-chip surfaces with positionally dependent pinning forces capable of both detecting industrially and biologically relevant amphiphiles (e.g., bacterial endotoxins), as well as sorting aqueous droplets into discrete groups based on their amphiphile concentrations. Furthermore, we demonstrate that the sliding behavior of amphiphile-laden aqueous droplets provides insight into the amphiphile's effective length, thereby allowing these surfaces to discriminate between analytes with highly disparate molecular sizes.
Collapse
|
21
|
Bao N, Gold JI, Sheavly JK, Schauer JJ, Zavala VM, Van Lehn RC, Mavrikakis M, Abbott NL. Ordering Transitions of Liquid Crystals Triggered by Metal Oxide-catalyzed Reactions of Sulfur Oxide Species. J Am Chem Soc 2022; 144:16378-16388. [PMID: 36047705 DOI: 10.1021/jacs.2c03424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liquid crystals (LCs), when supported on reactive surfaces, undergo changes in ordering that can propagate over distances of micrometers, thus providing a general and facile mechanism to amplify atomic-scale transformations on surfaces into the optical scale. While reactions on organic and metal substrates have been coupled to LC-ordering transitions, metal oxide substrates, which offer unique catalytic activities for reactions involving atmospherically important chemical species such as oxidized sulfur species, have not been explored. Here, we investigate this opportunity by designing LCs that contain 4'-cyanobiphenyl-4-carboxylic acid (CBCA) and respond to surface reactions triggered by parts-per-billion concentrations of SO2 gas on anatase (101) substrates. We used electronic structure calculations to predict that the carboxylic acid group of CBCA binds strongly to anatase (101) in a perpendicular orientation, a prediction that we validated in experiments in which CBCA (0.005 mol %) was doped into an LC (4'-n-pentyl-4-biphenylcarbonitrile). Both experiment and computational modeling further demonstrated that SO3-like species, produced by a surface-catalyzed reaction of SO2 with H2O on anatase (101), displace CBCA from the anatase surface, resulting in an orientational transition of the LC. Experiments also reveal the LC response to be highly selective to SO2 over other atmospheric chemical species (including H2O, NH3, H2S, and NO2), in agreement with our computational predictions for anatase (101) surfaces. Overall, we establish that the catalytic activities of metal oxide surfaces offer the basis of a new class of substrates that trigger LCs to undergo ordering transitions in response to chemical species of relevance to atmospheric chemistry.
Collapse
Affiliation(s)
- Nanqi Bao
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jake I Gold
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jonathan K Sheavly
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - James J Schauer
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Victor M Zavala
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
22
|
Aranson IS. Bacterial active matter. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:076601. [PMID: 35605446 DOI: 10.1088/1361-6633/ac723d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Bacteria are among the oldest and most abundant species on Earth. Bacteria successfully colonize diverse habitats and play a significant role in the oxygen, carbon, and nitrogen cycles. They also form human and animal microbiota and may become sources of pathogens and a cause of many infectious diseases. Suspensions of motile bacteria constitute one of the most studied examples of active matter: a broad class of non-equilibrium systems converting energy from the environment (e.g., chemical energy of the nutrient) into mechanical motion. Concentrated bacterial suspensions, often termed active fluids, exhibit complex collective behavior, such as large-scale turbulent-like motion (so-called bacterial turbulence) and swarming. The activity of bacteria also affects the effective viscosity and diffusivity of the suspension. This work reports on the progress in bacterial active matter from the physics viewpoint. It covers the key experimental results, provides a critical assessment of major theoretical approaches, and addresses the effects of visco-elasticity, liquid crystallinity, and external confinement on collective behavior in bacterial suspensions.
Collapse
Affiliation(s)
- Igor S Aranson
- Departments of Biomedical Engineering, Chemistry, and Mathematics, Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
23
|
Kurt E, Bukusoglu E. Liquid crystal microcapillary-based sensors for affordable analytical applications. SOFT MATTER 2022; 18:4009-4016. [PMID: 35551319 DOI: 10.1039/d2sm00131d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stimuli-responsive properties of liquid crystals (LCs), when combined with their optical properties, offer sensitive and rapid sensing applications. Here, we propose and demonstrate a microcapillary-based method to be applied for the online detection of amphiphilic species, which can be further used for tracking biological and chemical species in aqueous media. Specifically, we used compartments (300-1400 μm) of nematic 4-cyano-4'-pentylbiphenyl (5CB) that were positioned into cylindrical glass microcapillaries that promote homeotropic anchoring. The flat surfaces of the cylindrical LC compartments were in contact with an aqueous media. We characterized the equilibrium and nonequilibrium response of LCs upon a change in their anchoring at the aqueous interfaces. Upon anchoring transition, we observed the formation of a positively charged defect at the proximity of the interface that moved to the center of the LC compartment and reached equilibrium, a four-petal configuration. This transition was observed to take an average of 41 ± 19 min., which we related to the motion of the defect due to the imbalance of the elastic forces. During the transition, we observed metastable states which could be removed via thermal treatment. We showed the capillary sensors to be useful considering their ease of additional quantification. We also show that the sensors are reversible that facilitate temporal and cumulative quantification. The findings reported in this study can further be used to develop sensors for specific purposes that require continuous tracking of the chemical and biological species that is critical for the health and safety of the individuals and society.
Collapse
Affiliation(s)
- Elif Kurt
- Department of Chemical Engineering, Middle East Technical University, Dumlupınar Bulvarı No: 1, Çankaya, Ankara, 06800, Turkey.
| | - Emre Bukusoglu
- Department of Chemical Engineering, Middle East Technical University, Dumlupınar Bulvarı No: 1, Çankaya, Ankara, 06800, Turkey.
| |
Collapse
|
24
|
Rather AM, Xu Y, Chang Y, Dupont RL, Borbora A, Kara UI, Fang JC, Mamtani R, Zhang M, Yao Y, Adera S, Bao X, Manna U, Wang X. Stimuli-Responsive Liquid-Crystal-Infused Porous Surfaces for Manipulation of Underwater Gas Bubble Transport and Adhesion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110085. [PMID: 35089623 DOI: 10.1002/adma.202110085] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Biomimetic artificial surfaces that enable the manipulation of gas bubble mobility have been explored in a wide range of applications in nanomaterial synthesis, surface defouling, biomedical diagnostics, and therapeutics. Although many superhydrophobic surfaces and isotropic-lubricant-infused porous surfaces have been developed to manipulate gas bubbles, the simultaneous control over the adhesion and transport of gas bubbles underwater remains a challenge. Thermotropic liquid crystals (LCs), a class of structured fluids, provide an opportunity to tune the behavior of gas bubbles through LC mesophase transitions using a variety of external stimuli. Using this central idea, the design and synthesis of LC-infused porous surfaces (LCIPS) is reported and the effects of the LC mesophase on the transport and adhesion of gas bubbles on LCIPS immersed in water elucidated. LCIPS are demonstrated to be a promising class of surfaces with an unprecedented level of responsiveness and functionality, which enables the design of cyanobacteria-inspired object movement, smart catalysts, and bubble gating devices to sense and sort volatile organic compounds and control oxygen levels in biomimetic cell cultures.
Collapse
Affiliation(s)
- Adil Majeed Rather
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Robert Lewis Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Angana Borbora
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Ufuoma Israel Kara
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Jen-Chun Fang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Rajdeep Mamtani
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Meng Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Solomon Adera
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
25
|
Das S, Roh S, Atzin N, Mozaffari A, Tang X, de Pablo JJ, Abbott NL. Programming Solitons in Liquid Crystals Using Surface Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3575-3584. [PMID: 35263108 DOI: 10.1021/acs.langmuir.2c00231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AC electric fields cause three-dimensional orientational fluctuations (solitons) to form and rapidly propagate in confined films of liquid crystals (LCs), offering the basis of a new class of active soft matter (e.g., for accelerating mixing and transport processes in microscale chemical systems). How surface chemistry impacts the formation and trajectories of solitons, however, is not understood. Here, we show that self-assembled monolayers (SAMs) formed from alkanethiols on gold, which permit precise control over surface chemistry, are electrochemically stable over voltage and frequency windows (<100 V; 1 kHz) that lead to soliton formation in achiral nematic films of 4'-butyl-4-heptyl-bicyclohexyl-4-carbonitrile (CCN-47). By comparing soliton formation in LC films confined by SAMs formed from hexadecanethiol (C16SH) or pentadecanethiol (C15SH), we reveal that the electric field required for soliton formation increases with the LC anchoring energy: surfaces patterned with regions of C16SH and C15SH SAMs thus permit spatially controlled creation and annihilation of solitons necessary to generate a net flux of solitons. We also show that solitons propagate in orthogonal directions when confined by obliquely deposited gold films decorated with SAMs formed from C16SH or C15SH and that the azimuthal direction of propagation of solitons within achiral LC films possessing surface-induced twists is not unique but reflects variation in the spatial location of the solitons across the thickness of the twisted LC film. Finally, discontinuous changes in LC orientation induced by patterned surface anchoring lead to a range of new soliton behaviors including refraction, reflection, and splitting of solitons at the domain boundaries. Overall, our results provide new approaches for the controlled generation and programming of solitons with complex and precise trajectories, principles that inform new designs of chemical soft matter.
Collapse
Affiliation(s)
- Soumik Das
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Sangchul Roh
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Noe Atzin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Ali Mozaffari
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xingzhou Tang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
26
|
Şengül S, Aydoğan N, Bukusoglu E. Nanoparticle adsorption induced configurations of nematic liquid crystal droplets. J Colloid Interface Sci 2022; 608:2310-2320. [PMID: 34774320 DOI: 10.1016/j.jcis.2021.10.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022]
Abstract
Nematic liquid crystal (LC) droplets have been widely used for the detection of molecular species. We investigate the response of micrometer sized nematic LC droplets against the adsorption of nanoparticles from aqueous media. We synthesized ∼ 100 nm-in-diameter silica nanoparticles and modified their surfaces to mediate either planar or homeotropic LC anchoring and a pH-dependent charge. We show surface functionality- and concentration-dependent configurations of the droplets consistent with the change in the surface anchoring and the formation of local heterogeneities upon adsorption of the nanoparticles to LC-aqueous interfaces. The adsorption of nanoparticles modified with dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMOAP, homeotropic) exhibit a transition from bipolar to radial, whereas the adsorption of -COOH-terminated counterparts (planar) did not cause a configuration transition. By manipulating the electrostatic interactions, we controlled the adsorption of the nanoparticles to the LC-aqueous interfaces, providing access to the physicochemical properties of the nanoparticles. We demonstrate a temporal change in the droplet configurations caused by the adsorption of the nanoparticles functionalized with -COOH/DMOAP mixed monolayers. These results provide a basis for studies in applications for the detection of nano-sized species, for sensing applications that combine nanoparticles with LCs, and for the synthesis of anisotropic composite particles with complex structures.
Collapse
Affiliation(s)
- Selin Şengül
- Department of Chemical Engineering, Middle East Technical University, Dumlupınar Bulvarı No:1, Çankaya 06800, Ankara, Turkey
| | - Nihal Aydoğan
- Department of Chemical Engineering, Hacettepe University, Beytepe 06800, Ankara, Turkey
| | - Emre Bukusoglu
- Department of Chemical Engineering, Middle East Technical University, Dumlupınar Bulvarı No:1, Çankaya 06800, Ankara, Turkey.
| |
Collapse
|
27
|
Piñeres-Quiñones OH, Lynn DM, Acevedo-Vélez C. Environmentally Responsive Emulsions of Thermotropic Liquid Crystals with Exceptional Long-Term Stability and Enhanced Sensitivity to Aqueous Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:957-967. [PMID: 35001623 DOI: 10.1021/acs.langmuir.1c02278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report colloidally stable emulsions of thermotropic liquid crystals (LCs) that can detect the presence of amphiphilic analytes in aqueous environments. Our approach makes use of a Pickering stabilization strategy consisting of surfactant-nanoparticle complexes (SiO2/CnTAB, n = 8, 12, 16) that adsorb to aqueous/LC droplet interfaces. This strategy can stabilize LC emulsions against coalescence for at least 3 months. These stabilized LC emulsions also retain the ability to respond to the presence of model anionic, cationic, and nonionic amphiphiles (e.g., SDS, C12TAB, C12E4) in aqueous solutions by undergoing "bipolar-to-radial" changes in LC droplet configurations that can be readily observed and quantified using polarized light microscopy. Our results reveal these ordering transitions to depend upon the length of the hydrocarbon tail of the CnTAB surfactant used to form the stabilizing complexes. In general, increasing CnTAB surfactant tail length leads to droplets that respond at lower analyte concentrations, demonstrating that this Pickering stabilization strategy can be used to tune the sensitivities of the stabilized LC droplets. Finally, we demonstrate that these colloidally stable LC droplets can report the presence of rhamnolipid, a biosurfactant produced by the bacterial pathogen Pseudomonas aeruginosa. Overall, our results demonstrate that this Pickering stabilization strategy provides a useful tool for the design of LC droplet-based sensors with substantially improved colloidal stability and new strategies to tune their sensitivities. These advances could increase the potential practical utility of these responsive soft materials as platforms for the detection and reporting of chemical and biological analytes.
Collapse
Affiliation(s)
- Oscar H Piñeres-Quiñones
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, Puerto Rico 00681-9000, United States
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Claribel Acevedo-Vélez
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, Puerto Rico 00681-9000, United States
| |
Collapse
|
28
|
Tsuei M, Sun H, Kim YK, Wang X, Gianneschi NC, Abbott NL. Interfacial Polyelectrolyte-Surfactant Complexes Regulate Escape of Microdroplets Elastically Trapped in Thermotropic Liquid Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:332-342. [PMID: 34967209 DOI: 10.1021/acs.langmuir.1c02580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyelectrolytes adsorbed at soft interfaces are used in contexts such as materials synthesis, stabilization of emulsions, and control of rheology. Here, we explore how polyelectrolyte adsorption to aqueous interfaces of thermotropic liquid crystals (LCs) influences surfactant-stabilized aqueous microdroplets that are elastically trapped within the LCs. We find that adsorption of poly(diallyldimethylammonium chloride) (PDDA) to the interface of a nematic phase of 4-cyano-4'-pentylbiphenyl (5CB) triggers the ejection of microdroplets decorated with sodium dodecylsulfate (SDS), consistent with an attractive electrical double layer interaction between the microdroplets and LC interface. The concentration of PDDA that triggers release of the microdroplets (millimolar), however, is three orders of magnitude higher than that which saturates the LC interfacial charge (micromolar). Observation of a transient reorientation of the LC during escape of microdroplets leads us to conclude that complexes of PDDA and SDS form at the LC interface and thereby regulate interfacial charge and microdroplet escape. Poly(sodium 4-styrenesulfonate) (PSS) also triggers escape of dodecyltrimethylammonium bromide (DTAB)-decorated aqueous microdroplets from 5CB with dynamics consistent with the formation of interfacial polyelectrolyte-surfactant complexes. In contrast to PDDA-SDS, however, we do not observe a transient reorientation of the LC when using PSS-DTAB, reflecting weak association of DTAB and PSS and slow kinetics of formation of PSS-DTAB complexes. Our results reveal the central role of polyelectrolyte-surfactant dynamics in regulating the escape of the microdroplets and, more broadly, that LCs offer the basis of a novel probe of the structure and properties of polyelectrolyte-surfactant complexes at interfaces. We demonstrate the utility of these new insights by triggering the ejection of microdroplets from LCs using peptide-polymer amphiphiles that switch their net charge upon being processed by enzymes. Overall, our results provide fresh insight into the formation of polyelectrolyte-surfactant complexes at aqueous-LC interfaces and new principles for the design of responsive soft matter.
Collapse
Affiliation(s)
- Michael Tsuei
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Hao Sun
- Department of Chemistry, Materials Science & Engineering and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Chemical & Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Young-Ki Kim
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyengbuk 37673, Korea
| | - Xin Wang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Materials Science & Engineering and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
29
|
Abstract
Smart soft materials are envisioned to be the building blocks of the next generation of advanced devices and digitally augmented technologies. In this context, liquid crystals (LCs) owing to their responsive and adaptive attributes could serve as promising smart soft materials. LCs played a critical role in revolutionizing the information display industry in the 20th century. However, in the turn of the 21st century, numerous beyond-display applications of LCs have been demonstrated, which elegantly exploit their controllable stimuli-responsive and adaptive characteristics. For these applications, new LC materials have been rationally designed and developed. In this Review, we present the recent developments in light driven chiral LCs, i.e., cholesteric and blue phases, LC based smart windows that control the entrance of heat and light from outdoor to the interior of buildings and built environments depending on the weather conditions, LC elastomers for bioinspired, biological, and actuator applications, LC based biosensors for detection of proteins, nucleic acids, and viruses, LC based porous membranes for the separation of ions, molecules, and microbes, living LCs, and LCs under macro- and nanoscopic confinement. The Review concludes with a summary and perspectives on the challenges and opportunities for LCs as smart soft materials. This Review is anticipated to stimulate eclectic ideas toward the implementation of the nature's delicate phase of matter in future generations of smart and augmented devices and beyond.
Collapse
Affiliation(s)
- Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States.,Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
30
|
Zhang XJ, Sun YW, Li ZW, Sun ZY. Transition kinetics of defect patterns in confined two-dimensional smectic liquid crystals. Phys Rev E 2021; 104:044704. [PMID: 34781539 DOI: 10.1103/physreve.104.044704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023]
Abstract
Topological defects in liquid crystals under confined geometries have attracted extensive research interests. Here, we perform molecular dynamics simulations to investigate the formation and transition of defect patterns in two-dimensional smectic Gay-Berne liquid crystals with a simple rectangular confinement boundary. Two typical types of defect patterns, bridge and diagonal defect patterns, are observed, which can be transformable continuously between each other over time. The transition usually starts from the line or point defect regions, and the competition between neighboring and opposite boundary effects induces the continuous realignments of the smectic layers to connect the neighboring or opposite walls. The relative stability of these two defect patterns can be controlled by changing the confinement conditions. These results deepen our understanding of transition kinetics of defect patterns in confined liquid crystals.
Collapse
Affiliation(s)
- Xiao-Jie Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China and University of Science and Technology of China, Hefei 230026, China
| | - Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China and University of Science and Technology of China, Hefei 230026, China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China and University of Science and Technology of China, Hefei 230026, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China and University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
31
|
Alaasar M, Darweesh AF, Cai X, Liu F, Tschierske C. Mirror Symmetry Breaking and Network Formation in Achiral Polycatenars with Thioether Tail. Chemistry 2021; 27:14921-14930. [PMID: 34542201 PMCID: PMC8596804 DOI: 10.1002/chem.202102226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 11/20/2022]
Abstract
Mirror symmetry breaking in systems composed of achiral molecules is of importance for the design of functional materials for technological applications as well as for the understanding of the mechanisms of spontaneous emergence of chirality. Herein, we report the design and molecular self-assembly of two series of rod-like achiral polycatenar molecules derived from a π-conjugated 5,5'-diphenyl-2,2'-bithiophene core with a fork-like triple alkoxylated end and a variable single alkylthio chain at the other end. In both series of liquid crystalline materials, differing in the chain length at the trialkoxylated end, helical self-assembly of the π-conjugated rods in networks occurs, leading to wide temperature ranges (>200 K) of bicontinuous cubic network phases, in some cases being stable even around ambient temperatures. The achiral bicontinuous cubic Ia 3 ‾ d phase (gyroid) is replaced upon alkylthio chain elongation by a spontaneous mirror symmetry broken bicontinuous cubic phase (I23) and a chiral isotropic liquid phase (Iso1 [ *] ). Further chain elongation results in removing the I23 phase and the re-appearance of the Ia 3 ‾ d phase with different pitch lengths. In the second series an additional tetragonal phase separates the two cubic phase types.
Collapse
Affiliation(s)
- Mohamed Alaasar
- Institute of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
- Department of Chemistry Faculty of ScienceCairo UniversityGizaEgypt
| | | | - Xiaoqian Cai
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft MatterXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Feng Liu
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft MatterXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Carsten Tschierske
- Institute of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
| |
Collapse
|
32
|
Naveenkumar PM, Singh RK, Mann S, Seth JR, Sharma KP. Polymer-Surfactant Driven Interactions and the Resultant Microstructure in Protein-Containing Liquid Crystal Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11949-11960. [PMID: 34612656 DOI: 10.1021/acs.langmuir.1c00960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Integration of molecular liquid crystals (LCs) with functional proteins can provide new class of materials for potential applications in optical biosensing. However, hydrophobic nematic LCs (length ∼ 1-2 nm) and hydrophilic proteins, size ∼ O (nm), do not intermix without chemical modification of at least one of them. Bioconjugation of proteins with a polyethylene glycol-based polymeric surfactant (PS) can provide a core-shell system that is sequestered within nonaqueous LC (4-cyano-4'-pentylbiphenyl) microdroplets. However, the nature of interactions between the components and detailed understanding of the resultant hybrid microstructure remains unclear. Here, using a combination of isothermal titration calorimetry (ITC), fluorescence microscopy, and infrared-imaging spectroscopy, we show that strong hydrophobic interactions between the LC and PS drives the sequestration of a myoglobin-PS (Mb-PS; dispersed in the aqueous phase) into the LC spherical microdroplets or even into a bulk LC phase. The average values of both, the binding constant and the standard molar enthalpy change, are increased by approximately a factor of 2.5 times when the unmodified Mb is conjugated to the PS. Small-angle X-ray scattering studies reveal that LC molecules act as a solvent for the Mb-PS conjugate; furthermore, the LC long-range order is disturbed due to mixing, as exemplified by the change in its coherence length from 8.9 to 5.7 nm. Detailed all-atomistic molecular dynamic simulations for a three-component PS-water-LC system show a change in interaction energy of -144 kJ mol-1 PS-1 upon the contact of PS chains (initially dispersed in water) with LC and agree with the ITC experiments.
Collapse
Affiliation(s)
| | - Raju Kumar Singh
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Stephen Mann
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Jyoti R Seth
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kamendra P Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
33
|
Applications of Microfluidics in Liquid Crystal-Based Biosensors. BIOSENSORS-BASEL 2021; 11:bios11100385. [PMID: 34677341 PMCID: PMC8534167 DOI: 10.3390/bios11100385] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 02/06/2023]
Abstract
Liquid crystals (LCs) with stimuli-responsive configuration transition and optical anisotropic properties have attracted enormous interest in the development of simple and label-free biosensors. The combination of microfluidics and the LCs offers great advantages over traditional LC-based biosensors including small sample consumption, fast analysis and low cost. Moreover, microfluidic techniques provide a promising tool to fabricate uniform and reproducible LC-based sensing platforms. In this review, we emphasize the recent development of microfluidics in the fabrication and integration of LC-based biosensors, including LC planar sensing platforms and LC droplets. Fabrication and integration of LC-based planar platforms with microfluidics for biosensing applications are first introduced. The generation and entrapment of monodisperse LC droplets with different microfluidic structures, as well as their applications in the detection of chemical and biological species, are then summarized. Finally, the challenges and future perspectives of the development of LC-based microfluidic biosensors are proposed. This review will promote the understanding of microfluidic techniques in LC-based biosensors and facilitate the development of LC-based microfluidic biosensing devices with high performance.
Collapse
|
34
|
Xu Y, Rather AM, Yao Y, Fang JC, Mamtani RS, Bennett RKA, Atta RG, Adera S, Tkalec U, Wang X. Liquid crystal-based open surface microfluidics manipulate liquid mobility and chemical composition on demand. SCIENCE ADVANCES 2021; 7:eabi7607. [PMID: 34597134 PMCID: PMC10938512 DOI: 10.1126/sciadv.abi7607] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/10/2021] [Indexed: 05/22/2023]
Abstract
The ability to control both the mobility and chemical compositions of microliter-scale aqueous droplets is an essential prerequisite for next-generation open surface microfluidics. Independently manipulating the chemical compositions of aqueous droplets without altering their mobility, however, remains challenging. In this work, we address this challenge by designing a class of open surface microfluidic platforms based on thermotropic liquid crystals (LCs). We demonstrate, both experimentally and theoretically, that the unique positional and orientational order of LC molecules intrinsically decouple cargo release functionality from droplet mobility via selective phase transitions. Furthermore, we build sodium sulfide–loaded LC surfaces that can efficiently precipitate heavy metal ions in sliding water droplets to final concentration less than 1 part per million for more than 500 cycles without causing droplets to become pinned. Overall, our results reveal that LC surfaces offer unique possibilities for the design of novel open surface fluidic systems with orthogonal functionalities.
Collapse
Affiliation(s)
- Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Adil M. Rather
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yuxing Yao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jen-Chun Fang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Rajdeep S. Mamtani
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Robert K. A. Bennett
- Department of Electrical and Computer Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Richard G. Atta
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Solomon Adera
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Uroš Tkalec
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, 2000 Maribor, Slovenia
- Department of Condensed Matter Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
- Sustainability Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
35
|
Tsuei M, Tran H, Roh S, Ober CK, Abbott NL. Using Liquid Crystals to Probe the Organization of Helical Polypeptide Brushes Induced by Solvent Pretreatment. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Tsuei
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Hai Tran
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Sangchul Roh
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Christopher K. Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Nicholas L. Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
36
|
Szilvási T, Yu H, Gold JI, Bao N, Wolter TJ, Twieg RJ, Abbott NL, Mavrikakis M. Coupling the chemical reactivity of bimetallic surfaces to the orientations of liquid crystals. MATERIALS HORIZONS 2021; 8:2050-2056. [PMID: 34846482 DOI: 10.1039/d1mh00035g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of responsive soft materials with tailored functional properties based on the chemical reactivity of atomically precise inorganic interfaces has not been widely explored. In this communication, guided by first-principles calculations, we design bimetallic surfaces comprised of atomically thin Pd layers deposited onto Au that anchor nematic liquid crystalline phases of 4'-n-pentyl-4-biphenylcarbonitrile (5CB) and demonstrate that the chemical reactivity of these bimetallic surfaces towards Cl2 gas can be tuned by specification of the composition of the surface alloy. Specifically, we use underpotential deposition to prepare submonolayer to multilayers of Pd on Au and employ X-ray photoelectron and infrared spectroscopy to validate computational predictions that binding of 5CB depends strongly on the Pd coverage, with ∼0.1 monolayer (ML) of Pd sufficient to cause the liquid crystal (LC) to adopt a perpendicular binding mode. Computed heats of dissociative adsorption of Cl2 on PdAu alloy surfaces predict displacement of 5CB from these surfaces, a result that is also confirmed by experiments revealing that 1 ppm Cl2 triggers orientational transitions of 5CB. By decreasing the coverage of Pd on Au from 1.8 ± 0.2 ML to 0.09 ± 0.02 ML, the dynamic response of 5CB to 1 ppm Cl2 is accelerated 3X. Overall, these results demonstrate the promise of hybrid designs of responsive materials based on atomically precise interfaces formed between hard bimetallic surfaces and soft matter.
Collapse
Affiliation(s)
- Tibor Szilvási
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kim I, Kim WS, Kim K, Ansari MA, Mehmood MQ, Badloe T, Kim Y, Gwak J, Lee H, Kim YK, Rho J. Holographic metasurface gas sensors for instantaneous visual alarms. SCIENCE ADVANCES 2021; 7:7/15/eabe9943. [PMID: 33827821 PMCID: PMC8026120 DOI: 10.1126/sciadv.abe9943] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/22/2021] [Indexed: 05/21/2023]
Abstract
The rapid detection of biological and chemical substances in real time is particularly important for public health and environmental monitoring and in the military sector. If the process of substance detection to visual reporting can be implemented into a single miniaturized sensor, there could be a profound impact on practical applications. Here, we propose a compact sensor platform that integrates liquid crystals (LCs) and holographic metasurfaces to autonomously sense the existence of a volatile gas and provide an immediate visual holographic alarm. By combining the advantage of the rapid responses to gases realized by LCs with the compactness of holographic metasurfaces, we develop ultracompact gas sensors without additional complex instruments or machinery to report the visual information of gas detection. To prove the applicability of the compact sensors, we demonstrate a metasurface-integrated gas sensor on safety goggles via a one-step nanocasting process that is attachable to flat, curved, and flexible surfaces.
Collapse
Affiliation(s)
- Inki Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Won-Sik Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kwan Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Muhammad Afnan Ansari
- Department of Electrical Engineering, Information Technology University of the Punjab, Lahore 54600, Pakistan
| | - Muhammad Qasim Mehmood
- Department of Electrical Engineering, Information Technology University of the Punjab, Lahore 54600, Pakistan
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yeseul Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junho Gwak
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Heon Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young-Ki Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea
| |
Collapse
|
38
|
Jiang S, Noh J, Park C, Smith AD, Abbott NL, Zavala VM. Using machine learning and liquid crystal droplets to identify and quantify endotoxins from different bacterial species. Analyst 2021; 146:1224-1233. [PMID: 33393547 DOI: 10.1039/d0an02220a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Detection and quantification of bacterial endotoxins is important in a range of health-related contexts, including during pharmaceutical manufacturing of therapeutic proteins and vaccines. Here we combine experimental measurements based on nematic liquid crystalline droplets and machine learning methods to show that it is possible to classify bacterial sources (Escherichia coli, Pseudomonas aeruginosa, Salmonella minnesota) and quantify concentration of endotoxin derived from all three bacterial species present in aqueous solution. The approach uses flow cytometry to quantify, in a high-throughput manner, changes in the internal ordering of micrometer-sized droplets of nematic 4-cyano-4'-pentylbiphenyl triggered by the endotoxins. The changes in internal ordering alter the intensities of light side-scattered (SSC, large-angle) and forward-scattered (FSC, small-angle) by the liquid crystal droplets. A convolutional neural network (Endonet) is trained using the large data sets generated by flow cytometry and shown to predict endotoxin source and concentration directly from the FSC/SSC scatter plots. By using saliency maps, we reveal how EndoNet captures subtle differences in scatter fields to enable classification of bacterial source and quantification of endotoxin concentration over a range that spans eight orders of magnitude (0.01 pg mL-1 to 1 μg mL-1). We attribute changes in scatter fields with bacterial origin of endotoxin, as detected by EndoNet, to the distinct molecular structures of the lipid A domains of the endotoxins derived from the three bacteria. Overall, we conclude that the combination of liquid crystal droplets and EndoNet provides the basis of a promising analytical approach for endotoxins that does not require use of complex biologically-derived reagents (e.g., Limulus amoebocyte lysate).
Collapse
Affiliation(s)
- Shengli Jiang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI 53706, USA.
| | - JungHyun Noh
- Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, NY 14853, USA.
| | - Chulsoon Park
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI 53706, USA.
| | - Alexander D Smith
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI 53706, USA.
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, NY 14853, USA.
| | - Victor M Zavala
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI 53706, USA.
| |
Collapse
|
39
|
Karausta A, Kocaman C, Bukusoglu E. Controlling the shapes and internal complexity of the polymeric particles using liquid crystal-templates confined into microwells. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Híjar H. Dynamics of defects around anisotropic particles in nematic liquid crystals under shear. Phys Rev E 2021; 102:062705. [PMID: 33466112 DOI: 10.1103/physreve.102.062705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/07/2020] [Indexed: 01/30/2023]
Abstract
Nematic multiparticle collision dynamics is used to simulate disclination ring defects around spherocylinders suspended in a liquid crystal. A solvent-solute interaction potential is integrated over a short-time scale by an auxiliary molecular dynamics procedure that updates the translational and angular coordinates of the spherocylinders. For suspended particles with length in the range ∼(60,160)nm and a fixed aspect ratio, this method is able to simulate static defects reported previously in the literature. It also simulates orientation fluctuations of the elongated colloids that exhibit a broad distribution and a slow relaxation rate. Finally, a nematic host driven from equilibrium by shear flow is simulated, and the consequent dynamic behavior of the colloid-defect pair is studied. Defects under shear present significant structural transformations from chairlike disclination rings to extended defects that cover most of the cylindrical surface of the colloid. This effect results from the hydrodynamic torque on the nematic field caused by the distorted flow around the spherocylinder, and it is present for small Reynolds and Ericksen numbers of order unity.
Collapse
Affiliation(s)
- Humberto Híjar
- La Salle University Mexico, Benjamín Franklin 45, 06410 Mexico City, Mexico
| |
Collapse
|
41
|
Revignas D, Ferrarini A. Interplay of Particle Morphology and Director Distortions in Nematic Fluids. PHYSICAL REVIEW LETTERS 2020; 125:267802. [PMID: 33449752 DOI: 10.1103/physrevlett.125.267802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
The existing microscopic theories for elasticity of nematics are challenged by recent findings on systems, whether bent molecules or semiflexible polymers, which do not comply with the model of rigid rodlike particles. Here, we propose an extension of Onsager-Straley second-virial theory, based on a model for the orientational distribution function that, through explicit account of the director profile along a particle, changes in the presence of deformations. The elastic constants reveal specific effects of particle morphology, which are not captured by the existing theories. This paves the way to microscopic modeling of the elastic properties of semiflexible liquid crystal polymers, which is a longstanding issue.
Collapse
Affiliation(s)
- Davide Revignas
- Università di Padova, Dipartimento di Scienze Chimiche, via Marzolo 1, 35131 Padova, Italy
| | - Alberta Ferrarini
- Università di Padova, Dipartimento di Scienze Chimiche, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
42
|
Balaj RV, Zarzar LD. Reconfigurable complex emulsions: Design, properties, and applications. ACTA ACUST UNITED AC 2020. [DOI: 10.1063/5.0028606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rebecca V. Balaj
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lauren D. Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
43
|
Kim I, Ansari MA, Mehmood MQ, Kim WS, Jang J, Zubair M, Kim YK, Rho J. Stimuli-Responsive Dynamic Metaholographic Displays with Designer Liquid Crystal Modulators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004664. [PMID: 33169455 DOI: 10.1002/adma.202004664] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Flat optics, realized by the artificially created 2D material platform called optical metasurfaces, is currently undergoing a science-to-technology transition. However, "real-time" active operations of such flat optical devices remain yet unresolved. Here, liquid crystals (LCs)-integrated metaholograms for ultracompact dynamic holographic displays are proposed. The anisotropic nature of the LCs allows facile and repeatable manipulation of the polarization of light. Specifically designed ("designer") LCs and efficient helicity-encoded metaholograms are combined to realize stimuli-responsive dynamic displays. The designer LC modulators are used as switches that enable a variety of external stimuli (e.g., electric field, heat, surface pressure) to operate holographic images in real-time. Such a dynamic metaholographic platform will provide a path to external stimuli-driven "smart" sensing and display applications such as hologram labels for temperature/pressure/touch monitoring and interactive holographic displays with haptic motion recognition.
Collapse
Affiliation(s)
- Inki Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Muhammad Afnan Ansari
- Department of Electrical Engineering, Information Technology University of the Punjab, Lahore, 54600, Pakistan
| | - Muhammad Qasim Mehmood
- Department of Electrical Engineering, Information Technology University of the Punjab, Lahore, 54600, Pakistan
| | - Won-Sik Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Muhammad Zubair
- Department of Electrical Engineering, Information Technology University of the Punjab, Lahore, 54600, Pakistan
| | - Young-Ki Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
44
|
Role of Stimuli on Liquid Crystalline Defects: From Defect Engineering to Switchable Functional Materials. MATERIALS 2020; 13:ma13235466. [PMID: 33266312 PMCID: PMC7729749 DOI: 10.3390/ma13235466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022]
Abstract
Achieving tunable physical properties is currently one of the most exciting research topics. In order to realize this goal, a medium that is responsive to external stimuli and can undergo a change in its physical property is required. Liquid crystal (LC) is a prominent candidate, as its physical and optical properties can be easily manipulated with various stimuli, such as surface anchoring, rubbing, geometric confinement, and external fields. Having broken away from the past devotion to obtaining a uniform domain of LCs, people are now putting significant efforts toward forming and manipulating ordered and oriented defect structures with a unique arrangement within. The complicated molecular order with tunability would benefit the interdisciplinary research fields of optics, physics, photonics, and materials science. In this review, the recent progress toward defect engineering in the nematic and smectic phases by controlling the surface environment and electric field and their combinational methods is introduced. We close the review with a discussion of the possible applications enabled using LC defect structures as switchable materials.
Collapse
|
45
|
Park G, Čopar S, Suh A, Yang M, Tkalec U, Yoon DK. Periodic Arrays of Chiral Domains Generated from the Self-Assembly of Micropatterned Achiral Lyotropic Chromonic Liquid Crystal. ACS CENTRAL SCIENCE 2020; 6:1964-1970. [PMID: 33274273 PMCID: PMC7706096 DOI: 10.1021/acscentsci.0c00995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 05/20/2023]
Abstract
Achiral building blocks forming achiral structures is a common occurrence in nature, while chirality emerging spontaneously from an achiral system is usually associated with important scientific phenomena. We report on the spontaneous chiral symmetry-breaking phenomena upon the topographic confinement of achiral lyotropic chromonic liquid crystals in periodically arranged micrometer scale air pillars. The anisotropic fluid arranges into chiral domains that depend on the arrangement and spacing of the pillars. We characterize the resulting domains by polarized optical microscopy, support their reconstruction by numerical calculations, and extend the findings with experiments, which include chiral dopants. Well-controlled and addressed chiral structures will be useful in potential applications like programmable scaffolds for living liquid crystals and as sensors for detecting chirality at the molecular level.
Collapse
Affiliation(s)
- Geonhyeong Park
- Graduate
School of Nanoscience and Technology, Korea
Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Simon Čopar
- Faculty
of Mathematics and Physics, University of
Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Ahram Suh
- Graduate
School of Nanoscience and Technology, Korea
Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Minyong Yang
- Graduate
School of Nanoscience and Technology, Korea
Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Uroš Tkalec
- Institute
of Biophysics, Faculty of Medicine, University
of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Faculty
of Natural Sciences and Mathematics, University
of Maribor, Koroška
160, 2000 Maribor, Slovenia
- Department
of Condensed Matter Physics, Jožef
Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- E-mail: (U. Tkalec)
| | - Dong Ki Yoon
- Graduate
School of Nanoscience and Technology, Korea
Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department
of Chemistry and KINC, Korea Advanced Institute
of Science and Technology, Daejeon 34141, Republic of Korea
- E-mail: (D.K. Yoon)
| |
Collapse
|
46
|
Bai L, Huan S, Zhao B, Zhu Y, Esquena J, Chen F, Gao G, Zussman E, Chu G, Rojas OJ. All-Aqueous Liquid Crystal Nanocellulose Emulsions with Permeable Interfacial Assembly. ACS NANO 2020; 14:13380-13390. [PMID: 32946222 DOI: 10.1021/acsnano.0c05251] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report on the formation of water-in-water liquid crystal emulsions with permeable colloidal assemblies. Rodlike cellulose nanocrystals (CNC) spontaneously self-assemble into a helical arrangement with the coexistence of nonionic, hydrophilic polyethylene glycol (PEG) and dextran, whereas the two polymer solutions are thermodynamically incompatible. Stable water-in-water emulsions are easily prepared by mixing the respective CNC/polymer solutions, showing micrometric CNC/PEG dispersed droplets and a continuous CNC/dextran phase. With time, the resulting emulsion demixes into an upper, droplet-lean isotropic phase and a bottom, droplet-rich cholesteric phase. Owing to the osmotic pressure gradient between PEG and dextran phases, target transfer of cellulose nanoparticles occurs across the water/water interface to reassemble into a liquid crystal-in-liquid crystal emulsion with global cholesteric organization. The observed structural, optical, and temporal evolution confirm that the colloidal particles in the two immiscible phases experience short-range interactions and form long-range assemblies across the interface.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang 150040, P.R. China
- Bioproducts Institute, Departments of Chemical & Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Siqi Huan
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang 150040, P.R. China
- Bioproducts Institute, Departments of Chemical & Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Bin Zhao
- Bio-based Colloids and Materials, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Ya Zhu
- Bio-based Colloids and Materials, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Jordi Esquena
- Institute of Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona 08034, Spain
| | - Feng Chen
- Bio-based Colloids and Materials, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Guang Gao
- Department of Cellular and Physiological Sciences, Life Science Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Eyal Zussman
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Guang Chu
- Bio-based Colloids and Materials, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Orlando J Rojas
- Bioproducts Institute, Departments of Chemical & Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
- Bio-based Colloids and Materials, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
| |
Collapse
|
47
|
Smalyukh II. Review: knots and other new topological effects in liquid crystals and colloids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:106601. [PMID: 32721944 DOI: 10.1088/1361-6633/abaa39] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Humankind has been obsessed with knots in religion, culture and daily life for millennia, while physicists like Gauss, Kelvin and Maxwell already involved them in models centuries ago. Nowadays, colloidal particles can be fabricated to have shapes of knots and links with arbitrary complexity. In liquid crystals, closed loops of singular vortex lines can be knotted by using colloidal particles and laser tweezers, as well as by confining nematic fluids into micrometer-sized droplets with complex topology. Knotted and linked colloidal particles induce knots and links of singular defects, which can be interlinked (or not) with colloidal particle knots, revealing the diversity of interactions between topologies of knotted fields and topologically nontrivial surfaces of colloidal objects. Even more diverse knotted structures emerge in nonsingular molecular alignment and magnetization fields in liquid crystals and colloidal ferromagnets. The topological solitons include hopfions, skyrmions, heliknotons, torons and other spatially localized continuous structures, which are classified based on homotopy theory, characterized by integer-valued topological invariants and often contain knotted or linked preimages, nonsingular regions of space corresponding to single points of the order parameter space. A zoo of topological solitons in liquid crystals, colloids and ferromagnets promises new breeds of information displays and a plethora of data storage, electro-optic and photonic applications. Their particle-like collective dynamics echoes coherent motions in active matter, ranging from crowds of people to schools of fish. This review discusses the state of the art in the field, as well as highlights recent developments and open questions in physics of knotted soft matter. We systematically overview knotted field configurations, the allowed transformations between them, their physical stability and how one can use one form of knotted fields to model, create and imprint other forms. The large variety of symmetries accessible to liquid crystals and colloids offer insights into stability, transformation and emergent dynamics of fully nonsingular and singular knotted fields of fundamental and applied importance. The common thread of this review is the ability to experimentally visualize these knots in real space. The review concludes with a discussion of how the studies of knots in liquid crystals and colloids can offer insights into topologically related structures in other branches of physics, with answers to many open questions, as well as how these experimentally observable knots hold a strong potential for providing new inspirations to the mathematical knot theory.
Collapse
Affiliation(s)
- Ivan I Smalyukh
- Department of Physics, Department of Electrical, Computer and Energy Engineering, Materials Science and Engineering Program and Soft Materials Research Center, University of Colorado, Boulder, CO 80309, United States of America
- Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, CO 80309, United States of America
| |
Collapse
|
48
|
Akdeniz B, Batir O, Bukusoglu E. Identification and sorting of particle chirality using liquid crystallinity. J Colloid Interface Sci 2020; 574:11-19. [PMID: 32298977 DOI: 10.1016/j.jcis.2020.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
Particles dispersed in liquid crystals (LCs) have been shown to assemble due to the elastic interactions arising from the molecular anisotropy. Studies have shown that the alignment of the particles within LCs were strongly dependent on the surface director of LCs on particles. Different from the past studies involving particles with degenerate planar anchoring of LCs, this study shows that the azimuthal surface director can be used to control and finely tune the positioning of the particles in LCs. Specifically, polymeric particles with two flat surfaces that mediate parallel or non-parallel (chiral) anchoring were synthesized and dispersed in nematic 5CB with spatial variations in the director profile. Besides demonstration of their positioning, it was observed that the particles with same chiral handedness with the LC twist were distributed within the LC film, whereas particles with opposite handedness were repelled from the LC medium due to the elastic energy contributions. In addition, a pronounced effect of the surface anchoring of the particles were present on their orientation during non-equilibrium events such as sedimentation. Overall, the studies presented here will find potential use in sensors, separations, optics or soft robotic applications that will take advantages of chirality or chiral interactions.
Collapse
Affiliation(s)
- Burak Akdeniz
- Department of Chemical Engineering, Middle East Technical University, Dumlupinar Bulvari No. 1, Çankaya, Ankara 06800, Turkey
| | - Ozge Batir
- Department of Chemical Engineering, Middle East Technical University, Dumlupinar Bulvari No. 1, Çankaya, Ankara 06800, Turkey
| | - Emre Bukusoglu
- Department of Chemical Engineering, Middle East Technical University, Dumlupinar Bulvari No. 1, Çankaya, Ankara 06800, Turkey.
| |
Collapse
|
49
|
Batir O, Bat E, Bukusoglu E. Strain-enhanced sensitivity of polymeric sensors templated from cholesteric liquid crystals. SOFT MATTER 2020; 16:6794-6802. [PMID: 32627784 DOI: 10.1039/d0sm00905a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Detection of volatile organic compounds (VOCs) is an important issue due to their harmful impact on human health. In this study, we aimed at enhancing the sensitivity of the anisotropic polymeric films templated from cholesteric liquid crystals (CLCs) in the identification of VOCs at concentrations on the order of 100 ppm. To increase sensitivity, we introduced negative strain to the films in the direction parallel to the helical axis and evaluated its effect on the sensitivity. Specifically, we used LC mixtures of reactive [4-(3-acryloyoxypropyloxy)benzoic acid 2-methyl-1,4-phenylene ester (RM257)], nonreactive E7 mesogen and chiral dopant [4-((1-methylheptyloxycarbonyl)phenyl-4-hexyloxybenzoate) (S-811)] to synthesize CLC-templated polymeric films with programmed strain profiles using a curved wedge cell, and measured their response against a range of toluene vapor concentrations. Based on the obtained results, we demonstrated a relationship between the negative strain in the cholesteric pitch and the sensitivity of the sensor based on spacial responses evaluated from the change in coloring of the film. Our results showed that negative strain helps to increase the sensitivity of the sensors up to 15 times compared to their unstrained counterparts. Moreover, 90% of the equilibrium response is achieved in less than one minute of exposure which offers rapid diagnosis of VOCs. Our tests for the reversibility of the sensors showed that the CLC-templated polymeric films can be used multiple times without a significant loss of sensitivity.
Collapse
Affiliation(s)
- Ozge Batir
- Department of Chemical Engineering, Middle East Technical University, Dumlupınar Bulvarı No: 1, Çankaya, Ankara 06800, Turkey.
| | - Erhan Bat
- Department of Chemical Engineering, Middle East Technical University, Dumlupınar Bulvarı No: 1, Çankaya, Ankara 06800, Turkey.
| | - Emre Bukusoglu
- Department of Chemical Engineering, Middle East Technical University, Dumlupınar Bulvarı No: 1, Çankaya, Ankara 06800, Turkey.
| |
Collapse
|
50
|
Ryu DG, Huh JH, Kim YK, Gwag JS. Characterization of surface anchoring energy of nematic liquid crystals via electrohydrodynamic instability. Phys Rev E 2020; 101:062703. [PMID: 32688614 DOI: 10.1103/physreve.101.062703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/27/2020] [Indexed: 11/07/2022]
Abstract
Herein, a method is proposed to determine the azimuthal anchoring energies of surface liquid crystals (LCs), as they gradually change orientation from a vertical to a horizontal state owing to an increase in the voltage applied to each LC cell. The LC cells are characterized using the direction of the Williams roll pattern related to the midplane LC director of the conduction regime of the electrohydrodynamic convection patterns of LCs. The application of the midplane LC directions, obtained from the direction of the roll patterns, to the Ericksen-Leslie equation produces the precise values of the surface anchoring strength. The hybrid type 90°-twisted nematic LC cell, composed of homeotropic and homogeneous LC alignment layers on the top and bottom substrates, respectively, was used to find the azimuthal anchoring energy of the surface LCs, indicated by voltages at the initially vertically aligned LC state. It was observed that the surface azimuthal anchoring energy on the homeotropic layer increased with an increase in voltage. We expect that the proposed technique may be excellent in terms of ease of use, simplicity, and accuracy because the azimuthal anchoring energy can be visually evaluated through the roll pattern.
Collapse
Affiliation(s)
- Dae Geon Ryu
- Department of Physics, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Jong-Hoon Huh
- Department of Mechanical Information Science and Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Young-Ki Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 67 Cheongam-ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jin Seog Gwag
- Department of Physics, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|