1
|
Bhuyan MM, Jeong JH. Gels/Hydrogels in Different Devices/Instruments-A Review. Gels 2024; 10:548. [PMID: 39330150 PMCID: PMC11430987 DOI: 10.3390/gels10090548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Owing to their physical and chemical properties and stimuli-responsive nature, gels and hydrogels play vital roles in diverse application fields. The three-dimensional polymeric network structure of hydrogels is considered an alternative to many materials, such as conductors, ordinary films, constituent components of machines and robots, etc. The most recent applications of gels are in different devices like sensors, actuators, flexible screens, touch panels, flexible storage, solar cells, batteries, and electronic skin. This review article addresses the devices where gels are used, the progress of research, the working mechanisms of hydrogels in those devices, and future prospects. Preparation methods are also important for obtaining a suitable hydrogel. This review discusses different methods of hydrogel preparation from the respective raw materials. Moreover, the mechanism by which gels act as a part of electronic devices is described.
Collapse
Affiliation(s)
- Md Murshed Bhuyan
- Research Center for Green Energy Systems, Department of Mechanical, Smart, and Industrial Engineering (Mechanical Engineering Major), Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Jae-Ho Jeong
- Research Center for Green Energy Systems, Department of Mechanical, Smart, and Industrial Engineering (Mechanical Engineering Major), Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Li L, Griebel ME, Uroz M, Bubli SY, Gagnon KA, Trappmann B, Baker BM, Eyckmans J, Chen CS. A Protein-Adsorbent Hydrogel with Tunable Stiffness for Tissue Culture Demonstrates Matrix-Dependent Stiffness Responses. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2309567. [PMID: 38693998 PMCID: PMC11060701 DOI: 10.1002/adfm.202309567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Indexed: 05/03/2024]
Abstract
Although tissue culture plastic has been widely employed for cell culture, the rigidity of plastic is not physiologic. Softer hydrogels used to culture cells have not been widely adopted in part because coupling chemistries are required to covalently capture extracellular matrix (ECM) proteins and support cell adhesion. To create an in vitro system with tunable stiffnesses that readily adsorbs ECM proteins for cell culture, we present a novel hydrophobic hydrogel system via chemically converting hydroxyl residues on the dextran backbone to methacrylate groups, thereby transforming non-protein adhesive, hydrophilic dextran to highly protein adsorbent substrates. Increasing methacrylate functionality increases the hydrophobicity in the resulting hydrogels and enhances ECM protein adsorption without additional chemical reactions. These hydrophobic hydrogels permit facile and tunable modulation of substrate stiffness independent of hydrophobicity or ECM coatings. Using this approach, we show that substrate stiffness and ECM adsorption work together to affect cell morphology and proliferation, but the strengths of these effects vary in different cell types. Furthermore, we reveal that stiffness mediated differentiation of dermal fibroblasts into myofibroblasts is modulated by the substrate ECM. Our material system demonstrates remarkable simplicity and flexibility to tune ECM coatings and substrate stiffness and study their effects on cell function.
Collapse
Affiliation(s)
- Linqing Li
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 02215, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, 02115, United States
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, New Hampshire, 03824, United States
| | - Megan E Griebel
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 02215, United States
| | - Marina Uroz
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 02215, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, 02115, United States
| | - Saniya Yesmin Bubli
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, New Hampshire, 03824, United States
| | - Keith A Gagnon
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 02215, United States
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, Münster, 48149 Germany
| | - Brendon M Baker
- Engineered Microenvironments and Mechanobiology Lab, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 02215, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, 02115, United States
| | - Christopher S Chen
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 02215, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, 02115, United States
| |
Collapse
|
3
|
Mout R, Bretherton RC, Decarreau J, Lee S, Gregorio N, Edman NI, Ahlrichs M, Hsia Y, Sahtoe DD, Ueda G, Sharma A, Schulman R, DeForest CA, Baker D. De novo design of modular protein hydrogels with programmable intra- and extracellular viscoelasticity. Proc Natl Acad Sci U S A 2024; 121:e2309457121. [PMID: 38289949 PMCID: PMC10861882 DOI: 10.1073/pnas.2309457121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Relating the macroscopic properties of protein-based materials to their underlying component microstructure is an outstanding challenge. Here, we exploit computational design to specify the size, flexibility, and valency of de novo protein building blocks, as well as the interaction dynamics between them, to investigate how molecular parameters govern the macroscopic viscoelasticity of the resultant protein hydrogels. We construct gel systems from pairs of symmetric protein homo-oligomers, each comprising 2, 5, 24, or 120 individual protein components, that are crosslinked either physically or covalently into idealized step-growth biopolymer networks. Through rheological assessment, we find that the covalent linkage of multifunctional precursors yields hydrogels whose viscoelasticity depends on the crosslink length between the constituent building blocks. In contrast, reversibly crosslinking the homo-oligomeric components with a computationally designed heterodimer results in viscoelastic biomaterials exhibiting fluid-like properties under rest and low shear, but solid-like behavior at higher frequencies. Exploiting the unique genetic encodability of these materials, we demonstrate the assembly of protein networks within living mammalian cells and show via fluorescence recovery after photobleaching (FRAP) that mechanical properties can be tuned intracellularly in a manner similar to formulations formed extracellularly. We anticipate that the ability to modularly construct and systematically program the viscoelastic properties of designer protein-based materials could have broad utility in biomedicine, with applications in tissue engineering, therapeutic delivery, and synthetic biology.
Collapse
Affiliation(s)
- Rubul Mout
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- Stem Cell Program at Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Ross C. Bretherton
- Department of Bioengineering, University of Washington, Seattle, WA98195
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA98195
- Department of Chemistry, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| | - Justin Decarreau
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Sangmin Lee
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Nicole Gregorio
- Department of Bioengineering, University of Washington, Seattle, WA98195
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA98195
- Department of Chemistry, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| | - Natasha I. Edman
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
- Medical Scientist Training Program, University of Washington, Seattle, WA98195
| | - Maggie Ahlrichs
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Yang Hsia
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Danny D. Sahtoe
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| | - George Ueda
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Alee Sharma
- College of Professional Studies, Northeastern University, Boston, MA02115
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD21218
- Department of Computer Science, Johns Hopkins University, Baltimore, MD21218
| | - Cole A. DeForest
- Institute for Protein Design, University of Washington, Seattle, WA98195
- Department of Bioengineering, University of Washington, Seattle, WA98195
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA98195
- Department of Chemistry, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| |
Collapse
|
4
|
Chapla R, Katz RR, West JL. Neurogenic Cell Behavior in 3D Culture Enhanced Within a Highly Compliant Synthetic Hydrogel Platform Formed via Competitive Crosslinking. Cell Mol Bioeng 2024; 17:35-48. [PMID: 38435792 PMCID: PMC10901766 DOI: 10.1007/s12195-024-00794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/09/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose Scaffold materials that better support neurogenesis are still needed to improve cell therapy outcomes for neural tissue damage. We have used a modularly tunable, highly compliant, degradable hydrogel to explore the impacts of hydrogel compliance stiffness on neural differentiation. Here we implemented competitive matrix crosslinking mechanics to finely tune synthetic hydrogel moduli within soft tissue stiffnesses, a range much softer than typically achievable in synthetic crosslinked hydrogels, providing a modularly controlled and ultrasoft 3D culture model which supports and enhances neurogenic cell behavior. Methods Soluble competitive allyl monomers were mixed with proteolytically-degradable poly(ethylene glycol) diacrylate derivatives and crosslinked to form a matrix, and resultant hydrogel stiffness and diffusive properties were evaluated. Neural PC12 cells or primary rat fetal neural stem cells (NSCs) were encapsulated within the hydrogels, and cell morphology and phenotype were investigated to understand cell-matrix interactions and the effects of environmental stiffness on neural cell behavior within this model. Results Addition of allyl monomers caused a concentration-dependent decrease in hydrogel compressive modulus from 4.40 kPa to 0.26 kPa (natural neural tissue stiffness) without influencing soluble protein diffusion kinetics through the gel matrix. PC12 cells encapsulated in the softest hydrogels showed significantly enhanced neurite extension in comparison to PC12s in all other hydrogel stiffnesses tested. Encapsulated neural stem cells demonstrated significantly greater spreading and elongation in 0.26 kPa alloc hydrogels than in 4.4 kPa hydrogels. When soluble growth factor deprivation (for promotion of neural differentiation) was evaluated within the neural stiffness gels (0.26 kPa), NSCs showed increased neuronal marker expression, indicating early enhancement of neurogenic differentiation. Conclusions Implementing allyl-acrylate crosslinking competition reduced synthetic hydrogel stiffness to provide a supportive environment for 3D neural tissue culture, resulting in enhanced neurogenic behavior of encapsulated cells. These results indicate the potential suitability of this ultrasoft hydrogel system as a model platform for further investigating environmental factors on neural cell behavior. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00794-2.
Collapse
Affiliation(s)
- Rachel Chapla
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Rachel R. Katz
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904 USA
| |
Collapse
|
5
|
He W, Deng J, Ma B, Tao K, Zhang Z, Ramakrishna S, Yuan W, Ye T. Recent Advancements of Bioinks for 3D Bioprinting of Human Tissues and Organs. ACS APPLIED BIO MATERIALS 2024; 7:17-43. [PMID: 38091514 DOI: 10.1021/acsabm.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
3D bioprinting is recognized as a promising biomanufacturing technology that enables the reproducible and high-throughput production of tissues and organs through the deposition of different bioinks. Especially, bioinks based on loaded cells allow for immediate cellularity upon printing, providing opportunities for enhanced cell differentiation for organ manufacturing and regeneration. Thus, extensive applications have been found in the field of tissue engineering. The performance of the bioinks determines the functionality of the entire printed construct throughout the bioprinting process. It is generally expected that bioinks should support the encapsulated cells to achieve their respective cellular functions and withstand normal physiological pressure exerted on the printed constructs. The bioinks should also exhibit a suitable printability for precise deposition of the constructs. These characteristics are essential for the functional development of tissues and organs in bioprinting and are often achieved through the combination of different biomaterials. In this review, we have discussed the cutting-edge outstanding performance of different bioinks for printing various human tissues and organs in recent years. We have also examined the current status of 3D bioprinting and discussed its future prospects in relieving or curing human health problems.
Collapse
Affiliation(s)
- Wen He
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jinjun Deng
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Binghe Ma
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhi Zhang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, National University of Singapore, Singapore 117576, Singapore
| | - Weizheng Yuan
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tao Ye
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
6
|
Webber MJ, Kim J, Dankers PYW. Therapeutic Hydrogels. Macromol Biosci 2024; 24:e2300533. [PMID: 38050925 DOI: 10.1002/mabi.202300533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 12/07/2023]
Affiliation(s)
- Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Jaeyun Kim
- Sungkyunkwan University (SKKU), School of Chemical Engineering, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, PO Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
7
|
Ferri-Angulo D, Yousefi-Mashouf H, Michel M, McLeer A, Orgéas L, Bailly L, Sohier J. Versatile fiber-reinforced hydrogels to mimic the microstructure and mechanics of human vocal-fold upper layers. Acta Biomater 2023; 172:92-105. [PMID: 37748548 DOI: 10.1016/j.actbio.2023.09.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Human vocal folds are remarkable soft laryngeal structures that enable phonation due to their unique vibro-mechanical performances. These properties are tied to their specific fibrous architecture, especially in the upper layers, which comprise a gel-like composite called lamina propria. The lamina propria can withstand large and reversible deformations under various multiaxial loadings. Despite their importance, the relationships between the microstructure of vocal folds and their resulting macroscopic properties remain poorly understood. There is a need for versatile models that encompass their structural complexity while mimicking their mechanical features. In this study, we present a candidate model inspired by histological measurements of the upper layers of human vocal folds. Bi-photonic observations were used to quantify the distribution, orientation, width, and volume fraction of collagen and elastin fibers between histological layers. Using established biomaterials, polymer fiber-reinforced hydrogels were developed to replicate the fibrillar network and ground substance of native vocal fold tissue. To achieve this, jet-sprayed poly(ε-caprolactone) fibrillar mats were successfully impregnated with poly(L-lysine) dendrimers/polyethylene glycol hydrogels. The resulting composites exhibited versatile structural, physical and mechanical properties that could be customized through variations in the chemical formulation of their hydrogel matrix, the microstructural architecture of their fibrous networks (i.e., fiber diameter, orientation and volume fraction) and their assembly process. By mimicking the collagen network of the lamina propria with polymer fibers and the elastin/ground substance with the hydrogel composition, we successfully replicated the non-linear, anisotropic, and viscoelastic mechanical behavior of the vocal-fold upper layers, accounting for inter/intra-individual variations. The development of this mimetic model offers promising avenues for a better understanding of the complex mechanisms involved in voice production. STATEMENT OF SIGNIFICANCE: Human vocal folds are outstanding vibrating soft living tissues allowing phonation. Simple physical models that take into account the histological structure of the vocal fold and recapitulate its mechanical features are scarce. As a result, the relations between tissue components, organisation and vibro-mechanical performances still remain an open question. We describe here the development and the characterization of fiber-reinforced hydrogels inspired from the vocal-fold microstructure. These systems are able to reproduce the mechanics of vocal-fold tissues upon realistic cyclic and large strains under various multi-axial loadings, thus providing a mimetic model to further understand the impact of the fibrous network microstructure in phonation.
Collapse
Affiliation(s)
- Daniel Ferri-Angulo
- MATEIS, CNRS, Université de Lyon, INSA de Lyon, Université Claude Bernard Lyon 1, UMR5510, 69100 Villeurbanne, France
| | - Hamid Yousefi-Mashouf
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, 38000 Grenoble, France; Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France
| | - Margot Michel
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, University of Lyon, Claude Bernard University Lyon 1, UMR5305 LBTI, 69007 Lyon, France
| | - Anne McLeer
- Univ. Grenoble Alpes, CHU Grenoble Alpes, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Laurent Orgéas
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, 38000 Grenoble, France
| | - Lucie Bailly
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, 38000 Grenoble, France
| | - Jérôme Sohier
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, University of Lyon, Claude Bernard University Lyon 1, UMR5305 LBTI, 69007 Lyon, France.
| |
Collapse
|
8
|
Mehrotra S, Dey S, Sachdeva K, Mohanty S, Mandal BB. Recent advances in tailoring stimuli-responsive hybrid scaffolds for cardiac tissue engineering and allied applications. J Mater Chem B 2023; 11:10297-10331. [PMID: 37905467 DOI: 10.1039/d3tb00450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
To recapitulate bio-physical properties and functional behaviour of native heart tissues, recent tissue engineering-based approaches are focused on developing smart/stimuli-responsive materials for interfacing cardiac cells. Overcoming the drawbacks of the traditionally used biomaterials, these smart materials portray outstanding mechanical and conductive properties while promoting cell-cell interaction and cell-matrix transduction cues in such excitable tissues. To date, a large number of stimuli-responsive materials have been employed for interfacing cardiac tissues alone or in combination with natural/synthetic materials for cardiac tissue engineering. However, their comprehensive classification and a comparative analysis of the role played by these materials in regulating cardiac cell behaviour and in vivo metabolism are much less discussed. In an attempt to cover the recent advances in fabricating stimuli-responsive biomaterials for engineering cardiac tissues, this review details the role of these materials in modulating cardiomyocyte behaviour, functionality and surrounding matrix properties. Furthermore, concerns and challenges regarding the clinical translation of these materials and the possibility of using such materials for the fabrication of bio-actuators and bioelectronic devices are discussed.
Collapse
Affiliation(s)
- Shreya Mehrotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India. biman.mandal@iitg,ac.in
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India
| | - Kunj Sachdeva
- DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sujata Mohanty
- DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India. biman.mandal@iitg,ac.in
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
9
|
Princen K, Marien N, Guedens W, Graulus GJ, Adriaensens P. Hydrogels with Reversible Crosslinks for Improved Localised Stem Cell Retention: A Review. Chembiochem 2023; 24:e202300149. [PMID: 37220343 DOI: 10.1002/cbic.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Successful stem cell applications could have a significant impact on the medical field, where many lives are at stake. However, the translation of stem cells to the clinic could be improved by overcoming challenges in stem cell transplantation and in vivo retention at the site of tissue damage. This review aims to showcase the most recent insights into developing hydrogels that can deliver, retain, and accommodate stem cells for tissue repair. Hydrogels can be used for tissue engineering, as their flexibility and water content makes them excellent substitutes for the native extracellular matrix. Moreover, the mechanical properties of hydrogels are highly tuneable, and recognition moieties to control cell behaviour and fate can quickly be introduced. This review covers the parameters necessary for the physicochemical design of adaptable hydrogels, the variety of (bio)materials that can be used in such hydrogels, their application in stem cell delivery and some recently developed chemistries for reversible crosslinking. Implementing physical and dynamic covalent chemistry has resulted in adaptable hydrogels that can mimic the dynamic nature of the extracellular matrix.
Collapse
Affiliation(s)
- Ken Princen
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Neeve Marien
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Geert-Jan Graulus
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
10
|
Kim SJ, Lee G, Park JK. Hybrid Biofabrication of Heterogeneous 3D Constructs Using Low-Viscosity Bioinks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41247-41257. [PMID: 37615296 DOI: 10.1021/acsami.3c05750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The application of cytocompatible hydrogels supporting extensive cellular activities to three-dimensional (3D) bioprinting is crucial for recreating complex physiological environments with high biomimicry. However, the poor printability and tunability of such natural hydrogels diminish the versatility and resolution of bioprinters. In this study, we propose a novel approach for the hybrid biofabrication of complex and heterogeneous 3D constructs using low-viscosity bioinks. Poly(lactic acid) (PLA) filament is extruded by fused deposition modeling on a micromesh to create PLA-framed micromesh substrates onto which fibrinogen is printed by microextrusion bioprinting. The micromesh supports the printed hydrogel with a capillary pinning effect to enable high-resolution bioprinting. Accordingly, the micromesh-bioink layers are aligned and stacked to form volumetric constructs. This approach, called the 3D micromesh-bioink overlaid structure and interlocked culture (3D MOSAIC) platform, enables the fabrication of complicated and multimaterial 3D structures, including overhangs and voids. Endothelial cells cultured under vasculogenic conditions in the platform self-organize within the biologically functional hydrogel to form vascular networks, and cancer cell migration can be observed across the layers. The multidisciplinary 3D MOSAIC platform is an important step toward the biofabrication of complex constructs with high biological and structural significance and functionality.
Collapse
Affiliation(s)
- Soo Jee Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gihyun Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for the Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Ramani N, Figg CA, Anderson AJ, Winegar PH, Oh E, Ebrahimi SB, Samanta D, Mirkin CA. Spatially-Encoding Hydrogels With DNA to Control Cell Signaling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301086. [PMID: 37221642 DOI: 10.1002/adma.202301086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/18/2023] [Indexed: 05/25/2023]
Abstract
Patterning biomolecules in synthetic hydrogels offers routes to visualize and learn how spatially-encoded cues modulate cell behavior (e.g., proliferation, differentiation, migration, and apoptosis). However, investigating the role of multiple, spatially defined biochemical cues within a single hydrogel matrix remains challenging because of the limited number of orthogonal bioconjugation reactions available for patterning. Herein, a method to pattern multiple oligonucleotide sequences in hydrogels using thiol-yne photochemistry is introduced. Rapid hydrogel photopatterning of hydrogels with micron resolution DNA features (≈1.5 µm) and control over DNA density are achieved over centimeter-scale areas using mask-free digital photolithography. Sequence-specific DNA interactions are then used to reversibly tether biomolecules to patterned regions, demonstrating chemical control over individual patterned domains. Last, localized cell signaling is shown using patterned protein-DNA conjugates to selectively activate cells on patterned areas. Overall, this work introduces a synthetic method to achieve multiplexed micron resolution patterns of biomolecules onto hydrogel scaffolds, providing a platform to study complex spatially-encoded cellular signaling environments.
Collapse
Affiliation(s)
- Namrata Ramani
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus, Drive, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2190 Campus Drive, Evanston, IL, 60208, USA
| | - C Adrian Figg
- International Institute for Nanotechnology, Northwestern University, 2190 Campus Drive, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Alex J Anderson
- International Institute for Nanotechnology, Northwestern University, 2190 Campus Drive, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Peter H Winegar
- International Institute for Nanotechnology, Northwestern University, 2190 Campus Drive, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - EunBi Oh
- International Institute for Nanotechnology, Northwestern University, 2190 Campus Drive, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sasha B Ebrahimi
- International Institute for Nanotechnology, Northwestern University, 2190 Campus Drive, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Devleena Samanta
- International Institute for Nanotechnology, Northwestern University, 2190 Campus Drive, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus, Drive, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2190 Campus Drive, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
12
|
Nealy ES, Reed SJ, Adelmund SM, Badeau BA, Shadish JA, Girard EJ, Pakiam FJ, Mhyre AJ, Price JP, Sarkar S, Kalia V, DeForest CA, Olson JM. Versatile Tissue-Injectable Hydrogels with Extended Hydrolytic Release of Bioactive Protein Therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.554391. [PMID: 37693598 PMCID: PMC10491173 DOI: 10.1101/2023.09.01.554391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Hydrogels generally have broad utilization in healthcare due to their tunable structures, high water content, and inherent biocompatibility. FDA-approved applications of hydrogels include spinal cord regeneration, skin fillers, and local therapeutic delivery. Drawbacks exist in the clinical hydrogel space, largely pertaining to inconsistent therapeutic exposure, short-lived release windows, and difficulties inserting the polymer into tissue. In this study, we engineered injectable, biocompatible hydrogels that function as a local protein therapeutic depot with a high degree of user-customizability. We showcase a PEG-based hydrogel functionalized with bioorthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) handles for its polymerization and functionalization with a variety of payloads. Small-molecule and protein cargos, including chemokines and antibodies, were site-specifically modified with hydrolysable "azidoesters" of varying hydrophobicity via direct chemical conjugation or sortase-mediated transpeptidation. These hydrolysable esters afforded extended release of payloads linked to our hydrogels beyond diffusion; with timescales spanning days to months dependent on ester hydrophobicity. Injected hydrogels polymerize in situ and remain in tissue over extended periods of time. Hydrogel-delivered protein payloads elicit biological activity after being modified with SPAAC-compatible linkers, as demonstrated by the successful recruitment of murine T-cells to a mouse melanoma model by hydrolytically released murine CXCL10. These results highlight a highly versatile, customizable hydrogel-based delivery system for local delivery of protein therapeutics with payload release profiles appropriate for a variety of clinical needs.
Collapse
Affiliation(s)
- Eric S. Nealy
- Seattle Children’s Research Institute, Seattle WA
- Fred Hutch Cancer Center, Seattle WA
| | | | - Steve M. Adelmund
- Department of Chemical Engineering, University of Washington, Seattle WA
| | - Barry A. Badeau
- Department of Chemical Engineering, University of Washington, Seattle WA
| | - Jared A. Shadish
- Department of Chemical Engineering, University of Washington, Seattle WA
| | - Emily J. Girard
- Seattle Children’s Research Institute, Seattle WA
- Fred Hutch Cancer Center, Seattle WA
| | | | - Andrew J. Mhyre
- Seattle Children’s Research Institute, Seattle WA
- Fred Hutch Cancer Center, Seattle WA
| | - Jason P. Price
- Seattle Children’s Research Institute, Seattle WA
- Fred Hutch Cancer Center, Seattle WA
| | - Surojit Sarkar
- Seattle Children’s Research Institute, Seattle WA
- Department of Pathology, University of Washington, Seattle WA
- Department of Pediatrics, University of Washington, Seattle WA
| | - Vandana Kalia
- Seattle Children’s Research Institute, Seattle WA
- Department of Pediatrics, University of Washington, Seattle WA
| | - Cole A. DeForest
- Department of Chemical Engineering, University of Washington, Seattle WA
- Department of Bioengineering, University of Washington, Seattle WA
- Department of Biochemistry, University of Washington, Seattle WA
- Department of Biology, University of Washington, Seattle WA
- Department of Chemistry, University of Washington, Seattle WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle WA
- Institute for Protein Design, University of Washington, Seattle WA
| | - James M. Olson
- Seattle Children’s Research Institute, Seattle WA
- Fred Hutch Cancer Center, Seattle WA
- Department of Pharmacology, University of Washington, Seattle WA
| |
Collapse
|
13
|
Wu KL, Bretherton RC, Davis J, DeForest CA. Pharmacological regulation of protein-polymer hydrogel stiffness. RSC Adv 2023; 13:24487-24490. [PMID: 37588975 PMCID: PMC10426327 DOI: 10.1039/d3ra04046a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
The extracellular matrix (ECM) undergoes constant physiochemical change. User-programmable biomaterials afford exciting opportunities to study such dynamic processes in vitro. Herein, we introduce a protein-polymer hydrogel whose stiffness can be pharmacologically and reversibly regulated with conventional antibiotics. Specifically, a coumermycin-mediated homodimerization of gel-tethered DNA gyrase subunit B (GyrB) creates physical crosslinking and a rheological increase in hydrogel mechanics, while competitive displacement of coumermycin with novobiocin returns the material to its softened state. These unique platforms could potentially be modulated in vivo and are expected to prove useful in elucidating the effects of ECM-presented mechanical signals on cell function.
Collapse
Affiliation(s)
- Kun-Lin Wu
- Department of Chemical Engineering, University of Washington (UW) Seattle WA 98105 USA
| | - Ross C Bretherton
- Department of Bioengineering, UW Seattle WA 98105 USA
- Institute for Stem Cell & Regenerative Medicine, UW Seattle WA 98109 USA
| | - Jennifer Davis
- Department of Bioengineering, UW Seattle WA 98105 USA
- Institute for Stem Cell & Regenerative Medicine, UW Seattle WA 98109 USA
- Center for Cardiovascular Biology, UW Seattle WA 98109 USA
- Department of Laboratory Medicine & Pathology, UW Seattle WA 98109 USA
| | - Cole A DeForest
- Department of Chemical Engineering, University of Washington (UW) Seattle WA 98105 USA
- Department of Bioengineering, UW Seattle WA 98105 USA
- Department of Laboratory Medicine & Pathology, UW Seattle WA 98109 USA
- Department of Chemistry, UW Seattle WA 98105 USA
- Molecular Engineering & Sciences Institute, UW Seattle WA 98109 USA
- Institute for Protein Design, UW Seattle WA 98105 USA
| |
Collapse
|
14
|
Loureiro J, Miguel SP, Galván-Chacón V, Patrocinio D, Pagador JB, Sánchez-Margallo FM, Ribeiro MP, Coutinho P. Three-Dimensionally Printed Hydrogel Cardiac Patch for Infarct Regeneration Based on Natural Polysaccharides. Polymers (Basel) 2023; 15:2824. [PMID: 37447470 DOI: 10.3390/polym15132824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Myocardial infarction is one of the more common cardiovascular diseases, and remains the leading cause of death, globally. Hydrogels (namely, those using natural polymers) provide a reliable tool for regenerative medicine and have become a promising option for cardiac tissue regeneration due to their hydrophilic character and their structural similarity to the extracellular matrix. Herein, a functional ink based on the natural polysaccharides Gellan gum and Konjac glucomannan has, for the first time, been applied in the production of a 3D printed hydrogel with therapeutic potential, with the goal of being locally implanted in the infarcted area of the heart. Overall, results revealed the excellent printability of the bioink for the development of a stable, porous, biocompatible, and bioactive 3D hydrogel, combining the specific advantages of Gellan gum and Konjac glucomannan with proper mechanical properties, which supports the simplification of the implantation process. In addition, the structure have positive effects on endothelial cells' proliferation and migration that can promote the repair of injured cardiac tissue. The results presented will pave the way for simple, low-cost, and efficient cardiac tissue regeneration using a 3D printed hydrogel cardiac patch with potential for clinical application for myocardial infarction treatment in the near future.
Collapse
Affiliation(s)
- Jorge Loureiro
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Sónia P Miguel
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal
| | | | - David Patrocinio
- Jesús Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain
| | - José Blas Pagador
- Jesús Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain
- TERAV/ISCIII-Red Española de Terapias Avanzadas, 10071 Cáceres, Spain
| | - Francisco M Sánchez-Margallo
- Jesús Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain
- TERAV/ISCIII-Red Española de Terapias Avanzadas, 10071 Cáceres, Spain
- CIBER CV-Centro de Investigación Biomédica en Red-Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Maximiano P Ribeiro
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
15
|
Mout R, Bretherton RC, Decarreau J, Lee S, Edman NI, Ahlrichs M, Hsia Y, Sahtoe DD, Ueda G, Gregorio N, Sharma A, Schulman R, DeForest CA, Baker D. De novo design of modular protein hydrogels with programmable intra- and extracellular viscoelasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543449. [PMID: 37398067 PMCID: PMC10312586 DOI: 10.1101/2023.06.02.543449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Relating the macroscopic properties of protein-based materials to their underlying component microstructure is an outstanding challenge. Here, we exploit computational design to specify the size, flexibility, and valency of de novo protein building blocks, as well as the interaction dynamics between them, to investigate how molecular parameters govern the macroscopic viscoelasticity of the resultant protein hydrogels. We construct gel systems from pairs of symmetric protein homo-oligomers, each comprising 2, 5, 24, or 120 individual protein components, that are crosslinked either physically or covalently into idealized step-growth biopolymer networks. Through rheological assessment and molecular dynamics (MD) simulation, we find that the covalent linkage of multifunctional precursors yields hydrogels whose viscoelasticity depends on the crosslink length between the constituent building blocks. In contrast, reversibly crosslinking the homo-oligomeric components with a computationally designed heterodimer results in non-Newtonian biomaterials exhibiting fluid-like properties under rest and low shear, but shear-stiffening solid-like behavior at higher frequencies. Exploiting the unique genetic encodability of these materials, we demonstrate the assembly of protein networks within living mammalian cells and show via fluorescence recovery after photobleaching (FRAP) that mechanical properties can be tuned intracellularly, in correlation with matching formulations formed extracellularly. We anticipate that the ability to modularly construct and systematically program the viscoelastic properties of designer protein-based materials could have broad utility in biomedicine, with applications in tissue engineering, therapeutic delivery, and synthetic biology.
Collapse
Affiliation(s)
- Rubul Mout
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
- Stem Cell Program at Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Ross C. Bretherton
- Department of Bioengineering, University of Washington, Seattle, WA 98195
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195
- Department of Chemistry, University of Washington, Seattle, WA 98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195
| | - Justin Decarreau
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Sangmin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Natasha I. Edman
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195
| | - Maggie Ahlrichs
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Yang Hsia
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Danny D. Sahtoe
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| | - George Ueda
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Nicole Gregorio
- Department of Bioengineering, University of Washington, Seattle, WA 98195
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195
- Department of Chemistry, University of Washington, Seattle, WA 98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195
| | - Alee Sharma
- Stem Cell Program at Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218
| | - Cole A. DeForest
- Institute for Protein Design, University of Washington, Seattle, WA 98195
- Department of Bioengineering, University of Washington, Seattle, WA 98195
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195
- Department of Chemistry, University of Washington, Seattle, WA 98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| |
Collapse
|
16
|
Bretherton RC, Haack AJ, Kopyeva I, Rahman F, Kern JD, Bugg D, Theberge AB, Davis J, DeForest CA. User-Controlled 4D Biomaterial Degradation with Substrate-Selective Sortase Transpeptidases for Single-Cell Biology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209904. [PMID: 36808641 PMCID: PMC10175157 DOI: 10.1002/adma.202209904] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/08/2023] [Indexed: 05/12/2023]
Abstract
Stimuli-responsive biomaterials show great promise for modeling disease dynamics ex vivo with spatiotemporal control over the cellular microenvironment. However, harvesting cells from such materials for downstream analysis without perturbing their state remains an outstanding challenge in 3/4-dimensional (3D/4D) culture and tissue engineering. In this manuscript, a fully enzymatic strategy for hydrogel degradation that affords spatiotemporal control over cell release while maintaining cytocompatibility is introduced. Exploiting engineered variants of the sortase transpeptidase evolved to recognize and selectively cleave distinct peptide sequences largely absent from the mammalian proteome, many limitations implicit to state-of-the-art methods to liberate cells from gels are sidestepped. It is demonstrated that evolved sortase exposure has minimal impact on the global transcriptome of primary mammalian cells and that proteolytic cleavage proceeds with high specificity; incorporation of substrate sequences within hydrogel crosslinkers permits rapid and selective cell recovery with high viability. In composite multimaterial hydrogels, it is shown that sequential degradation of hydrogel layers enables highly specific retrieval of single-cell suspensions for phenotypic analysis. It is expected that the high bioorthogonality and substrate selectivity of the evolved sortases will lead to their broad adoption as an enzymatic material dissociation cue and that their multiplexed use will enable newfound studies in 4D cell culture.
Collapse
Affiliation(s)
- Ross C Bretherton
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
| | - Amanda J Haack
- Department of Chemistry, University of Washington, Seattle, WA, 98105, USA
| | - Irina Kopyeva
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Fariha Rahman
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Jonah D Kern
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Darrian Bugg
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98109, USA
| | | | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Cole A DeForest
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Chemistry, University of Washington, Seattle, WA, 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
17
|
Cont A, Vermeil J, Persat A. Material Substrate Physical Properties Control Pseudomonas aeruginosa Biofilm Architecture. mBio 2023; 14:e0351822. [PMID: 36786569 PMCID: PMC10127718 DOI: 10.1128/mbio.03518-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
In the wild, bacteria are most frequently found in the form of multicellular structures called biofilms. Biofilms grow at the surface of abiotic and living materials with wide-ranging mechanical properties. The opportunistic pathogen Pseudomonas aeruginosa forms biofilms on indwelling medical devices and on soft tissues, including burn wounds and the airway mucosa. Despite the critical role of substrates in the foundation of biofilms, we still lack a clear understanding of how material mechanics regulate their architecture and the physiology of resident bacteria. Here, we demonstrate that physical properties of hydrogel material substrates define P. aeruginosa biofilm architecture. We show that hydrogel mesh size regulates twitching motility, a surface exploration mechanism priming biofilms, ultimately controlling the organization of single cells in the multicellular community. The resulting architectural transitions increase P. aeruginosa's tolerance to colistin, a last-resort antibiotic. In addition, mechanical regulation of twitching motility affects P. aeruginosa clonal lineages, so that biofilms are more mixed on relatively denser materials. Our results thereby establish material properties as a factor that dramatically affects biofilm architecture, antibiotic efficacy, and evolution of the resident population. IMPORTANCE The biofilm lifestyle is the most widespread survival strategy in the bacterial world. Pseudomonas aeruginosa biofilms cause chronic infections and are highly recalcitrant to antimicrobials. The genetic requirements allowing P. aeruginosa to grow into biofilms are known, but not the physical stimuli that regulate their formation. Despite colonizing biological tissues, investigations of biofilms on soft materials are limited. In this work, we show that biofilms take unexpected forms when growing on soft substrates. The physical properties of the material shape P. aeruginosa biofilms by regulating surface-specific twitching motility. Physical control of biofilm morphogenesis ultimately influences the resilience of biofilms to antimicrobials, linking physical environment with tolerance to treatment. Altogether, our work established that the physical properties of a surface are a critical environmental regulator of biofilm biogenesis and evolution.
Collapse
Affiliation(s)
- Alice Cont
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joseph Vermeil
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Yang T, Wang L, Wu WH, Wei S, Zhang WB. Orchestrating Chemical and Physical Cross-Linking in Protein Hydrogels to Regulate Embryonic Stem Cell Growth. ACS Macro Lett 2023; 12:269-273. [PMID: 36735236 DOI: 10.1021/acsmacrolett.2c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Protein hydrogels are ideal candidates for next-generation biomaterials due to their genetically programmable properties. Herein, we report an entirely protein-based hydrogel as an artificial extracellular matrix (ECM) for regulating the embryonic stem cell growth. A synergy between chemical and physical cross-linking was achieved in one step by SpyTag/SpyCatcher reaction and P zipper association at 37 °C. The hydrogels' stress relaxation behaviors can be tuned across a broad spectrum by single-point mutation on a P zipper. It has been found that faster relaxation can promote the growth of HeLa tumor spheroids and embryonic stem cells, and mechanical regulation of embryonic stem cells occurs via retention of the cells at the G1 phase. The results highlight the promise of genetically encoded protein materials as a platform of artificial ECM for understanding and controlling the complex cell-matrix interactions in a 3D cell culture.
Collapse
Affiliation(s)
- Tingting Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Ling Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Beijing Academy of Artificial Intelligence, Beijing 100084, P. R. China
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Beijing Academy of Artificial Intelligence, Beijing 100084, P. R. China
| |
Collapse
|
19
|
Nanocomposite Hydrogels as Functional Extracellular Matrices. Gels 2023; 9:gels9020153. [PMID: 36826323 PMCID: PMC9957407 DOI: 10.3390/gels9020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Over recent years, nano-engineered materials have become an important component of artificial extracellular matrices. On one hand, these materials enable static enhancement of the bulk properties of cell scaffolds, for instance, they can alter mechanical properties or electrical conductivity, in order to better mimic the in vivo cell environment. Yet, many nanomaterials also exhibit dynamic, remotely tunable optical, electrical, magnetic, or acoustic properties, and therefore, can be used to non-invasively deliver localized, dynamic stimuli to cells cultured in artificial ECMs in three dimensions. Vice versa, the same, functional nanomaterials, can also report changing environmental conditions-whether or not, as a result of a dynamically applied stimulus-and as such provide means for wireless, long-term monitoring of the cell status inside the culture. In this review article, we present an overview of the technological advances regarding the incorporation of functional nanomaterials in artificial extracellular matrices, highlighting both passive and dynamically tunable nano-engineered components.
Collapse
|
20
|
Mohsenifard S, Mashayekhan S, Safari H. A hybrid cartilage extracellular matrix-based hydrogel/poly (ε-caprolactone) scaffold incorporated with Kartogenin for cartilage tissue engineering. J Biomater Appl 2023; 37:1243-1258. [PMID: 36217954 DOI: 10.1177/08853282221132987] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite extensive studies, hydrogels are unable to meet the mechanical and biological requirements for successful outcomes in cartilage tissue engineering. In the present study, beta cyclodextrin (β-CD)-modified alginate/cartilage extracellular matrix (ECM)-based interpenetrating polymer network (IPN) hydrogel was developed for sustained release of Kartogenin (KGN). Furthermore, the hydrogel was incorporated within a 3D-printed poly (ε-caprolactone) (PCL)/starch microfiber network in order to reinforce the construct for cartilage tissue engineering. All the synthesized compounds were characterized by H1-NMR spectroscopy. The hydrogel/microfiber composite with a microfiber strand size and strand spacing of 300 μm and 2 mm, respectively showed a compressive modulus of 17.2 MPa, resembling the properties of the native cartilage tissue. Considering water uptake capacity, degradation rate, mechanical property, cell cytotoxicity and glycosaminoglycan secretions, β-CD-modified hydrogel reinforced with printed PCL/starch microfibers with controlled release of KGN may be considered as a promising candidate for using in articular cartilage defects.
Collapse
Affiliation(s)
- Sadaf Mohsenifard
- Chemical and Petroleum Engineering Department, 68260Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Chemical and Petroleum Engineering Department, 68260Sharif University of Technology, Tehran, Iran
| | - Hanieh Safari
- Chemical and Petroleum Engineering Department, 68260Sharif University of Technology, Tehran, Iran
| |
Collapse
|
21
|
Altay G, Abad‐Lázaro A, Gualda EJ, Folch J, Insa C, Tosi S, Hernando‐Momblona X, Batlle E, Loza‐Álvarez P, Fernández‐Majada V, Martinez E. Modeling Biochemical Gradients In Vitro to Control Cell Compartmentalization in a Microengineered 3D Model of the Intestinal Epithelium. Adv Healthc Mater 2022; 11:e2201172. [PMID: 36073021 PMCID: PMC11468757 DOI: 10.1002/adhm.202201172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/29/2022] [Indexed: 01/28/2023]
Abstract
Gradients of signaling pathways within the intestinal stem cell (ISC) niche are instrumental for cellular compartmentalization and tissue function, yet how are they sensed by the epithelium is still not fully understood. Here a new in vitro model of the small intestine based on primary epithelial cells (i), apically accessible (ii), with native tissue mechanical properties and controlled mesh size (iii), 3D villus-like architecture (iv), and precisely controlled biomolecular gradients of the ISC niche (v) is presented. Biochemical gradients are formed through hydrogel-based scaffolds by free diffusion from a source to a sink chamber. To confirm the establishment of spatiotemporally controlled gradients, light-sheet fluorescence microscopy and in-silico modeling are employed. The ISC niche biochemical gradients coming from the stroma and applied along the villus axis lead to the in vivo-like compartmentalization of the proliferative and differentiated cells, while changing the composition and concentration of the biochemical factors affects the cellular organization along the villus axis. This novel 3D in vitro intestinal model derived from organoids recapitulates both the villus-like architecture and the gradients of ISC biochemical factors, thus opening the possibility to study in vitro the nature of such gradients and the resulting cellular response.
Collapse
Affiliation(s)
- Gizem Altay
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
- Institut de l'AuditionInstitut PasteurINSERMUniversité de ParisParis75012France
| | - Aina Abad‐Lázaro
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
| | - Emilio J. Gualda
- SLN Research FacilityInstitute of Photonic Sciences (ICFO)Mediterranean Technology ParkAv. Carl Friedrich Gauss 3 CastelldefelsBarcelona08860Spain
| | - Jordi Folch
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
| | - Claudia Insa
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
| | - Sébastien Tosi
- Advanced Digital Microscopy Core Facility (ADMCF)Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 10‐12Barcelona08028Spain
| | - Xavier Hernando‐Momblona
- Colorectal Cancer LaboratoryInstitute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 10‐12Barcelona08028Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Barcelona08028Spain
| | - Eduard Batlle
- Colorectal Cancer LaboratoryInstitute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 10‐12Barcelona08028Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Barcelona08028Spain
- ICREAPasseig Lluís Companys 23Barcelona08010Spain
| | - Pablo Loza‐Álvarez
- SLN Research FacilityInstitute of Photonic Sciences (ICFO)Mediterranean Technology ParkAv. Carl Friedrich Gauss 3 CastelldefelsBarcelona08860Spain
| | - Vanesa Fernández‐Majada
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
| | - Elena Martinez
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
- Centro de Investigación Biomédica en Red de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)Av. Monforte de Lemos 3‐5 Pabellón 11 Planta 0Madrid28029Spain
- Department of Electronics and Biomedical EngineeringUniversity of Barcelona (UB)Martí i Franquès 1Barcelona08028Spain
| |
Collapse
|
22
|
Maksoud FJ, Velázquez de la Paz MF, Hann AJ, Thanarak J, Reilly GC, Claeyssens F, Green NH, Zhang YS. Porous biomaterials for tissue engineering: a review. J Mater Chem B 2022; 10:8111-8165. [PMID: 36205119 DOI: 10.1039/d1tb02628c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of biomaterials has grown rapidly over the past decades. Within this field, porous biomaterials have played a remarkable role in: (i) enabling the manufacture of complex three-dimensional structures; (ii) recreating mechanical properties close to those of the host tissues; (iii) facilitating interconnected structures for the transport of macromolecules and cells; and (iv) behaving as biocompatible inserts, tailored to either interact or not with the host body. This review outlines a brief history of the development of biomaterials, before discussing current materials proposed for use as porous biomaterials and exploring the state-of-the-art in their manufacture. The wide clinical applications of these materials are extensively discussed, drawing on specific examples of how the porous features of such biomaterials impact their behaviours, as well as the advantages and challenges faced, for each class of the materials.
Collapse
Affiliation(s)
- Fouad Junior Maksoud
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - María Fernanda Velázquez de la Paz
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Alice J Hann
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Jeerawan Thanarak
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Nicola H Green
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
Cai S, Ma Z, Ge Z, Yang W. Recent advances in optically induced di-electrophoresis and its biomedical applications. Biomed Microdevices 2022; 24:22. [PMID: 35689721 DOI: 10.1007/s10544-022-00620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The development of the micro/nano science and technology has promoted the evolvement of human civilization tremendously. The advancement of the micro/nano science and technology highly depends on the progress of the micro/nano manipulation techniques, and the micro/nano-scaled manipulation level is the critical sign of the micro/nano science and technology. This review, aimed at the demand and the challenge of the micro/nano material and biomedical fields and related to the scientific issues and implementation techniques of the optically induced di-electrophoresis (ODEP). We explained its working principle, manipulating method, and influencing factors of ODEP force to a certain extent. A number of application fields based-ODEP technology and specific applications so far are summarized and reviewed. Finally, some perspectives are provided on current development trends, future research directions, and challenges of ODEP.
Collapse
Affiliation(s)
- Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Zheng Ma
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Zhixing Ge
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China.
| |
Collapse
|
24
|
Droplet-based bioprinting enables the fabrication of cell–hydrogel–microfibre composite tissue precursors. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractComposites offer the option of coupling the individual benefits of their constituents to achieve unique material properties, which can be of extra value in many tissue engineering applications. Strategies combining hydrogels with fibre-based scaffolds can create tissue constructs with enhanced biological and structural functionality. However, developing efficient and scalable approaches to manufacture such composites is challenging. Here, we use a droplet-based bioprinting system called reactive jet impingement (ReJI) to integrate a cell-laden hydrogel with a microfibrous mesh. This system uses microvalves connected to different bioink reservoirs and directed to continuously jet bioink droplets at one another in mid-air, where the droplets react and form a hydrogel that lands on a microfibrous mesh. Cell–hydrogel–fibre composites are produced by embedding human dermal fibroblasts at two different concentrations (5 × 106 and 30 × 106 cells/mL) in a collagen–alginate–fibrin hydrogel matrix and bioprinted onto a fibre-based substrate. Our results show that both types of cell–hydrogel–microfibre composite maintain high cell viability and promote cell–cell and cell–biomaterial interactions. The lower fibroblast density triggers cell proliferation, whereas the higher fibroblast density facilitates faster cellular organisation and infiltration into the microfibres. Additionally, the fibrous component of the composite is characterised by high swelling properties and the quick release of calcium ions. The data indicate that the created composite constructs offer an efficient way to create highly functional tissue precursors for laminar tissue engineering, particularly for wound healing and skin tissue engineering applications.
Graphic abstract
Collapse
|
25
|
Taylor JM, Luan H, Lewis JA, Rogers JA, Nuzzo RG, Braun PV. Biomimetic and Biologically Compliant Soft Architectures via 3D and 4D Assembly Methods: A Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108391. [PMID: 35233865 DOI: 10.1002/adma.202108391] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Recent progress in soft material chemistry and enabling methods of 3D and 4D fabrication-emerging programmable material designs and associated assembly methods for the construction of complex functional structures-is highlighted. The underlying advances in this science allow the creation of soft material architectures with properties and shapes that programmably vary with time. The ability to control composition from the molecular to the macroscale is highlighted-most notably through examples that focus on biomimetic and biologically compliant soft materials. Such advances, when coupled with the ability to program material structure and properties across multiple scales via microfabrication, 3D printing, or other assembly techniques, give rise to responsive (4D) architectures. The challenges and prospects for progress in this emerging field in terms of its capacities for integrating chemistry, form, and function are described in the context of exemplary soft material systems demonstrating important but heretofore difficult-to-realize biomimetic and biologically compliant behaviors.
Collapse
Affiliation(s)
- Jay M Taylor
- Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 104 South Goodwin Ave., Urbana, IL, 61801, USA
| | - Haiwen Luan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Jennifer A Lewis
- John A. Paulson School of Engineering and Applied Sciences Wyss Institute for Biologically Inspired Engineering, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Departments of Materials Science and Engineering, Biomedical Engineering, Neurological Surgery, Chemistry, Mechanical Engineering, Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ralph G Nuzzo
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
- Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Drottning Kristinasväg 51, Stockholm, 10044, Sweden
| | - Paul V Braun
- Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 104 South Goodwin Ave., Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
26
|
Stengelin E, Thiele J, Seiffert S. Multiparametric Material Functionality of Microtissue-Based In Vitro Models as Alternatives to Animal Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105319. [PMID: 35043598 PMCID: PMC8981905 DOI: 10.1002/advs.202105319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 05/12/2023]
Abstract
With the definition of the 3R principle by Russel and Burch in 1959, the search for an adequate substitute for animal testing has become one of the most important tasks and challenges of this time, not only from an ethical, but also from a scientific, economic, and legal point of view. Microtissue-based in vitro model systems offer a valuable approach to address this issue by accounting for the complexity of natural tissues in a simplified manner. To increase the functionality of these model systems and thus make their use as a substitute for animal testing more likely in the future, the fundamentals need to be continuously improved. Corresponding requirements exist in the development of multifunctional, hydrogel-based materials, whose properties are considered in this review under the aspects of processability, adaptivity, biocompatibility, and stability/degradability.
Collapse
Affiliation(s)
- Elena Stengelin
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| | - Julian Thiele
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Sebastian Seiffert
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| |
Collapse
|
27
|
Fatimi A, Okoro OV, Podstawczyk D, Siminska-Stanny J, Shavandi A. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Gels 2022; 8:179. [PMID: 35323292 PMCID: PMC8948717 DOI: 10.3390/gels8030179] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional (3D) printing is well acknowledged to constitute an important technology in tissue engineering, largely due to the increasing global demand for organ replacement and tissue regeneration. In 3D bioprinting, which is a step ahead of 3D biomaterial printing, the ink employed is impregnated with cells, without compromising ink printability. This allows for immediate scaffold cellularization and generation of complex structures. The use of cell-laden inks or bio-inks provides the opportunity for enhanced cell differentiation for organ fabrication and regeneration. Recognizing the importance of such bio-inks, the current study comprehensively explores the state of the art of the utilization of bio-inks based on natural polymers (biopolymers), such as cellulose, agarose, alginate, decellularized matrix, in 3D bioprinting. Discussions regarding progress in bioprinting, techniques and approaches employed in the bioprinting of natural polymers, and limitations and prospects concerning future trends in human-scale tissue and organ fabrication are also presented.
Collapse
Affiliation(s)
- Ahmed Fatimi
- Department of Chemistry, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
- ERSIC, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Julia Siminska-Stanny
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| |
Collapse
|
28
|
van Sprang JF, de Jong SM, Dankers PY. Biomaterial-driven kidney organoid maturation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2021.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Jansen LE, Kim H, Hall CL, McCarthy TP, Lee MJ, Peyton SR. A poly(ethylene glycol) three-dimensional bone marrow hydrogel. Biomaterials 2022; 280:121270. [PMID: 34890973 PMCID: PMC8890749 DOI: 10.1016/j.biomaterials.2021.121270] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023]
Abstract
Three-dimensional (3D) hydrogels made from synthetic polymers have emerged as in vitro cell culture platforms capable of representing the extracellular geometry, modulus, and water content of tissues in a tunable fashion. Hydrogels made from these otherwise non-bioactive polymers can be decorated with short peptides derived from proteins naturally found in tissues to support cell viability and direct phenotype. We identified two key limitations that limit the ability of this class of materials to recapitulate real tissue. First, these environments typically display between 1 and 3 bioactive peptides, which vastly underrepresents the diversity of proteins found in the extracellular matrix (ECM) of real tissues. Second, peptides chosen are ubiquitous in ECM and not derived from proteins found in specific tissues, per se. To overcome this critical limitation in hydrogel design and functionality, we developed an approach to incorporate the complex and specific protein signature of bone marrow into a poly (ethylene glycol) (PEG) hydrogel. This bone marrow hydrogel mimics the elasticity of marrow and has 20 bone marrow-specific and cell-instructive peptides. We propose this tissue-centric approach as the next generation of 3D hydrogel design for applications in tissue engineering and beyond.
Collapse
Affiliation(s)
- Lauren E Jansen
- Department of Chemical Engineering, University of Massachusetts Amherst, USA
| | - Hyuna Kim
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, USA
| | - Christopher L Hall
- Department of Chemical Engineering, University of Massachusetts Amherst, USA
| | - Thomas P McCarthy
- Department of Chemical Engineering, University of Massachusetts Amherst, USA
| | - Michael J Lee
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, USA; Institute for Applied Life Sciences, University of Massachusetts Amherst 240 Thatcher Way, Life Sciences Laboratory N531, Amherst, MA, 01003, USA.
| |
Collapse
|
30
|
Fibronectin-Enriched Biomaterials, Biofunctionalization, and Proactivity: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112412111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Modern innovation in reconstructive medicine implies the proposition of material-based strategies suitable for tissue repair and regeneration. The development of such systems necessitates the design of advanced materials and the control of their interactions with their surrounding cellular and molecular microenvironments. Biomaterials must actively engage cellular matter to direct and modulate biological responses at implant sites and beyond. Indeed, it is essential that a true dialogue exists between the implanted device and the cells. Biomaterial engineering implies the knowledge and control of cell fate considering the globality of the adhesion process, from initial cell attachment to differentiation. The extracellular matrix (ECM) represents a complex microenvironment able to meet these essential needs to establish a relationship between the material and the contacting cells. The ECM exhibits specific physical, chemical, and biochemical characteristics. Considering the complexity, heterogeneity, and versatility of ECM actors, fibronectin (Fn) has emerged among the ECM protagonists as the most pertinent representative key actor. The following review focuses on and synthesizes the research supporting the potential to use Fn in biomaterial functionalization to mimic the ECM and enhance cell–material interactions.
Collapse
|
31
|
Hayaei Tehrani RS, Hajari MA, Ghorbaninejad Z, Esfandiari F. Droplet microfluidic devices for organized stem cell differentiation into germ cells: capabilities and challenges. Biophys Rev 2021; 13:1245-1271. [PMID: 35059040 PMCID: PMC8724463 DOI: 10.1007/s12551-021-00907-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022] Open
Abstract
Demystifying the mechanisms that underlie germline development and gamete production is critical for expanding advanced therapies for infertile couples who cannot benefit from current infertility treatments. However, the low number of germ cells, particularly in the early stages of development, represents a serious challenge in obtaining sufficient materials required for research purposes. In this regard, pluripotent stem cells (PSCs) have provided an opportunity for producing an unlimited source of germ cells in vitro. Achieving this ambition is highly dependent on accurate stem cell niche reconstitution which is achievable through applying advanced cell engineering approaches. Recently, hydrogel microparticles (HMPs), as either microcarriers or microcapsules, have shown promising potential in providing an excellent 3-dimensional (3D) biomimetic microenvironment alongside the systematic bioactive agent delivery. In this review, recent studies of utilizing various HMP-based cell engineering strategies for appropriate niche reconstitution and efficient in vitro differentiation are highlighted with a special focus on the capabilities of droplet-based microfluidic (DBM) technology. We believe that a deep understanding of the current limitations and potentials of the DBM systems in integration with stem cell biology provides a bright future for germ cell research. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12551-021-00907-5.
Collapse
Affiliation(s)
- Reyhaneh Sadat Hayaei Tehrani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Mohammad Amin Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeynab Ghorbaninejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| |
Collapse
|
32
|
Cardiomyogenic Differentiation Potential of Human Dilated Myocardium-Derived Mesenchymal Stem/Stromal Cells: The Impact of HDAC Inhibitor SAHA and Biomimetic Matrices. Int J Mol Sci 2021; 22:ijms222312702. [PMID: 34884505 PMCID: PMC8657551 DOI: 10.3390/ijms222312702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/21/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is the most common type of nonischemic cardiomyopathy characterized by left ventricular or biventricular dilation and impaired contraction leading to heart failure and even patients’ death. Therefore, it is important to search for new cardiac tissue regenerating tools. Human mesenchymal stem/stromal cells (hmMSCs) were isolated from post-surgery healthy and DCM myocardial biopsies and their differentiation to the cardiomyogenic direction has been investigated in vitro. Dilated hmMSCs were slightly bigger in size, grew slower, but had almost the same levels of MSC-typical surface markers as healthy hmMSCs. Histone deacetylase (HDAC) activity in dilated hmMSCs was 1.5-fold higher than in healthy ones, which was suppressed by class I and II HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) showing activation of cardiomyogenic differentiation-related genes alpha-cardiac actin (ACTC1) and cardiac troponin T (TNNT2). Both types of hmMSCs cultivated on collagen I hydrogels with hyaluronic acid (HA) or 2-methacryloyloxyethyl phosphorylcholine (MPC) and exposed to SAHA significantly downregulated focal adhesion kinase (PTK2) and activated ACTC1 and TNNT2. Longitudinal cultivation of dilated hmMSC also upregulated alpha-cardiac actin. Thus, HDAC inhibitor SAHA, in combination with collagen I-based hydrogels, can tilt the dilated myocardium hmMSC toward cardiomyogenic direction in vitro with further possible therapeutic application in vivo.
Collapse
|
33
|
Hahn D, Sonntag JM, Lück S, Maitz MF, Freudenberg U, Jordan R, Werner C. Poly(2-alkyl-2-oxazoline)-Heparin Hydrogels-Expanding the Physicochemical Parameter Space of Biohybrid Materials. Adv Healthc Mater 2021; 10:e2101327. [PMID: 34541827 PMCID: PMC11481032 DOI: 10.1002/adhm.202101327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Poly(ethylene glycol) (PEG)-glycosaminoglycan (GAG) hydrogel networks are established as very versatile biomaterials. Herein, the synthetic gel component of the biohybrid materials is systematically varied by combining different poly(2-alkyl-2-oxazolines) (POx) with heparin applying a Michael-type addition crosslinking scheme: POx of gradated hydrophilicity and temperature-responsiveness provides polymer networks of distinctly different stiffness and swelling. Adjusting the mechanical properties and the GAG concentration of the gels to similar values allows for modulating the release of GAG-binding growth factors (VEGF165 and PDGF-BB) by the choice of the POx and its temperature-dependent conformation. Adsorption of fibronectin, growth of fibroblasts, and bacterial adhesion scale with the hydrophobicity of the gel-incorporated POx. In vitro hemocompatibility tests with freshly drawn human whole blood show advantages of POx-based gels compared to the PEG-based reference materials. Biohybrid POx hydrogels can therefore enable biomedical technologies requiring GAG-based materials with customized and switchable physicochemical characteristics.
Collapse
Affiliation(s)
- Dominik Hahn
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
| | - Jannick M. Sonntag
- Dresden Initiative for Bioactive Interfaces & MaterialsTechnische Universität DresdenMommsenstr. 401069DresdenGermany
- Professur für Makromolekulare ChemieFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Steffen Lück
- Dresden Initiative for Bioactive Interfaces & MaterialsTechnische Universität DresdenMommsenstr. 401069DresdenGermany
- Professur für Makromolekulare ChemieFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Manfred F. Maitz
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
| | - Rainer Jordan
- Dresden Initiative for Bioactive Interfaces & MaterialsTechnische Universität DresdenMommsenstr. 401069DresdenGermany
- Professur für Makromolekulare ChemieFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Carsten Werner
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
- Center for Regenerative Therapies Dresden (CRTD)Fetscherstr. 10501307DresdenGermany
| |
Collapse
|
34
|
Gerdes S, Ramesh S, Mostafavi A, Tamayol A, Rivero IV, Rao P. Extrusion-based 3D (Bio)Printed Tissue Engineering Scaffolds: Process-Structure-Quality Relationships. ACS Biomater Sci Eng 2021; 7:4694-4717. [PMID: 34498461 DOI: 10.1021/acsbiomaterials.1c00598] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological additive manufacturing (Bio-AM) has emerged as a promising approach for the fabrication of biological scaffolds with nano- to microscale resolutions and biomimetic architectures beneficial to tissue engineering applications. However, Bio-AM processes tend to introduce flaws in the construct during fabrication. These flaws can be traced to material nonhomogeneity, suboptimal processing parameters, changes in the (bio)printing environment (such as nozzle clogs), and poor construct design, all with significant contributions to the alteration of a scaffold's mechanical properties. In addition, the biological response of endogenous and exogenous cells interacting with the defective scaffolds could become unpredictable. In this review, we first described extrusion-based Bio-AM. We highlighted the salient architectural and mechanotransduction parameters affecting the response of cells interfaced with the scaffolds. The process phenomena leading to defect formation and some of the tools for defect detection are reviewed. The limitations of the existing developments and the directions that the field should grow in order to overcome said limitations are discussed.
Collapse
Affiliation(s)
- Samuel Gerdes
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0526, United States
| | - Srikanthan Ramesh
- Department of Industrial and Systems Engineering, Rochester Institute of Technology, Rochester, New York. 14623, United States
| | - Azadeh Mostafavi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0526, United States
| | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0526, United States.,Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 06269, United States
| | - Iris V Rivero
- Department of Industrial and Systems Engineering, Rochester Institute of Technology, Rochester, New York. 14623, United States.,Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York. 14623, United States
| | - Prahalada Rao
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0526, United States
| |
Collapse
|
35
|
Breul K, Stengelin E, Urschbach M, Mondeshki M, Wüst L, Sirleaf J, Seitel S, Emt T, Pschierer S, Besenius P, Seiffert S. Cell Adhesion on UV-Crosslinked Polyurethane Gels with Adjustable Mechanical Strength and Thermoresponsiveness. Macromol Rapid Commun 2021; 42:e2100505. [PMID: 34562294 DOI: 10.1002/marc.202100505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Indexed: 12/22/2022]
Abstract
Temperature-responsive polyurethane (PU) hydrogels represent a versatile material platform for modern tissue engineering and biomedical applications. However, besides intrinsic advantages such as high mechanical strength and a hydrolysable backbone composition, plain PU materials are generally lacking bio-adhesive properties. To overcome this shortcoming, the authors focus on the synthesis of thermoresponsive PU hydrogels with variable mechanical and cell adhesive properties obtained from linear precursor PUs based on poly(ethylene glycol)s (pEG) with different molar masses, isophorone diisocyanate, and a dimerizable dimethylmaleimide (DMMI)-diol. The cloud point temperatures of the dilute, aqueous PU solutions depend linearly on the amphiphilic balance. Rheological gelation experiments under UV-irradiation reveal the dependence of the gelation time on photosensitizer concentration and light intensity, while the finally obtained gel strength is determined by the polymer concentration and spacing of the crosslinks. The swelling ratios of these soft hydrogels show significant changes between 5 and 40 °C whereby the extent of this switch increases with the hydrophobicity of the precursor. Moreover, it is shown that the incorporation of a low amount of catechol groups into the networks through the DMMI dimerization reaction leads to strongly improved cell adhesive properties without significantly weakening the gels.
Collapse
Affiliation(s)
- Katharina Breul
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Elena Stengelin
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Moritz Urschbach
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Mihail Mondeshki
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Laura Wüst
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Jason Sirleaf
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Sebastian Seitel
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Theresa Emt
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Sarah Pschierer
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| |
Collapse
|
36
|
Holt SE, Arroyo J, Poux E, Fricks A, Agurcia I, Heintschel M, Rakoski A, Alge DL. Supramolecular Click Product Interactions Induce Dynamic Stiffening of Extracellular Matrix-Mimetic Hydrogels. Biomacromolecules 2021; 22:3040-3048. [PMID: 34129338 DOI: 10.1021/acs.biomac.1c00485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Progressive stiffening of the extracellular matrix (ECM) is observed in tissue development as well as in pathologies such as cancer, cardiovascular disease, and fibrotic disease. However, methods to recapitulate this phenomenon in vitro face critical limitations. Here, we present a poly(ethylene glycol)-based peptide-functionalized ECM-mimetic hydrogel platform capable of facile, user-controlled dynamic stiffening. This platform leverages supramolecular interactions between inverse-electron demand Diels-Alder tetrazine-norbornene click products (TNCP) to create pendant moieties that undergo non-covalent crosslinking, stiffening a pre-existing network formed via thiol-ene click chemistry over the course of 6 h. Pendant TNCP moieties have a concentration-dependent effect on gel stiffness while still being cytocompatible and permissive of cell-mediated gel degradation. The robustness of this approach as well as its simplicity and ease of translation give it broad potential utility.
Collapse
Affiliation(s)
- Samantha E Holt
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Julio Arroyo
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Emily Poux
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Austen Fricks
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Isabelle Agurcia
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Marissa Heintschel
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Amanda Rakoski
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Daniel L Alge
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States.,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas77843-3003, United States
| |
Collapse
|
37
|
A highly biocompatible bio-ink for 3D hydrogel scaffolds fabrication in the presence of living cells by two-photon polymerization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Chen H, Fei F, Li X, Nie Z, Zhou D, Liu L, Zhang J, Zhang H, Fei Z, Xu T. A facile, versatile hydrogel bioink for 3D bioprinting benefits long-term subaqueous fidelity, cell viability and proliferation. Regen Biomater 2021; 8:rbab026. [PMID: 34211734 PMCID: PMC8240632 DOI: 10.1093/rb/rbab026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
Both of the long-term fidelity and cell viability of three-dimensional (3D)-bioprinted constructs are essential to precise soft tissue repair. However, the shrinking/swelling behavior of hydrogels brings about inadequate long-term fidelity of constructs, and bioinks containing excessive polymer are detrimental to cell viability. Here, we obtained a facile hydrogel by introducing 1% aldehyde hyaluronic acid (AHA) and 0.375% N-carboxymethyl chitosan (CMC), two polysaccharides with strong water absorption and water retention capacity, into classic gelatin (GEL, 5%)-alginate (ALG, 1%) ink. This GEL-ALG/CMC/AHA bioink possesses weak temperature dependence due to the Schiff base linkage of CMC/AHA and electrostatic interaction of CMC/ALG. We fabricated integrated constructs through traditional printing at room temperature and in vivo simulation printing at 37°C. The printed cell-laden constructs can maintain subaqueous fidelity for 30 days after being reinforced by 3% calcium chloride for only 20 s. Flow cytometry results showed that the cell viability was 91.38 ± 1.55% on day 29, and the cells in the proliferation plateau at this time still maintained their dynamic renewal with a DNA replication rate of 6.06 ± 1.24%. This work provides a convenient and practical bioink option for 3D bioprinting in precise soft tissue repair.
Collapse
Affiliation(s)
- Hongqing Chen
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Neurosurgery, Central Theater General Hospital, Wuhan 430010, China
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xinda Li
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Zhenguo Nie
- Department of Orthopedics, Fourth medical center of PLA general hospital, Beijing 100048, China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Libiao Liu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jing Zhang
- East China Institute of Digital Medical Engineering, Shangrao 334000, China
| | - Haitao Zhang
- East China Institute of Digital Medical Engineering, Shangrao 334000, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| |
Collapse
|
39
|
Kim MH, Lin CC. Assessing monocyte phenotype in poly(γ-glutamic acid) hydrogels formed by orthogonal thiol–norbornene chemistry. Biomed Mater 2021; 16. [DOI: 10.1088/1748-605x/ac01b0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/14/2021] [Indexed: 11/11/2022]
|
40
|
Tanaka HY. [Modeling and Analysis of Disease Microenvironments with 3D Cell Culture Technology]. YAKUGAKU ZASSHI 2021; 141:647-653. [PMID: 33952746 DOI: 10.1248/yakushi.20-00219-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Remarkable progress in our ability to analyze diseased tissue has revolutionized our understanding of disease. From a simplistic understanding of abnormalities in bulk tissue, there is now increasing recognition that the heterogeneous and dynamically evolving disease microenvironment plays a crucial role in disease pathogenesis and progression as well as in the determination of therapeutic response. The disease microenvironment consists of multiple cell types as well as the various factors that these cells secrete. There is now immense interest in treatment strategies that target or modify the abnormal disease microenvironment, and a deeper understanding of the mechanisms that drive the formation, maintenance, and progression of the disease microenvironment is thus necessary. The advent of 3-dimensional (3D) cell culture technology has made possible the reconstitution of the disease microenvironment to a previously unimaginable extent in vitro. As an intermediate between traditional in vitro models based on 2-dimensional (2D) cell culture and in vivo models, 3D models of disease enable the in vitro reconstitution of complex interactions within the disease microenvironment which were unamenable in 2D while simultaneously allowing the mechanistic analysis of these interactions that would be difficult to perform in vivo. This symposium review aims to highlight the promise of using 3D cell culture technology to model and analyze the disease microenvironment using pancreatic cancer as an example.
Collapse
Affiliation(s)
- Hiroyoshi Y Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
41
|
Banerjee S, Szepes M, Dibbert N, Rios-Camacho JC, Kirschning A, Gruh I, Dräger G. Dextran-based scaffolds for in-situ hydrogelation: Use for next generation of bioartificial cardiac tissues. Carbohydr Polym 2021; 262:117924. [PMID: 33838803 DOI: 10.1016/j.carbpol.2021.117924] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/13/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
In pursuit of a chemically-defined matrix for in vitro cardiac tissue generation, we present dextran (Dex)-derived hydrogels as matrices suitable for bioartificial cardiac tissues (BCT). The dextran hydrogels were generated in situ by using hydrazone formation as the crosslinking reaction. Material properties were flexibly adjusted, by varying the degrees of derivatization and the molecular weight of dextran used. Furthermore, to modulate dextran's bioactivity, cyclic pentapeptide RGD was coupled to its backbone. BCTs were generated by using a blend of modified dextran and human collagen (hColI) in combination with induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and fibroblasts. These hColI + Dex blends with or without RGD supported tissue formation and functional maturation of CMs. Contraction forces (hColI + Dex-RGD: 0.27 ± 0.02 mN; hColI + Dex: 0.26 ± 0.01 mN) and frequencies were comparable to published constructs. Thus, we could demonstrate that, independent of the presence of RGD, our covalently linked dextran hydrogels are a promising matrix for building cardiac grafts.
Collapse
Affiliation(s)
- Samhita Banerjee
- Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Monika Szepes
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Nick Dibbert
- Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Julio-Cesar Rios-Camacho
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Andreas Kirschning
- Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Ina Gruh
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Gerald Dräger
- Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany.
| |
Collapse
|
42
|
Blanco‐Fernandez B, Gaspar VM, Engel E, Mano JF. Proteinaceous Hydrogels for Bioengineering Advanced 3D Tumor Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003129. [PMID: 33643799 PMCID: PMC7887602 DOI: 10.1002/advs.202003129] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/13/2020] [Indexed: 05/14/2023]
Abstract
The establishment of tumor microenvironment using biomimetic in vitro models that recapitulate key tumor hallmarks including the tumor supporting extracellular matrix (ECM) is in high demand for accelerating the discovery and preclinical validation of more effective anticancer therapeutics. To date, ECM-mimetic hydrogels have been widely explored for 3D in vitro disease modeling owing to their bioactive properties that can be further adapted to the biochemical and biophysical properties of native tumors. Gathering on this momentum, herein the current landscape of intrinsically bioactive protein and peptide hydrogels that have been employed for 3D tumor modeling are discussed. Initially, the importance of recreating such microenvironment and the main considerations for generating ECM-mimetic 3D hydrogel in vitro tumor models are showcased. A comprehensive discussion focusing protein, peptide, or hybrid ECM-mimetic platforms employed for modeling cancer cells/stroma cross-talk and for the preclinical evaluation of candidate anticancer therapies is also provided. Further development of tumor-tunable, proteinaceous or peptide 3D microtesting platforms with microenvironment-specific biophysical and biomolecular cues will contribute to better mimic the in vivo scenario, and improve the predictability of preclinical screening of generalized or personalized therapeutics.
Collapse
Affiliation(s)
- Barbara Blanco‐Fernandez
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBaldiri Reixac 10–12Barcelona08028Spain
| | - Vítor M. Gaspar
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBaldiri Reixac 10–12Barcelona08028Spain
- Materials Science and Metallurgical EngineeringPolytechnical University of Catalonia (UPC)Eduard Maristany 16Barcelona08019Spain
- CIBER en BioingenieríaBiomateriales y NanomedicinaCIBER‐BBNMadrid28029Spain
| | - João F. Mano
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
43
|
Batalov I, Stevens KR, DeForest CA. Photopatterned biomolecule immobilization to guide three-dimensional cell fate in natural protein-based hydrogels. Proc Natl Acad Sci U S A 2021; 118:e2014194118. [PMID: 33468675 PMCID: PMC7848611 DOI: 10.1073/pnas.2014194118] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hydrogel biomaterials derived from natural biopolymers (e.g., fibrin, collagen, decellularized extracellular matrix) are regularly utilized in three-dimensional (3D) cell culture and tissue engineering. In contrast to those based on synthetic polymers, natural materials permit enhanced cytocompatibility, matrix remodeling, and biological integration. Despite these advantages, natural protein-based gels have lagged behind synthetic alternatives in their tunability; methods to selectively modulate the biochemical properties of these networks in a user-defined and heterogeneous fashion that can drive encapsulated cell function have not yet been established. Here, we report a generalizable strategy utilizing a photomediated oxime ligation to covalently decorate naturally derived hydrogels with bioactive proteins including growth factors. This bioorthogonal photofunctionalization is readily amenable to mask-based and laser-scanning lithographic patterning, enabling full four-dimensional (4D) control over protein immobilization within virtually any natural protein-based biomaterial. Such versatility affords exciting opportunities to probe and direct advanced cell fates inaccessible using purely synthetic approaches in response to anisotropic environmental signaling.
Collapse
Affiliation(s)
- Ivan Batalov
- Department of Chemical Engineering, University of Washington, Seattle, WA 98105
- Department of Bioengineering, University of Washington, Seattle, WA 98105
| | - Kelly R Stevens
- Department of Bioengineering, University of Washington, Seattle, WA 98105
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195
| | - Cole A DeForest
- Department of Chemical Engineering, University of Washington, Seattle, WA 98105;
- Department of Bioengineering, University of Washington, Seattle, WA 98105
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98105
- Department of Chemistry, University of Washington, Seattle, WA 98105
| |
Collapse
|
44
|
Krutty JD, Koesser K, Schwartz S, Yun J, Murphy WL, Gopalan P. Xeno-Free Bioreactor Culture of Human Mesenchymal Stromal Cells on Chemically Defined Microcarriers. ACS Biomater Sci Eng 2021; 7:617-625. [PMID: 33448784 DOI: 10.1021/acsbiomaterials.0c00663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human mesenchymal stromal cells (hMSC), also called mesenchymal stem cells, are adult cells that have demonstrated their potential in therapeutic applications, highlighted by their ability to differentiate down different lineages, modulate the immune system, and produce biologics. There is a pressing need for scalable culture systems for hMSC due to the large number of cells needed for clinical applications. Most current methods for expanding hMSC fail to provide a reproducible cell product in clinically required cell numbers without the use of serum-containing media or harsh enzymes. In this work, we apply a tailorable, thin, synthetic polymer coating-poly(poly(ethylene glycol) methyl ether methacrylate-ran-vinyl dimethyl azlactone-ran-glycidyl methacrylate) (P(PEGMEMA-r-VDM-r-GMA), PVG)-to the surface of commercially available polystyrene (PS) microcarriers to create chemically defined three-dimensional (3D) surfaces for large-scale cell expansion. These chemically defined microcarriers provide a reproducible surface that does not rely on the adsorption of xenogeneic serum proteins to mediate cell adhesion, enabling their use in xeno-free culture systems. Specifically, this work demonstrates the improved adhesion of hMSC to coated microcarriers over PS microcarriers in xeno-free media and describes their use in a readily scalable, bioreactor-based culture system. Additionally, these surfaces resist the adsorption of media-borne and cell-produced proteins, which result in integrin-mediated cell adhesion throughout the culture period. This feature allows the cells to be efficiently passaged from the microcarrier using a chemical chelating agent (ethylenediaminetetraacetic acid (EDTA)) in the absence of cleavage enzymes, an improvement over other microcarrier products in the field. Bioreactor culture of hMSC on these microcarriers enabled the production of hMSC over 4 days from a scalable, xeno-free environment.
Collapse
Affiliation(s)
- John D Krutty
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1500 University Avenue, Madison, Wisconsin 53706, United States
| | - Kevin Koesser
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1500 University Avenue, Madison, Wisconsin 53706, United States
| | - Stephen Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1500 University Avenue, Madison, Wisconsin 53706, United States
| | - Junsu Yun
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1500 University Avenue, Madison, Wisconsin 53706, United States
| | - William L Murphy
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1500 University Avenue, Madison, Wisconsin 53706, United States.,Department of Biomedical Engineering, University of Wisconsin-Madison, 1500 University Avenue, Madison, Wisconsin 53706, United States.,Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1500 University Avenue, Madison, Wisconsin 53706, United States
| | - Padma Gopalan
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1500 University Avenue, Madison, Wisconsin 53706, United States.,Department of Biomedical Engineering, University of Wisconsin-Madison, 1500 University Avenue, Madison, Wisconsin 53706, United States.,Department of Chemistry, University of Wisconsin-Madison, 1500 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
45
|
Yin Chin S, Cheung Poh Y, Kohler AC, Compton JT, Hsu LL, Lau KM, Kim S, Lee BW, Lee FY, Sia SK. Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices. Sci Robot 2021; 2. [PMID: 31289767 DOI: 10.1126/scirobotics.aah6451] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Implantable microdevices often have static components rather than moving parts, and exhibit limited biocompatibility. This paper demonstrates a fast manufacturing method which can produce features in biocompatible materials down to tens of microns in scale, with intricate and composite patterns in each layer. By exploiting unique mechanical properties of hydrogels, we developed a "locking mechanism" for precise actuation and movement of freely moving parts, which can provide functions such as valves, manifolds, rotors, pumps, and delivery of payloads. Hydrogel components could be tuned within a wide range of mechanical and diffusive properties, and can be controlled after implantation without a sustained power supply. In a mouse model of osteosarcoma, triggering of release of doxorubicin from the device over ten days showed high treatment efficacy and low toxicity, at one-tenth of a standard systemic chemotherapy dose. Overall, this platform, called "iMEMS", enables development of biocompatible implantable microdevices with a wide range of intricate moving components that can be wirelessly controlled on demand, in a manner that solves issues of device powering and biocompatibility.
Collapse
Affiliation(s)
- Sau Yin Chin
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Yukkee Cheung Poh
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Anne-Céline Kohler
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Jocelyn T Compton
- Department of Orthopedic Surgery, Columbia University Medical Center, 622 West 168 Street, New York, New York 10032, USA
| | - Lauren L Hsu
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Kathryn M Lau
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Sohyun Kim
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Benjamin W Lee
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Francis Y Lee
- Department of Orthopedic Surgery, Columbia University Medical Center, 622 West 168 Street, New York, New York 10032, USA
| | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
46
|
Apelgren P, Amoroso M, Säljö K, Lindahl A, Brantsing C, Stridh Orrhult L, Markstedt K, Gatenholm P, Kölby L. Long-term in vivo integrity and safety of 3D-bioprinted cartilaginous constructs. J Biomed Mater Res B Appl Biomater 2021; 109:126-136. [PMID: 32633102 DOI: 10.1002/jbm.b.34687] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/31/2020] [Accepted: 06/23/2020] [Indexed: 11/07/2022]
Abstract
Long-term stability and biological safety are crucial for translation of 3D-bioprinting technology into clinical applications. Here, we addressed the long-term safety and stability issues associated with 3D-bioprinted constructs comprising a cellulose scaffold and human cells (chondrocytes and stem cells) over a period of 10 months in nude mice. Our findings showed that increasing unconfined compression strength over time significantly improved the mechanical stability of the cell-containing constructs relative to cell-free scaffolds. Additionally, the cell-free constructs exhibited a mean compressive stress and stiffness (compressive modulus) of 0.04 ± 0.05 MPa and 0.14 ± 0.18 MPa, respectively, whereas these values for the cell-containing constructs were 0.11 ± 0.08 MPa (p = .019) and 0.53 ± 0.59 MPa (p = .012), respectively. Moreover, histomorphologic analysis revealed that cartilage formed from the cell-containing constructs harbored an abundance of proliferating chondrocytes in clusters, and after 10 months, resembled native cartilage. Furthermore, extension of the experiment over the complete lifecycle of the animal model revealed no signs of ossification, fibrosis, necrosis, or implant-related tumor development in the 3D-bioprinted constructs. These findings confirm the in vivo biological safety and mechanical stability of 3D-bioprinted cartilaginous tissues and support their potential translation into clinical applications.
Collapse
Affiliation(s)
- Peter Apelgren
- Department of Plastic Surgery, Sahlgrenska University Hospital, University of Gothenburg, The Sahlgrenska Academy, Institute of Clinical Sciences, Göteborg, Sweden
| | - Matteo Amoroso
- Department of Plastic Surgery, Sahlgrenska University Hospital, University of Gothenburg, The Sahlgrenska Academy, Institute of Clinical Sciences, Göteborg, Sweden
| | - Karin Säljö
- Department of Plastic Surgery, Sahlgrenska University Hospital, University of Gothenburg, The Sahlgrenska Academy, Institute of Clinical Sciences, Göteborg, Sweden
| | - Anders Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Camilla Brantsing
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Linnéa Stridh Orrhult
- 3D Bioprinting Centre, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Kajsa Markstedt
- 3D Bioprinting Centre, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Paul Gatenholm
- 3D Bioprinting Centre, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Lars Kölby
- Department of Plastic Surgery, Sahlgrenska University Hospital, University of Gothenburg, The Sahlgrenska Academy, Institute of Clinical Sciences, Göteborg, Sweden
| |
Collapse
|
47
|
Pepelanova I. Tunable Hydrogels: Introduction to the World of Smart Materials for Biomedical Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 178:1-35. [PMID: 33903929 DOI: 10.1007/10_2021_168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogels are hydrated polymers that are able to mimic many of the properties of living tissues. For this reason, they have become a popular choice of biomaterial in many biomedical applications including tissue engineering, drug delivery, and biosensing. The physical and biological requirements placed on hydrogels in these contexts are numerous and require a tunable material, which can be adapted to meet these demands. Tunability is defined as the use of knowledge-based tools to manipulate material properties in the desired direction. Engineering of suitable mechanical properties and integrating bioactivity are two major aspects of modern hydrogel design. Beyond these basic features, hydrogels can be tuned to respond to specific environmental cues and external stimuli, which are provided by surrounding cells or by the end user (patient, clinician, or researcher). This turns tunable hydrogels into stimulus-responsive smart materials, which are able to display adaptable and dynamic properties. In this book chapter, we will first shortly cover the foundation of hydrogel tunability, related to mechanical properties and biological functionality. Then, we will move on to stimulus-responsive hydrogel systems and describe their basic design, as well as give examples of their application in diverse biomedical fields. As both the understanding of underlying biological mechanisms and our engineering capacity mature, even more sophisticated tunable hydrogels addressing specific therapeutic goals will be developed.
Collapse
Affiliation(s)
- Iliyana Pepelanova
- Institute of Technical Chemistry, Leibniz University of Hannover, Hanover, Germany.
| |
Collapse
|
48
|
Maynard S, Gelmi A, Skaalure SC, Pence IJ, Lee-Reeves C, Sero JE, Whittaker TE, Stevens MM. Nanoscale Molecular Quantification of Stem Cell-Hydrogel Interactions. ACS NANO 2020; 14:17321-17332. [PMID: 33215498 PMCID: PMC7760213 DOI: 10.1021/acsnano.0c07428] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 05/07/2023]
Abstract
A common approach to tailoring synthetic hydrogels for regenerative medicine applications involves incorporating RGD cell adhesion peptides, yet assessing the cellular response to engineered microenvironments at the nanoscale remains challenging. To date, no study has demonstrated how RGD concentration in hydrogels affects the presentation of individual cell surface receptors. Here we studied the interaction between human mesenchymal stem cells (hMSCs) and RGD-functionalized poly(ethylene glycol) hydrogels, by correlating macro- and nanoscale single-cell interfacial quantification techniques. We quantified RGD unbinding forces on a synthetic hydrogel using single cell atomic force spectroscopy, revealing that short-term binding of hMSCs was sensitive to RGD concentration. We also performed direct stochastic optical reconstruction microscopy (dSTORM) to quantify the molecular interactions between integrin α5β1 and a biomaterial, unexpectedly revealing that increased integrin clustering at the hydrogel-cell interface correlated with fewer available RGD binding sites. Our complementary, quantitative approach uncovered mechanistic insights into specific stem cell-hydrogel interactions, where dSTORM provides nanoscale sensitivity to RGD-dependent differences in cell surface localization of integrin α5β1. Our findings reveal that it is possible to precisely determine how peptide-functionalized hydrogels interact with cells at the molecular scale, thus providing a basis to fine-tune the spatial presentation of bioactive ligands.
Collapse
Affiliation(s)
| | | | - Stacey C. Skaalure
- Department of Materials,
Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Isaac J. Pence
- Department of Materials,
Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Charlotte Lee-Reeves
- Department of Materials,
Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | | | - Thomas E. Whittaker
- Department of Materials,
Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Molly M. Stevens
- Department of Materials,
Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
49
|
Chapla R, Alhaj Abed M, West J. Modulating Functionalized Poly(ethylene glycol) Diacrylate Hydrogel Mechanical Properties through Competitive Crosslinking Mechanics for Soft Tissue Applications. Polymers (Basel) 2020; 12:E3000. [PMID: 33339216 PMCID: PMC7766244 DOI: 10.3390/polym12123000] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Local mechanical stiffness influences cell behavior, and thus cell culture scaffolds should approximate the stiffness of the tissue type from which the cells are derived. In synthetic hydrogels, this has been difficult to achieve for very soft tissues such as neural. This work presents a method for reducing the stiffness of mechanically and biochemically tunable synthetic poly(ethylene glycol) diacrylate hydrogels to within the soft tissue stiffness regime by altering the organization of the crosslinking sites. A soluble allyl-presenting monomer, which has a higher propensity for chain termination than acrylate monomers, was introduced into the PEG-diacrylate hydrogel precursor solution before crosslinking, resulting in acrylate-allyl competition and a reduction in gel compressive modulus from 5.1 ± 0.48 kPa to 0.32 ± 0.09 kPa. Both allyl monomer concentration and chemical structure were shown to influence the effectiveness of competition and change in stiffness. Fibroblast cells demonstrated a 37% reduction in average cell spread area on the softest hydrogels produced as compared to cells on control hydrogels, while the average percentage of neural cells extending neurites increased by 41% on these hydrogels, demonstrating the potential for this technology to serve as a soft tissue culture system.
Collapse
Affiliation(s)
| | | | - Jennifer West
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (R.C.); (M.A.A.)
| |
Collapse
|
50
|
Abaci A, Guvendiren M. Designing Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting. Adv Healthc Mater 2020; 9:e2000734. [PMID: 32691980 DOI: 10.1002/adhm.202000734] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/10/2020] [Indexed: 12/17/2022]
Abstract
3D bioprinting is an emerging technology to fabricate tissues and organs by precisely positioning cells into 3D structures using printable cell-laden formulations known as bioinks. Various bioinks are utilized in 3D bioprinting applications; however, developing the perfect bioink to fabricate constructs with biomimetic microenvironment and mechanical properties that are similar to native tissues is a challenging task. In recent years, decellularized extracellular matrix (dECM)-based bioinks have received an increasing attention in 3D bioprinting applications, since they are derived from native tissues and possess unique, complex tissue-specific biochemical properties. This review focuses on designing dECM-based bioinks for tissue and organ bioprinting, including commonly used decellularization and decellularized tissue characterization methods, bioink formulation and characterization, applications of dECM-based bioinks, and most recent advancements in dECM-based bioink design.
Collapse
Affiliation(s)
- Alperen Abaci
- Instructive Biomaterials and Additive Manufacturing Laboratory Otto H. York Chemical and Materials Engineering 138 York Center New Jersey Institute of Technology University Heights Newark NJ 07102 USA
| | - Murat Guvendiren
- Instructive Biomaterials and Additive Manufacturing Laboratory Otto H. York Chemical and Materials Engineering 138 York Center New Jersey Institute of Technology University Heights Newark NJ 07102 USA
- Department of Biomedical Engineering New Jersey Institute of Technology University Heights Newark NJ 07102 USA
| |
Collapse
|