1
|
Guo BY, Qi YT, Wu HQ, Zha RY, Wang LJ, Zhang XW, Huang WH. Nanosensor quantitative monitoring of ROS/RNS homeostasis in single phagolysosomes of macrophages during bactericidal processes. Chem Commun (Camb) 2024; 61:97-100. [PMID: 39629638 DOI: 10.1039/d4cc05423g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Reactive oxygen and nitrogen species (ROS/RNS) in macrophages have a potent killing effect on pathogens that infect the host. Here, we achieved in situ, quantitative detection of the homeostasis of four primary ROS/RNS (ONOO-, H2O2, NO, and NO2-) and their precursors (O2˙-, NO) in phagolysosomes of single RAW 264.7 macrophages after phagocytosis of Escherichia coli with platinum-black nanoelectrodes. Enhanced bactericidal activity of the macrophages was observed by an increase in the total amount of ROS/RNS as well as the level and proportion of ONOO-, a potent bactericidal species of RNS. Moreover, both the bactericidal process and the steady-state replenishment process were dominated by the production of RNS (NO-based), revealing differences in the enzyme kinetics of the bactericidal process.
Collapse
Affiliation(s)
- Bing-Yi Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Hui-Qian Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Ru-Yan Zha
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Li-Jun Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Xin-Wei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
2
|
Sivaloganathan DM, Wan X, Leon G, Brynildsen MP. Loss of Gre factors leads to phenotypic heterogeneity and cheating in Escherichia coli populations under nitric oxide stress. mBio 2024; 15:e0222924. [PMID: 39248572 PMCID: PMC11498084 DOI: 10.1128/mbio.02229-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Nitric oxide (·NO) is one of the toxic metabolites that bacteria can be exposed to within phagosomes. Gre factors, which are also known as transcript cleavage factors or transcription elongation factors, relieve back-tracked transcription elongation complexes by cleaving nascent RNAs, which allows transcription to resume after stalling. Here we discovered that loss of both Gre factors in Escherichia coli, GreA and GreB, significantly compromised ·NO detoxification due to ·NO-induced phenotypic heterogeneity in ΔgreAΔgreB populations, which did not occur in wild-type cultures. Under normal culturing conditions, both wild-type and ΔgreAΔgreB synthesized transcripts uniformly, whereas treatment with ·NO led to bimodal transcript levels in ΔgreAΔgreB that were unimodal in wild-type. Interestingly, exposure to another toxic metabolite of phagosomes, hydrogen peroxide (H2O2), produced analogous results. Furthermore, we showed that loss of Gre factors led to cheating under ·NO stress where transcriptionally deficient cells benefited from the detoxification activities of the transcriptionally proficient subpopulation. Collectively, these results show that loss of Gre factor activities produces phenotypic heterogeneity under ·NO and H2O2 stress that can yield cheating between subpopulations.IMPORTANCEToxic metabolite stress occurs in a broad range of contexts that are important to human health, microbial ecology, and biotechnology, whereas Gre factors are highly conserved throughout the bacterial kingdom. Here we discovered that loss of Gre factors in E. coli leads to phenotypic heterogeneity under ·NO and H2O2 stress, which we further show with ·NO results in cheating between subpopulations. Collectively, these data suggest that Gre factors play a role in coping with toxic metabolite stress, and that loss of Gre factors can produce cheating between neighbors.
Collapse
Affiliation(s)
| | - Xuanqing Wan
- Department of Chemical
and Biological Engineering, Princeton
University, Princeton,
New Jersey, USA
| | - Gabrielle Leon
- Department of Chemical
and Biological Engineering, Princeton
University, Princeton,
New Jersey, USA
| | - Mark P. Brynildsen
- Department of Chemical
and Biological Engineering, Princeton
University, Princeton,
New Jersey, USA
| |
Collapse
|
3
|
Dadole I, Blaha D, Personnic N. The macrophage-bacterium mismatch in persister formation. Trends Microbiol 2024; 32:944-956. [PMID: 38443279 DOI: 10.1016/j.tim.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Many pathogens are hard to eradicate, even in the absence of genetically detectable antimicrobial resistance mechanisms and despite proven antibiotic susceptibility. The fraction of clonal bacteria that temporarily elude effective antibiotic treatments is commonly known as 'antibiotic persisters.' Over the past decade, there has been a growing body of research highlighting the pivotal role played by the cellular host in the development of persisters. In parallel, this research has also sought to elucidate the molecular mechanisms underlying the formation of intracellular antibiotic persisters and has demonstrated a prominent role for the bacterial stress response. However, questions remain regarding the conditions leading to the formation of stress-induced persisters among a clonal population of intracellular bacteria and despite an ostensibly uniform environment. In this opinion, following a brief review of the current state of knowledge regarding intracellular antibiotic persisters, we explore the ways in which macrophage functional heterogeneity and bacterial phenotypic heterogeneity may contribute to the emergence of these persisters. We propose that the degree of mismatch between the macrophage permissiveness and the bacterial preparedness to invade and thrive intracellularly may explain the formation of stress-induced nonreplicating intracellular persisters.
Collapse
Affiliation(s)
- Iris Dadole
- CIRI - Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Group Persistence and single-cell dynamics of respiratory pathogens, CIRI, Lyon, France
| | - Didier Blaha
- CIRI - Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Group Persistence and single-cell dynamics of respiratory pathogens, CIRI, Lyon, France
| | - Nicolas Personnic
- CIRI - Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Group Persistence and single-cell dynamics of respiratory pathogens, CIRI, Lyon, France.
| |
Collapse
|
4
|
Soliman AM, Ghorab WM, Ghorab MM, ElKenawy NM, El-Sabbagh WA, Ramadan LA. Novel quinazoline sulfonamide-based scaffolds modulate methicillin-resistant Staphylococcus aureus (MRSA) pneumonia in immunodeficient irradiated model: Regulatory role of TGF-β. Bioorg Chem 2024; 150:107559. [PMID: 38905889 DOI: 10.1016/j.bioorg.2024.107559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
A library of new quinazoline pharmacophores bearing benzenesulfonamide moiety was designed and synthesized. Compounds 3a-n were screened for their in vitro antimicrobial activity against eight multidrug-resistant clinical isolates. Compounds 3d and 3n exhibited prominent antibacterial activity, specifically against MRSA. After exhibiting relative in vitro and in vivo safety, compound 3n was selected to assess its anti-inflammatory activity displaying promising COX-2 inhibitory activity compared to Ibuprofen. In vivo experimental MRSA pneumonia model was conducted on immunodeficient (irradiated) mice to reveal the antimicrobial and anti-inflammatory responses of compound 3n compared to azithromycin (AZ). Treatment with compound 3n (10 and 20 mg/kg) as well as AZ resulted in a significant decrease in bacterial counts in lung tissues, suppression of serum C-reactive protein (CRP), lung interleukin-6 (IL-6), myeloperoxidase activity (MPO) and transforming growth factor-β (TGF-β). Compound 3n showed a non-significant deviation of lung TGF-β1 from normal values which in turn controlled the lung inflammatory status and impacted the histopathological results. Molecular docking of 3n showed promising interactions inside the active sites of TGF-β and COX-2. Our findings present a new dual-target quinazoline benzenesulfonamide derivative 3n, which possesses significant potential for treating MRSA-induced pneumonia in an immunocompromised state.
Collapse
Affiliation(s)
- Aiten M Soliman
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Walid M Ghorab
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Mostafa M Ghorab
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt.
| | - Nora M ElKenawy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Walaa A El-Sabbagh
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Laila A Ramadan
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt; Pharmacology & Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Egypt
| |
Collapse
|
5
|
Li Z, Gu J, Huang X, Lu Z, Feng Y, Xu X, Yang J. Transcriptome-based network analysis reveals hub immune genes and pathways of hepatopancreas against LPS in Amphioctopus fangsiao. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109696. [PMID: 38871144 DOI: 10.1016/j.fsi.2024.109696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
The hepatopancreas is the biggest digestive organ in Amphioctopus fangsiao (A. fangsiao), but also undertakes critical functions like detoxification and immune defense. Generally, pathogenic bacteria or endotoxin from the gut microbiota would be arrested and detoxified in the hepatopancreas, which could be accompanied by the inevitable immune responses. In recent years, studies related to cephalopods immune have been increasing, but the molecular mechanisms associated with the hepatopancreatic immunity are still unclear. In this study, lipopolysaccharide (LPS), a major component of the cell wall of Gram-negative bacteria, was used for imitating bacteria infection to stimulate the hepatopancreas of A. fangsiao. To investigate the immune process happened in A. fangsiao hepatopancreas, we performed transcriptome analysis of hepatopancreas tissue after LPS injection, and identified 2615 and 1943 differentially expressed genes (DEGs) at 6 and 24 h post-injection, respectively. GO and KEGG enrichment analysis showed that these DEGs were mainly involved in immune-related biological processes and signaling pathways, including ECM-receptor interaction signaling pathway, Phagosome signaling pathway, Lysosome signaling pathway, and JAK-STAT signaling pathways. The function relationships between these DEGs were further analyzed through protein-protein interaction (PPI) networks. It was found that Mtor, Mapk14 and Atm were the three top interacting DEGs under LPS stimulation. Finally, 15 hub genes involving multiple KEGG signaling pathways and PPI relationships were selected for qRT-PCR validation. In this study, for the first time we explored the molecular mechanisms associated with hepatopancreatic immunity in A. fangsiao using a PPI networks approach, and provided new insights for understanding hepatopancreatic immunity in A. fangsiao.
Collapse
Affiliation(s)
- Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jingjing Gu
- Binzhou Testing Center, Binzhou 256600, China
| | - Xiaolan Huang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Zhengcai Lu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China
| |
Collapse
|
6
|
Xiang L, An Z, Wu X, Wang J, Cai S, Lu Y, Li L, Huang W, Wu D, Lu L, Shi S, Bi H, Kou X. Carbon Dot-Loaded Apoptotic Vesicles Improve the Liver Kupffer Cell-Mediated Antibacterial Effect to Synergistically Alleviate Sepsis. ACS NANO 2024; 18:16726-16742. [PMID: 38888383 DOI: 10.1021/acsnano.4c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Sepsis is a lethal systemic inflammatory disease against infection that lacks effective therapeutic approaches. Liver resident macrophage Kupffer cell (KC)-initiated bacterial clearance is crucial for the host to defend against infection. However, it remains unclear whether this process also governs the antibacterial therapy of sepsis that would be used to improve therapeutic outcomes. Here, we found that copper-doped carbon dots (Cu-CDs) exhibited superior antibacterial capabilities in vitro but displayed limited therapeutic effects in septic mice due to their limited ability to target the liver and restore KC antimicrobial capacity. Thus, we developed a composite nanodrug of copper-doped carbon dot-loaded apoVs (CC-apoVs) that combined the antibacterial ability of Cu-CDs and liver KC targeting features of apoV. Moreover, intravenous injection of CC-apoVs markedly alleviated the systemic infection and decreased the mortality of septic mice compared to Cu-CD and apoV infusion alone. Mechanistically, CC-apoV injection rescued impaired liver KCs during sepsis and enhanced their ability to capture and kill bloodborne bacteria. In addition, apoV-promoted macrophage killing of bacteria could be blocked by the inhibition of small GTPase Rab5. This study reveals a liver KC-targeted therapeutic strategy for sepsis and provides a nanodrug CC-apoV to improve the host antibacterial defense and amplify the therapeutic effect of the nanodrug.
Collapse
Affiliation(s)
- Lei Xiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zhe An
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xiaoyan Wu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Jinyang Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Simin Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yongxi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Longchuang Li
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Weiying Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Di Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Lu Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
7
|
Wang Q, Jiang Y, Li J, Li J, He Y. Genetic structural analysis of different breeds and geographical groups of Fenneropenaeus chinensis reveals population diversity. Genomics 2024; 116:110843. [PMID: 38608736 DOI: 10.1016/j.ygeno.2024.110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Fenneropenaeus chinensis is a commercially important shrimp species cultured in China. This study investigated eight F. chinensis populations in China, including four geographical populations, three commercial breeds, and one wild population captured from the Yellow Sea. Population stratification analysis revealed that the Hebei geographical population and commercial breeding "Huanghai No. 4" were relatively independent and stable, reflecting a relatively closed breeding environment, whereas gene introgression was present between other populations. Selective signature analysis detected artificial selection for vision, growth, and disease resistance in the Hebei population. Neuronal development-related genes were detected to be under selection in the Changyi and Rizhao populations. Fertility of the Rizhao population was also investigated. Additionally, genes in the glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate pathway were involved in the high pH tolerance of the "Huanghai No. 4" population. This study provided support for the genetic mechanism of parsing economic traits and the development of molecular breeding technologies.
Collapse
Affiliation(s)
- Qiong Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Yuhan Jiang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jian Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Jitao Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| | - Yuying He
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| |
Collapse
|
8
|
Zhang X, Guan J, Zou M, He P, Zhang L, Chen Y, Li W, Wang D, Yu E, Zhong F, Zhu P, Yan X, Xu Y, Luo B, Huang T, Jiang L, Wei P, Peng J. Whole genome sequencing of Crassostrea ariakensis (Mollusca: Ostreidae) and C. hongkongensis expands understandings of stress resistance in sessile oysters. Genomics 2024; 116:110757. [PMID: 38061482 DOI: 10.1016/j.ygeno.2023.110757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
To understand the environmental adaptations among sessile bivalves lacking adaptive immunity, a series of analyses were conducted, with special emphasis on the widely distributed C. ariakensis. Employing Pacbio sequencing and Hi-C technologies, whole genome for each of a C. ariakensis (southern China) and C. hongkongensis individual was generated, with the contig N50 reaching 6.2 and 13.0 Mb, respectively. Each genome harbored over 30,000 protein-coding genes, with approximately half of each genome consisting of repeats. Genome alignment suggested possible introgression between C. gigas and C. ariakensis (northern China), and re-sequencing data corroborated this result and indicated significant gene flow between C. gigas and C. ariakensis. These introgressed candidates, well-represented by genes related to immunity and osmotic pressure, may be associated with environmental stresses. Gene family dynamics modeling suggested immune-related genes were well represented among the expanded genes in C. ariakensis. These outcomes could be attributed to the spread of C. ariakensis.
Collapse
Affiliation(s)
- Xingzhi Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Junliang Guan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Ming Zou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingping He
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Li Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Yongxian Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China.
| | - Wei Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Dapeng Wang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Ermeng Yu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China.
| | | | - Peng Zhu
- Beibu Gulf University, Qinzhou 535000, China
| | - Xueyu Yan
- Beibu Gulf University, Qinzhou 535000, China.
| | - Youhou Xu
- Beibu Gulf University, Qinzhou 535000, China
| | - Bang Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China
| | - Linyuan Jiang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China.
| | - Pinyuan Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China.
| | - Jinxia Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fisheries Sciences, Nanning 530021, China.
| |
Collapse
|
9
|
Meng YY, Peng JH, Qian J, Fei FL, Guo YY, Pan YJ, Zhao Y, Liu HQ. The two-component system expression patterns and immune regulatory mechanism of Vibrio parahaemolyticus with different genotypes at the early stage of infection in THP-1 cells. mSystems 2023; 8:e0023723. [PMID: 37432027 PMCID: PMC10469919 DOI: 10.1128/msystems.00237-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023] Open
Abstract
Vibrio parahaemolyticus must endure various challenging circumstances while being swallowed by phagocytes of the innate immune system. Moreover, bacteria should recognize and react to environmental signals quickly in host cells. Two-component system (TCS) is an important way for bacteria to perceive external environmental signals and transmit them to the interior to trigger the associated regulatory mechanism. However, the regulatory function of V. parahaemolyticus TCS in innate immune cells is unclear. Here, the expression patterns of TCS in V. parahaemolyticus-infected THP-1 cell-derived macrophages at the early stage were studied for the first time. Based on protein-protein interaction network analysis, we mined and analyzed seven critical TCS genes with excellent research value in the V. parahaemolyticus regulating macrophages, as shown below. VP1503, VP1502, VPA0021, and VPA0182 could regulate the ATP-binding-cassette (ABC) transport system. VP1735, uvrY, and peuR might interact with thermostable hemolysin proteins, DNA cleavage-related proteins, and TonB-dependent siderophore enterobactin receptor, respectively, which may assist V. parahaemolyticus in infected macrophages. Subsequently, the potential immune escape pathways of V. parahaemolyticus regulating macrophages were explored by RNA-seq. The results showed that V. parahaemolyticus might infect macrophages by controlling apoptosis, actin cytoskeleton, and cytokines. In addition, we found that the TCS (peuS/R) could enhance the toxicity of V. parahaemolyticus to macrophages and might contribute to the activation of macrophage apoptosis. IMPORTANCE This study could offer crucial new insights into the pathogenicity of V. parahaemolyticus without tdh and trh genes. In addition, we also provided a novel direction of inquiry into the pathogenic mechanism of V. parahaemolyticus and suggested several TCS key genes that may assist V. parahaemolyticus in innate immune regulation and interaction.
Collapse
Affiliation(s)
- Yuan-Yuan Meng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun-Hui Peng
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, China
| | - Jiang Qian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Fu-Lin Fei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ying-Ying Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ying-Jie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Hai-Quan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
10
|
Wan X, Chou WK, Brynildsen MP. Amino acids can deplete ATP and impair nitric oxide detoxification by Escherichia coli. Free Radic Biol Med 2023; 205:90-99. [PMID: 37253411 DOI: 10.1016/j.freeradbiomed.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Nitric oxide (·NO) is a prevalent antimicrobial that is known to damage iron-containing enzymes in amino acid (AA) biosynthesis pathways. With Escherichia coli, ·NO is detoxified in aerobic environments by Hmp, which is an enzyme that is synthesized de novo in response to ·NO. With this knowledgebase, it is expected that the availability of AAs in the extracellular environment would enhance ·NO detoxification, because AAs would foster translation of Hmp. However, we observed that ·NO detoxification by E. coli was far slower in populations grown and treated in the presence of AAs (AA+) in comparison to those grown and stressed in the absence of AAs (AA-). Further experiments revealed that AA+ populations had difficulty translating proteins under ·NO stress, and that ·NO activated the stringent response in AA+ populations. Additional work revealed significant ATP depletion in ·NO-stressed AA+ cultures that far exceeded that of ·NO-stressed AA- populations. Transcription, translation, and RelA were not found to be significant contributors to the ATP depletion observed, whereas AA import was implicated as a significant ATP consumption pathway. Alleviating ATP depletion while maintaining access to AAs partially restored ·NO detoxification, which suggested that ATP depletion contributed to the translational difficulties observed in ·NO-stressed AA+ populations. These data reveal an unexpected interaction within the ·NO response network of E. coli that stimulates a stringent response by RelA in conditions where AAs are plentiful.
Collapse
Affiliation(s)
- Xuanqing Wan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Wen Kang Chou
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
11
|
Li Z, Zhang S, Fu Z, Liu Y, Man Z, Shi C, Tang C, Chen C, Chai Q, Yang Z, Zhang J, Zhao X, Xu H, Han M, Wang Y, Liao Z, Yu G, Shi B, Zhao K, Li W, Jiang X. Surficial nano-deposition locoregionally yielding bactericidal super CAR-macrophages expedites periprosthetic osseointegration. SCIENCE ADVANCES 2023; 9:eadg3365. [PMID: 37256944 PMCID: PMC10413653 DOI: 10.1126/sciadv.adg3365] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/20/2023] [Indexed: 06/02/2023]
Abstract
Tracking and eradicating Staphylococcus aureus in the periprosthetic microenvironment are critical for preventing periprosthetic joint infection (PJI), yet effective strategies remain elusive. Here, we report an implant nanoparticle coating that locoregionally yields bactericidal super chimeric antigen receptor macrophages (CAR-MΦs) to prevent PJI. We demonstrate that the plasmid-laden nanoparticle from the coating can introduce S. aureus-targeted CAR genes and caspase-11 short hairpin RNA (CASP11 shRNA) into macrophage nuclei to generate super CAR-MΦs in mouse models. CASP11 shRNA allowed mitochondria to be recruited around phagosomes containing phagocytosed bacteria to deliver mitochondria-generated bactericidal reactive oxygen species. These super CAR-MΦs targeted and eradicated S. aureus and conferred robust bactericidal immunologic activity at the bone-implant interface. Furthermore, the coating biodegradability precisely matched the bone regeneration process, achieving satisfactory osteogenesis. Overall, our work establishes a locoregional treatment strategy for priming macrophage-specific bactericidal immunity with broad application in patients suffering from multidrug-resistant bacterial infection.
Collapse
Affiliation(s)
- Ziyang Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Shengchang Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Zhipeng Fu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Ying Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Zhentao Man
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Chongdeng Shi
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Chunwei Tang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Chen Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Qihao Chai
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
| | - Zhenmei Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Jing Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Xiaotian Zhao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Hailun Xu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Maosen Han
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Yan Wang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Ziyang Liao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Gongchang Yu
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bin Shi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kun Zhao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Wei Li
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Xinyi Jiang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| |
Collapse
|
12
|
Zhang QA, Ma S, Li P, Xie J. The dynamics of Mycobacterium tuberculosis phagosome and the fate of infection. Cell Signal 2023; 108:110715. [PMID: 37192679 DOI: 10.1016/j.cellsig.2023.110715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
Phagosomes are vesicles produced by phagocytosis of phagocytes, which are crucial in immunity against Mycobacterium tuberculosis (Mtb) infection. After the phagocyte ingests the pathogen, it activates the phagosomes to recruit a series of components and process proteins, to phagocytose, degrade and kill Mtb. Meanwhile, Mtb can resist acid and oxidative stress, block phagosome maturation, and manipulate host immune response. The interaction between Mtb and phagocytes leads to the outcome of infection. The dynamic of this process can affect the cell fate. This article mainly reviews the development and maturation of phagosomes, as well as the dynamics and modifications of Mtb effectors and phagosomes components, and new diagnostic and therapeutic markers involved in phagosomes.
Collapse
Affiliation(s)
- Qi-Ao Zhang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Shaying Ma
- Chongqing Emergency Medical Center, Chongqing the Fourth Hospital, Jiankang Road, Yuzhong, Chongqing 400014, China
| | - Peibo Li
- Chongqing Public Health Medical Center, Chongqing, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China; Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
13
|
Maccioni L, Kasavuli J, Leclercq S, Pirlot B, Laloux G, Horsmans Y, Leclercq I, Schnabl B, Stärkel P. Toll-like receptor 2 activation in monocytes contributes to systemic inflammation and alcohol-associated liver disease in humans. Hepatol Commun 2023; 7:e0107. [PMID: 37058088 PMCID: PMC10109139 DOI: 10.1097/hc9.0000000000000107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/24/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND AND RATIONALE In the context of gut leakiness and translocation of microbial products in alcohol-associated liver disease (ALD), it is possible that systemic and liver inflammation involve the activation of circulating monocyte through gut-derived factors. We explored the association between monocytes, microbial translocation, systemic inflammation, and ALD. METHODS Patients with alcohol use disorder following a rehabilitation program were compared with healthy controls. We determined the circulating number and proportion of monocyte subsets by FACS. The activation of signaling pathways by gut-derived microbes was analyzed by quantitative PCR in isolated monocytes. Cytokines secretion by monocytes and phagocytosis were assessed in vitro. Serum microbial translocation markers and cytokines were measured by ELISA and multiplex assay, respectively. ALD severity and liver inflammatory responses were analyzed in liver biopsies by various methods. RESULTS In patients with alcohol use disorder, the number of blood monocytes increased compared with controls. Monocytes from patients with alcohol use disorder upregulated IL-1β and IL-8 together with toll-like receptor 2 and downstream AP-1, while fungal sensor CARD9 was downregulated. IL-1β and IL-8 were actively secreted upon stimulation in vitro with the toll-like receptor 2 ligand peptidoglycan. Exposure with Escherichia coli confirmed preserved bacterial phagocytic activity. In contrast, Candida albicans stimulation leads to downregulation of IL-1β and TNFα compared with controls. Systemic cytokines and monocyte changes correlated with microbial translocation. Hepatic IL-1β and IL-8 increased with ALD severity together with liver macrophage activation and upregulation of chemokines involved in monocyte attraction. CONCLUSIONS Our results point to the contribution of activated monocytes to systemic inflammation and ALD. Monocytes likely infiltrate the liver, transform into monocyte-derived macrophages and release IL-1β and IL-8 in response to peptidoglycan and toll-like receptor 2 activation.
Collapse
Affiliation(s)
- Luca Maccioni
- Institute of Experimental and Clinical Research, Laboratory of Hepatogastroenterology, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Joyce Kasavuli
- Institute of Experimental and Clinical Research, Laboratory of Hepatogastroenterology, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Sophie Leclercq
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Institute of Neuroscience, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Boris Pirlot
- Institute of Experimental and Clinical Research, Laboratory of Hepatogastroenterology, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Yves Horsmans
- Department of Hepatogastroenterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Isabelle Leclercq
- Institute of Experimental and Clinical Research, Laboratory of Hepatogastroenterology, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Peter Stärkel
- Institute of Experimental and Clinical Research, Laboratory of Hepatogastroenterology, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Department of Hepatogastroenterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
14
|
Lockhart JS, Sumagin R. Non-Canonical Functions of Myeloperoxidase in Immune Regulation, Tissue Inflammation and Cancer. Int J Mol Sci 2022; 23:ijms232012250. [PMID: 36293108 PMCID: PMC9603794 DOI: 10.3390/ijms232012250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Myeloperoxidase (MPO) is one of the most abundantly expressed proteins in neutrophils. It serves as a critical component of the antimicrobial defense system, facilitating microbial killing via generation of reactive oxygen species (ROS). Interestingly, emerging evidence indicates that in addition to the well-recognized canonical antimicrobial function of MPO, it can directly or indirectly impact immune cells and tissue responses in homeostatic and disease states. Here, we highlight the emerging non-canonical functions of MPO, including its impact on neutrophil longevity, activation and trafficking in inflammation, its interactions with other immune cells, and how these interactions shape disease outcomes. We further discuss MPO interactions with barrier forming endothelial and epithelial cells, specialized cells of the central nervous system (CNS) and its involvement in cancer progression. Such diverse function and the MPO association with numerous inflammatory disorders make it an attractive target for therapies aimed at resolving inflammation and limiting inflammation-associated tissue damage. However, while considering MPO inhibition as a potential therapy, one must account for the diverse impact of MPO activity on various cellular compartments both in health and disease.
Collapse
|
15
|
Lemma AS, Soto-Echevarria N, Brynildsen MP. Fluoroquinolone Persistence in Escherichia coli Requires DNA Repair despite Differing between Starving Populations. Microorganisms 2022; 10:286. [PMID: 35208744 PMCID: PMC8877308 DOI: 10.3390/microorganisms10020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
When faced with nutritional deprivation, bacteria undergo a range of metabolic, regulatory, and biosynthetic changes. Those adjustments, which can be specific or independent of the missing nutrient, often alter bacterial tolerance to antibiotics. Here, using fluoroquinolones, we quantified Escherichia coli persister levels in cultures experiencing starvation from a lack of carbon (C), nitrogen (N), phosphorous (P), or magnesium (Mg2+). Interestingly, persister levels varied significantly based on the type of starvation as well as fluoroquinolone used with N-starved populations exhibiting the highest persistence to levofloxacin, and P-starved populations exhibiting the highest persistence to moxifloxacin. However, regardless of the type of starvation or fluoroquinolone used, DNA repair was required by persisters, with ∆recA and ∆recB uniformly exhibiting the lowest persistence of the mutants assayed. These results suggest that while the type of starvation and fluoroquinolone will modulate the level of persistence, the importance of homologous recombination is consistently observed, which provides further support for efforts to target homologous recombination for anti-persister purposes.
Collapse
Affiliation(s)
- Annabel S. Lemma
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA;
| | | | - Mark P. Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA;
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| |
Collapse
|
16
|
Wan X, Brynildsen MP. Robustness of nitric oxide detoxification to nitrogen starvation in Escherichia coli requires RelA. Free Radic Biol Med 2021; 176:286-297. [PMID: 34624482 DOI: 10.1016/j.freeradbiomed.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 01/18/2023]
Abstract
Reactive nitrogen species and nutrient deprivation are two elements of the immune response used to eliminate pathogens within phagosomes. Concomitantly, pathogenic bacteria have evolved defense systems to cope with phagosomal stressors, which include enzymes that detoxify nitric oxide (•NO) and respond to nutrient scarcity. A deeper understanding of how those defense systems are deployed under adverse conditions that contain key elements of phagosomes will facilitate targeting of those systems for therapeutic purposes. Here we investigated how Escherichia coli detoxifies •NO in the absence of useable nitrogen, because nitrogen availability is limited in phagosomes due to the removal of nitrogenous compounds (e.g., amino acids). We hypothesized that nitrogen starvation would impair •NO detoxification by E. coli because it depresses translation rates and the main E. coli defense enzyme, Hmp, is synthesized in response to •NO. However, we found that E. coli detoxifies •NO at the same rate regardless of whether useable nitrogen was present. We confirmed that the nitrogen in •NO and its autoxidation products could not be used by E. coli under our experimental conditions, and discovered that •NO eliminated differences in carbon and oxygen consumption between nitrogen-replete and nitrogen-starved cultures. Interestingly, E. coli does not consume measurable extracellular nitrogen during •NO stress despite the need to translate defense enzymes. Further, we found that RelA, which responds to uncharged tRNA, was required to observe the robustness of •NO detoxification to nitrogen starvation. These data demonstrate that E. coli is well poised to detoxify •NO in the absence of useable nitrogen and suggest that the stringent response could be a useful target to potentiate the antibacterial activity of •NO.
Collapse
Affiliation(s)
- Xuanqing Wan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|