1
|
Heard GW, Scroggie MP, Hollanders M, Scheele BC. Age truncation due to disease shrinks metapopulation viability for amphibians. J Anim Ecol 2024. [PMID: 39290048 DOI: 10.1111/1365-2656.14177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Metapopulations often exist in a fragile balance between local extinctions and (re)colonisations, in which case emerging threats that alter species vital rates may drastically increase metapopulation extinction risk. We combined empirical data with metapopulation simulations to examine how demographic shifts associated with amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) have altered metapopulation viability for threatened amphibians in Australia. Comparing the ages of museum specimens collected before Bd emerged in Australia with individuals from geographically matched remnant populations revealed significant truncation of age structures post-Bd, with a halving of annual adult survival probabilities. Spatially realistic metapopulation modelling demonstrated that reduced adult survival led to major reductions in the parameter space over which persistence was possible for the focal species, with contractions to landscapes with higher landscape connectivity, lower environmental stochasticity and considerably higher recruitment rates. Metapopulation persistence post-Bd required greater landscape connectivity than pre-Bd. This arises from a landscape-level analogue of compensatory recruitment at the population level, in which higher (re)colonisation rates can offset more frequent local extinctions, enabling persistence of amphibians susceptible to Bd. Interactions between recruitment rate, environmental stochasticity and landscape connectivity were also more important for metapopulation persistence post-Bd. Higher recruitment was required to mitigate the impacts of environmental stochasticity, and higher landscape connectivity was required to mitigate the impacts of environmental stochasticity and poor recruitment. Increased reliance on these interdependencies shrunk the parameter space over which metapopulations could persist post-Bd. Our study demonstrates that emerging threats that alter species vital rates can drastically reduce the capacity of certain environments to support metapopulations. For our focal species, reductions in adult survival rates due to Bd produced major reductions in the conditions under which persistence was possible, providing a mechanistic insight into the processes underpinning observed range and niche contractions of amphibians impacted by this pathogen. More broadly, our study illustrates how environmentally mediated host resilience can enable persistence following the emergence of novel pathogens. This pathway to persistence is worthy of greater attention on both conceptual and applied grounds.
Collapse
Affiliation(s)
- Geoffrey W Heard
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, Queensland, Australia
- Terrestrial Ecosystem Research Network, The University of Queensland, Long Pocket, Queensland, Australia
| | - Michael P Scroggie
- Department of Energy, Environment and Climate Action, Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia
| | - Matthijs Hollanders
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, Australia
- Quantecol, Ballina, New South Wales, Australia
| | - Ben C Scheele
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
2
|
Forister ML, Black SH, Elphick CS, Grames EM, Halsch CA, Schultz CB, Wagner DL. Missing the bigger picture: Why insect monitoring programs are limited in their ability to document the effects of habitat loss. Conserv Lett 2023. [DOI: 10.1111/conl.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Affiliation(s)
| | - S. H. Black
- The Xerces Society for Invertebrate Conservation Portland Oregon
| | - C. S. Elphick
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut
| | - E. M. Grames
- Department of Biology University of Nevada Reno Nevada
| | - C. A. Halsch
- Department of Biology University of Nevada Reno Nevada
| | - C. B. Schultz
- School of Biological Sciences Washington State University Vancouver Washington
| | - D. L. Wagner
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut
| |
Collapse
|
3
|
Khain E, Iyengar M. Front propagation in a spatial system of weakly interacting networks. Phys Rev E 2023; 107:034309. [PMID: 37072989 DOI: 10.1103/physreve.107.034309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/05/2023] [Indexed: 04/20/2023]
Abstract
We consider the spread of epidemic in a spatial metapopulation system consisting of weakly interacting patches. Each local patch is represented by a network with a certain node degree distribution and individuals can migrate between neighboring patches. Stochastic particle simulations of the SIR model show that after a short transient, the spatial spread of epidemic has a form of a propagating front. A theoretical analysis shows that the speed of front propagation depends on the effective diffusion coefficient and on the local proliferation rate similarly to fronts described by the Fisher-Kolmogorov equation. To determine the speed of front propagation, first, the early-time dynamics in a local patch is computed analytically by employing degree based approximation for the case of a constant disease duration. The resulting delay differential equation is solved for early times to obtain the local growth exponent. Next, the reaction diffusion equation is derived from the effective master equation and the effective diffusion coefficient and the overall proliferation rate are determined. Finally, the fourth order derivative in the reaction diffusion equation is taken into account to obtain the discrete correction to the front propagation speed. The analytical results are in a good agreement with the results of stochastic particle simulations.
Collapse
Affiliation(s)
- Evgeniy Khain
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| | - Madhavan Iyengar
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
- College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
4
|
Intracellular common gardens reveal niche differentiation in transposable element community during bacterial adaptive evolution. THE ISME JOURNAL 2023; 17:297-308. [PMID: 36434281 PMCID: PMC9860058 DOI: 10.1038/s41396-022-01344-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022]
Abstract
The distribution and abundance of transposable elements across the tree of life have significantly shaped the evolution of cellular organisms, but the underlying mechanisms shaping these ecological patterns remain elusive. Here we establish a "common garden" approach to study causal ecological interactions between a xenogeneic conditional lethal sacB gene and the community of transposable insertion sequences (ISs) in a multipartite prokaryote genome. Xenogeneic sacB of low, medium, or high GC content was individually inserted into three replicons of a model bacterium Sinorhizobium fredii, and exhibited replicon- and GC-dependent variation in genetic stability. This variation was largely attributable to multidimensional niche differentiation for IS community members. The transposition efficiency of major active ISs depended on the nucleoid-associated xenogeneic silencer MucR. Experimentally eliminating insertion activity of specific ISs by deleting MucR strongly demonstrated a dominant role of niche differentiation among ISs. This intracellular common garden approach in the experimental evolution context allows not only for evaluating genetic stability of natural and synthetic xenogeneic genes of different sequence signatures in host cells but also for tracking and testing causal relationships in unifying ecological principles in genome ecology.
Collapse
|
5
|
Halali S, Saastamoinen M. Exploring links between climatic predictability and the evolution of within- and transgenerational plasticity. Ecol Evol 2022; 12:e9662. [PMID: 36619708 PMCID: PMC9798148 DOI: 10.1002/ece3.9662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/20/2022] [Accepted: 11/19/2022] [Indexed: 12/30/2022] Open
Abstract
In variable environments, phenotypic plasticity can increase fitness by providing tight environment-phenotype matching. However, adaptive plasticity is expected to evolve only when the future selective environment can be predicted based on the prevailing conditions. That is, the juvenile environment should be predictive of the adult environment (within-generation plasticity) or the parental environment should be predictive of the offspring environment (transgenerational plasticity). Moreover, the environmental predictability can also shape transient responses such as stress response in an adaptive direction. Here, we test links between environmental predictability and the evolution of adaptive plasticity by combining time series analyses and a common garden experiment using temperature as a stressor in a temperate butterfly (Melitaea cinxia). Time series analyses revealed that across season fluctuations in temperature over 48 years are overall predictable. However, within the growing season, temperature fluctuations showed high heterogeneity across years with low autocorrelations and the timing of temperature peaks were asynchronous. Most life-history traits showed strong within-generation plasticity for temperature and traits such as body size and growth rate broke the temperature-size rule. Evidence for transgenerational plasticity, however, was weak and detected for only two traits each in an adaptive and non-adaptive direction. We suggest that the low predictability of temperature fluctuations within the growing season likely disfavors the evolution of adaptive transgenerational plasticity but instead favors strong within-generation plasticity.
Collapse
Affiliation(s)
- Sridhar Halali
- Research Centre for Ecological Change, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Marjo Saastamoinen
- Research Centre for Ecological Change, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
6
|
Beissinger SR, Peterson SM, Hall LA, Van Schmidt N, Tecklin J, Risk BB, Richmond OM, Kovach TJ, Kilpatrick AM. Stability of patch-turnover relationships under equilibrium and nonequilibrium metapopulation dynamics driven by biogeography. Ecol Lett 2022; 25:2372-2383. [PMID: 36209497 PMCID: PMC9828715 DOI: 10.1111/ele.14111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/27/2022] [Accepted: 07/31/2022] [Indexed: 01/12/2023]
Abstract
Two controversial tenets of metapopulation biology are whether patch quality and the surrounding matrix are more important to turnover (colonisation and extinction) than biogeography (patch area and isolation) and whether factors governing turnover during equilibrium also dominate nonequilibrium dynamics. We tested both tenets using 18 years of surveys for two secretive wetland birds, black and Virginia rails, during (1) a period of equilibrium with stable occupancy and (2) after drought and arrival of West Nile Virus (WNV), which resulted in WNV infections in rails, increased extinction and decreased colonisation probabilities modified by WNV, nonequilibrium dynamics for both species and occupancy decline for black rails. Area (primarily) and isolation (secondarily) drove turnover during both stable and unstable metapopulation dynamics, greatly exceeding the effects of patch quality and matrix conditions. Moreover, slopes between turnover and patch characteristics changed little between equilibrium and nonequilibrium, confirming the overriding influences of biogeographic factors on turnover.
Collapse
Affiliation(s)
- Steven R. Beissinger
- Department of Environmental Science, Policy & ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA,Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Sean M. Peterson
- Department of Environmental Science, Policy & ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA,Department of Environmental BiologyState University of New York College of Environmental Science and ForestryNew YorkUSA
| | - Laurie A. Hall
- Department of Environmental Science, Policy & ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA,Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCaliforniaUSA,U.S. Geological Survey, Western Ecological Research Center, San Francisco Bay Estuary Field StationCaliforniaUSA
| | - Nathan Van Schmidt
- Department of Environmental Science, Policy & ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA,US Geological Survey, Fort Collins Science CenterFort CollinsColoradoUSA
| | - Jerry Tecklin
- Sierra Foothills Research and Extension CenterBrowns ValleyCaliforniaUSA,21170 Shields Camp RoadNevada CityCaliforniaUSA
| | - Benjamin B. Risk
- Department of Environmental Science, Policy & ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA,Department of Biostatistics and BioinformaticsEmory UniversityAtlantaGeorgiaUSA
| | - Orien M. Richmond
- Department of Environmental Science, Policy & ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA,Rocky Mountain Arsenal National Wildlife RefugeCommerce CityColoradoUSA
| | - Tony J. Kovach
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA,California Department of Public Health/Vector Borne Disease SectionCaliforniaUSA
| | - A. Marm Kilpatrick
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| |
Collapse
|
7
|
Rossini L, Bono Rosselló N, Contarini M, Speranza S, Garone E. Modelling ectotherms’ populations considering physiological age structure and spatial motion: A novel approach. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
DiLeo MF, Nonaka E, Husby A, Saastamoinen M. Effects of environment and genotype on dispersal differ across departure, transfer and settlement in a butterfly metapopulation. Proc Biol Sci 2022; 289:20220322. [PMID: 35673865 PMCID: PMC9174707 DOI: 10.1098/rspb.2022.0322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Active dispersal is driven by extrinsic and intrinsic factors at the three stages of departure, transfer and settlement. Most empirical studies capture only one stage of this complex process, and knowledge of how much can be generalized from one stage to another remains unknown. Here we use genetic assignment tests to reconstruct dispersal across 5 years and 232 habitat patches of a Glanville fritillary butterfly (Melitaea cinxia) metapopulation. We link individual dispersal events to weather, landscape structure, size and quality of habitat patches, and individual genotype to identify the factors that influence the three stages of dispersal and post-settlement survival. We found that nearly all tested factors strongly affected departure probabilities, but that the same factors explained very little variation in realized dispersal distances. Surprisingly, we found no effect of dispersal distance on post-settlement survival. Rather, survival was influenced by weather conditions, quality of the natal habitat patch, and a strong interaction between genotype and occupancy status of the settled habitat patch, with more mobile genotypes having higher survival as colonists rather than as immigrants. Our work highlights the multi-causality of dispersal and that some dispersal costs can only be understood by considering extrinsic and intrinsic factors and their interaction across the entire dispersal process.
Collapse
Affiliation(s)
- Michelle F. DiLeo
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland,Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry, Peterborough, ON, Canada
| | - Etsuko Nonaka
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Arild Husby
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Marjo Saastamoinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Smolander OP, Blande D, Ahola V, Rastas P, Tanskanen J, Kammonen JI, Oostra V, Pellegrini L, Ikonen S, Dallas T, DiLeo MF, Duplouy A, Duru IC, Halimaa P, Kahilainen A, Kuwar SS, Kärenlampi SO, Lafuente E, Luo S, Makkonen J, Nair A, de la Paz Celorio-Mancera M, Pennanen V, Ruokolainen A, Sundell T, Tervahauta AI, Twort V, van Bergen E, Österman-Udd J, Paulin L, Frilander MJ, Auvinen P, Saastamoinen M. Improved chromosome-level genome assembly of the Glanville fritillary butterfly (Melitaea cinxia) integrating Pacific Biosciences long reads and a high-density linkage map. Gigascience 2022; 11:6505122. [PMID: 35022701 PMCID: PMC8756199 DOI: 10.1093/gigascience/giab097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/03/2021] [Accepted: 12/14/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The Glanville fritillary (Melitaea cinxia) butterfly is a model system for metapopulation dynamics research in fragmented landscapes. Here, we provide a chromosome-level assembly of the butterfly's genome produced from Pacific Biosciences sequencing of a pool of males, combined with a linkage map from population crosses. RESULTS The final assembly size of 484 Mb is an increase of 94 Mb on the previously published genome. Estimation of the completeness of the genome with BUSCO indicates that the genome contains 92-94% of the BUSCO genes in complete and single copies. We predicted 14,810 genes using the MAKER pipeline and manually curated 1,232 of these gene models. CONCLUSIONS The genome and its annotated gene models are a valuable resource for future comparative genomics, molecular biology, transcriptome, and genetics studies on this species.
Collapse
Affiliation(s)
- Olli-Pekka Smolander
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland.,Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Daniel Blande
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, 00014 Helsinki, Finland
| | - Virpi Ahola
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, 00014 Helsinki, Finland.,Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 171 77 Stockholm, Hong Kong
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | | | - Juhana I Kammonen
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Vicencio Oostra
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, 00014 Helsinki, Finland.,Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool CH64 7TE, UK
| | - Lorenzo Pellegrini
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Suvi Ikonen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, 00014 Helsinki, Finland
| | - Tad Dallas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michelle F DiLeo
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, 00014 Helsinki, Finland
| | - Anne Duplouy
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, 00014 Helsinki, Finland.,Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Ilhan Cem Duru
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Pauliina Halimaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 KUOPIO, Finland
| | - Aapo Kahilainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, 00014 Helsinki, Finland
| | - Suyog S Kuwar
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611-0620, USA.,Department of Zoology, Loknete Vyankatrao Hiray Arts, Science & Commerce College, 422003, Maharashtra, India
| | - Sirpa O Kärenlampi
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 KUOPIO, Finland
| | - Elvira Lafuente
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Shiqi Luo
- College of Plant Protection, China Agricultural University, Beijing 100083, China
| | - Jenny Makkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 KUOPIO, Finland
| | - Abhilash Nair
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, 00014 Helsinki, Finland
| | | | - Ville Pennanen
- Viikki Plant Science Centre, Organismal and Evolutionary Biology Research Programme, University of Helsinki, 00014 Helsinki, Finland
| | - Annukka Ruokolainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, 00014 Helsinki, Finland
| | - Tarja Sundell
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Arja I Tervahauta
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 KUOPIO, Finland
| | - Victoria Twort
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Erik van Bergen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, 00014 Helsinki, Finland
| | - Janina Österman-Udd
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, 00014 Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, 00014 Helsinki, Finland.,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
10
|
Fisher KE, Bradbury SP. Influence of habitat quality and resource density on breeding‐season female monarch butterfly
Danaus plexippus
movement and space use in north‐central USA agroecosystem landscapes. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Steven P. Bradbury
- Department of Entomology Iowa State University Ames IA USA
- Department of Natural Resource Ecology and Management Iowa State University Ames IA USA
| |
Collapse
|
11
|
Zhao Q. A simulation study of the age‐structured spatially explicit dynamic N‐mixture model. Ecol Res 2021. [DOI: 10.1111/1440-1703.12222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Qing Zhao
- School of Natural Resources University of Missouri Columbia Missouri USA
| |
Collapse
|
12
|
van Bergen E, Dallas T, DiLeo MF, Kahilainen A, Mattila ALK, Luoto M, Saastamoinen M. The effect of summer drought on the predictability of local extinctions in a butterfly metapopulation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2020; 34:1503-1511. [PMID: 32298001 DOI: 10.1111/cobi.13515] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
The ecological impacts of extreme climatic events on population dynamics and community composition are profound and predominantly negative. Using extensive data of an ecological model system, we tested whether predictions from ecological models remain robust when environmental conditions are outside the bounds of observation. We observed a 10-fold demographic decline of the Glanville fritillary butterfly (Melitaea cinxia) metapopulation on the Åland islands, Finland in the summer of 2018 and used climatic and satellite data to demonstrate that this year was an anomaly with low climatic water balance values and low vegetation productivity indices across Åland. Population growth rates were strongly associated with spatiotemporal variation in climatic water balance. Covariates shown previously to affect the extinction probability of local populations in this metapopulation were less informative when populations were exposed to severe drought during the summer months. Our results highlight the unpredictable responses of natural populations to extreme climatic events.
Collapse
Affiliation(s)
- Erik van Bergen
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland
| | - Tad Dallas
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, U.S.A
| | - Michelle F DiLeo
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland
| | - Aapo Kahilainen
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland
| | - Anniina L K Mattila
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland
| | - Miska Luoto
- Department of Geoscience and Geography, University of Helsinki, Helsinki, 00560, Finland
| | - Marjo Saastamoinen
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00790, Finland
| |
Collapse
|
13
|
Giezendanner J, Pasetto D, Perez-Saez J, Cerrato C, Viterbi R, Terzago S, Palazzi E, Rinaldo A. Earth and field observations underpin metapopulation dynamics in complex landscapes: Near-term study on carabids. Proc Natl Acad Sci U S A 2020; 117:12877-12884. [PMID: 32461358 PMCID: PMC7293626 DOI: 10.1073/pnas.1919580117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding risks to biodiversity requires predictions of the spatial distribution of species adapting to changing ecosystems and, to that end, Earth observations integrating field surveys prove essential as they provide key numbers for assessing landscape-wide biodiversity scenarios. Here, we develop, and apply to a relevant case study, a method suited to merge Earth/field observations with spatially explicit stochastic metapopulation models to study the near-term ecological dynamics of target species in complex terrains. Our framework incorporates the use of species distribution models for a reasoned estimation of the initial presence of the target species and accounts for imperfect and incomplete detection of the species presence in the study area. It also uses a metapopulation fitness function derived from Earth observation data subsuming the ecological niche of the target species. This framework is applied to contrast occupancy of two species of carabids (Pterostichus flavofemoratus, Carabus depressus) observed in the context of a large ecological monitoring program carried out within the Gran Paradiso National Park (GPNP, Italy). Results suggest that the proposed framework may indeed exploit the hallmarks of spatially explicit ecological approaches and of remote Earth observations. The model reproduces well the observed in situ data. Moreover, it projects in the near term the two species' presence both in space and in time, highlighting the features of the metapopulation dynamics of colonization and extinction, and their expected trends within verifiable timeframes.
Collapse
Affiliation(s)
- Jonathan Giezendanner
- Laboratory of Ecohydrology, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Damiano Pasetto
- Laboratory of Ecohydrology, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Javier Perez-Saez
- Laboratory of Ecohydrology, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | - Silvia Terzago
- National Research Council (CNR), Institute of Atmospheric Sciences and Climate, 10133 Torino, Italy
| | - Elisa Palazzi
- National Research Council (CNR), Institute of Atmospheric Sciences and Climate, 10133 Torino, Italy
| | - Andrea Rinaldo
- Laboratory of Ecohydrology, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland;
- Dipartimento di Ingegneria Civile Edile e Ambientale (DICEA), Università di Padova, 35131 Padova, Italy
| |
Collapse
|
14
|
Dallas TA, Saastamoinen M, Schulz T, Ovaskainen O. The relative importance of local and regional processes to metapopulation dynamics. J Anim Ecol 2019; 89:884-896. [DOI: 10.1111/1365-2656.13141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/02/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Tad A. Dallas
- Organismal and Evolutionary Biology Research Programme University of Helsinki Helsinki Finland
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research Programme University of Helsinki Helsinki Finland
- Helsinki Institute for Life Sciences University of Helsinki Helsinki Finland
| | - Torsti Schulz
- Organismal and Evolutionary Biology Research Programme University of Helsinki Helsinki Finland
| | - Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme University of Helsinki Helsinki Finland
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|