1
|
Cotta SR, Dias ACF, Mendes R, Andreote FD. Role of horizontal gene transfer and cooperation in rhizosphere microbiome assembly. Braz J Microbiol 2024:10.1007/s42770-024-01583-9. [PMID: 39730778 DOI: 10.1007/s42770-024-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Microbes employ a variety of mechanisms, encompassing chemical signaling (e.g., quorum-sensing molecules) and genetic processes like horizontal gene transfer (HGT), to engage in interactions. HGT, in particular, holds a pivotal role as it facilitates the generation of metabolic diversity, thus directly or indirectly influencing microorganisms' interactions and functioning within their habitat. In this study, we investigate the correlations between enhanced metabolic diversity through HGT and cooperative behavior in the rhizosphere. Despite the potential drawbacks of cooperative behavior, which renders it susceptible to exploitation by cheaters based on evolutionary theory, HGT emerges as a mitigating factor. It serves as a valuable and adaptive tool for survival in competitive environments, notably the rhizosphere. By initiating a comprehensive discussion on these processes combined, we anticipate achieving a profound understanding of the rhizosphere microbiome, ultimately enhancing soil microbiology management and the exploitation of this ecological niche.
Collapse
Affiliation(s)
- Simone Raposo Cotta
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil.
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| | - Armando Cavalcante Franco Dias
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariuna, São Paulo, Brazil
| | - Fernando Dini Andreote
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
2
|
Chauhan A, Jain A, Kolton M, Pathak A. Impacts of long-term irrigation of municipally-treated wastewater to the soil microbial and nutrient properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 959:178143. [PMID: 39721532 DOI: 10.1016/j.scitotenv.2024.178143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Reusing treated wastewater (TWW) for crop irrigation has shown to provide environmental and economic benefits as well as drawbacks. This study was conducted using soils collected from a wastewater reuse facility in Tallahassee, FL, mainly to elucidate the long-term impact(s) of TWW irrigation on soil microbiome and nutrient status. Approximately 890 ha of land have been spray-irrigated with TWW since the 1980's to grow fodder crops. Soil cores were collected from six irrigated and six control sites at depths of 0-15, 15-30, and 30-60 cm during summer and winter, followed by nutrient analysis and assessment of bacterial, fungal, and denitrifier communities using SSU rRNA, ITS, nirK, nirS, and nosZ phylogenetic markers. TWW irrigation significantly increased soil pH, soluble salts, nitrate, phosphate, calcium, magnesium, and organic matter, alongside shifts in the prokaryotic and fungal community structures, particularly in summer. Beta-diversity analyses indicated that wastewater quality and season collectively explained 23 % of prokaryotic community similarity and 9.8 % of fungal community dissimilarity. Indicator species analysis, supported by random forest machine learning, identified 37 prokaryotic and 11 fungal bioindicators whose occurrences varied significantly with wastewater quality and season. Key nitrogen-cycling microbes included ammonia-oxidizing families of Nitrosomonadaceae, Nitrosopumilaceae, Nitrososphaeraceae, Nitrosotaleaceae, and comammox-performing Nitrospiraceae. The fungal community was predominated by Ascomycota (78.6 % ± 4.2 %). FUNGuild analysis showed dominant trophic levels of symbiotrophs, saprotrophs, and pathotrophs, averaging 42 % ± 7.1 %. Overall, this study points to the long-term impacts of TWW irrigation on the studied soil properties and microbial communities.
Collapse
Affiliation(s)
- Ashvini Chauhan
- School of the Environment, Florida A&M University, Tallahassee, FL, United States of America.
| | - Amita Jain
- Center for Water Resources, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States of America
| | - Max Kolton
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ashish Pathak
- School of the Environment, Florida A&M University, Tallahassee, FL, United States of America
| |
Collapse
|
3
|
Barnes CJ, Bahram M, Nicolaisen M, Gilbert MTP, Vestergård M. Microbiome selection and evolution within wild and domesticated plants. Trends Microbiol 2024:S0966-842X(24)00314-7. [PMID: 39701859 DOI: 10.1016/j.tim.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Microbes are ubiquitously found across plant surfaces and even within their cells, forming the plant microbiome. Many of these microbes contribute to the functioning of the host and consequently affect its fitness. Therefore, in many contexts, including microbiome effects enables a better understanding of the phenotype of the plant rather than considering the genome alone. Changes in the microbiome composition are also associated with changes in the functioning of the host, and there has been considerable focus on how environmental variables regulate plant microbiomes. More recently, studies suggest that the host genome also preconditions the microbiome to the environment of the plant, and the microbiome is therefore subject to evolutionary forces. Here, we outline how plant microbiomes are governed by both environmental variables and evolutionary processes and how they can regulate plant health together.
Collapse
Affiliation(s)
- Christopher James Barnes
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark; Centre for Evolutionary Hologenomics, The Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark.
| | - Mo Bahram
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark; Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51, Sweden; Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St., 51005, Tartu, Estonia
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark
| | - M Thomas P Gilbert
- Centre for Evolutionary Hologenomics, The Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway
| | - Mette Vestergård
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark
| |
Collapse
|
4
|
Wang Y, Zhang Y, Zhang Z, Liu Q, Xu T, Liu J, Han S, Song T, Li L, Wei X, Lin Y. The bifunctional impact of polylactic acid microplastics on composting processes and soil-plant systems: Dynamics of microbial communities and ecological niche competition. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135774. [PMID: 39255660 DOI: 10.1016/j.jhazmat.2024.135774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Although extensive research has been conducted on the environmental impact of microplastics (MPs), their effects on microorganisms during the composting process and on the compost-soil system remain unclear. Our research investigates the microbial response to polylactic acid microplastics (PLAMPs) during aerobic composting and examines how compost enriched with PLAMPs affects plants. Our findings reveal that PLAMPs play a dual role in the composting process, influencing microorganisms differently depending on the composting phase. PLAMPs reduce the relative abundance of sensitive bacterial ASVs, specifically those belonging to Limnochordaceae and Enterobacteriaceae, during composting, while increasing the relative abundance of ASVs belonging to Steroidobacteriaceae and Bacillaceae. The impact of PLAMPs on microbial community assembly and niche width was found to be phase-dependent. In the stabilization phase (S5), the presence of PLAMPs caused a shift in the core microbial network from bacterial dominance to fungal dominance, accompanied by heightened microbial antagonism. Additionally, these intricate microbial interactions can be transferred to the soil ecosystem. Our study indicates that composting, as a method of managing PLAMPs, is also influenced by PLAMPs. This influence is transferred to the soil through the use of compost, resulting in severe oxidative stress in plants. Our research is pivotal for devising future strategies for PLAMPs management and predicting the subsequent changes in compost quality and environmental equilibrium.
Collapse
Affiliation(s)
- Yufan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiqiong Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhouchang Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qing Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tengqi Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaxi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siqi Han
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianjiao Song
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiaomin Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Song X, Wang N, Zhou J, Tao J, He X, Guo N. High cadmium-accumulating Salix ecotype shapes rhizosphere microbiome to facilitate cadmium extraction. ENVIRONMENT INTERNATIONAL 2024; 190:108904. [PMID: 39059023 DOI: 10.1016/j.envint.2024.108904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Cadmium (Cd) contamination poses a significant threat to agricultural soils and food safety, necessitating effective remediation strategies. Salix species, with their high coverage and Cd accumulating capacity, hold promise for remediation efforts. The rhizosphere microbiome is crucial for enhancing Cd accumulating capacity for Salix. However, the mechanisms by how Salix interacts with its rhizosphere microbiome to enhance Cd extraction remains poorly understood. In this study, we compared the remediation performance of two Salix ecotypes: 51-3 (High Cd-accumulating Ecotype, HAE) and P646 (Low Cd-accumulating Ecotype, LAE). HAE exhibited notable advantages over LAE, with 10.80 % higher plant height, 43.80 % higher biomass, 20.26 % higher Cd accumulation in aboveground tissues (93.09 μg on average), and a superior Cd translocation factor (1.97 on average). Analysis of the rhizosphere bacterial community via 16S rRNA amplicon sequencing revealed that HAE harbored a more diverse bacterial community with a distinct composition compared to LAE. Indicator analysis identified 84 genera specifically enriched in HAE, predominantly belonging to Proteobacteria, Actinobacteria, and Firmicutes, including beneficial microbes such as Streptomyces, Bacillus, and Pseudomonas. Network analysis further elucidated three taxa groups specifically recruited by HAE, which were highly correlated with functional genes that associated with biosynthesis of secondary metabolites, glycan biosynthesis and metabolism, and metabolism of cofactors and vitamins. These functions contribute to enhancing plant growth, Cd uptake, and resistance to Cd in Salix. Overall, our findings highlight the importance of the rhizosphere microbiome in facilitating Cd extraction and provide insights into microbiome-based strategies for sustainable agricultural practices.
Collapse
Affiliation(s)
- Xiaomei Song
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China; College of Art Design, Yangzhou Polytechnic Institute, Yangzhou, 225107, Jiangsu, China
| | - Ningqi Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Zhou
- National Willow Engineering Technology Research Center, Jiangsu Academy of Forestry, Nanjing, 211153, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xudong He
- National Willow Engineering Technology Research Center, Jiangsu Academy of Forestry, Nanjing, 211153, China.
| | - Nan Guo
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
6
|
Uwaremwe C, Bao W, Daoura BG, Mishra S, Zhang X, Shen L, Xia S, Yang X. Shift in the rhizosphere soil fungal community associated with root rot infection of Plukenetia volubilis Linneo caused by Fusarium and Rhizopus species. Int Microbiol 2024; 27:1231-1247. [PMID: 38158469 DOI: 10.1007/s10123-023-00470-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Plukenetia volubilis Linneo is an oleaginous plant belonging to the family Euphorbiaceae. Due to its seeds containing a high content of edible oil and rich in vitamins, P. volubilis is cultivated as an economical plant worldwide. However, the cultivation and growth of P. volubilis is challenged by phytopathogen invasion leading to production loss. METHODS In the current study, we tested the pathogenicity of fungal pathogens isolated from root rot infected P. volubilis plant tissues by inoculating them into healthy P. volubilis seedlings. Metagenomic sequencing was used to assess the shift in the fungal community of P. volubilis rhizosphere soil after root rot infection. RESULTS Four Fusarium isolates and two Rhizopus isolates were found to be root rot causative agents of P. volubilis as they induced typical root rot symptoms in healthy seedlings. The metagenomic sequencing data showed that root rot infection altered the rhizosphere fungal community. In root rot infected soil, the richness and diversity indices increased or decreased depending on pathogens. The four most abundant phyla across all samples were Ascomycota, Glomeromycota, Basidiomycota, and Mortierellomycota. In infected soil, the relative abundance of each phylum increased or decreased depending on the pathogen and functional taxonomic classification. CONCLUSIONS Based on our results, we concluded that Fusarium and Rhizopus species cause root rot infection of P. volubilis. In root rot infected P. volubilis, the shift in the rhizosphere fungal community was pathogen-dependent. These findings may serve as a key point for a future study on the biocontrol of root rot of P. volubilis.
Collapse
Affiliation(s)
- Constantine Uwaremwe
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China.
| | - Wenjie Bao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bachir Goudia Daoura
- Department of Biology, Faculty of Sciences and Technology, Dan Dicko Dankoulodo University, POBox, 465, Maradi, Niger
| | - Sandhya Mishra
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
- National Field Scientific Observation and Research Station of Forest Ecosystem in Ailao Mountain, Yunnan, 665000, China
| | - Xianxian Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingjie Shen
- College of Biology and Chemistry, Pu'er University, Pu'er, 665000, China
| | - Shangwen Xia
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
- National Field Scientific Observation and Research Station of Forest Ecosystem in Ailao Mountain, Yunnan, 665000, China
| | - Xiaodong Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China.
- National Field Scientific Observation and Research Station of Forest Ecosystem in Ailao Mountain, Yunnan, 665000, China.
| |
Collapse
|
7
|
Xiao W, Bai Y, Zhang L. Feasibility of composted green waste amended by vermiculite and earthworm casts as the growth media for three common ornamental plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45341-45352. [PMID: 38963624 DOI: 10.1007/s11356-024-34207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
This study demonstrated the effects of adding specific proportions of vermiculite (VMT: 0%, 10%, and 20%) and earthworm casts (EWCs: 0%, 10%, and 20%) on the physico-chemical properties of composted green waste (CGW), and the impacts of amended CGW as growth media on the growth of three common ornamental plants (Dahlia pinnata Cav. [dahlia], Centaurea cyanus L. [cornflower], and Consolida ajacis [L.] Schur [delphinium]). Compared with Treatment T1 (CK), the addition of 10% VMT and 20% EWCs greatly (p < 0.05) increased the total porosity, aeration porosity, water-holding porosity, total nitrogen, available phosphorus, available potassium, and organic matter of CGW by 9%, 35%, 4%, 18%, 27%, 13%, and 33%, respectively. In addition, this pattern increased (p < 0.05) the total fresh biomass, total chlorophyll content, and root length of dahlias by 9%, 19%, and 27%, respectively; those of cornflowers by 17%, 30%, and 29%, respectively (p < 0.05); and those of delphiniums by 23%, 14%, and 63%, respectively. Therefore, the amended CGW supplemented with 10% VMT and 20% EWCs was an ideal growth medium for the three plants.
Collapse
Affiliation(s)
- Wenjing Xiao
- College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yifan Bai
- College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
8
|
Qiao Y, Wang Z, Sun H, Guo H, Song Y, Zhang H, Ruan Y, Xu Q, Huang Q, Shen Q, Ling N. Synthetic community derived from grafted watermelon rhizosphere provides protection for ungrafted watermelon against Fusarium oxysporum via microbial synergistic effects. MICROBIOME 2024; 12:101. [PMID: 38840214 DOI: 10.1186/s40168-024-01814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/11/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Plant microbiota contributes to plant growth and health, including enhancing plant resistance to various diseases. Despite remarkable progress in understanding diseases resistance in plants, the precise role of rhizosphere microbiota in enhancing watermelon resistance against soil-borne diseases remains unclear. Here, we constructed a synthetic community (SynCom) of 16 core bacterial strains obtained from the rhizosphere of grafted watermelon plants. We further simplified SynCom and investigated the role of bacteria with synergistic interactions in promoting plant growth through a simple synthetic community. RESULTS Our results demonstrated that the SynCom significantly enhanced the growth and disease resistance of ungrafted watermelon grown in non-sterile soil. Furthermore, analysis of the amplicon and metagenome data revealed the pivotal role of Pseudomonas in enhancing plant health, as evidenced by a significant increase in the relative abundance and biofilm-forming pathways of Pseudomonas post-SynCom inoculation. Based on in vitro co-culture experiments and bacterial metabolomic analysis, we selected Pseudomonas along with seven other members of the SynCom that exhibited synergistic effects with Pseudomonas. It enabled us to further refine the initially constructed SynCom into a simplified SynCom comprising the eight selected bacterial species. Notably, the plant-promoting effects of simplified SynCom were similar to those of the initial SynCom. Furthermore, the simplified SynCom protected plants through synergistic effects of bacteria. CONCLUSIONS Our findings suggest that the SynCom proliferate in the rhizosphere and mitigate soil-borne diseases through microbial synergistic interactions, highlighting the potential of synergistic effects between microorganisms in enhancing plant health. This study provides a novel insight into using the functional SynCom as a promising solution for sustainable agriculture. Video Abstract.
Collapse
Affiliation(s)
- Yizhu Qiao
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhendong Wang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Sun
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hanyue Guo
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Song
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - He Zhang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Ruan
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qicheng Xu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Centre for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Qiwei Huang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning Ling
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
- Centre for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
9
|
Wang T, Gao M, Shao W, Wang L, Yang C, Wang X, Yao S, Zhang B. Dissecting the role of soybean rhizosphere-enriched bacterial taxa in modulating nitrogen-cycling functions. Appl Microbiol Biotechnol 2024; 108:347. [PMID: 38805033 PMCID: PMC11133221 DOI: 10.1007/s00253-024-13184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Crop roots selectively recruit certain microbial taxa that are essential for supporting their growth. Within the recruited microbes, some taxa are consistently enriched in the rhizosphere across various locations and crop genotypes, while others are unique to specific planting sites or genotypes. Whether these differentially enriched taxa are different in community composition and how they interact with nutrient cycling need further investigation. Here, we sampled bulk soil and the rhizosphere soil of five soybean varieties grown in Shijiazhuang and Xuzhou, categorized the rhizosphere-enriched microbes into shared, site-specific, and variety-specific taxa, and analyzed their correlation with the diazotrophic communities and microbial genes involved in nitrogen (N) cycling. The shared taxa were dominated by Actinobacteria and Thaumarchaeota, the site-specific taxa were dominated by Actinobacteria in Shijiazhuang and by Nitrospirae in Xuzhou, while the variety-specific taxa were more evenly distributed in several phyla and contained many rare operational taxonomic units (OTUs). The rhizosphere-enriched taxa correlated with most diazotroph orders negatively but with eight orders including Rhizobiales positively. Each group within the shared, site-specific, and variety-specific taxa negatively correlated with bacterial amoA and narG in Shijiazhuang and positively correlated with archaeal amoA in Xuzhou. These results revealed that the shared, site-specific, and variety-specific taxa are distinct in community compositions but similar in associations with rhizosphere N-cycling functions. They exhibited potential in regulating the soybean roots' selection for high-efficiency diazotrophs and the ammonia-oxidizing and denitrification processes. This study provides new insights into soybean rhizosphere-enriched microbes and their association with N cycling. KEY POINTS: • Soybean rhizosphere affected diazotroph community and enriched nifH, amoA, and nosZ. • Shared and site- and variety-specific taxa were dominated by different phyla. • Rhizosphere-enriched taxa were similarly associated with N-cycle functions.
Collapse
Affiliation(s)
- Tianshu Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Miao Gao
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiwei Shao
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunyan Yang
- The Key Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050031, China
| | - Xing Wang
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Shuihong Yao
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Bin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Peper A, Newton CJ, Lim S, Zheng W, Brenneman T, Yang L. Functional Characterization of Core and Unique Calcite-Dissolving Bacteria Communities from Peanut Fields. PHYTOPATHOLOGY 2024; 114:1011-1019. [PMID: 38451554 DOI: 10.1094/phyto-10-23-0380-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Calcium deficiency is a leading cause of reduced peanut (Arachis hypogaea) seed quality and has been linked to increased disease susceptibility, specifically to soilborne fungal pathogens. Sufficient calcium at flowering time is critical to ensure proper pod development. Calcite-dissolving bacteria (CDB) isolated from farming fields can dissolve calcite (CaCO3) on plates and increase soluble calcium levels in soil. However, the phylogenetic diversity and geographic distribution of CDB is unclear. Here, we surveyed soil samples from 15 peanut-producing fields in three regions in southern Georgia, representing distinct soil compositions. We isolated CDB through differentiating media and identified 52 CDB strains. CDB abundance was not associated with any of the soil characteristics we evaluated. Three core genera, represented by 43 strains, were found in all three regions. Paenibacillus was the most common CDB found in all regions, making up 30 of the 52 identified strains. Six genera, represented by eight strains, are unique to one region. Members of the core and unique communities showed comparable solubilization indexes on plates. We conclude that a diversified phylogenetic population of CDB is present in Georgia peanut fields. Despite the phylogenetic diversity, as a population, they exhibit comparable functions in solubilizing calcite on plates.
Collapse
Affiliation(s)
- Alan Peper
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
| | - Carter J Newton
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
| | - Sheena Lim
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
| | - Wendy Zheng
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
| | - Timothy Brenneman
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
- Department of Plant Pathology, University of Georgia, Tifton, GA 31794
| | - Li Yang
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
| |
Collapse
|
11
|
Jiang C, Zu C, Riaz M, Li C, Zhu Q, Xia H, Dong Q, Shen J. Influences of tobacco straw return with lime on microbial community structure of tobacco-planting soil and tobacco leaf quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30959-30971. [PMID: 38619769 DOI: 10.1007/s11356-024-33241-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Soil amendment is an important strategy for improving soil quality and crop yield. From 2014 to 2019, we conducted a study to investigate the effects of tobacco straw return with lime on soil nutrients, soil microbial community structure, tobacco leaf yield, and quality in southern Anhui, China. A field experiment was conducted with four treatments: straw removed (CK), straw return (St), straw return with dolomite (St + D), and straw return with lime (St + L). Results showed that after 5 years of application, the St + L significantly increased the soil pH by 16.9%, and the contents of soil alkaline nitrogen (N) and available potassium (K) by 17.2% and 23.0%, respectively, compared with the CK. Moreover, the St + L significantly increased tobacco leaf yield (24.0%) and the appearance (9.1%) and sensory (5.9%) quality of flue-cured tobacco leaves. The addition of soil conditioners (straw, dolomite, and lime) increased both the total reads and effective sequences of soil microorganisms. Bacterial diversity was more sensitive to changes in the external environment compared to soil fungi. The application of soil amendments (lime and straw) promoted the growth of beneficial microorganisms in the soil. Additionally, bacterial species had greater competition and limited availability of resources for survival compared to fungi. The results showed that soil microorganisms were significantly influenced by the presence of AK, AN, and pH contents. These findings can provide an effective method for improving the quality of flue-cured tobacco leaves and guiding the amelioration of acidic soil in regions where tobacco-rice rotation is practiced.
Collapse
Affiliation(s)
- Chaoqiang Jiang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences (AAAS), Hefei, 230001, People's Republic of China
| | - Chaolong Zu
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences (AAAS), Hefei, 230001, People's Republic of China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Chen Li
- Anhui Provincial Tobacco Company, Hefei, 230000, People's Republic of China
| | - Qifa Zhu
- Anhui Wannan Leaf Tobacco Co. Ltd, Xuancheng, 242000, People's Republic of China
| | - Hao Xia
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences (AAAS), Hefei, 230001, People's Republic of China
| | - Qing Dong
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences (AAAS), Hefei, 230001, People's Republic of China
| | - Jia Shen
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences (AAAS), Hefei, 230001, People's Republic of China.
| |
Collapse
|
12
|
Qiao H, Wu L, Li C, Yuan T, Gao J. Microbial perspective on restoration of degraded urban soil using ornamental plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120920. [PMID: 38688130 DOI: 10.1016/j.jenvman.2024.120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
The urban soil where abandoned buildings are demolished is barren and structurally poor, and this degraded soil requires restoration. Ornamental plants enhance the urban environment, increase biodiversity, and affect soil physicochemical properties, microbial diversity; however, their effects remain unclear. Thus, in this study, a mixed-planting meadow consisting of 14 perennial ornamental flower species, including Iris tectorum, Iris lacteal, and Patrinia scabiosaefolia, etc. Was planted at a demolition site with sewage-contaminated soil in Beijing. Simultaneously, a single-planting lawn of I. tectorum was established in a nearby park. We aimed to examine soil physicochemical properties, sequence soil bacterial 16S rRNA and fungal ITS amplicons, and analyze soil microbial diversity and community structure at both sites at five time points in the year after planting, To explore the effect of herbaceous ornamental plants on degraded urban soil, we used FAPROTAX and FUNGuild to predict bacterial and fungal functions, the bin-based null model to evaluate the soil microbial community, and random matrix theory to construct soil microbial molecular networks. The mixed-planting meadow produced a visually appealing landscape and dynamic seasonal enrichment, significantly increasing soil total nitrogen (TN) and organic matter (SOM) contents by 1.99 and 1.21 times, respectively. TN had a positive correlation with soil microbial α diversity and community structure. Dominant phyla at both sites included Proteobacteria, Actinobacteria, and Ascomycota. Although soil microorganisms were primarily influenced by stochastic processes, stochasticity was notably higher in the mixed-planting meadow than in the single-planting lawn. The mixed-planting meadow significantly increased the relative abundance of beneficial microorganisms, improving nitrification and aerobic ammonium oxidation of soil bacteria, as well as symbiotroph of fungi. No significant changes were observed in the single-planting lawn. The mixed-planting meadow established a complex soil microbial molecular network, enhancing the correlation between bacteria and fungi and increasing the number of key microorganisms. Our findings suggest the potential of mixed-planting meadow in restoring degraded urban soils by influencing the soil microbial community and enhancing the ecological service function. Our study provides theoretical support for applying mixed-planting meadow communities to improve the soil environment of urban green spaces.
Collapse
Affiliation(s)
- Hongyong Qiao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, PR China; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, PR China; School of Landscape Architecture, Beijing Forestry University, Beijing, PR China
| | - Luyao Wu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, PR China; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, PR China; School of Landscape Architecture, Beijing Forestry University, Beijing, PR China; Zhejiang Provincial Institute of Cultural Relice and Archaeology, Zhejiang Province, PR China
| | - Chaonan Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, PR China; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, PR China; School of Landscape Architecture, Beijing Forestry University, Beijing, PR China
| | - Tao Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, PR China; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, PR China; School of Landscape Architecture, Beijing Forestry University, Beijing, PR China.
| | - Jianzhou Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, PR China; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, PR China; School of Landscape Architecture, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
13
|
Meng X, Dong Q, Wang B, Ni Z, Zhang X, Liu C, Yu W, Liu J, Shi X, Xu D, Duan Y. Effect of Glycolipids Application Combined with Nitrogen Fertilizer Reduction on Maize Nitrogen Use Efficiency and Yield. PLANTS (BASEL, SWITZERLAND) 2024; 13:1222. [PMID: 38732437 PMCID: PMC11085625 DOI: 10.3390/plants13091222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Microbial-driven N turnover is important in regulating N fertilizer use efficiency through the secretion of metabolites like glycolipids. Currently, our understanding of the potential of glycolipids to partially reduce N fertilizer use and the effects of glycolipids on crop yield and N use efficiency is still limited. Here, a three-year in situ field experiment was conducted with seven treatments: no fertilization (CK); chemical N, phosphorus and potassium (NPK); NPK plus glycolipids (N+PKT); and PK plus glycolipids with 10% (0.9 N+PKT), 20% (0.8 N+PKT), 30% (0.7 N+PKT), and 100% (PKT) N reduction. Compared with NPK, glycolipids with 0-20% N reduction did not significantly reduce maize yields, and also increased N uptake by 6.26-11.07%, but no significant changes in grain or straw N uptake. The N resorption efficiency under 0.9 N+PKT was significantly greater than that under NPK, while the apparent utilization rates of N fertilizer and partial factor productivity of N under 0.9 N+PKT were significantly greater than those under NPK. Although 0.9 N+PKT led to additional labor and input costs, compared with NPK, it had a greater net economic benefit. Our study demonstrates the potential for using glycolipids in agroecosystem management and provides theoretical support for optimizing fertilization strategies.
Collapse
Affiliation(s)
- Xianghai Meng
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (Q.D.); (B.W.); (X.Z.); (C.L.); (W.Y.); (X.S.); (D.X.)
| | - Qingshan Dong
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (Q.D.); (B.W.); (X.Z.); (C.L.); (W.Y.); (X.S.); (D.X.)
| | - Baicheng Wang
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (Q.D.); (B.W.); (X.Z.); (C.L.); (W.Y.); (X.S.); (D.X.)
| | - Zheng Ni
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
| | - Xingzhe Zhang
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (Q.D.); (B.W.); (X.Z.); (C.L.); (W.Y.); (X.S.); (D.X.)
| | - Chunguang Liu
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (Q.D.); (B.W.); (X.Z.); (C.L.); (W.Y.); (X.S.); (D.X.)
| | - Wenquan Yu
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (Q.D.); (B.W.); (X.Z.); (C.L.); (W.Y.); (X.S.); (D.X.)
| | - Jie Liu
- Heilongjiang Academy of Black Soil Conservation & Utilization, Harbin 150086, China;
| | - Xinrui Shi
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (Q.D.); (B.W.); (X.Z.); (C.L.); (W.Y.); (X.S.); (D.X.)
| | - Dehai Xu
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (Q.D.); (B.W.); (X.Z.); (C.L.); (W.Y.); (X.S.); (D.X.)
| | - Yan Duan
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
| |
Collapse
|
14
|
Fujita H, Yoshida S, Suzuki K, Toju H. Soil prokaryotic and fungal biome structures associated with crop disease status across the Japan Archipelago. mSphere 2024; 9:e0080323. [PMID: 38567970 PMCID: PMC11036807 DOI: 10.1128/msphere.00803-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/29/2024] [Indexed: 04/24/2024] Open
Abstract
Archaea, bacteria, and fungi in the soil are increasingly recognized as determinants of agricultural productivity and sustainability. A crucial step for exploring soil microbiomes with important ecosystem functions is to perform statistical analyses on the potential relationship between microbiome structure and functions based on comparisons of hundreds or thousands of environmental samples collected across broad geographic ranges. In this study, we integrated agricultural field metadata with microbial community analyses by targeting 2,903 bulk soil samples collected along a latitudinal gradient from cool-temperate to subtropical regions in Japan (26.1-42.8 °N). The data involving 632 archaeal, 26,868 bacterial, and 4,889 fungal operational taxonomic units detected across the fields of 19 crop plant species allowed us to conduct statistical analyses (permutational analyses of variance, generalized linear mixed models, randomization analyses, and network analyses) on the relationship among edaphic factors, microbiome compositions, and crop disease prevalence. We then examined whether the diverse microbes form species sets varying in potential ecological impacts on crop plants. A network analysis suggested that the observed prokaryotes and fungi were classified into several species sets (network modules), which differed substantially in association with crop disease prevalence. Within the network of microbe-to-microbe coexistence, ecologically diverse microbes, such as an ammonium-oxidizing archaeon, an antibiotics-producing bacterium, and a potentially mycoparasitic fungus, were inferred to play key roles in shifts between crop-disease-promotive and crop-disease-suppressive states of soil microbiomes. The bird's-eye view of soil microbiome structure will provide a basis for designing and managing agroecosystems with high disease-suppressive functions.IMPORTANCEUnderstanding how microbiome structure and functions are organized in soil ecosystems is one of the major challenges in both basic ecology and applied microbiology. Given the ongoing worldwide degradation of agroecosystems, building frameworks for exploring structural diversity and functional profiles of soil microbiomes is an essential task. Our study provides an overview of cropland microbiome states in light of potential crop-disease-suppressive functions. The large data set allowed us to explore highly functional species sets that may be stably managed in agroecosystems. Furthermore, an analysis of network architecture highlighted species that are potentially used to cause shifts from disease-prevalent states of agroecosystems to disease-suppressive states. By extending the approach of comparative analyses toward broader geographic ranges and diverse agricultural practices, agroecosystem with maximized biological functions will be further explored.
Collapse
Affiliation(s)
- Hiroaki Fujita
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Shigenobu Yoshida
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kenta Suzuki
- Integrated Bioresource Information Division, BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
- Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Wang X, Tang Y, Yue X, Wang S, Yang K, Xu Y, Shen Q, Friman VP, Wei Z. The role of rhizosphere phages in soil health. FEMS Microbiol Ecol 2024; 100:fiae052. [PMID: 38678007 PMCID: PMC11065364 DOI: 10.1093/femsec/fiae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/22/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
While the One Health framework has emphasized the importance of soil microbiomes for plant and human health, one of the most diverse and abundant groups-bacterial viruses, i.e. phages-has been mostly neglected. This perspective reviews the significance of phages for plant health in rhizosphere and explores their ecological and evolutionary impacts on soil ecosystems. We first summarize our current understanding of the diversity and ecological roles of phages in soil microbiomes in terms of nutrient cycling, top-down density regulation, and pathogen suppression. We then consider how phages drive bacterial evolution in soils by promoting horizontal gene transfer, encoding auxiliary metabolic genes that increase host bacterial fitness, and selecting for phage-resistant mutants with altered ecology due to trade-offs with pathogen competitiveness and virulence. Finally, we consider challenges and avenues for phage research in soil ecosystems and how to elucidate the significance of phages for microbial ecology and evolution and soil ecosystem functioning in the future. We conclude that similar to bacteria, phages likely play important roles in connecting different One Health compartments, affecting microbiome diversity and functions in soils. From the applied perspective, phages could offer novel approaches to modulate and optimize microbial and microbe-plant interactions to enhance soil health.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yike Tang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiufeng Yue
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuo Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Keming Yang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangchun Xu
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Ville-Petri Friman
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Zhong Wei
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Liu J, Zeng D, Huang Y, Zhong L, Liao J, Shi Y, Jiang H, Luo Y, Liang Y, Chai S. The structure and diversity of bacteria and fungi in the roots and rhizosphere soil of three different species of Geodorum. BMC Genomics 2024; 25:222. [PMID: 38418975 PMCID: PMC10903027 DOI: 10.1186/s12864-024-10143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Shepherd's crook (Geodorum) is a genus of protected orchids that are valuable both medicinally and ornamentally. Geodorum eulophioides (GE) is an endangered and narrowly distributed species, and Geodorum densiflorum (GD) and Geodorum attenuatum (GA) are widespread species. The growth of orchids depend on microorganisms. However, there are few studies on the microbial structure in Geodorum, and little is known about the roles of microorganisms in the endangered mechanism of G. eulophioides. This study analyzed the structure and composition of bacterial and fungal communities in the roots and rhizosphere soil of GE, GD, and GA. The results showed that Delftia, Bordetella and norank_f_Xanthobacteraceae were the dominant bacteria in the roots of Geodorum, while norank_f_Xanthobacteraceae, Gaiella and norank_f_norank_o_Gaiellales were the dominant bacteria in the rhizosphere soil of Geodorum. In the roots, the proportion of Mycobacterium in GD_roadside was higher than that in GD_understory, on the contrary, the proportion of Fusarium, Delftia and Bordetella in GD_roadside was lower than that in GD_understory. Compared with the GD_understory, the roots of GD_roadside had lower microbial diversity. In the endangered species GE, Russula was the primary fungus in the roots and rhizosphere soil, with fungal diversity lower than in the more widespread species. Among the widespread species, the dominant fungal genera in the roots and rhizosphere soil were Neocosmospora, Fusarium and Coprinopsis. This study enhances our understanding of microbial composition and diversity, providing fundamental information for future research on microbial contributions to plant growth and ecosystem function in Geodorum.
Collapse
Affiliation(s)
- Jianxiu Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Danjuan Zeng
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, the Chinese Academy of Sciences, Guilin, China
| | - Yang Huang
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, China
| | - Lisha Zhong
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Jialin Liao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Yuxing Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Haidu Jiang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, the Chinese Academy of Sciences, Guilin, China
| | - Yajin Luo
- Yachang Orchid National Nature Reserve Management Center, Baise, China
| | - Yu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China.
| | - Shengfeng Chai
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, the Chinese Academy of Sciences, Guilin, China.
| |
Collapse
|
17
|
Wang Y, Zhang L, Zhang S, Zhu S, Zhang F, Zhang G, Duan B, Ren R, Zhang H, Han M, Xu Y, Li Y. Regulating pathway for bacterial diversities toward improved ecological benefits of thiencarbazone-methyl·isoxaflutole application: A field experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120037. [PMID: 38194872 DOI: 10.1016/j.jenvman.2024.120037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Herbicide abuse has a significantly negative impact on soil microflora and further influences the ecological benefit. The regulating measures and corresponding mechanisms mitigating the decreased bacterial diversity due to herbicide use have rarely been studied. A field experiment containing the application gradient of an efficient maize herbicide thiencarbazone-methyl·isoxaflutole was performed. The relationship between soil bacterial community and thiencarbazone-methyl·isoxaflutole use was revealed. Modified attapulgite was added to explore its impacts on soil microflora under the thiencarbazone-methyl·isoxaflutole application. Based on the analytic network process-entropy weighting method-TOPSIS method model, the ecological benefit focusing on microbial responses was quantitatively estimated along with technical effectiveness and economic benefit. The results showed that the diversity indices of soil microflora, especially the Inv_Simpson index, were reduced at the recommended, 5 and 10 times the recommended dosages of thiencarbazone-methyl·isoxaflutole use. The Flavisolibacter bacteria was negatively correlated with the residues in soils based on the random forest model and correlation analysis, indicating a potential degrader of thiencarbazone-methyl·isoxaflutole residues. The structural equation model further confirmed that the high soil water content and soil pH promoted the function of Flavisolibacter bacteria, facilitated the dissipation of thiencarbazone-methyl·isoxaflutole residues and further improved the diversity of soil microflora. In addition, the presence of modified attapulgite was found to increase the soil pH, which may improve bacterial diversity through the regulating pathway. This explained the high ecological benefits of the treatment where the thiencarbazone-methyl·isoxaflutole was applied at the recommended dosage rates in conjunction with modified attapulgite addition. Therefore, the comprehensive benefits of thiencarbazone-methyl·isoxaflutole application with a focus on ecological benefits can be improved by regulating the soil pH with modified attapulgite.
Collapse
Affiliation(s)
- Yonglu Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyun Zhang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Shumin Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shiliang Zhu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengsong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China.
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Bihua Duan
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Ren
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Hongyu Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Meng Han
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Yi Xu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuyang Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
18
|
Wu P, Hu D, Guo J, Li J, Zhong Q, Cheng D. Unraveling the spatial-temporal distribution patterns of soil abundant and rare bacterial communities in China's subtropical mountain forest. Front Microbiol 2024; 15:1323887. [PMID: 38410396 PMCID: PMC10895375 DOI: 10.3389/fmicb.2024.1323887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction The pivotal roles of both abundant and rare bacteria in ecosystem function are widely acknowledged. Despite this, the diversity elevational patterns of these two bacterial taxa in different seasons and influencing factors remains underexplored, especially in the case of rare bacteria. Methods Here, a metabarcoding approach was employed to investigate elevational patterns of these two bacterial communities in different seasons and tested the roles of soil physico-chemical properties in structuring these abundant and rare bacterial community. Results and discussion Our findings revealed that variation in elevation and season exerted notably effects on the rare bacterial diversity. Despite the reactions of abundant and rare communities to the elevational gradient exhibited similarities during both summer and winter, distinct elevational patterns were observed in their respective diversity. Specifically, abundant bacterial diversity exhibited a roughly U-shaped pattern along the elevation gradient, while rare bacterial diversity increased with the elevational gradient. Soil moisture and N:P were the dominant factor leading to the pronounced divergence in elevational distributions in summer. Soil temperature and pH were the key factors in winter. The network analysis revealed the bacteria are better able to adapt to environmental fluctuations during the summer season. Additionally, compared to abundant bacteria, the taxonomy of rare bacteria displayed a higher degree of complexity. Our discovery contributes to advancing our comprehension of intricate dynamic diversity patterns in abundant and rare bacteria in the context of environmental gradients and seasonal fluctuations.
Collapse
Affiliation(s)
- Panpan Wu
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| | - Dandan Hu
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| | - Jiaheng Guo
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| | - Jinlong Li
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| | - Quanlin Zhong
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| | - Dongliang Cheng
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fuzhou, China
| |
Collapse
|
19
|
Xing W, Hu N, Li Z, Feng L, Zhang W, Du Preez G, Zhang H, Li D, Lu S, Chang SX, Zhang Q, Lou Y. Soil enzyme profile analysis for indicating decomposer micro-food web. IMETA 2024; 3:e161. [PMID: 38868509 PMCID: PMC10989158 DOI: 10.1002/imt2.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 06/14/2024]
Abstract
Highly diverse exoenzymes mediate the energy flow from substrates to the multitrophic microbiota within the soil decomposer micro-food web. Here, we used a "soil enzyme profile analysis" approach to establish a series of enzyme profile indices; those indices were hypothesized to reflect micro-food web features. We systematically evaluated the shifts in enzyme profile indices in relation to the micro-food web features in the restoration of an abandoned cropland to a natural area. We found that enzymatic C:N stoichiometry and decomposability index were significantly associated with substrate availability. Furthermore, the higher Shannon diversity index in the exoenzyme profile, especially for the C-degrading hydrolase, corresponded to a greater microbiota community diversity. The increased complexity and stability of the exoenzyme network reflected similar changes with the micro-food web networks. In addition, the gross activity of the enzyme profile as a parameter for soil multifunctionality, effectively predicted the substrate content, microbiota community size, diversity, and network complexity. Ultimately, the proposed enzymic channel index was closely associated with the traditional decomposition channel indices derived from microorganisms and nematodes. Our results showed that soil enzyme profile analysis reflected very well the decomposer food web features. Our study has important implications for projecting future climate change or anthropogenic disturbance impacts on soil decomposer micro-food web features by using soil enzyme profile analysis.
Collapse
Affiliation(s)
- Wen Xing
- Guangxi Key Laboratory of Health Care Food Science and Technology, School of Food and Biological Engineering Hezhou University Hezhou China
- Institute of Environment and Sustainable Development in Agriculture Chinese Academy of Agricultural Sciences Beijing China
| | - Ning Hu
- Guangxi Key Laboratory of Health Care Food Science and Technology, School of Food and Biological Engineering Hezhou University Hezhou China
| | - Zhongfang Li
- Guangxi Key Laboratory of Health Care Food Science and Technology, School of Food and Biological Engineering Hezhou University Hezhou China
| | - Liangshan Feng
- Liaoning Academy of Agricultural Sciences Shenyang China
| | - Weidong Zhang
- Institute of Applied Ecology Chinese Academy of Sciences Shenyang China
| | - Gerhard Du Preez
- Unit for Environmental Sciences and Management North-West University Potchefstroom South Africa
| | - Huimin Zhang
- Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Beijing China
| | - Dongchu Li
- Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Beijing China
| | - Shunbao Lu
- Jiangxi Normal University Nanchang China
| | - Scott X Chang
- Department of Renewable Resources University of Alberta Edmonton Alberta Canada
| | - Qingwen Zhang
- Institute of Environment and Sustainable Development in Agriculture Chinese Academy of Agricultural Sciences Beijing China
| | - Yilai Lou
- Institute of Environment and Sustainable Development in Agriculture Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
20
|
Qin X, Xu J, An X, Yang J, Wang Y, Dou M, Wang M, Huang J, Fu Y. Insight of endophytic fungi promoting the growth and development of woody plants. Crit Rev Biotechnol 2024; 44:78-99. [PMID: 36592988 DOI: 10.1080/07388551.2022.2129579] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/04/2022] [Accepted: 04/16/2022] [Indexed: 01/04/2023]
Abstract
Microorganisms play an important role in plant growth and development. In particular, endophytic fungi is one of the important kinds of microorganisms and has a mutually beneficial symbiotic relationship with host plants. Endophytic fungi have many substantial benefits to host plants, especially for woody plants, such as accelerating plant growth, enhancing stress resistance, promoting nutrient absorption, resisting pathogens and etc. However, the effects of endophytic fungi on the growth and development of woody plants have not been systematically summarized. In this review, the functions of endophytic fungi for the growth and development of woody plants have been mainly reviewed, including regulating plant growth (e.g., flowering, root elongation, etc.) by producing nutrients and plant hormones, and improving plant disease, insect resistance and heavy metal resistance by producing secondary metabolites. In addition, the diversity of endophytic fungi could improve the ability of woody plants to adapt to adverse environment. The components produced by endophytic fungi have excellent potential for the growth and development of woody plants. This review has systematically discussed the potential regulation mechanism of endophytic fungi regulating the growth and development of woody plants, it would be of great significance for the development and utilization of endophytic fungi resource from woody plants for the protection of forest resources.
Collapse
Affiliation(s)
- Xiangyu Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Jian Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Xiaoli An
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Jie Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Yao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Meijia Dou
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Minggang Wang
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Jin Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
21
|
Lin M, Pan C, Qian C, Tang F, Zhao S, Guo J, Zhang Y, Song J, Rittmann BE. Core taxa, co-occurrence pattern, diversity, and metabolic pathways contributing to robust anaerobic biodegradation of chlorophenol. ENVIRONMENTAL RESEARCH 2024; 241:117591. [PMID: 37926226 DOI: 10.1016/j.envres.2023.117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
It is hard to achieve robustness in anaerobic biodegradation of trichlorophenol (TCP). We hypothesized that specific combinations of environmental factors determine phylogenetic diversity and play important roles in the decomposition and stability of TCP-biodegrading bacteria. The anaerobic bioreactor was operated at 35 °C (H condition) or 30 °C (L condition) and mainly fed with TCP (from 28 μM to 180 μM) and organic material. Metagenome sequencing was combined with 16S rRNA gene amplicon sequencing for the microbial community analysis. The results exhibited that the property of robustness occurred in specific conditions. The corresponding co-occurrence and diversity patterns suggest high collectivization, degree and evenness for robust communities. Two types of core functional taxa were recognized: dechlorinators (unclassified Anaerolineae, Thermanaerothrix and Desulfovibrio) and ring-opening members (unclassified Proteobacteria, Methanosarcina, Methanoperedens, and Rubrobacter). The deterministic process of the expansion of niche of syntrophic bacteria at higher temperatures was confirmed. The reductive and hydrolytic dechlorination mechanisms jointly lead to C-Cl bond cleavage. H ultimately adapted to the stress of high TCP loading, with more abundant ring-opening enzyme (EC 3.1.1.45, ∼55%) and hydrolytic dechlorinase (EC 3.8.1.5, 26.5%) genes than L (∼47%, 10.5%). The functional structure (based on KEGG) in H was highly stable despite the high loading of TCP (up to 60 μM), but not in L. Furthermore, an unknown taxon with multiple functions (dechlorinating and ring-opening) was found based on genetic sequencing; its functional contribution of EC 3.8.1.5 in H (26.5%) was higher than that in L (10.5%), and it possessed a new metabolic pathway for biodegradation of halogenated aromatic compounds. This new finding is supplementary to the robust mechanisms underlying organic chlorine biodegradation, which can be used to support the engineering, regulation, and design of synthetic microbiomes.
Collapse
Affiliation(s)
- Ming Lin
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Chenhui Pan
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Chenyi Qian
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Fei Tang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Siwen Zhao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Jun Guo
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Department of Environmental Science and Engineering, Fudan University, Shanghai, 200238, PR China
| | - Yongming Zhang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Jiaxiu Song
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287-5701, USA
| |
Collapse
|
22
|
Hedin KA, Mirhakkak MH, Vaaben TH, Sands C, Pedersen M, Baker A, Vazquez-Uribe R, Schäuble S, Panagiotou G, Wellejus A, Sommer MOA. Saccharomyces boulardii enhances anti-inflammatory effectors and AhR activation via metabolic interactions in probiotic communities. THE ISME JOURNAL 2024; 18:wrae212. [PMID: 39488793 PMCID: PMC11631509 DOI: 10.1093/ismejo/wrae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/04/2024]
Abstract
Metabolic exchanges between strains in gut microbial communities shape their composition and interactions with the host. This study investigates the metabolic synergy between potential probiotic bacteria and Saccharomyces boulardii, aiming to enhance anti-inflammatory effects within a multi-species probiotic community. By screening a collection of 85 potential probiotic bacterial strains, we identified two strains that demonstrated a synergistic relationship with S. boulardii in pairwise co-cultivation. Furthermore, we computationally predicted cooperative communities with symbiotic relationships between S. boulardii and these bacteria. Experimental validation of 28 communities highlighted the role of S. boulardii as a key player in microbial communities, significantly boosting the community's cell number and production of anti-inflammatory effectors, thereby affirming its essential role in improving symbiotic dynamics. Based on our observation, one defined community significantly activated the aryl hydrocarbon receptor-a key regulator of immune response-280-fold more effectively than the community without S. boulardii. This study underscores the potential of microbial communities for the design of more effective probiotic formulations.
Collapse
Affiliation(s)
- Karl Alex Hedin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Mohammad H Mirhakkak
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany
| | - Troels Holger Vaaben
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Carmen Sands
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Mikael Pedersen
- National Food Institute, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Adam Baker
- Human Health Biosolution, Novonesis, Hørsholm 2970, Denmark
| | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- Center for Microbiology, VIB-KU Leuven, Leuven 3001, Belgium
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University, Jena 07743, Germany
- Jena University Hospital, Friedrich Schiller University, Jena 07743, Germany
- Department of Medicine, University of Hong Kong, Hong Kong (SAR), China
| | - Anja Wellejus
- Human Health Biosolution, Novonesis, Hørsholm 2970, Denmark
| | - Morten Otto Alexander Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
23
|
Liu J, Peng Z, Tu H, Qiu Y, Liu Y, Li X, Gao H, Pan H, Chen B, Liang C, Chen S, Qi J, Wang Y, Wei G, Jiao S. Oligotrophic microbes are recruited to resist multiple global change factors in agricultural subsoils. ENVIRONMENT INTERNATIONAL 2024; 183:108429. [PMID: 38219540 DOI: 10.1016/j.envint.2024.108429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
An increasing number of anthropogenic pressures can have negative effects on biodiversity and ecosystem functioning. However, our understanding of how soil microbial communities and functions in response to multiple global change factors (GCFs) is still incomplete, particularly in less frequently disturbed subsoils. In this study, we examined the impact of different levels of GCFs (0-9) on soil functions and bacterial communities in both topsoils (0-20 cm) and subsoils (20-40 cm) of an agricultural ecosystem, and characterized the intrinsic factors influencing community resistance based on microbial life history strategy. Our experimental results showed a decline in soil multifunctionality, bacterial diversity, and community resistance as the number of GCFs increased, with a more drastic reduction in community resistance of subsoils. Specifically, we observed a significantly positive relationship between the oligotroph/copiotroph ratio and community resistance in subsoils, which was also verified by the negative correlation between 16S rRNA operon (rrn) copy number and community resistance. Structural equation modeling further revealed the direct effects of community resistance in promoting the ecosystem functioning, regardless of top- and subsoils. Therefore, these results suggested that subsoils may recruit more oligotrophic microbes to enhance their originally weaker community resistance under multiple GCFs, which was essential for maintaining sustainable agroecological functions and services. Overall, our study represents a significant advance in linking microbial life history strategy to the resistance of belowground microbial community and functionality.
Collapse
Affiliation(s)
- Jiai Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ziheng Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hairong Tu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yu Qiu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yu Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaomeng Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hang Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Haibo Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Beibei Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chunling Liang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shi Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiejun Qi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yihe Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Shuo Jiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
24
|
Peng Z, Yang Y, Liu Y, Bu L, Qi J, Gao H, Chen S, Pan H, Chen B, Liang C, Li X, An Y, Wang S, Wei G, Jiao S. The neglected roles of adjacent natural ecosystems in maintaining bacterial diversity in agroecosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e16996. [PMID: 37916454 DOI: 10.1111/gcb.16996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
A central aim of community ecology is to understand how local species diversity is shaped. Agricultural activities are reshaping and filtering soil biodiversity and communities; however, ecological processes that structure agricultural communities have often overlooked the role of the regional species pool, mainly owing to the lack of large datasets across several regions. Here, we conducted a soil survey of 941 plots of agricultural and adjacent natural ecosystems (e.g., forest, wetland, grassland, and desert) in 38 regions across diverse climatic and soil gradients to evaluate whether the regional species pool of soil microbes from adjacent natural ecosystems is important in shaping agricultural soil microbial diversity and completeness. Using a framework of multiscales community assembly, we revealed that the regional species pool was an important predictor of agricultural bacterial diversity and explained a unique variation that cannot be predicted by historical legacy, large-scale environmental factors, and local community assembly processes. Moreover, the species pool effects were associated with microbial dormancy potential, where taxa with higher dormancy potential exhibited stronger species pool effects. Bacterial diversity in regions with higher agricultural intensity was more influenced by species pool effects than that in regions with low intensity, indicating that the maintenance of agricultural biodiversity in high-intensity regions strongly depends on species present in the surrounding landscape. Models for community completeness indicated the positive effect of regional species pool, further implying the community unsaturation and increased potential in bacterial diversity of agricultural ecosystems. Overall, our study reveals the indubitable role of regional species pool from adjacent natural ecosystems in predicting bacterial diversity, which has useful implication for biodiversity management and conservation in agricultural systems.
Collapse
Affiliation(s)
- Ziheng Peng
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yu Liu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lianyan Bu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiejun Qi
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Hang Gao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shi Chen
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Haibo Pan
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Beibei Chen
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunling Liang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaomeng Li
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yining An
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Gehong Wei
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuo Jiao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
25
|
Yang Z, Kang J, Ye Z, Qiu W, Liu J, Cao X, Ge J, Ping W. Synergistic benefits of Funneliformis mosseae and Bacillus paramycoides: Enhancing soil health and soybean tolerance to root rot disease. ENVIRONMENTAL RESEARCH 2023; 238:117219. [PMID: 37778608 DOI: 10.1016/j.envres.2023.117219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
To explore the response of soil metabolite composition to soybean disease, the effect of the combined inoculation of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting bacteria on soybean root rot caused by Fusarium oxysporum was studied. A factorial completely randomized design with three factors (AMF, Bacillus. paramycoides, and rot disease stress) was conducted, and eight treatments, including normal groups and stress groups, were performed using pot experiments. GC‒MS and enzymatic assays were used to evaluate the soil factors and soybean growth indicators. The results showed that there were significant differences in the composition of metabolites among the different treatment groups, and 23 metabolites were significantly related to soybean biomass. The combined inoculation of Funneliformis mosseae and Bacillus paramycoides resulted in a significant reduction in harmful soil metabolites associated with root rot disease, such as ethylbenzene and styrene. This reduction in metabolites contributed to improving soil health, as evidenced by enhanced soybean defence enzyme activities and microbial activity, and β-1,3-glucanase, chitinase and phenylalanine ammonia-lyase activities were improved to alleviate plant rhizosphere stress. Furthermore, soybean plants inoculated with the synergistic treatments exhibited reduced root rot disease severity and improved growth indicators compared to control plants. Plant height, root dry weight (RDW), and shoot and root fresh weight (SRFW) were improved by 4.18-53.79%, and the AM fungal colonization rate was also improved under stress. The synergistic application of Funneliformis mosseae and Bacillus paramycoides can effectively enhance soil health by inhibiting the production of harmful soil metabolites and improving soybean tolerance to root rot disease. This approach holds promise for the sustainable management of soil-borne diseases in soybean cultivation.
Collapse
Affiliation(s)
- Zhichao Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Zeming Ye
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Wei Qiu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Jiaxin Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xinbo Cao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao, 066102, China.
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao, 066102, China.
| |
Collapse
|
26
|
Lartey I, Benucci GMN, Marsh TL, Bonito GM, Melakeberhan H. Characterizing microbial communities associated with northern root-knot nematode ( Meloidogyne hapla) occurrence and soil health. Front Microbiol 2023; 14:1267008. [PMID: 38029134 PMCID: PMC10667709 DOI: 10.3389/fmicb.2023.1267008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
The northern root-knot nematode (Meloidogyne hapla) causes extensive damage to agricultural crops globally. In addition, M. hapla populations with no known genetic or morphological differences exhibit parasitic variability (PV) or reproductive potential based on soil type. However, why M. hapla populations from mineral soil with degraded soil health conditions have a higher PV than populations from muck soil is unknown. To improve our understanding of soil bio-physicochemical conditions in the environment where M. hapla populations exhibited PV, this study characterized the soil microbial community and core- and indicator-species structure associated with M. hapla occurrence and soil health conditions in 15 Michigan mineral and muck vegetable production fields. Bacterial and fungal communities in soils from where nematodes were isolated were characterized with high throughput sequencing of 16S and internal transcribed spacer (ITS) rDNA. Our results showed that M. hapla-infested, as well as disturbed and degraded muck fields, had lower bacterial diversity (observed richness and Shannon) compared to corresponding mineral soil fields or non-infested mineral fields. Bacterial and fungal community abundance varied by soil group, soil health conditions, and/or M. hapla occurrence. A core microbial community was found to consist of 39 bacterial and 44 fungal sub-operational taxonomic units (OTUs) across all fields. In addition, 25 bacteria were resolved as indicator OTUs associated with M. hapla presence or absence, and 1,065 bacteria as indicator OTUs associated with soil health conditions. Out of the 1,065 bacterial OTUs, 73.9% indicated stable soil health, 8.4% disturbed, and 0.4% degraded condition; no indicators were common to the three categories. Collectively, these results provide a foundation for an in-depth understanding of the environment where M. hapla exists and conditions associated with parasitic variability.
Collapse
Affiliation(s)
- Isaac Lartey
- Agricultural Nematology Laboratory, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Gian M. N. Benucci
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Terence L. Marsh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Gregory M. Bonito
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Haddish Melakeberhan
- Agricultural Nematology Laboratory, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
27
|
Shu X, Liu W, Huang H, Ye Q, Zhu S, Peng Z, Li Y, Deng L, Yang Z, Chen H, Liu D, Shi J. Meta-Analysis of Organic Fertilization Effects on Soil Bacterial Diversity and Community Composition in Agroecosystems. PLANTS (BASEL, SWITZERLAND) 2023; 12:3801. [PMID: 38005698 PMCID: PMC10675672 DOI: 10.3390/plants12223801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023]
Abstract
Application of organic fertilizers or their combination with chemical fertilizers is a feasible practice for improving soil fertility and reducing soil degradation in agroecosystems, and these regulations are mainly mediated though soil microbial communities. Despite bacteria ranking among the most abundant and diverse groups of soil microorganisms, the effects of long-term organic fertilization (OF) and chemical-organic fertilization (COF) on soil bacterial diversity and community composition remain unclear. In this study, we conducted a meta-analysis and demonstrated that OF had no significant effect on bacterial alpha diversity. Application of chemical fertilizer and crop residue significantly decreased bacterial Richness index. Both OF and COF significantly altered bacterial community structure, with these changes being predominately attributed to shifts in soil pH. For bacterial phyla, both OF and COF significantly increased the relative abundance of Proteobacteria and Bacteroidetes, suggesting that OF and COF may cause the enrichment of copiotrophic taxa. In addition, COF significantly increased the relative abundance of Gammaproteobacteria but decreased the relative abundance of Acidobacteria. Overall, our results suggest that organic and chemical-organic fertilization can effectively maintain bacterial diversity and enhance soil fertility in agroecosystems, and the alteration of soil bacterial community structure is closely intertwined with soil pH.
Collapse
Affiliation(s)
- Xiangyang Shu
- Key Lab of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China
| | - Weijia Liu
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (W.L.); (Q.Y.); (S.Z.)
| | - Han Huang
- College of Economics and Management, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Qinxin Ye
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (W.L.); (Q.Y.); (S.Z.)
| | - Shunxi Zhu
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (W.L.); (Q.Y.); (S.Z.)
| | - Zhaohui Peng
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (W.L.); (Q.Y.); (S.Z.)
| | - Yiding Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (L.D.)
| | - Liangji Deng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (L.D.)
| | - Zepeng Yang
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Z.Y.); (H.C.); (D.L.)
| | - Honglin Chen
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Z.Y.); (H.C.); (D.L.)
| | - Dinghui Liu
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Z.Y.); (H.C.); (D.L.)
| | - Jialing Shi
- Chengdu Agricultural and Rural Bureau, Chengdu 610066, China;
| |
Collapse
|
28
|
Liu W, Yang Z, Ye Q, Peng Z, Zhu S, Chen H, Liu D, Li Y, Deng L, Shu X, Huang H. Positive Effects of Organic Amendments on Soil Microbes and Their Functionality in Agro-Ecosystems. PLANTS (BASEL, SWITZERLAND) 2023; 12:3790. [PMID: 38005687 PMCID: PMC10674390 DOI: 10.3390/plants12223790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/26/2023]
Abstract
Soil microbial characteristics are considered to be an index for soil quality evaluation. It is generally believed that organic amendments replacing chemical fertilizers have positive effects on changing microbial activity and community structure. However, their effects on different agro-ecosystems on a global scale and their differences in different environmental conditions and experimental durations are unclear. This study performed a meta-analysis based on 94 studies with 204 observations to evaluate the overall effects and their differences in different experimental conditions and duration. The results indicated that compared to chemical fertilizer, organic amendments significantly increased total microbial biomass, bacterial biomass, fungal biomass, Gram-positive bacterial biomass and Gram-negative bacterial biomass, and had no effect on the ratio of fungi to bacteria and ratio of Gram-positive bacteria to Gram-negative bacteria. Meanwhile, land use type, mean annual precipitation and soil initial pH are essential factors affecting microbial activity response. Organic-amendment-induced shifts in microbial biomass can be predominantly explained by soil C and nutrient availability changes. Additionally, we observed positive relationships between microbial functionality and microbial biomass, suggesting that organic-amendment-induced changes in microbial activities improved soil microbial functionality.
Collapse
Affiliation(s)
- Weijia Liu
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (W.L.); (Q.Y.)
| | - Zepeng Yang
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Z.Y.); (H.C.); (D.L.)
| | - Qinxin Ye
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (W.L.); (Q.Y.)
| | - Zhaohui Peng
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (W.L.); (Q.Y.)
| | - Shunxi Zhu
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (W.L.); (Q.Y.)
| | - Honglin Chen
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Z.Y.); (H.C.); (D.L.)
| | - Dinghui Liu
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Z.Y.); (H.C.); (D.L.)
| | - Yiding Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (L.D.)
| | - Liangji Deng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (L.D.)
| | - Xiangyang Shu
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (W.L.); (Q.Y.)
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Z.Y.); (H.C.); (D.L.)
- Key Lab of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China
| | - Han Huang
- College of Economics and Management, Xinjiang Agricultural University, Urumqi 830052, China;
| |
Collapse
|
29
|
Hu S, Li G, Berlinches de Gea A, Teunissen J, Geisen S, Wilschut RA, Schwelm A, Wang Y. Microbiome predators in changing soils. Environ Microbiol 2023; 25:2057-2067. [PMID: 37438930 DOI: 10.1111/1462-2920.16461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
Microbiome predators shape the soil microbiome and thereby soil functions. However, this knowledge has been obtained from small-scale observations in fundamental rather than applied settings and has focused on a few species under ambient conditions. Therefore, there are several unaddressed questions on soil microbiome predators: (1) What is the role of microbiome predators in soil functioning? (2) How does global change affect microbiome predators and their functions? (3) How can microbiome predators be applied in agriculture? We show that there is sufficient evidence for the vital role of microbiome predators in soils and stress that global changes impact their functions, something that urgently needs to be addressed to better understand soil functioning as a whole. We are convinced that there is a potential for the application of microbiome predators in agricultural settings, as they may help to sustainably increase plant growth. Therefore, we plea for more applied research on microbiome predators.
Collapse
Affiliation(s)
- Shunran Hu
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Guixin Li
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Alejandro Berlinches de Gea
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
| | - Joliese Teunissen
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Stefan Geisen
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
| | - Rutger A Wilschut
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
| | - Arne Schwelm
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
- Department of Environment, Soils and Landuse, Teagasc Johnstown Castle, Wexford, Ireland
| | - Yuxin Wang
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
| |
Collapse
|
30
|
Lozano-Andrade CN, Nogueira CG, Henriksen NNSE, Wibowo M, Jarmusch SA, Kovács ÁT. Establishment of a transparent soil system to study Bacillus subtilis chemical ecology. ISME COMMUNICATIONS 2023; 3:110. [PMID: 37838789 PMCID: PMC10576751 DOI: 10.1038/s43705-023-00318-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Bacterial secondary metabolites are structurally diverse molecules that drive microbial interaction by altering growth, cell differentiation, and signaling. Bacillus subtilis, a Gram-positive soil-dwelling bacterium, produces a wealth of secondary metabolites, among them, lipopeptides have been vastly studied by their antimicrobial, antitumor, and surfactant activities. However, the natural functions of secondary metabolites in the lifestyles of the producing organism remain less explored under natural conditions, i.e. in soil. Here, we describe a hydrogel-based transparent soil system to investigate B. subtilis chemical ecology under controllable soil-like conditions. The transparent soil matrix allows the growth of B. subtilis and other isolates gnotobiotically and under nutrient-controlled conditions. Additionally, we show that transparent soil allows the detection of lipopeptides production and dynamics by HPLC-MS, and MALDI-MS imaging, along with fluorescence imaging of 3-dimensional bacterial assemblages. We anticipate that this affordable and highly controllable system will promote bacterial chemical ecology research and help to elucidate microbial interactions driven by secondary metabolites.
Collapse
Affiliation(s)
| | - Carla G Nogueira
- DTU Bioengineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | | | - Mario Wibowo
- DTU Bioengineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Scott A Jarmusch
- DTU Bioengineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Ákos T Kovács
- DTU Bioengineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
- Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
31
|
Li Y, Hou Y, Hou Q, Long M, Wang Z, Rillig MC, Liao Y, Yong T. Soil microbial community parameters affected by microplastics and other plastic residues. Front Microbiol 2023; 14:1258606. [PMID: 37901816 PMCID: PMC10601715 DOI: 10.3389/fmicb.2023.1258606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/31/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction The impact of plastics on terrestrial ecosystems is receiving increasing attention. Although of great importance to soil biogeochemical processes, how plastics influence soil microbes have yet to be systematically studied. The primary objectives of this study are to evaluate whether plastics lead to divergent responses of soil microbial community parameters, and explore the potential driving factors. Methods We performed a meta-analysis of 710 paired observations from 48 published articles to quantify the impact of plastic on the diversity, biomass, and functionality of soil microbial communities. Results and discussion This study indicated that plastics accelerated soil organic carbon loss (effect size = -0.05, p = 0.004) and increased microbial functionality (effect size = 0.04, p = 0.003), but also reduced microbial biomass (effect size = -0.07, p < 0.001) and the stability of co-occurrence networks. Polyethylene significantly reduced microbial richness (effect size = -0.07, p < 0.001) while polypropylene significantly increased it (effect size = 0.17, p < 0.001). Degradable plastics always had an insignificant effect on the microbial community. The effect of the plastic amount on microbial functionality followed the "hormetic dose-response" model, the infection point was about 40 g/kg. Approximately 3564.78 μm was the size of the plastic at which the response of microbial functionality changed from positive to negative. Changes in soil pH, soil organic carbon, and total nitrogen were significantly positively correlated with soil microbial functionality, biomass, and richness (R2 = 0.04-0.73, p < 0.05). The changes in microbial diversity were decoupled from microbial community structure and functionality. We emphasize the negative impacts of plastics on soil microbial communities such as microbial abundance, essential to reducing the risk of ecological surprise in terrestrial ecosystems. Our comprehensive assessment of plastics on soil microbial community parameters deepens the understanding of environmental impacts and ecological risks from this emerging pollution.
Collapse
Affiliation(s)
- Yüze Li
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yuting Hou
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Quanming Hou
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Mei Long
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Ziting Wang
- College of Agronomy, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China
| | - Matthias C. Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yuncheng Liao
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Taiwen Yong
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
32
|
Das D, Kafle A, Ho-Plágaro T, Zimmermann SD, Bücking H, Garcia K. Editorial: Importance of root symbiomes for plant nutrition: new insights, perspectives and future challenges, volume II. FRONTIERS IN PLANT SCIENCE 2023; 14:1296604. [PMID: 37868316 PMCID: PMC10586808 DOI: 10.3389/fpls.2023.1296604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Affiliation(s)
- Debatosh Das
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
- National Products Utilization Research Unit (NPURU), USDA-ARS, Oxford, MS, United States
| | - Arjun Kafle
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Tania Ho-Plágaro
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | - Heike Bücking
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
33
|
Zang H, Tong X, Yuan L, Zhang Y, Zhang R, Li M, Zhu R. Life-cycle selenium accumulation and its correlations with the rhizobacteria and endophytes in the hyperaccumulating plant Cardamine hupingshanensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115450. [PMID: 37688863 DOI: 10.1016/j.ecoenv.2023.115450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Cardamine hupingshanensis (C. hupingshanensis) is known for its ability to hyperaccumulate selenium (Se). However, the roles of the rhizobacteria or endophytes in Se hyperaccumulation have not been explored in C. hupingshanensis. Here, in-situ-like pot experiments were conducted to investigate the characteristics of Se accumulation throughout C. hupingshanensis growth stages and its correlations with rhizobacteria and endophytes under varying soil Se levels. Results showed that Se levels in roots, stems and leaves increased from the seedling to bolting stage, but remained relatively stable during the flowering and maturity. Leaves exhibited the highest Se levels (736.48 ± 6.51 mg/kg DW), followed by stems (575.39 ± 27.05 mg/kg DW), and lowest in roots (306.62 ± 65.45 mg/kg DW) under high-Se stress. The Se translocation factors from soils to C. hupingshanensis roots was significantly higher (p < 0.05) in low-Se soils compared to medium- and high-Se soils. Rhizobacterial diversity showed significant positive correlations (p < 0.05) with both total and bioavailable soil Se contents. The levels of soil Se and growth stages of C. hupingshanensis were found to have significant effects (p < 0.03) on the compositions of rhizosphere bacteria and C. hupingshanensis endophytes. Low-abundance bacteria (< 5%), including Gemmatimonadetes, Latescibacteria and Nitrospirae, were identified to potentially increase the bioavailable Se levels in the rhizosphere. The Se accumulation significantly decreased (p < 0.05) in C. hupingshanensis grown in sterilized low- (32.4%), medium- (17%) and high-Se (42%) soils. Endophytes in C. hupingshanensis, such as Firmicutes and Proteobacteria, were likely recruited from the rhizobacteria, as evidenced by the isolated bacterial strains, and played an important role in Se hyperaccumulation, particularly during the flowering stage. This study provides new insights into potential mechanism underlying Se hyperaccumulation in C. hupingshanensis.
Collapse
Affiliation(s)
- Huawei Zang
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, China
| | - Xinzhao Tong
- Department of Biological Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, China
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, China.
| | - Ying Zhang
- Nano science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Ru Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Miao Li
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agriculture University, Hefei 230036, China
| | - Renbin Zhu
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
34
|
Li J, Yang C, Jousset A, Yang K, Wang X, Xu Z, Yang T, Mei X, Zhong Z, Xu Y, Shen Q, Friman VP, Wei Z. Engineering multifunctional rhizosphere probiotics using consortia of Bacillus amyloliquefaciens transposon insertion mutants. eLife 2023; 12:e90726. [PMID: 37706503 PMCID: PMC10519709 DOI: 10.7554/elife.90726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Abstract
While bacterial diversity is beneficial for the functioning of rhizosphere microbiomes, multi-species bioinoculants often fail to promote plant growth. One potential reason for this is that competition between different species of inoculated consortia members creates conflicts for their survival and functioning. To circumvent this, we used transposon insertion mutagenesis to increase the functional diversity within Bacillus amyloliquefaciens bacterial species and tested if we could improve plant growth promotion by assembling consortia of highly clonal but phenotypically dissimilar mutants. While most insertion mutations were harmful, some significantly improved B. amyloliquefaciens plant growth promotion traits relative to the wild-type strain. Eight phenotypically distinct mutants were selected to test if their functioning could be improved by applying them as multifunctional consortia. We found that B. amyloliquefaciens consortium richness correlated positively with plant root colonization and protection from Ralstonia solanacearum phytopathogenic bacterium. Crucially, 8-mutant consortium consisting of phenotypically dissimilar mutants performed better than randomly assembled 8-mutant consortia, suggesting that improvements were likely driven by consortia multifunctionality instead of consortia richness. Together, our results suggest that increasing intra-species phenotypic diversity could be an effective way to improve probiotic consortium functioning and plant growth promotion in agricultural systems.
Collapse
Affiliation(s)
- Jingxuan Li
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Chunlan Yang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Alexandre Jousset
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Keming Yang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Xiaofang Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Zhihui Xu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Tianjie Yang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Xinlan Mei
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Zengtao Zhong
- College of Life Science, Nanjing Agricultural UniversityNanjingChina
| | - Yangchun Xu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Qirong Shen
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Ville-Petri Friman
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
- Department of Microbiology, University of HelsinkiHelsinkiFinland
| | - Zhong Wei
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural UniversityNanjingChina
| |
Collapse
|
35
|
Xu Y, Liang T, Dai H, Zhai Z, Chen Y, Yin G, Zhang Y, Yue C. Characteristics of soil microbial communities in farmland with different comprehensive fertility levels in the Panxi area, Sichuan, China. Front Microbiol 2023; 14:1237409. [PMID: 37779721 PMCID: PMC10539910 DOI: 10.3389/fmicb.2023.1237409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Soil bacterial communities are intricately linked to ecosystem functioning, and understanding how communities assemble in response to environmental change is ecologically significant. Little is known about the assembly processes of bacteria communities across agro-ecosystems, particularly with regard to their environmental adaptation. To gain further insights into the microbial community characteristics of agro-ecosystems soil in the Panxi area of Sichuan Province and explore the key environmental factors driving the assembly process of the microbial community, this study conducted field sampling in major farmland areas of Panxi area and used Illumina MiSeq high-throughput sequencing technology to conduct bacterial sequencing. Soil organic matter (SOM), alkali-hydrolyzed nitrogen (AN), available phosphorus (AP), available potassium (AK) and other environmental factors were determined. The membership function method and principal component analysis method were used to evaluate the fertility of the soil. The results revealed minimal differences in alpha diversity index among samples with different comprehensive fertility indices, while NMDS analysis showed that community differences between species were mainly reflected in high fertility and low fertility (R: 0.068, p: 0.011). Proteobacteria, Acidobacteria and Actinobacteria were the main types of microbial communities, accounting for more than 60% of the relative abundance. Proteobacteria accounted for a higher proportion in the high fertility samples, while Acidobacteria and Actinobacteria accounted for a higher proportion in the middle and low fertility samples. Both the neutral theoretical model and zero model analysis showed that the microbial communities in tobacco-planting soil with different comprehensive fertility indices presented a random assembly process. With the increase in environmental distance difference, the diversity of the microbial community in medium and low-fertility soil also increased, but there was no significant change in high-fertility soil. Redundancy analysis showed that pH and SOM were the key factors affecting microbial community composition. The results of this study can provide a theoretical reference for the study of environmental factors and microbial communities in tobacco-growing soil.
Collapse
Affiliation(s)
- Yadong Xu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Funiu Mountain Biological and Ecological Environment Observatory Research Project, Zhengzhou, Henan, China
| | - Taibo Liang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Huaxin Dai
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Zhen Zhai
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Yulan Chen
- Liangshan Branch of Sichuan Tobacco Company, Xichang, Sichuan, China
| | - Guangting Yin
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, Henan, China
| | - Yanling Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Caipeng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Funiu Mountain Biological and Ecological Environment Observatory Research Project, Zhengzhou, Henan, China
| |
Collapse
|
36
|
Shu X, Liu W, Hu Y, Xia L, Fan K, Zhang Y, Zhang Y, Zhou W. Ecosystem multifunctionality and soil microbial communities in response to ecological restoration in an alpine degraded grassland. FRONTIERS IN PLANT SCIENCE 2023; 14:1173962. [PMID: 37593047 PMCID: PMC10431941 DOI: 10.3389/fpls.2023.1173962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/07/2023] [Indexed: 08/19/2023]
Abstract
Linkages between microbial communities and multiple ecosystem functions are context-dependent. However, the impacts of different restoration measures on microbial communities and ecosystem functioning remain unclear. Here, a 14-year long-term experiment was conducted using three restoration modes: planting mixed grasses (MG), planting shrub with Salix cupularis alone (SA), and planting shrub with Salix cupularis plus planting mixed grasses (SG), with an extremely degraded grassland serving as the control (CK). Our objective was to investigate how ecosystem multifunctionality and microbial communities (diversity, composition, and co-occurrence networks) respond to different restoration modes. Our results indicated that most of individual functions (i.e., soil nutrient contents, enzyme activities, and microbial biomass) in the SG treatment were significantly higher than in the CK treatment, and even higher than MG and SA treatments. Compared with the CK treatment, treatments MG, SA, and SG significantly increased the multifunctionality index on average by 0.57, 0.23 and 0.76, respectively. Random forest modeling showed that the alpha-diversity and composition of bacterial communities, rather than fungal communities, drove the ecosystem multifunctionality. Moreover, we found that both the MG and SG treatments significantly improved bacterial network stability, which exhabited stronger correlations with ecosystem multifunctionality compared to fungal network stability. In summary, this study demonstrates that planting shrub and grasses altogether is a promising restoration mode that can enhance ecosystem multifunctionality and improve microbial diversity and stability in the alpine degraded grassland.
Collapse
Affiliation(s)
- Xiangyang Shu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Weijia Liu
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Yufu Hu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Longlong Xia
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yulin Zhang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
37
|
Wang Y, Liu Z, Hao X, Wang Z, Wang Z, Liu S, Tao C, Wang D, Wang B, Shen Z, Shen Q, Li R. Biodiversity of the beneficial soil-borne fungi steered by Trichoderma-amended biofertilizers stimulates plant production. NPJ Biofilms Microbiomes 2023; 9:46. [PMID: 37407614 DOI: 10.1038/s41522-023-00416-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/26/2023] [Indexed: 07/07/2023] Open
Abstract
The soil microbiota is critical to plant performance. Improving the ability of plant-associated soil probiotics is thus essential for establishing dependable and sustainable crop yields. Although fertilizer applications may provide an effective way of steering soil microbes, it is still unknown how the positive effects of soil-borne probiotics can be maximized and how their effects are mediated. This work aims to seek the ecological mechanisms involved in cabbage growth using bio-organic fertilizers. We conducted a long-term field experiment in which we amended soil with non-sterilized organic or sterilized organic fertilizer either containing Trichoderma guizhouense NJAU4742 or lacking this inoculum and tracked cabbage plant growth and the soil fungal community. Trichoderma-amended bio-organic fertilizers significantly increased cabbage plant biomass and this effect was attributed to changes in the resident fungal community composition, including an increase in the relative abundance and number of indigenous soil growth-promoting fungal taxa. We specifically highlight the fundamental role of the biodiversity and population density of these plant-beneficial fungal taxa in improving plant growth. Together, our results suggest that the beneficial effects of bio-organic fertilizer seem to be a combination of the biological inoculum within the organic amendment as well as the indirect promotion through effects on the diversity and composition of the soil resident plant-beneficial fungal microbiome.
Collapse
Affiliation(s)
- Yan Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
| | - Zhengyang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
| | - Xinyi Hao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China
| | - Ziqi Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China
| | - Zhe Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China
| | - Shanshan Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China.
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China.
| | - Dongsheng Wang
- Nanjing Institute of Vegetable Science, Nanjing, 210042, Jiangsu, P. R. China
| | - Bei Wang
- Nanjing Institute of Vegetable Science, Nanjing, 210042, Jiangsu, P. R. China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China
| |
Collapse
|
38
|
Schlatter DC, Gamble JD, Castle S, Rogers J, Wilson M. Abiotic and Biotic Drivers of Soil Fungal Communities in Response to Dairy Manure Amendment. Appl Environ Microbiol 2023; 89:e0193122. [PMID: 37212685 PMCID: PMC10304672 DOI: 10.1128/aem.01931-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Modern agriculture often relies on large inputs of synthetic fertilizers to maximize crop yield potential, yet their intensive use has led to nutrient losses and impaired soil health. Alternatively, manure amendments provide plant available nutrients, build organic carbon, and enhance soil health. However, we lack a clear understanding of how consistently manure impacts fungal communities, the mechanisms via which manure impacts soil fungi, and the fate of manure-borne fungi in soils. We assembled soil microcosms using five soils to investigate how manure amendments impact fungal communities over a 60-day incubation. Further, we used autoclaving treatments of soils and manure to determine if observed changes in soil fungal communities were due to abiotic or biotic properties, and if indigenous soil communities constrained colonization of manure-borne fungi. We found that manure amended soil fungal communities diverged from nonamended communities over time, often in concert with a reduction in diversity. Fungal communities responded to live and autoclaved manure in a similar manner, suggesting that abiotic forces are primarily responsible for the observed dynamics. Finally, manure-borne fungi declined quickly in both live and autoclaved soil, indicating that the soil environment is unsuitable for their survival. IMPORTANCE Manure amendments in agricultural systems can impact soil microbial communities via supplying growth substrates for indigenous microbes or by introducing manure-borne taxa. This study explores the consistency of these impacts on soil fungal communities and the relative importance of abiotic and biotic drivers across distinct soils. Different fungal taxa responded to manure among distinct soils, and shifts in soil fungal communities were driven largely by abiotic factors, rather than introduced microbes. This work demonstrates that manure may have inconsistent impacts on indigenous soil fungi, and that abiotic properties of soils render them largely resistant to invasion by manure-borne fungi.
Collapse
Affiliation(s)
| | - Joshua D. Gamble
- USDA-ARS Plant Science Research Unit, Saint Paul, Minnesota, USA
| | - Sarah Castle
- USDA-ARS Plant Science Research Unit, Saint Paul, Minnesota, USA
| | - Julia Rogers
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, Minnesota, USA
| | - Melissa Wilson
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
39
|
Liu S, Tao C, Zhang L, Wang Z, Xiong W, Xiang D, Sheng O, Wang J, Li R, Shen Z, Li C, Shen Q, Kowalchuk GA. Plant pathogen resistance is mediated by recruitment of specific rhizosphere fungi. THE ISME JOURNAL 2023; 17:931-942. [PMID: 37037925 PMCID: PMC10203115 DOI: 10.1038/s41396-023-01406-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
Beneficial interactions between plants and rhizosphere microorganisms are key determinants of plant health with the potential to enhance the sustainability of agricultural practices. However, pinpointing the mechanisms that determine plant disease protection is often difficult due to the complexity of microbial and plant-microbe interactions and their links with the plant's own defense systems. Here, we found that the resistance level of different banana varieties was correlated with the plant's ability to stimulate specific fungal taxa in the rhizosphere that are able to inhibit the Foc TR4 pathogen. These fungal taxa included members of the genera Trichoderma and Penicillium, and their growth was stimulated by plant exudates such as shikimic acid, D-(-)-ribofuranose, and propylene glycol. Furthermore, amending soils with these metabolites enhanced the resistance of a susceptible variety to Foc TR4, with no effect observed for the resistant variety. In total, our findings suggest that the ability to recruit pathogen-suppressive fungal taxa may be an important component in determining the level of pathogen resistance exhibited by plant varieties. This perspective opens up new avenues for improving plant health, in which both plant and associated microbial properties are considered.
Collapse
Affiliation(s)
- Shanshan Liu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan Province, China
| | - Lingyin Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhe Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wu Xiong
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Dandan Xiang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
| | - Ou Sheng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
| | - Jiabao Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan Province, China
| | - Rong Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan Province, China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China.
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan Province, China.
| | - Chunyu Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Institute of Environmental Biology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
40
|
Liu X, Chen Q, Zhang H, Zhang J, Chen Y, Yao F, Chen Y. Effects of exogenous organic matter addition on agricultural soil microbial communities and relevant enzyme activities in southern China. Sci Rep 2023; 13:8045. [PMID: 37198213 DOI: 10.1038/s41598-023-33498-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023] Open
Abstract
Soil microbial community composition plays a key role in the decomposition of organic matter, while the quality of exogenous organic matter (EOM: rice straw, roots and pig manure) can influence soil chemical and biological properties. However, the evidences of the effect of combination of crop residues and pig manure on the changes in soil microbial community and enzymes activities are scarce. A greenhouse pot experiment was conducted to investigate the potential effect of EOM by analyzing soil properties, enzyme activities and microbial communities. The experiment consisted of eight treatments: CK (control), S (1% (w/w) rice straw), R (1% (w/w) rice root), SR (1% (w/w) rice straw + 1% (w/w) rice root), and added 1% (w/w) pig manure to CK, S, R and SR, respectively. Results showed that the straw treatment significantly increased the microbial biomass (carbon and nitrogen) and total carbon and nitrogen contents, cellulase and β-1,4-glucosidase activities, bacteria (i.e., gram-positive bacteria and gram-negative bacteria) PLFAs contents relative to CK regardless of whether pig manure was added. Moreover, the interaction between crop residues (e.g., straw and roots) and pig manure significantly influenced the contents of microbial biomass nitrogen and microbial biomass phosphorus, and the ratio of gram-positive bacteria to gram-negative bacteria. Redundance analysis confirmed that pH, nitrate nitrogen, ammonium nitrogen and dissolve organic carbon contents were significantly associated with soil microbial community under crop residues without pig manure addition. Furthermore, the experiment results showed that pig manure application not only provided more abundant nutrients (C, N and P) but also induced higher microbial and enzymatic activity compared with no pig manure addition. Our findings suggest that the combination of above-ground straw and pig manure is a better option for improving the functions of soil ecosystem.
Collapse
Affiliation(s)
- Xing Liu
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Qi Chen
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Huicheng Zhang
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaen Zhang
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuting Chen
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Fucheng Yao
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yingtong Chen
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
41
|
Fan L, Li Y, Wang X, Leng F, Li S, Zhu N, Chen K, Wang Y. Culturable endophytic fungi community structure isolated from Codonopsis pilosula roots and effect of season and geographic location on their structures. BMC Microbiol 2023; 23:132. [PMID: 37189022 DOI: 10.1186/s12866-023-02848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/05/2022] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Rhizosphere soil physicochemical, endophytic fungi have an important role in plant growth. A large number of endophytic fungi play an indispensable role in promoting plant growth and development, and they can provide protection for host plants by producing a variety of secondary metabolites to resist and inhibit plant pathogens. Due to the terrain of Gansu province is north-south and longitudinal, different climatic conditions, altitude, terrain and growth environment will affect the growth of Codonopsis pilosula, and the changes in these environmental factors directly affect the quality and yield of C. pilosula in different production areas. However, In C. pilosula, the connection between soil nutrients, spatiotemporal variation and the community structure of endophytic fungi isolated from C. pilosula roots has not been well studied. RESULTS Seven hundred six strains of endophytic fungi were obtained using tissue isolation and the hyphaend-purification method from C. pilosula roots that picked at all seasons and six districts (Huichuan, HC; Longxi, LX; Zhangxian, ZX; Minxian, MX; Weiyuan, WY; and Lintao, LT) in Gansu Province, China. Fusarium sp. (205 strains, 29.04%), Aspergillus sp. (196 strains, 27.76%), Alternaria sp. (73 strains, 10.34%), Penicillium sp. (58 strains, 8.22%) and Plectosphaerella sp. (56 strains, 7.93%) were the dominant genus. The species composition differed from temporal and spatial distribution (Autumn and Winter were higher than Spring and Summer, MX and LT had the highest similarity, HC and LT had the lowest). physical and chemical of soil like Electroconductibility (EC), Total nitrogen (TN), Catalase (CAT), Urease (URE) and Sucrase (SUC) had significant effects on agronomic traits of C. pilosula (P < 0.05). AK (Spring and Summer), TN (Autumn) and altitude (Winter) are the main driving factors for the change of endophytic fungal community. Moreover, geographic location (such as altitude, latitude and longitude) also has effects on the diversity of endophytic fungi. CONCLUSIONS These results suggested that soil nutrients and enzyme, seasonal variation and geographical locations have an impact on shaping the community structure of culturable endophytic fungi in the roots of C. pilosula and its root traits. This suggests that climatic conditions may play a driving role in the growth and development of C. pilosula.
Collapse
Affiliation(s)
- Lili Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yuanli Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiaoli Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shaowei Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Kai Chen
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
42
|
Liu Q, Cheng L, Nian H, Jin J, Lian T. Linking plant functional genes to rhizosphere microbes: a review. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:902-917. [PMID: 36271765 PMCID: PMC10106864 DOI: 10.1111/pbi.13950] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 05/04/2023]
Abstract
The importance of rhizomicrobiome in plant development, nutrition acquisition and stress tolerance is unquestionable. Relevant plant genes corresponding to the above functions also regulate rhizomicrobiome construction. Deciphering the molecular regulatory network of plant-microbe interactions could substantially contribute to improving crop yield and quality. Here, the plant gene-related nutrient uptake, biotic and abiotic stress resistance, which may influence the composition and function of microbial communities, are discussed in this review. In turn, the influence of microbes on the expression of functional plant genes, and thereby plant growth and immunity, is also reviewed. Moreover, we have specifically paid attention to techniques and methods used to link plant functional genes and rhizomicrobiome. Finally, we propose to further explore the molecular mechanisms and signalling pathways of microbe-host gene interactions, which could potentially be used for managing plant health in agricultural systems.
Collapse
Affiliation(s)
- Qi Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Lang Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Jian Jin
- Northeast Institute of Geography and AgroecologyChinese Academy of SciencesHarbinChina
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
43
|
Tao C, Wang Z, Liu S, Lv N, Deng X, Xiong W, Shen Z, Zhang N, Geisen S, Li R, Shen Q, Kowalchuk GA. Additive fungal interactions drive biocontrol of Fusarium wilt disease. THE NEW PHYTOLOGIST 2023; 238:1198-1214. [PMID: 36740577 DOI: 10.1111/nph.18793] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Host-associated fungi can help protect plants from pathogens, and empirical evidence suggests that such microorganisms can be manipulated by introducing probiotic to increase disease suppression. However, we still generally lack the mechanistic knowledge of what determines the success of probiotic application, hampering the development of reliable disease suppression strategies. We conducted a three-season consecutive microcosm experiment in which we amended banana Fusarium wilt disease-conducive soil with Trichoderma-amended biofertilizer or lacking this inoculum. High-throughput sequencing was complemented with cultivation-based methods to follow changes in fungal microbiome and explore potential links with plant health. Trichoderma application increased banana biomass by decreasing disease incidence by up to 72%, and this effect was attributed to changes in fungal microbiome, including the reduction in Fusarium oxysporum density and enrichment of pathogen-suppressing fungi (Humicola). These changes were accompanied by an expansion in microbial carbon resource utilization potential, features that contribute to disease suppression. We further demonstrated the disease suppression actions of Trichoderma-Humicola consortia, and results suggest niche overlap with pathogen and induction of plant systemic resistance may be mechanisms driving the observed biocontrol effects. Together, we demonstrate that fungal inoculants can modify the composition and functioning of the resident soil fungal microbiome to suppress soilborne disease.
Collapse
Affiliation(s)
- Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Zhe Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Shanshan Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Nana Lv
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute for Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
- Laboratory of Nematology, Wageningen University, Wageningen, 6700 AA, the Netherlands
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, the Netherlands
| |
Collapse
|
44
|
Ke W, Li C, Zhu F, Luo X, Feng J, Li X, Jiang Y, Wu C, Hartley W, Xue S. Effect of potentially toxic elements on soil multifunctionality at a lead smelting site. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131525. [PMID: 37146323 DOI: 10.1016/j.jhazmat.2023.131525] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Contaminated soil at smelting sites affects land utilization and environmental regulation, resulting in soil degradation. However, the extent to which potentially toxic elements (PTEs) contribute to site soil degradation and the relationship between soil multifunctionality and microbial diversity in the process remains poorly understood. In this study, we investigated changes in soil multifunctionality and the correlation between soil multifunctionality and microbial diversity under the influence of PTEs. The change in microbial community diversity was closely related to changes in soil multifunctionality caused by PTEs. Microbial diversity, not richness, drives the delivery of ecosystem services in smelting site PTEs-stressed environments. Structural equation modeling identified that soil contamination, microbial taxonomic profile and microbial functional profile could explain 70% of the variance in soil multifunctionality. Furthermore, our findings demonstrate that PTEs limit soil multifunctionality by affecting soil microbial communities and functionality, whilst the positive effect of microorganisms on soil multifunctionality was mainly driven by the fungal diversity and biomass. Finally, specific fungal genera closely related to soil multifunctionality were identified, with saprophytic fungi being particularly important for maintaining multiple soil functions. The results of the study provide potential guidance for the remediation, pollution control practices and mitigation of degraded soils at smelting sites.
Collapse
Affiliation(s)
- Wenshun Ke
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chuxuan Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, PR China
| | - Xinghua Luo
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jingpei Feng
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xue Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Yifan Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - William Hartley
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, PR China.
| |
Collapse
|
45
|
Cao J, Zhao P, Wang D, Zhao Y, Wang Z, Zhong N. Effects of a Nanonetwork-Structured Soil Conditioner on Microbial Community Structure. BIOLOGY 2023; 12:biology12050668. [PMID: 37237482 DOI: 10.3390/biology12050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Fertilizer application can increase yields, but nutrient runoff may cause environmental pollution and affect soil quality. A network-structured nanocomposite used as a soil conditioner is beneficial to crops and soil. However, the relationship between the soil conditioner and soil microbes is unclear. We evaluated the soil conditioner's impact on nutrient loss, pepper growth, soil improvement, and, especially, microbial community structure. High-throughput sequencing was applied to study the microbial communities. The microbial community structures of the soil conditioner treatment and the CK were significantly different, including in diversity and richness. The predominant bacterial phyla were Pseudomonadota, Actinomycetota, and Bacteroidota. Acidobacteriota and Chloroflexi were found in significantly higher numbers in the soil conditioner treatment. Ascomycota was the dominant fungal phylum. The Mortierellomycota phylum was found in significantly lower numbers in the CK. The bacteria and fungi at the genus level were positively correlated with the available K, available N, and pH, but were negatively correlated with the available P. Our results showed that the loss of nutrients controlled by the soil conditioner increased available N, which improved soil properties. Therefore, the microorganisms in the improved soil were changed. This study provides a correlation between improvements in microorganisms and the network-structured soil conditioner, which can promote plant growth and soil improvement.
Collapse
Affiliation(s)
- Jingjing Cao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Advanced Microbial Technology of Agriculture, Chinese Academy of Sciences, Beijing 100101, China
| | - Pan Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Advanced Microbial Technology of Agriculture, Chinese Academy of Sciences, Beijing 100101, China
- The Enterprise Key Laboratory of Advanced Technology for Potato Fertilizer and Pesticide, Hulunbuir 021000, China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yonglong Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Advanced Microbial Technology of Agriculture, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiqin Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Advanced Microbial Technology of Agriculture, Chinese Academy of Sciences, Beijing 100101, China
| | - Naiqin Zhong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Advanced Microbial Technology of Agriculture, Chinese Academy of Sciences, Beijing 100101, China
- The Enterprise Key Laboratory of Advanced Technology for Potato Fertilizer and Pesticide, Hulunbuir 021000, China
| |
Collapse
|
46
|
Zhang K, Rengel Z, Zhang F, White PJ, Shen J. Rhizosphere engineering for sustainable crop production: entropy-based insights. TRENDS IN PLANT SCIENCE 2023; 28:390-398. [PMID: 36470795 DOI: 10.1016/j.tplants.2022.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
There is a growing interest in exploring interactions at root-soil interface in natural and agricultural ecosystems, but an entropy-based understanding of these dynamic rhizosphere processes is lacking. We have developed a new conceptual model of rhizosphere regulation by localized nutrient supply using thermodynamic entropy. Increased nutrient-use efficiency is achieved by rhizosphere management based on self-organization and minimized entropy via equilibrium attractors comprising (i) optimized root strategies for nutrient acquisition and (ii) improved information exchange related to root-soil-microbe interactions. The cascading effects through different hierarchical levels amplify the underlying processes in plant-soil system. We propose a strategy for manipulating rhizosphere dynamics and improving nutrient-use efficiency by localized nutrient supply with minimization of entropy to underpin sustainable food/feed/fiber production.
Collapse
Affiliation(s)
- Kai Zhang
- Centre for Resources, Environment and Food Security, Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; Institute for Adriatic Crops and Karst Reclamation, Split 21000, Croatia
| | - Fusuo Zhang
- Centre for Resources, Environment and Food Security, Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Philip J White
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jianbo Shen
- Centre for Resources, Environment and Food Security, Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
47
|
Stochastic Processes Drive the Assembly and Metabolite Profiles of Keystone Taxa during Chinese Strong-Flavor Baijiu Fermentation. Microbiol Spectr 2023:e0510322. [PMID: 36916915 PMCID: PMC10101002 DOI: 10.1128/spectrum.05103-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Multispecies communities participate in the fermentation of Chinese strong-flavor Baijiu (CSFB), and the metabolic activity of the dominant and keystone taxa is key to the flavor quality of the final product. However, their roles in metabolic function and assembly processes are still not fully understood. Here, we identified the variations in the metabolic profiles of dominant and keystone taxa and characterized their community assembly using 16S rRNA and internal transcribed spacer (ITS) gene amplicon and metatranscriptome sequencing. We demonstrate that CSFB fermentations with distinct metabolic profiles display distinct microbial community compositions and microbial network complexities and stabilities. We then identified the dominant taxa (Limosilactobacillus fermentum, Kazachstania africana, Saccharomyces cerevisiae, and Pichia kudriavzevii) and the keystone ecological cluster (module 0, affiliated mainly with Thermoascus aurantiacus, Weissella confusa, and Aspergillus amstelodami) that cause changes in metabolic profiles. Moreover, we highlight that the alpha diversity of keystone taxa contributes to changes in metabolic profiles, whereas dominant taxa exert their influence on metabolic profiles by virtue of their relative abundance. Additionally, our results based on the normalized stochasticity ratio (NST) index and the neutral model revealed that stochastic and deterministic processes together shaped CSFB microbial community assemblies. Stochasticity and environmental selection structure the keystone and dominant taxa differently. This study provides new insights into understanding the relationships between microbial communities and their metabolic functions. IMPORTANCE From an ecological perspective, keystone taxa in microbial networks with high connectivity have crucial roles in community assembly and function. We used CSFB fermentation as a model system to study the ecological functions of dominant and keystone taxa at the metabolic level. We show that both dominant taxa (e.g., those taxa that have the highest relative abundances) and keystone taxa (e.g., those taxa with the most cooccurrences) affected the resulting flavor profiles. Moreover, our findings established that stochastic processes were dominant in shaping the communities of keystone taxa during CSFB fermentation. This result is striking as it suggests that although the controlled conditions in the fermentor can determine the dominant taxa, the uncontrolled rare keystone taxa in the microbial community can alter the resulting flavor profiles. This important insight is vital for the development of potential manipulation strategies to improve the quality of CSFB through the regulation of keystone species.
Collapse
|
48
|
Liu S, Gao J, Wang S, Li W, Wang A. Community differentiation of rhizosphere microorganisms and their responses to environmental factors at different development stages of medicinal plant Glehnia littoralis. PeerJ 2023; 11:e14988. [PMID: 36908810 PMCID: PMC9997192 DOI: 10.7717/peerj.14988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/12/2023] [Indexed: 03/08/2023] Open
Abstract
Rhizosphere microorganisms play a key role in affecting plant quality and productivity through its interaction with plant root system. To figure out the bottleneck of the decline of yield and quality in the traditional Chinese medicinal herbs Glehnia littoralis they now encounter, it is important to study the dynamics of rhizosphere microbiota during the cultivation of G. littoralis. In the present study, the composition, diversity and function of rhizosphere microbes at different development stages of G. littoralis, as well as the correlation between rhizosphere microbes and environmental factors were systematically studied by high-throughput sequencing. There were significant differences between the rhizosphere microbes at early and middle-late development stages. More beneficial bacteria, such as Proteobacteria, and more symbiotic and saprophytic fungi were observed at the middle-late development stage of G. littoralis, while beneficial bacteria such as Actinobacteria and polytrophic transitional fungi were abundant at all development stages. The results of redundancy analysis show that eight environmental factors drive the changes of microflora at different development stages. pH, soil organic matter (SOM) and available phosphorus (AP) had important positive effects on the bacterial and fungal communities at the early development stage; saccharase (SC) and nitrate nitrogen (NN) showed significant positive effects on the bacterial and fungal communities at the middle and late stages; while urease (UE), available potassium (AK), and alkaline phosphatase (AKP) have different effects on bacterial and fungal communities at different development stages. Random forest analysis identified 47 bacterial markers and 22 fungal markers that could be used to distinguish G. littoralis at different development stages. Network analysis showed that the rhizosphere microbes formed a complex mutualistic symbiosis network, which is beneficial to the growth and development of G. littoralis. These results suggest that host development stage and environmental factors have profound influence on the composition, diversity, community structure and function of plant rhizosphere microorganisms. This study provides a reference for optimizing the cultivation of G. littoralis.
Collapse
Affiliation(s)
- Shuliang Liu
- Ludong University, Yantai City, Shandong Province, China
| | - Jianxin Gao
- Ludong University, Yantai City, Shandong Province, China
| | - Shimeng Wang
- Ludong University, Yantai City, Shandong Province, China
| | - Weiwei Li
- Ludong University, Yantai City, Shandong Province, China
| | - Ailan Wang
- Ludong University, Yantai City, Shandong Province, China
| |
Collapse
|
49
|
Liu Z, Wang C, Yang X, Liu G, Cui Q, Indree T, Ye X, Huang Z. The Relationship and Influencing Factors between Endangered Plant Tetraena mongolica and Soil Microorganisms in West Ordos Desert Ecosystem, Northern China. PLANTS (BASEL, SWITZERLAND) 2023; 12:1048. [PMID: 36903909 PMCID: PMC10005437 DOI: 10.3390/plants12051048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Soil microorganisms play crucial roles in improving nutrient cycling, maintaining soil fertility in desert ecosystems such as the West Ordos desert ecosystem in Northern China, which is home to a variety of endangered plants. However, the relationship between the plants-microorganisms-soil in the West Ordos desert ecosystem is still unclear. Tetraena mongolica, an endangered and dominant plant species in West Ordos, was selected as the research object in the present study. Results showed that (1) there were ten plant species in the Tetraena mongolica community, belonging to seven families and nine genera, respectively. The soil was strongly alkaline (pH = 9.22 ± 0.12) and the soil nutrients were relatively poor; (2) fungal diversity was more closely related to shrub diversity than bacterial and archaeal diversity; (3) among the fungal functional groups, endomycorrhizal led to a significant negative correlation between shrub diversity and fungal diversity, because endomycorrhizal had a significant positive effect on the dominance of T. mongolica, but had no significant effect on other shrubs; (4) plant diversity had a significant positive correlation with the soil inorganic carbon (SIC), total carbon (TC), available phosphorus (AVP) and available potassium (AVK). This study revealed the effects of soil properties and soil microorganisms on the community structure and the growth of T. mongolica and provided a theoretical basis for the conservation of T. mongolica and the maintenance of biodiversity in desert ecosystems.
Collapse
Affiliation(s)
- Zhangkai Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congwen Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejun Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guofang Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qingguo Cui
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tuvshintogtokh Indree
- Botanic Garden and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
| | - Xuehua Ye
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhenying Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
50
|
Atreya M, Desousa S, Kauzya J, Williams E, Hayes A, Dikshit K, Nielson J, Palmgren A, Khorchidian S, Liu S, Gopalakrishnan A, Bihar E, Bruns CJ, Bardgett R, Quinton JN, Davies J, Neff JC, Whiting GL. A Transient Printed Soil Decomposition Sensor Based on a Biopolymer Composite Conductor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205785. [PMID: 36507571 PMCID: PMC9929122 DOI: 10.1002/advs.202205785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/19/2022] [Indexed: 06/18/2023]
Abstract
Soil health is one of the key factors in determining the sustainability of global agricultural systems and the stability of natural ecosystems. Microbial decomposition activity plays an important role in soil health; and gaining spatiotemporal insights into this attribute is critical for understanding soil function as well as for managing soils to ensure agricultural supply, stem biodiversity loss, and mitigate climate change. Here, a novel in situ electronic soil decomposition sensor that relies on the degradation of a printed conductive composite trace utilizing the biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as a binder is presented. This material responds selectively to microbially active environments with a continuously varying resistive signal that can be readily instrumented with low-cost electronics to enable wide spatial distribution. In soil, a correlation between sensor response and intensity of microbial decomposition activity is observed and quantified by comparison with respiration rates over 14 days, showing that devices respond predictably to both static conditions and perturbations in general decomposition activity.
Collapse
Affiliation(s)
- Madhur Atreya
- Paul M. Rady Department of Mechanical EngineeringUniversity of Colorado Boulder1111 Engineering Drive, UCB 427BoulderCO80309‐0427USA
| | - Stacie Desousa
- Environmental StudiesUniversity of Colorado Boulder4001 Discovery Drive, 397 UCBBoulderCO80303‐0397USA
| | - John‐Baptist Kauzya
- Paul M. Rady Department of Mechanical EngineeringUniversity of Colorado Boulder1111 Engineering Drive, UCB 427BoulderCO80309‐0427USA
| | - Evan Williams
- Department of ElectricalComputerand Energy EngineeringUniversity of Colorado Boulder1111 Engineering Dr, 425 UCBBoulderCO80309USA
| | - Austin Hayes
- Paul M. Rady Department of Mechanical EngineeringUniversity of Colorado Boulder1111 Engineering Drive, UCB 427BoulderCO80309‐0427USA
| | - Karan Dikshit
- Materials Science and Engineering ProgramUniversity of Colorado Boulder4001 Discovery Dr, 613 UCBBoulderCO80303USA
| | - Jenna Nielson
- Department of Chemical and Biological EngineeringUniversity of Colorado Boulder1111 Engineering Dr, 596 UCBBoulderCO80309USA
| | - Abigail Palmgren
- Department of Chemical and Biological EngineeringUniversity of Colorado Boulder1111 Engineering Dr, 596 UCBBoulderCO80309USA
| | - Sara Khorchidian
- Paul M. Rady Department of Mechanical EngineeringUniversity of Colorado Boulder1111 Engineering Drive, UCB 427BoulderCO80309‐0427USA
| | - Shangshi Liu
- Department of Earth and Environmental SciencesThe University of ManchesterWilliamson BuildingManchesterM13 9PYUK
| | - Anupam Gopalakrishnan
- Materials Science and Engineering ProgramUniversity of Colorado Boulder4001 Discovery Dr, 613 UCBBoulderCO80303USA
| | - Eloise Bihar
- Paul M. Rady Department of Mechanical EngineeringUniversity of Colorado Boulder1111 Engineering Drive, UCB 427BoulderCO80309‐0427USA
| | - Carson J. Bruns
- Paul M. Rady Department of Mechanical EngineeringUniversity of Colorado Boulder1111 Engineering Drive, UCB 427BoulderCO80309‐0427USA
| | - Richard Bardgett
- Department of Earth and Environmental SciencesThe University of ManchesterWilliamson BuildingManchesterM13 9PYUK
| | - John N. Quinton
- Lancaster Environment CentreLancaster UniversityUniversityLibrary Ave, BailriggLancasterLA1 4YQUK
| | - Jessica Davies
- Lancaster Environment CentreLancaster UniversityUniversityLibrary Ave, BailriggLancasterLA1 4YQUK
| | - Jason C. Neff
- Environmental StudiesUniversity of Colorado Boulder4001 Discovery Drive, 397 UCBBoulderCO80303‐0397USA
| | - Gregory L. Whiting
- Paul M. Rady Department of Mechanical EngineeringUniversity of Colorado Boulder1111 Engineering Drive, UCB 427BoulderCO80309‐0427USA
- Materials Science and Engineering ProgramUniversity of Colorado Boulder4001 Discovery Dr, 613 UCBBoulderCO80303USA
| |
Collapse
|