1
|
Vervaet L, Charamis J, Vandenhole M, Vontas J, Van Leeuwen T. Acaricide resistance mechanisms and host plant responses in the tomato specialist Aculops lycopersici. PEST MANAGEMENT SCIENCE 2025; 81:946-958. [PMID: 39473234 DOI: 10.1002/ps.8499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND The mite Aculops lycopersici is a major tomato pest with extremely reduced gene families involved in chemoreception and detoxification. How this limited detoxification toolbox affects the evolution of resistance to acaricides in tomato russet mite(s) (TRM) remains enigmatic. Moreover, although a tomato specialist, TRM has been observed on other Solanaceae and Convolvulaceae plant species, raising questions about transcriptional plasticity underlying host exchange. RESULTS We identified a field strain with strongly decreased susceptibility to both abamectin and spiromesifen. We detected target-site resistance caused by mutations at conserved positions in two glutamate-gated chloride channels (GluCl), as well as four overexpressed detoxification genes. We then examined transcriptional responses after host shift from tomato to two Solanaceae (potato and black nightshade) and two Convolvulaceae (sweet potato and hedge bindweed) species, as more challenging host plants. Transcriptional responses varied significantly between host plant families, with key differentially expressed genes (DEGs) related to proteolytic, metabolic and detoxification processes. Last, we also identified DEGs encoding for secreted proteins potentially involved in TRM-host plant interactions. CONCLUSIONS Despite a limited detoxification toolbox, A. lycopersici might quickly evolve target-site resistance, probably facilitated by strong selection pressure on the genetic variation associated with enormous population size in field settings. Responses to host plant changes include plasticity in genes related to digestion and detoxification, while most responsive genes are of unknown function and remain to be investigated. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lore Vervaet
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jason Charamis
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Marilou Vandenhole
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Wang P, Zeng Q, Zhao Y, Sun X, Han Y, Zeng R, Song Y, Chen D, Lin Y. Maize Herbivore-Induced Volatiles Enhance Xenobiotic Detoxification in Larvae of Spodoptera frugiperda and S. litura. PLANTS (BASEL, SWITZERLAND) 2024; 14:57. [PMID: 39795317 PMCID: PMC11723000 DOI: 10.3390/plants14010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
The release of herbivore-induced plant volatiles (HIPVs) has been recognized to be an important strategy for plant adaptation to herbivore attack. However, whether these induced volatiles are beneficial to insect herbivores, particularly insect larvae, is largely unknown. We used the two important highly polyphagous lepidopteran pests Spodoptera frugiperda and S. litura to evaluate the benefit on xenobiotic detoxification of larval exposure to HIPVs released by the host plant maize (Zea mays). Larval exposure of the invasive alien species S. frugiperda to maize HIPVs significantly enhanced their tolerance to all three of the well-known defensive compounds 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), chlorogenic acid, and tannic acid in maize and the two commonly used insecticides methomyl and chlorpyrifos. HIPV exposure also improved the larval tolerance of S. litura third instars to chlorogenic and tannic acids. Furthermore, larval exposure to either maize HIPVs or DIMBOA induced the activities of cytochrome P450 enzymes (P450s), glutathione-s-transferase (GST), and carboxylesterase (CarE) in the midguts and fat bodies of the two insects, while the induction was significantly higher by the two components together. In addition, the expression of four genes encoding uridine diphosphate (UDP)-glycosyltransferases (UGT33F28, UGT40L8) and P450s (CYP4d8, CYP4V2) showed similar induction patterns in S. frugiperda. Cis-3-hexen-1-ol, an important component in maize HIPVs, also showed the same functions as maize HIPVs, and its exposure increased larval xenobiotic tolerance and induced the detoxification enzymes and gene expression. Our findings demonstrate that HIPVs released by the pest-infested host plants are conductive to the xenobiotic tolerance of lepidopteran insect larvae. Hijacking the host plant HIPVs is an important strategy of the invasive alien polyphagous lepidopteran pest to counter-defend against the host plant's chemical defense.
Collapse
Affiliation(s)
- Peng Wang
- Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.W.); (Y.Z.); (X.S.); (R.Z.)
- Fujian Provincial Key Laboratory of Crop Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiyue Zeng
- College of Science, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Yi Zhao
- Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.W.); (Y.Z.); (X.S.); (R.Z.)
- Fujian Provincial Key Laboratory of Crop Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomin Sun
- Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.W.); (Y.Z.); (X.S.); (R.Z.)
- Fujian Provincial Key Laboratory of Crop Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongqiang Han
- College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, China;
| | - Rensen Zeng
- Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.W.); (Y.Z.); (X.S.); (R.Z.)
- Fujian Provincial Key Laboratory of Crop Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.W.); (Y.Z.); (X.S.); (R.Z.)
- Fujian Provincial Key Laboratory of Crop Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Chen
- Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.W.); (Y.Z.); (X.S.); (R.Z.)
- Fujian Provincial Key Laboratory of Crop Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yibin Lin
- Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.W.); (Y.Z.); (X.S.); (R.Z.)
- Fujian Provincial Key Laboratory of Crop Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Qin T, Shi X, Yin J, Qu Y, Deng Y, Wei X, Zhao N, Gao Y, Mace WJ, Ren A. Fungal endophytes enhanced insect resistance by improving the defenses of Achnatherum sibiricum before locust feeding. PEST MANAGEMENT SCIENCE 2024. [PMID: 39660583 DOI: 10.1002/ps.8599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Epichloë endophytes provide many benefits to host plants, including enhanced insect resistance. Fungal alkaloids are usually thought to be responsible for the endophyte-conferred herbivore resistance. Nonetheless, the fungal alkaloid profiles and concentrations may vary considerably among grass-endophyte systems. This indicates that apart from fungal alkaloids, additional mechanisms such as endophyte-mediated host defense are likely contributed to endophyte-grass-insect interactions. In this study, we addressed this issue by investigating the effect of Epichloë on the defense responses of Achnatherum sibiricum against locusts. RESULTS The results showed that Epichloë endophytes increased locust resistance of A. sibiricum in both choice and non-choice feeding experiments. In no feeding groups, endophyte infection increased the content of jasmonic acid (JA) and ethylene (ET), chitinase activity, and the biosynthetic gene expression of the relevant pathways. Endophyte infection also increased the content of total phenolics and condensed tannins. These indicators were negatively correlated with leaf consumption. In locust feeding groups, endophyte infection increased trypsin inhibitor activity. Exogenous application of phytohormones further proved that JA and ET reduced the consumption of A. sibiricum by locusts. CONCLUSION The present study showed that endophyte-conferred host defense was mainly constitutive, that is, the defense characteristics of host plants were mainly manifested in no feeding groups. Endophyte presence enhanced locust resistance of the host by activating the JA/ET signaling pathway, elevating chitinase activity and phenolic compounds content, thereby improving the defense ability of host plants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tianzi Qin
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xinjian Shi
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jiaqi Yin
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yaobing Qu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yongkang Deng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xianqin Wei
- College of Life Sciences, Nankai University, Tianjin, China
| | - Nianxi Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yubao Gao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wade J Mace
- AgResearch Ltd, Grasslands Research Center, Palmerston North, New Zealand
| | - Anzhi Ren
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Wang Q, Feng F, Zhang K, He Y, Qi W, Ma Z, Song R. ZmICE1a regulates the defence-storage trade-off in maize endosperm. NATURE PLANTS 2024; 10:1999-2013. [PMID: 39604637 DOI: 10.1038/s41477-024-01845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024]
Abstract
The endosperm of cereal grains feeds the entire world as a major food supply; however, little is known about its defence response during endosperm development. The Inducer of CBF Expression 1 (ICE1) is a well-known regulator of cold tolerance in plants. ICE1 has a monocot-specific homologue that is preferentially expressed in cereal endosperms but with an unclear regulatory function. Here we characterized the function of monocot-specific ZmICE1a, which is expressed in the entire endosperm, with a predominant expression in its peripheral regions, including the aleurone layer, subaleurone layer and basal endosperm transfer layer in maize (Zea mays). Loss of function of ZmICE1a reduced starch content and kernel weight. RNA sequencing and CUT&Tag-seq analyses revealed that ZmICE1a positively regulates genes in starch synthesis while negatively regulating genes in aleurone layer-specific defence and the synthesis of indole-3-acetic acid and jasmonic acid (JA). Exogenous indole-3-acetic acid and JA both induce the expression of numerous defence genes, which show distinct spatial-specific expression in the basal endosperm transfer layer and subaleurone layer, respectively. Moreover, we dissected a JA-ZmJAZ9-ZmICE1a-MPI signalling axis involved in JA-mediated defence regulation. Overall, our study revealed ZmICE1a as a key regulator of endosperm defence response and a coordinator of the defence-storage trade-off in endosperm development.
Collapse
Affiliation(s)
- Qun Wang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Kechun Zhang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yonghui He
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| | - Rentao Song
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| |
Collapse
|
5
|
Dunaevsky YE, Elpidina EN. Special Issue "Transcriptomics in the Study of Insect Biology". Int J Mol Sci 2024; 25:12582. [PMID: 39684294 DOI: 10.3390/ijms252312582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Transcriptomics is at the intersection of molecular biology and genetics, and studies the complete set of transcripts that are synthesized in a cell or organism under certain conditions [...].
Collapse
Affiliation(s)
- Yakov E Dunaevsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elena N Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
6
|
Liu H, Wang X, Ma Y, Gao W, Ma C. Alfalfa leaf weevil larvae and adults feeding induces physiological change in defensive enzymes of alfalfa. PLoS One 2024; 19:e0312612. [PMID: 39514475 PMCID: PMC11548782 DOI: 10.1371/journal.pone.0312612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
When insects harm plants, they activate relevant enzyme systems for defense, and changes in enzyme activity, to a certain extent, reflect the host plant's ability to resist insect damage. Alfalfa leaf weevils (Hypera postica Gyllenhal) are the main economic insect pest of alfalfa, which seriously affect its yield and quality. To clarify the effects of feeding induction by alfalfa leaf weevil larvae and adults on defense enzymes in alfalfa, 'Zhongmu No. 1' variety was used as the experimental material. Comprehensive correlation analysis and principal component analysis were used to evaluate the corresponding patterns of 12 physiological indicators of alfalfa induced by insect feeding of different densities. Results showed that after feeding induction by adult and larval alfalfa leaf weevils, total antioxidant capacity (T-AOC), malondialdehyde (MDA), phenylalanine ammonia-lyase (PAL), tyrosine ammonia lyase (TAL), lipoxygenase (LOX), chymotrypsin inhibitors (CI), trypsin inhibitor (TI), and jasmonic acid (JA) in the alfalfa leaves increased with increasing feeding time. However, activities of catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and polyphenolic oxidase (PPO) in alfalfa leaves first increased and then decreased, showing a downward trend.
Collapse
Affiliation(s)
- Hui Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Xuzhe Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yong Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Wanshun Gao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Chunhui Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
7
|
Wu J, Zhang ZF, Cao HH, Liu TX. Transcriptional and physiological plasticity of the green peach aphid (Hemiptera: Aphididae) to cabbage and pepper plants. JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae258. [PMID: 39450760 DOI: 10.1093/jee/toae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Defensive metabolites and nutrient restriction of host plants are 2 major obstacles to the colonization of insect herbivores. The green peach aphid (GPA) Myzus persicae (Sulzer) broadly colonizes plants with diverse nutritional and defensive traits. However, how GPA adapts to nutritional and defensive traits within different plants remains largely unknown. To elucidate this, we first investigated the performances and transcriptomes of GPA feeding on cabbage Brassica oleracea and pepper Capsicum annuum. The green peach aphid had lower weight and fecundity when feeding on cabbage than on pepper. The transcriptomic analysis found 824 differentially expressed genes (DEGs), and 13 of the top 20 Kyoto Encyclopedia of Genes and Genomes pathways are related to nutrient metabolism, energy metabolism, and detoxification. Specifically, we found 160 DEGs associated with the metabolism of protein and amino acids, sugar and lipids, and xenobiotic substances, 86 upregulated in cabbage-fed GPA. Fourteen cathepsin B genes were strongly upregulated in cabbage-fed GPA, and were enriched in lysosome pathway and 2 dominated gene ontology terms peptidase activity and proteolysis. In addition, cabbage-fed GPA upregulated sugar and lipid digestion, while downregulated lipid biosynthesis processes. Furthermore, 55 metabolic detoxification enzyme genes were differentially expressed between GPA on 2 hosts, and detoxification enzyme activities of GPA indeed changed accordingly to the host. Then, we found that cabbage has lower amino acids nutrition quality for GPA compared to pepper. Our results suggested that adjustment of nitrogen nutrient metabolism, sugar and lipid metabolism, and metabolic detoxification in a host-specific manner play crucial roles in the adaptations of GPA to different host plants.
Collapse
Affiliation(s)
- Jun Wu
- Department of Plant Protection, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
- Department of Entomology, State Key Laboratory of Crop Stress Biology in Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant protection, Northwest A&F University, Yangling, P. R. China
| | - Zhan-Feng Zhang
- Department of Entomology, State Key Laboratory of Crop Stress Biology in Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant protection, Northwest A&F University, Yangling, P. R. China
| | - He-He Cao
- Department of Entomology, Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, P. R. China
| | - Tong-Xian Liu
- Department of Plant Protection, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, College of Agriculture, Guizhou University, Guiyang, P.R. China
| |
Collapse
|
8
|
Wu H, Han WH, Liang KL, Wang JX, Zhang FB, Ji SX, Liu SS, Wang XW. Using salicylic acid-responsive promoters to drive the expression of jasmonic acid-regulated genes enhances plant resistance to whiteflies. PEST MANAGEMENT SCIENCE 2024. [PMID: 39387811 DOI: 10.1002/ps.8461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Jasmonic acid (JA) is an important phytohormone used to defend against herbivores, but it does not respond to whitefly feeding. Conversely, another phytohormone, salicylic acid (SA), is induced when plants are fed upon by whiteflies. JA has a better anti-whitefly effect than SA; however, there is limited research on how to effectively improve plant resistance by utilizing the different responses of these phytohormones to whitefly feeding. RESULTS We discovered that protease inhibitors 8 (PI8) and terpene synthase 10 (TPS10) located downstream of the JA-regulated pathway in plants have anti-whitefly effects, but these two genes were not induced by whitefly feeding. To identify whitefly-inducible promoters, we compared the transcriptome data of tobacco fed upon by Bemisia tabaci with the control. We focused on pathogenesis-related (PR) genes because they are known to be induced by SA. Among these PR genes, we found that expression levels of pathogenes-related protein 1C-like (PR1) and glucose endo-1,3-beta-glucosidase (BGL) can be significantly induced by whitefly feeding and regulated by SA. We then engineered the whitefly-inducible promoters of BGL and PR1 to drive the expression of PI8 and TPS10. We found that compared with control plants that did not induce the expression of PI8 or TPS10, transformed plants expressing PI8 or TPS10 under the PR1 or BGL promoter showed a significant increase in the expression levels of PI8 and TPS10 after whitefly infection, significantly improving their resistance to whiteflies. CONCLUSION Our findings suggest that using SA-inducible promoters as tools to drive the expression of JA-regulated defense genes can enhance plant resistance to whiteflies. Our study provides a novel pathway for the enhancement of plant resistance against insects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- He Wu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Hao Han
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Kai-Lu Liang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jun-Xia Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Feng-Bin Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shun-Xia Ji
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Johnson SN, Waterman JM, Hartley SE, Cooke J, Ryalls JMW, Lagisz M, Nakagawa S. Plant Silicon Defences Suppress Herbivore Performance, but Mode of Feeding Is Key. Ecol Lett 2024; 27:e14519. [PMID: 39400424 DOI: 10.1111/ele.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024]
Abstract
The performance of herbivorous animals depends on the nutritional and defensive traits of the plants they consume. The uptake and deposition of biogenic silicon in plant tissues is arguably the most basic and ubiquitous anti-herbivore defence used by plants, especially grasses. We conducted meta-analyses of 150 studies reporting how vertebrate and invertebrate herbivores performed when feeding on silicon-rich plants relative to those feeding on low-silicon plants. Silicon levels were 52% higher and 32% more variable in silicon-rich plants compared to plants with low silicon, which resulted in an overall 33% decline in herbivore performance. Fluid-feeding herbivore performance was less adversely impacted (-14%) than tissue-chewing herbivores, including mammals (-45%), chewing arthropods (-33%) and plant-boring arthropods (-39%). Fluid-feeding arthropods with a wide diet breadth or those feeding on perennial plant species were mostly unaffected by silicon defences. Unlike many other plant defences, where diet specialisation often helps herbivores overcome their effects, silicon negatively impacts chewing herbivores regardless of diet breadth. We conclude that silicon defences primarily target chewing herbivores and impact vertebrate and invertebrate herbivores to a similar degree.
Collapse
Affiliation(s)
- Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Jamie M Waterman
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Institute for Plant Sciences, University of Bern, Bern, Switzerland
| | - Susan E Hartley
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Julia Cooke
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - James M W Ryalls
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
10
|
Glassmire AE, Hauri KC, Turner DB, Zehr LN, Sugimoto K, Howe GA, Wetzel WC. The frequency and chemical phenotype of neighboring plants determine the effects of intraspecific plant diversity. Ecology 2024; 105:e4392. [PMID: 39113178 DOI: 10.1002/ecy.4392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/15/2024] [Accepted: 05/24/2024] [Indexed: 09/04/2024]
Abstract
Associational effects, whereby plants influence the biotic interactions of their neighbors, are an important component of plant-insect interactions. Plant chemistry has been hypothesized to mediate these interactions. The role of chemistry in associational effects, however, has been unclear in part because the diversity of plant chemistry makes it difficult to tease apart the importance and roles of particular classes of compounds. We examined the chemical ecology of associational effects using backcross-bred plants of the Solanum pennellii introgression lines. We used eight genotypes from the introgression line system to establish 14 unique neighborhood treatments that maximized differences in acyl sugars, proteinase inhibitor, and terpene chemical diversity. We found that the chemical traits of the neighboring plant, rather than simply the number of introgression lines within a neighborhood, influenced insect abundance on focal plants. Furthermore, within-chemical class diversity had contrasting effects on herbivore and predator abundances, and depended on the frequency of neighboring plant chemotypes. Notably, we found insect mobility-flying versus crawling-played a key role in insect response to phytochemistry. We highlight that the frequency and chemical phenotype of plant neighbors underlie associational effects and suggest this may be an important mechanism in maintaining intraspecific phytochemical variation within plant populations.
Collapse
Affiliation(s)
- Andrea E Glassmire
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| | - Kayleigh C Hauri
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, & Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Daniel B Turner
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
- Ecology, Evolution, & Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Luke N Zehr
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| | - Koichi Sugimoto
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Gregg A Howe
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - William C Wetzel
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
- Ecology, Evolution, & Behavior Program, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
11
|
Feng H, Jander G. Serine proteinase inhibitors from Nicotiana benthamiana, a nonpreferred host plant, inhibit the growth of Myzus persicae (green peach aphid). PEST MANAGEMENT SCIENCE 2024; 80:4470-4481. [PMID: 38666388 DOI: 10.1002/ps.8148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The green peach aphid (Myzus persicae) is a severe agricultural crop pest that has developed resistance to most current control methods, requiring the urgent development of novel strategies. Plant proteinase inhibitors (PINs) are small proteins that protect plants against pathogens and/or herbivores, likely by preventing efficient protein digestion. RESULTS We identified 67 protease genes in the transcriptomes of three M. persicae lineages (USDA-Red, G002 and G006). Comparison of gene expression levels in aphid guts and whole aphids showed that several proteases, including a highly expressed serine protease, are significantly overexpressed in the guts. Furthermore, we identified three genes encoding serine protease inhibitors (SerPIN-II1, 2 and 3) in Nicotiana benthamiana, which is a nonpreferred host for M. persicae. Using virus-induced gene silencing (VIGS) with a tobacco rattle virus (TRV) vector and overexpression with a turnip mosaic virus (TuMV) vector, we demonstrated that N. benthamiana SerPIN-II1 and SerPIN-II2 cause reduced survival and growth, but do not affect aphid protein content. Likewise, SerPIN-II3 overexpression reduced survival and growth, and serpin-II3 knockout mutations, which we generated using CRISPR/Cas9, increased survival and growth. Protein content was significantly increased in aphids fed on SerPIN-II3 overexpressing plants, yet it was decreased in aphids fed on serpin-II3 mutants. CONCLUSION Our results show that three PIN-IIs from N. benthamiana, a nonpreferred host plant, effectively inhibit M. persicae survival and growth, thereby representing a new resource for the development of aphid-resistant crop plants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Honglin Feng
- Boyce Thompson Institute, Ithaca, NY, USA
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | | |
Collapse
|
12
|
Guzmán LF, Tirado B, Cruz-Cárdenas CI, Rojas-Anaya E, Aragón-Magadán MA. De Novo Transcriptome Assembly of Cedar ( Cedrela odorata L.) and Differential Gene Expression Involved in Herbivore Resistance. Curr Issues Mol Biol 2024; 46:8794-8806. [PMID: 39194737 DOI: 10.3390/cimb46080520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Timber trees are targets of herbivorous attacks. The identification of genes associated with pest resistance can be accomplished through differential expression analysis using transcriptomes. We reported the de novo assembly of cedar (Cedrela odorata L.) transcriptome and the differential expression of genes involved in herbivore resistance. The assembly and annotation of the transcriptome were obtained using RNAseq from healthy cedar plants and those infested with Chrysobothris yucatanensis. A total of 325.6 million reads were obtained, and 127,031 (97.47%) sequences were successfully assembled. A total of 220 herbivory-related genes were detected, of which 170 genes were annotated using GO terms, and 161 genes with 245 functions were identified-165, 75, and 5 were molecular functions, biological processes, and cellular components, respectively. To protect against herbivorous infestation, trees produce toxins and volatile compounds which are modulated by signaling pathways and gene expression related to molecular functions and biological processes. The limited number of genes identified as cellular components suggests that there are minimal alterations in cellular structure in response to borer attack. The chitin recognition protein, jasmonate ZIM-domain (JAZ) motifs, and response regulator receiver domain were found to be overexpressed, whereas the terpene synthase, cytochrome P450, and protein kinase domain gene families were underexpressed. This is the first report of a cedar transcriptome focusing on genes that are overexpressed in healthy plants and underexpressed in infested plants. This method may be a viable option for identifying genes associated with herbivore resistance.
Collapse
Affiliation(s)
- Luis Felipe Guzmán
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| | - Bibiana Tirado
- Centro Universitario de los Altos, University of Guadalajara, Tepatitlán 47600, Jalisco, Mexico
| | - Carlos Iván Cruz-Cárdenas
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| | - Edith Rojas-Anaya
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| | - Marco Aurelio Aragón-Magadán
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| |
Collapse
|
13
|
Schneider K, Steward RA, Celorio-Mancera MDLP, Janz N, Moberg D, Wheat CW, Nylin S. Plasticity for the win: Flexible transcriptional response to host plant switches in the comma butterfly (Polygonia c-album). Mol Ecol 2024; 33:e17479. [PMID: 39036890 DOI: 10.1111/mec.17479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Generalist plant-feeding insects are characterised by a broad host repertoire that can comprise several families or even different orders of plants. The genetic and physiological mechanisms underlying the use of such a wide host range are still not fully understood. Earlier studies indicate that the consumption of different host plants is associated with host-specific gene expression profiles. It remained, however, unclear if and how larvae can alter these profiles in the case of a changing host environment. Using the polyphagous comma butterfly (Polygonia c-album) we show that larvae can adjust their transcriptional profiles in response to a new host plant. The switch to some of the host plants, however, resulted in a larger transcriptional response and, thus, seems to be more challenging. At a physiological level, no correspondence for these patterns could be found in larval performance. This suggests that a high transcriptional but also phenotypic flexibility are essential for the use of a broad and diverse host range. We furthermore propose that host switch tests in the laboratory followed by transcriptomic investigations can be a valuable tool to examine not only plasticity in host use but also subtle and/or transient trade-offs in the evolution of host plant repertoires.
Collapse
Affiliation(s)
| | - Rachel A Steward
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Biology Department, Lund University, Lund, Sweden
| | - Maria de la Paz Celorio-Mancera
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Ecology, Environment and Plant Science, Stockholm University, Stockholm, Sweden
| | - Niklas Janz
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Dick Moberg
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
14
|
Dort H, van der Bijl W, Wahlberg N, Nylin S, Wheat CW. Genome-Wide Gene Birth-Death Dynamics Are Associated with Diet Breadth Variation in Lepidoptera. Genome Biol Evol 2024; 16:evae095. [PMID: 38976568 PMCID: PMC11229701 DOI: 10.1093/gbe/evae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 07/10/2024] Open
Abstract
Comparative analyses of gene birth-death dynamics have the potential to reveal gene families that played an important role in the evolution of morphological, behavioral, or physiological variation. Here, we used whole genomes of 30 species of butterflies and moths to identify gene birth-death dynamics among the Lepidoptera that are associated with specialist or generalist feeding strategies. Our work advances this field using a uniform set of annotated proteins for all genomes, investigating associations while correcting for phylogeny, and assessing all gene families rather than a priori subsets. We discovered that the sizes of several important gene families (e.g. those associated with pesticide resistance, xenobiotic detoxification, and/or protein digestion) are significantly correlated with diet breadth. We also found 22 gene families showing significant shifts in gene birth-death dynamics at the butterfly (Papilionoidea) crown node, the most notable of which was a family of pheromone receptors that underwent a contraction potentially linked with a shift to visual-based mate recognition. Our findings highlight the importance of uniform annotations, phylogenetic corrections, and unbiased gene family analyses in generating a list of candidate genes that warrant further exploration.
Collapse
Affiliation(s)
- Hanna Dort
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Wouter van der Bijl
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | | | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
15
|
Papachristos K, Sayadi A, Arnqvist G. Comparative Genomic Analysis of the Pattern of Evolution of Male and Female Reproductive Proteins in Seed Beetles. Genome Biol Evol 2024; 16:evae143. [PMID: 38941482 PMCID: PMC11251426 DOI: 10.1093/gbe/evae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024] Open
Abstract
Male seminal fluid proteins often show signs of positive selection and divergent evolution, believed to reflect male-female coevolution. Yet, our understanding of the predicted concerted evolution of seminal fluid proteins and female reproductive proteins is limited. We sequenced, assembled, and annotated the genome of two species of seed beetles allowing a comparative analysis of four closely related species of these herbivorous insects. We compare the general pattern of evolution in genes encoding seminal fluid proteins and female reproductive proteins with those in digestive protein genes and well-conserved reference genes. We found that female reproductive proteins showed an overall ratio of nonsynonymous to synonymous substitutions (ω) similar to that of conserved genes, while seminal fluid proteins and digestive proteins exhibited higher overall ω values. Further, seminal fluid proteins and digestive proteins showed a higher proportion of sites putatively under positive selection, and explicit tests showed no difference in relaxed selection between protein types. Evolutionary rate covariation analyses showed that evolutionary rates among seminal fluid proteins were on average more closely correlated with those in female reproductive proteins than with either digestive or conserved genes. Gene expression showed the expected negative covariation with ω values, except for male-biased genes where this negative relationship was reversed. In conclusion, seminal fluid proteins showed relatively rapid evolution and signs of positive selection. In contrast, female reproductive proteins evolved at a lower rate under selective constraints, on par with genes known to be well conserved. Although our findings provide support for concerted evolution of seminal fluid proteins and female reproductive proteins, they also suggest that these two classes of proteins evolve under partly distinct selective regimes.
Collapse
Affiliation(s)
| | - Ahmed Sayadi
- Rheumatology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Berini F, Montali A, Liguori R, Venturini G, Bonelli M, Shaltiel-Harpaz L, Reguzzoni M, Siti M, Marinelli F, Casartelli M, Tettamanti G. Production and characterization of Trichoderma asperellum chitinases and their use in synergy with Bacillus thuringiensis for lepidopteran control. PEST MANAGEMENT SCIENCE 2024; 80:3401-3411. [PMID: 38407453 DOI: 10.1002/ps.8045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Despite their known negative effects on ecosystems and human health, synthetic pesticides are still largely used to control crop insect pests. Currently, the biopesticide market for insect biocontrol mainly relies on the entomopathogenic bacterium Bacillus thuringiensis (Bt). New biocontrol tools for crop protection might derive from fungi, in particular from Trichoderma spp., which are known producers of chitinases and other bioactive compounds able to negatively affect insect survival. RESULTS In this study, we first developed an environmentally sustainable production process for obtaining chitinases from Trichoderma asperellum ICC012. Then, we investigated the biological effects of this chitinase preparation - alone or in combination with a Bt-based product - when orally administered to two lepidopteran species. Our results demonstrate that T. asperellum efficiently produces a multi-enzymatic cocktail able to alter the chitin microfibril network of the insect peritrophic matrix, resulting in delayed development and larval death. The co-administration of T. asperellum chitinases and sublethal concentrations of Bt toxins increased larval mortality. This synergistic effect was likely due to the higher amount of Bt toxins that passed the damaged peritrophic matrix and reached the target receptors on the midgut cells of chitinase-treated insects. CONCLUSION Our findings may contribute to the development of an integrated pest management technology based on fungal chitinases that increase the efficacy of Bt-based products, mitigating the risk of Bt-resistance development. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology (BAT Centre), University of Naples Federico II, Portici, Italy
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Riccardo Liguori
- Isagro Research Centre affiliated to Gowan Crop Protection Ltd, Novara, Italy
| | - Giovanni Venturini
- Isagro Research Centre affiliated to Gowan Crop Protection Ltd, Novara, Italy
| | - Marco Bonelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Liora Shaltiel-Harpaz
- Integrated Pest Management Laboratory Northern R&D, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
- Environmental Sciences Department, Faculty of Sciences and Technology, Tel Hai College, Kiryat Shmona, Israel
| | - Marcella Reguzzoni
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Moran Siti
- Luxembourg Industries Ltd, Tel-Aviv, Israel
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology (BAT Centre), University of Naples Federico II, Portici, Italy
| | - Morena Casartelli
- Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology (BAT Centre), University of Naples Federico II, Portici, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology (BAT Centre), University of Naples Federico II, Portici, Italy
| |
Collapse
|
17
|
Li X, Guo M, Li K, Li S, Feng H, Fan J. Selection of host plants for production of Clanis bilineata (Lepidoptera: Sphingidae). PLoS One 2024; 19:e0303017. [PMID: 38913673 PMCID: PMC11195959 DOI: 10.1371/journal.pone.0303017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/16/2024] [Indexed: 06/26/2024] Open
Abstract
Clanis bilineata Walker (Lepidoptera: Sphingidae), a burgeoning edible insect, is experiencing rising demand in China and other regions. Despite this interest, larval production is currently constrained by the limitations of artificial production technologies, particularly the selection of optimal host plants. This study rigorously evaluated the performance of C. bilineatha larvae on four main host plants: round-leaf soybean, pointed-leaf soybean, black locust, and kudzu. Preference tests demonstrated that the larvae were most attracted to black locust (34.76 ± 4.65%), with subsequent preferences for kudzu (25.00 ± 6.12%), round-leaf soybean (23.17 ± 2.79%), and pointed-leaf soybean (14.02 ± 4.74%). No significant preference differences were noted between round-leaf soybean and either black locust or kudzu. In feeding assays, the larvae exhibited a marked preference for round-leaf soybean (37.36 ± 0.81 g, total feeding amount for larvae), followed by kudzu (37.26 ± 0.82 g), pointed-leaf soybean (35.38 ± 1.31 g), and black locust (28.53 ± 0.81 g). When the larvae were fed on round-leaf soybean, they exhibited significantly higher survival rate (39.33 ± 0.90%), body weight (9.75 ± 0.07 g), total biomass (383.43 ± 7.35 g), pupation rate (87.78 ± 1.73%), and egg production (189.80 ± 1.06 eggs/female) compared to other hosts. These findings uncovered that round-leaf soybean significantly enhances larval performance, suggesting its potential for improving C. bilineata larval production and sustainability in cultivation systems.
Collapse
Affiliation(s)
- Xiaofeng Li
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Mingming Guo
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Kebin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Song Li
- Yichang Agricultural Product Quality and Safety Supervision and Testing Station, Yichang, China
| | - Honglin Feng
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, United States of America
| | - Jiwei Fan
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| |
Collapse
|
18
|
Liang J, Lu H, Hao H, Zhang Q, Chen K, Xiang Z, He N. Post-ingestive stability of a mulberry Kunitz-type protease inhibitor MnKTI-1 in the digestive lumen of silkworm: dual inhibition towards α-amylase and serine protease. PEST MANAGEMENT SCIENCE 2024; 80:2860-2873. [PMID: 38375972 DOI: 10.1002/ps.7994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Adaptation of specialist insects to their host plants and defense responses of plants to phytophagous insects have been extensively recognized while the dynamic interaction between these two events has been largely underestimated. Here, we provide evidence for characterization of an unrevealed dynamic interaction mode of digestive enzymes of specialist insect silkworm and inhibitor of its host plant mulberry tree. RESULTS MnKTI-1, a mulberry Kunitz-type protease inhibitor, whose messenger RNA (mRNA) transcription and protein expression in mulberry leaf were severely triggered and up-regulated by tens of times in a matter of hours in response to silkworm, Bombyx mori, and other mulberry pest insects, suggesting a quick response and broad spectrum to insect herbivory. MnKTI-1 proteins were detected in gut content and frass of specialist B. mori, and exhibited significant post-ingestive stability. Recombinant refolded MnKTI-1 (rMnKTI-1) displayed binding affinity to digestive enzymes and a dual inhibitory activity to α-amylase BmAmy and serine protease BmSP2956 in digestive juice of silkworm. Moreover, data from in vitro assays proved that the inhibition of recombinant rMnKTI-1 to BmAmy can be reverted by pre-incubation with BmSP15920, an inactivated silkworm digestive protease that lack of complete catalytic triad. CONCLUSION These findings demonstrate that mulberry MnKTI-1 has the potential to inhibit the digestive enzyme activities of its specialist insect herbivore silkworm, whereas this insect may employ inactivated proteases to block protease inhibitors to accomplish food digestion. The current work provides an insight to better understand the interacting mode between host plant Kunitz protease inhibitors and herbivorous insect digestive enzymes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiubo Liang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Hulin Lu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Haiye Hao
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Qi Zhang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Kaiying Chen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Sun Z, Shen H, Chen Z, Ma N, Yang Y, Liu H, Li J. Physiological responses and transcriptome analysis of Hemerocallis citrina Baroni exposed to Thrips palmi feeding stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1361276. [PMID: 38807785 PMCID: PMC11130412 DOI: 10.3389/fpls.2024.1361276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Thrips are serious pests of Hemerocallis citrina Baroni (daylily), affecting crop yield and quality. To defend against pests, daylily has evolved a set of sophisticated defense mechanisms. In the present study, induction of systemic resistance in Hemerocallis citrina 'Datong Huanghua' by Thrips palmi feeding was investigated at both biochemical and molecular levels. The soluble sugar content of daylily leaves was significantly lower than that in control check (CK) at all time points of feeding by T. palmi, whereas the amino acid and free fatty acid contents started to be significantly lower than those in CK after 7 days. Secondary metabolites such as tannins, flavonoids, and total phenols, which are harmful to the growth and reproduction of T. palmi, were increased significantly. The activities of defense enzymes such as peroxidase (POD), phenylalanine ammonia lyase (PAL), and polyphenol oxidase (PPO) were significantly increased, and the degree of damage to plants was reduced. The significant increase in protease inhibitor (PI) activity may lead to disrupted digestion and slower growth in T. palmi. Using RNA sequencing, 1,894 differentially expressed genes (DEGs) were identified between control and treatment groups at five timepoints. DEGs were mainly enriched in secondary metabolite synthesis, jasmonic acid (JA), salicylic acid (SA), and other defense hormone signal transduction pathways, defense enzyme synthesis, MAPK signaling, cell wall thickening, carbohydrate metabolism, photosynthesis, and other insect resistance pathways. Subsequently, 698 DEGs were predicted to be transcription factors, including bHLH and WRKY members related to biotic stress. WGCNA identified 18 hub genes in four key modules (Purple, Midnight blue, Blue, and Red) including MYB-like DNA-binding domain (TRINITY_DN2391_c0_g1, TRINITY_DN3285_c0_g1), zinc-finger of the FCS-type, C2-C2 (TRINITY_DN21050_c0_g2), and NPR1 (TRINITY_DN13045_c0_g1, TRINITY_DN855_c0_g2). The results indicate that biosynthesis of secondary metabolites, phenylalanine metabolism, PIs, and defense hormones pathways are involved in the induced resistance to T. palmi in daylily.
Collapse
Affiliation(s)
- Zhuonan Sun
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Hui Shen
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Zhongtao Chen
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Ning Ma
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Ye Yang
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Hongxia Liu
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Jie Li
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
20
|
Kumar V, Subramanian J, Marimuthu M, Subbarayalu M, Ramasamy V, Gandhi K, Ariyan M. Diversity and functional characteristics of culturable bacterial endosymbionts from cassava whitefly biotype Asia II-5, Bemisia tabaci. 3 Biotech 2024; 14:100. [PMID: 38456084 PMCID: PMC10914660 DOI: 10.1007/s13205-024-03949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/28/2024] [Indexed: 03/09/2024] Open
Abstract
Whitefly Bemisia tabaci, a carrier of cassava mosaic disease (CMD), poses a significant threat to cassava crops. Investigating culturable bacteria and their impact on whiteflies is crucial due to their vital role in whitefly fitness and survival. The whitefly biotype associated with cassava and transmitting CMD in India has been identified as Asia II 5 through partial mitochondrial cytochrome oxidase I gene sequencing. In this study, bacteria associated with adult B. tabaci feeding on cassava were extracted using seven different media. Nutrient Agar (NA), Soyabean Casein Digest Medium (SCDM), Luria Bertani agar (LBA), and Reasoner's 2A agar (R2A) media resulted in 19, 6, 4, and 4 isolates, respectively, producing a total of 33 distinct bacterial isolates. Species identification through 16SrRNA gene sequencing revealed that all isolates belonged to the Bacillota and Pseudomonadota phyla, encompassing 11 genera: Bacillus, Cytobacillus, Exiguobacterium, Terribacillus, Brevibacillus, Enterococcus, Staphylococcus, Brucella, Novosphingobium, Lysobacter, and Pseudomonas. All bacterial isolates were tested for chitinase, protease, siderophore activity, and antibiotic sensitivity. Nine isolates exhibited chitinase activity, 28 showed protease activity, and 23 displayed siderophore activity. Most isolates were sensitive to antibiotics such as Vancomycin, Streptomycin, Erythromycin, Kanamycin, Doxycycline, Tetracycline, and Ciprofloxacin, while they demonstrated resistance to Bacitracin and Colistin. Understanding the culturable bacteria associated with cassava whitefly and their functional significance could contribute to developing effective cassava whitefly and CMD control in agriculture. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03949-0.
Collapse
Affiliation(s)
- Venkatesh Kumar
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - Jeyarani Subramanian
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - Murugan Marimuthu
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - Mohankumar Subbarayalu
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - Venkatachalam Ramasamy
- Department of Genetics and Plant Breeding, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - Karthikeyan Gandhi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - Manikandan Ariyan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
21
|
García-Saldaña EA, Cerqueda-García D, Ibarra-Laclette E, Aluja M. Insights into the differences related to the resistance mechanisms to the highly toxic fruit Hippomane mancinella (Malpighiales: Euphorbiaceae) between the larvae of the sister species Anastrepha acris and Anastrepha ludens (Diptera: Tephritidae) through comparative transcriptomics. Front Physiol 2024; 15:1263475. [PMID: 38304114 PMCID: PMC10830740 DOI: 10.3389/fphys.2024.1263475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
The Manchineel, Hippomane mancinella ("Death Apple Tree") is one of the most toxic fruits worldwide and nevertheless is the host plant of the monophagous fruit fly species Anastrepha acris (Diptera: Tephritidae). Here we aimed at elucidating the detoxification mechanisms in larvae of A. acris reared on a diet enriched with the toxic fruit (6% lyophilizate) through comparative transcriptomics. We compared the performance of A. acris larvae with that of the sister species A. ludens, a highly polyphagous pest species that is unable to infest H. mancinella in nature. The transcriptional alterations in A. ludens were significantly greater than in A. acris. We mainly found two resistance mechanisms in both species: structural, activating cuticle protein biosynthesis (chitin-binding proteins likely reducing permeability to toxic compounds in the intestine), and metabolic, triggering biosynthesis of serine proteases and xenobiotic metabolism activation by glutathione-S-transferases and cytochrome P450 oxidoreductase. Some cuticle proteins and serine proteases were not orthologous between both species, suggesting that in A. acris, a structural resistance mechanism has been selected allowing specialization to the highly toxic host plant. Our results represent a nice example of how two phylogenetically close species diverged over recent evolutionary time related to resistance mechanisms to plant secondary metabolites.
Collapse
Affiliation(s)
- Essicka A. García-Saldaña
- Clúster Científico y Tecnológico BioMimic, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| | - Daniel Cerqueda-García
- Clúster Científico y Tecnológico BioMimic, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| | - Enrique Ibarra-Laclette
- Clúster Científico y Tecnológico BioMimic, Red de Estudios Moleculares Avanzados, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| | - Martín Aluja
- Clúster Científico y Tecnológico BioMimic, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| |
Collapse
|
22
|
Toepfer S, Toth S, Zupan T, Bogataj U, Žnidaršič N, Ladanyi M, Sabotič J. Diabrotica v. virgifera Seems Not Affected by Entomotoxic Protease Inhibitors from Higher Fungi. INSECTS 2024; 15:60. [PMID: 38249066 PMCID: PMC10816698 DOI: 10.3390/insects15010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024]
Abstract
Certain soil insects, such as the root-damaging larvae of the maize pest Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), are increasingly difficult to control because of recent bans of some insecticides. An alternative and safer approach may be the development of biopesticides based on entomotoxic defense proteins of higher fungi. Many of these potentially interesting proteins are protease inhibitors, and some have been shown to adversely affect insects. We examined the effects of the cysteine protease inhibitors macrocypin 1, 3, and 4 from Macrolepiota procera, clitocypin from Clitocybe nebularis, and cocaprin 1 and the serine protease inhibitor cospin 1 from Coprinopsis cinerea on D. v. virgifera. We confirmed the inhibition by mycocypins of the cysteine catalytic-type proteolytic activities in gut extracts of larvae and adults. The inhibition of pGlu-Phe-Leu-hydrolyzing activity was stronger than that of Z-Phe-Arg-hydrolyzing activity. Mycocypins and cospin resisted long-term proteolytic digestion, whereas cocaprin 1 was digested. Bioassays with overlaid artificial diet revealed no effects of proteins on neonatal mortality or stunting, and no effects on adult mortality. Immersion of eggs in protein solutions had little effect on egg hatching or mortality of hatching neonates. Microscopic analysis of the peritrophic matrix and apical surface of the midguts revealed the similarity between larvae of D. v. virgifera and the chrysomelid Leptinotarsa decemlineata, which are sensitive to these inhibitors. The resistance of D. v. virgifera to fungal protease inhibitors is likely due to effective adaptation of digestive enzyme expression to dietary protease inhibitors. We continue to study unique protein complexes of higher fungi for the development of new approaches to pest control.
Collapse
Affiliation(s)
- Stefan Toepfer
- Department of Integrated Plant Protection, Plant Protection Institute, Hungarian University of Agriculture and Life Sciences (MATE), 2100 Godollo, Hungary;
- CABI, 2800 Delemont, Switzerland
| | - Szabolcs Toth
- Department of Integrated Plant Protection, Plant Protection Institute, Hungarian University of Agriculture and Life Sciences (MATE), 2100 Godollo, Hungary;
| | - Tanja Zupan
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.Z.); (J.S.)
| | - Urban Bogataj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (U.B.); (N.Ž.)
| | - Nada Žnidaršič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (U.B.); (N.Ž.)
| | - Marta Ladanyi
- Department of Applied Statistics, Institute of Mathematics and Basic Science, Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary;
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.Z.); (J.S.)
| |
Collapse
|
23
|
Barneto JA, Sardoy PM, Pagano EA, Zavala JA. Lipoxygenases regulate digestive enzyme inhibitor activities in developing seeds of field-grown soybean against the southern green stink bug ( Nezara viridula). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP22192. [PMID: 38220246 DOI: 10.1071/fp22192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Soybean (Glycine max ) is the world's most widely grown seed legume. One of the most important pests that decrease seed quality and reduce yield of soybean crops is the southern green stink bug (Nezara viridula ). Insect damage triggers accumulation of defensive compounds such as protease inhibitors (PIs), isoflavonoids and reactive oxygen species, which are regulated by the lipoxygenase (LOX)-regulated jasmonic acid (JA) to stop insect feeding. This study identified and characterised the role of LOX isoforms in the modulation of chemical defences in seeds of field-grown soybean that decreased digestive enzyme activities of N. viridula after insect attack. Stink bugs attack increased LOX 1 and LOX 2 expression, and activities of LOX 1 and LOX 3 isoenzymes in developing soybean seeds. In addition, stink bug damage and methyl jasmonate application induced expression and activity of both cysteine PIs and trypsin PIs in developing soybean seeds, suggesting that herbivory induced JA in soybean seeds. High PI activity levels in attacked seeds decreased cysteine proteases and α-amylases activities in the gut of stink bugs that fed on field-grown soybean. We demonstrated that LOX isoforms of seeds are concomitantly induced with JA-regulated PIs by stink bugs attack, and these PIs inhibit the activity of insect digestive enzymes. To our knowledge, this is the first study to investigate the participation of LOX in modulating JA-regulated defences against stink bugs in seeds of field-grown soybean, and our results suggest that soybean PIs may inhibit α-amylase activity in the gut of N. viridula .
Collapse
Affiliation(s)
- Jésica A Barneto
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina; and Instituto Nacional de Biociencias Agrícolas y Ambientales (INBA)-CONICET, Buenos Aires, Argentina
| | - Pedro M Sardoy
- Instituto Nacional de Biociencias Agrícolas y Ambientales (INBA)-CONICET, Buenos Aires, Argentina; and Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Zoología Agrícola, Buenos Aires, Argentina
| | - Eduardo A Pagano
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina; and Instituto Nacional de Biociencias Agrícolas y Ambientales (INBA)-CONICET, Buenos Aires, Argentina
| | - Jorge A Zavala
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina; and Instituto Nacional de Biociencias Agrícolas y Ambientales (INBA)-CONICET, Buenos Aires, Argentina; and Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Zoología Agrícola, Buenos Aires, Argentina
| |
Collapse
|
24
|
Ye M, Liu C, Li N, Yuan C, Liu M, Xin Z, Lei S, Sun X. A constitutive serine protease inhibitor suppresses herbivore performance in tea ( Camellia sinensis). HORTICULTURE RESEARCH 2023; 10:uhad178. [PMID: 37868619 PMCID: PMC10585712 DOI: 10.1093/hr/uhad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
Protease inhibitors promote herbivore resistance in diverse plant species. Although many inducible protease inhibitors have been identified, there are limited reports available on the biological relevance and molecular basis of constitutive protease inhibitors in herbivore resistance. Here, we identified a serine protease inhibitor, CsSERPIN1, from the tea plant (Camellia sinensis). Expression of CsSERPIN1 was not strongly affected by the assessed biotic and abiotic stresses. In vitro and in vivo experiments showed that CsSERPIN1 strongly inhibited the activities of digestive protease activities of trypsin and chymotrypsin. Transient or heterologous expression of CsSERPIN1 significantly reduced herbivory by two destructive herbivores, the tea geometrid and fall armyworm, in tea and Arabidopsis plants, respectively. The expression of CsSERPIN1 in Arabidopsis did not negatively influence the growth of the plants under the measured parameters. Our findings suggest that CsSERPIN1 can inactivate gut digestive proteases and suppress the growth and development of herbivores, making it a promising candidate for pest prevention in agriculture.
Collapse
Affiliation(s)
- Meng Ye
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chuande Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Nana Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chenhong Yuan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Miaomiao Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhaojun Xin
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Shu Lei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xiaoling Sun
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
25
|
Anand R, Divya D, Mazumdar-Leighton S, Bentur JS, Nair S. Expression Analysis Reveals Differentially Expressed Genes in BPH and WBPH Associated with Resistance in Rice RILs Derived from a Cross between RP2068 and TN1. Int J Mol Sci 2023; 24:13982. [PMID: 37762286 PMCID: PMC10531025 DOI: 10.3390/ijms241813982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
BPH (brown planthopper) and WBPH (white backed planthopper) are significant rice pests that often co-occur as sympatric species and cause substantial yield loss. Despite their genetic similarities, different host-resistance genes confer resistance against these two hoppers. The defense mechanisms in rice against these pests are complex, and the molecular processes regulating their responses remain largely unknown. This study used specific recombinant inbred lines (RILs) derived from a cross between rice varieties RP2068-18-3-5 (BPH- and WBPH-resistant) and TN1 (BPH- and WBPH-susceptible) to investigate the mechanisms of interaction between these planthoppers and their rice hosts. WBPH and BPH were allowed to feed on specific RILs, and RNA-Seq was carried out on WBPH insects. Transcriptome profiling and qRT-PCR results revealed differential expression of genes involved in detoxification, digestion, transportation, cuticle formation, splicing, and RNA processing. A higher expression of sugar transporters was observed in both hoppers feeding on rice with resistance against either hopper. This is the first comparative analysis of gene expressions in these insects fed on genetically similar hosts but with differential resistance to BPH and WBPH. These results complement our earlier findings on the differential gene expression of the same RILs (BPH- or WBPH-infested) utilized in this study. Moreover, identifying insect genes and pathways responsible for countering host defense would augment our understanding of BPH and WBPH interaction with their rice hosts and enable us to develop lasting strategies to control these significant pests.
Collapse
Affiliation(s)
- Rashi Anand
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
- Plant Biotic Interaction Lab, Department of Botany, University of Delhi, Delhi 110007, India;
| | - Dhanasekar Divya
- Agri Biotech Foundation, Rajendranagar, Hyderabad 500030, India; (D.D.); (J.S.B.)
| | | | - Jagadish S. Bentur
- Agri Biotech Foundation, Rajendranagar, Hyderabad 500030, India; (D.D.); (J.S.B.)
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| |
Collapse
|
26
|
Pring S, Kato H, Imano S, Camagna M, Tanaka A, Kimoto H, Chen P, Shrotri A, Kobayashi H, Fukuoka A, Saito M, Suzuki T, Terauchi R, Sato I, Chiba S, Takemoto D. Induction of plant disease resistance by mixed oligosaccharide elicitors prepared from plant cell wall and crustacean shells. PHYSIOLOGIA PLANTARUM 2023; 175:e14052. [PMID: 37882264 DOI: 10.1111/ppl.14052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Basal plant immune responses are activated by the recognition of conserved microbe-associated molecular patterns (MAMPs), or breakdown molecules released from the plants after damage by pathogen penetration, so-called damage-associated molecular patterns (DAMPs). While chitin-oligosaccharide (CHOS), a primary component of fungal cell walls, is most known as MAMP, plant cell wall-derived oligosaccharides, cello-oligosaccharides (COS) from cellulose, and xylo-oligosaccharide (XOS) from hemicellulose are representative DAMPs. In this study, elicitor activities of COS prepared from cotton linters, XOS prepared from corn cobs, and chitin-oligosaccharide (CHOS) from crustacean shells were comparatively investigated. In Arabidopsis, COS, XOS, or CHOS treatment triggered typical defense responses such as reactive oxygen species (ROS) production, phosphorylation of MAP kinases, callose deposition, and activation of the defense-related transcription factor WRKY33 promoter. When COS, XOS, and CHOS were used at concentrations with similar activity in inducing ROS production and callose depositions, CHOS was particularly potent in activating the MAPK kinases and WRKY33 promoters. Among the COS and XOS with different degrees of polymerization, cellotriose and xylotetraose showed the highest activity for the activation of WRKY33 promoter. Gene ontology enrichment analysis of RNAseq data revealed that simultaneous treatment of COS, XOS, and CHOS (oligo-mix) effectively activates plant disease resistance. In practice, treatment with the oligo-mix enhanced the resistance of tomato to powdery mildew, but plant growth was not inhibited but rather tended to be promoted, providing evidence that treatment with the oligo-mix has beneficial effects on improving disease resistance in plants, making them a promising class of compounds for practical application.
Collapse
Affiliation(s)
- Sreynich Pring
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hiroaki Kato
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Sayaka Imano
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Maurizio Camagna
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hisashi Kimoto
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Awara, Japan
| | - Pengru Chen
- Institute for Catalysis, Hokkaido University, Sapporo, Japan
| | - Abhijit Shrotri
- Institute for Catalysis, Hokkaido University, Sapporo, Japan
| | | | - Atsushi Fukuoka
- Institute for Catalysis, Hokkaido University, Sapporo, Japan
| | - Makoto Saito
- Resonac Corporation (Showa Denko K.K.), Tokyo, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Ryohei Terauchi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ikuo Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
27
|
Ji M, Vandenhole M, De Beer B, De Rouck S, Villacis-Perez E, Feyereisen R, Clark RM, Van Leeuwen T. A nuclear receptor HR96-related gene underlies large trans-driven differences in detoxification gene expression in a generalist herbivore. Nat Commun 2023; 14:4990. [PMID: 37591878 PMCID: PMC10435515 DOI: 10.1038/s41467-023-40778-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
The role, magnitude, and molecular nature of trans-driven expression variation underlying the upregulation of detoxification genes in pesticide resistant arthropod populations has remained enigmatic. In this study, we performed expression quantitative trait locus (eQTL) mapping (n = 458) between a pesticide resistant and a susceptible strain of the generalist herbivore and crop pest Tetranychus urticae. We found that a single trans eQTL hotspot controlled large differences in the expression of a subset of genes in different detoxification gene families, as well as other genes associated with host plant use. As established by additional genetic approaches including RNAi gene knockdown, a duplicated gene with a nuclear hormone receptor HR96-related ligand-binding domain was identified as causal for the expression differences between strains. The presence of a large family of HR96-related genes in T. urticae may enable modular control of detoxification and host plant use genes, facilitating this species' known and rapid evolution to diverse pesticides and host plants.
Collapse
Affiliation(s)
- Meiyuan Ji
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Berdien De Beer
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sander De Rouck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ernesto Villacis-Perez
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - René Feyereisen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
28
|
Kashung S, Bhardwaj P, Saikia M, Mazumdar-Leighton S. Midgut serine proteinases participate in dietary adaptations of the castor (Eri) silkworm Samia ricini Anderson transferred from Ricinus communis to an ancestral host, Ailanthus excelsa Roxb. FRONTIERS IN INSECT SCIENCE 2023; 3:1169596. [PMID: 38469493 PMCID: PMC10926435 DOI: 10.3389/finsc.2023.1169596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/10/2023] [Indexed: 03/13/2024]
Abstract
Dietary change influenced the life-history traits, nutritional utilization, and midgut serine proteinases in the larvae of the domesticated polyphagous S. ricini, transferred from R. communis (common name: castor; family Euphorbiaceae; the host plant implicated in its domestication) to A. excelsa (common name: Indian tree of heaven; family Simaroubaceae; an ancestral host of wild Samia species). Significantly higher values for fecundity and body weight were observed in larvae feeding on R. communis (Scr diet), and they took less time to reach pupation than insects feeding on A. excelsa (Scai diet). Nevertheless, the nutritional index for efficiency of conversion of digested matter (ECD) was similar for larvae feeding on the two plant species, suggesting the physiological adaptation of S. ricini (especially older instars) to an A. excelsa diet. In vitro protease assays and gelatinolytic zymograms using diagnostic substrates and protease inhibitors revealed significantly elevated levels (p ≤ 0.05) of digestive trypsins, which may be associated with the metabolic costs influencing slow growth in larvae feeding on A. excelsa. RT-PCR with semidegenerate serine proteinase gene-specific primers, and cloning and sequencing of 3' cDNA ends identified a large gene family comprising at least two groups of putative chymotrypsins (i.e., Sr I and Sr II) resembling invertebrate brachyurins/collagenases with wide substrate specificities, and five groups of putative trypsins (i.e., Sr III, Sr IV, Sr V, Sr VII, and Sr VIII). Quantitative RT-PCR indicated that transcripts belonging to the Sr I, Sr III, Sr IV, and Sr V groups, especially the Sr IV group (resembling achelase I from Lonomia achelous), were expressed differentially in the midguts of fourth instars reared on the two plant species. Sequence similarity indicated shared lineages with lepidopteran orthologs associated with expression in the gut, protein digestion, and phytophagy. The results obtained are discussed in the context of larval serine proteinases in dietary adaptations, domestication, and exploration of new host plant species for commercial rearing of S. ricini.
Collapse
|
29
|
Dai J, Cai X, Liu L, Lin Y, Huang Y, Lin J, Shu B. The comparison of gut gene expression and bacterial community in Diaphorina citri (Hemiptera: Liviidae) adults fed on Murraya exotica and 'Shatangju' mandarin (Citrus reticulate cv. Shatangju). BMC Genomics 2023; 24:416. [PMID: 37488494 PMCID: PMC10364414 DOI: 10.1186/s12864-023-09308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/12/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Diaphorina citri Kuwayama is an important citrus pest. It serves as the vector for the transmission of Candidatus Liberibacter asiaticus (CLas), which induced a destructive disease, Huanglongbing, and caused huge economic losses. During the interaction between insects and plants, insects have evolved a series of mechanisms to adapt to various host plants. Murraya exotica and 'Shatangju' mandarin (Citrus reticulate cv. Shatangju) are the Rutaceae species from different genera that have been discovered as suitable hosts for D. citri adults. While the adaptation mechanism of this pest to these two host plants is unclear. RESULTS In this study, RNA-seq and 16 S rDNA amplification sequencing were performed on the gut of D. citri adults reared on M. exotica and 'Shatangju' mandarin. RNA-seq results showed that a total of 964 differentially expressed genes were found in different gut groups with two host plant treatments. The impacted genes include those that encode ribosomal proteins, cathepsins, and mitochondrial respiratory chain complexes. According to 16 S rDNA sequencing, the compositions of the gut bacterial communities were altered by different treatments. The α and β diversity analyses confirmed that the host plant changes influenced the gut microbial diversity. The functional classification analysis by Tax4Fun revealed that 27 KEGG pathways, mostly those related to metabolism, including those for nucleotide metabolism, energy metabolism, metabolism of cofactors and vitamins, amino acid metabolism, carbohydrate metabolism, xenbiotics biodegradation and metabolism, lipid metabolism, and biosynthesis of other secondary metabolites, were significantly altered. CONCLUSION Our preliminary findings shed light on the connection between D. citri and host plants by showing that host plants alter the gene expression profiles and bacterial community composition of D. citri adults.
Collapse
Affiliation(s)
- Jinghua Dai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China
| | - Xueming Cai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China
| | - Luyang Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China
| | - Yanzheng Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China
| | - Yuting Huang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China.
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China.
| |
Collapse
|
30
|
Rodríguez D, Coy-Barrera E. Overview of Updated Control Tactics for Western Flower Thrips. INSECTS 2023; 14:649. [PMID: 37504655 PMCID: PMC10380671 DOI: 10.3390/insects14070649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), broadly known as Western flower thrips (WFT), are currently one of the most critical pests worldwide in field and greenhouse crops, and their management is full of yet unsolved challenges derived from their high reproductive potential, cryptic habit, and ability to disperse. The control of this pest relies widely on chemical control, despite the propensity of the species to develop resistance. However, significant advances have been produced through biological and ethological control. Although there has recently been a remarkable amount of new information regarding the management of this pest worldwide, there is no critical analysis of recent developments and advances in the attractive control tactics for WFT, constituting the present compilation's aim. Hence, this narrative review provides an overview of effective control strategies for managing thrips populations. By understanding the pest's biology, implementing monitoring techniques, accurately identifying the species, and employing appropriate control measures, farmers and researchers can mitigate the WFT impact on agricultural production and promote sustainable pest management practices.
Collapse
Affiliation(s)
- Daniel Rodríguez
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| |
Collapse
|
31
|
Zhang Z, Bao J, Chen Q, He J, Li X, Zhang J, Liu Z, Wu Y, Wang Y, Lu Y. The Chromosome-Level Genome Assembly of Bean Blossom Thrips ( Megalurothrips usitatus) Reveals an Expansion of Protein Digestion-Related Genes in Adaption to High-Protein Host Plants. Int J Mol Sci 2023; 24:11268. [PMID: 37511029 PMCID: PMC10379191 DOI: 10.3390/ijms241411268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Megalurothrips usitatus (Bagnall) is a destructive pest of legumes, such as cowpea. The biology, population dynamics and control strategies of this pest have been well studied. However, the lack of a high-quality reference genome for M. usitatus has hindered the understanding of key biological questions, such as the mechanism of adaptation to feed preferentially on high-protein host plants and the resistance to proteinase inhibitors (PIs). In this study, we generated a high-resolution chromosome-level reference genome assembly (247.82 Mb, 16 chromosomes) of M. usitatus by combining Oxford Nanopore Technologies (ONT) and Hi-C sequencing. The genome assembly showed higher proportions of GC and repeat content compared to other Thripinae species. Genome annotation revealed 18,624 protein-coding genes, including 4613 paralogs that were preferentially located in TE-rich regions. GO and KEGG enrichment analyses of the paralogs revealed significant enrichment in digestion-related genes. Genome-wide identification uncovered 506 putative digestion-related enzymes; of those, proteases, especially their subgroup serine proteases (SPs), are significantly enriched in paralogs. We hypothesized that the diversity and expansion of the digestion-related genes, especially SPs, could be driven by mobile elements (TEs), which promote the adaptive evolution of M. usitatus to high-protein host plants with high serine protease inhibitors (SPIs). The current study provides a valuable genomic resource for understanding the genetic variation among different pest species adapting to different plant hosts.
Collapse
Affiliation(s)
- Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qizhang Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianyun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiahui Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410125, China
| | - Zhixing Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yixuan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yunsheng Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410125, China
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
32
|
Zhang A, Li T, Yuan L, Tan M, Jiang D, Yan S. Digestive Characteristics of Hyphantria cunea Larvae on Different Host Plants. INSECTS 2023; 14:insects14050463. [PMID: 37233091 DOI: 10.3390/insects14050463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Digestive physiology mediates the adaptation of phytophagous insects to host plants. In this study, the digestive characteristics of Hyphantria cunea larvae feeding preferences on different host plants were investigated. The results showed that the body weight, food utilization, and nutrient contents of H. cunea larvae feeding on the high-preference host plants were significantly higher than those feeding on the low-preference host plants. However, the activity of larval digestive enzymes in different host plants presented an opposite trend, as higher α-amylase or trypsin activity was observed in the group feeding on the low-preference host plants than that feeding on the high-preference host plants. Upon treatment of leaves with α-amylase and trypsin inhibitors, the body weight, food intake, food utilization rate, and food conversion rate of H. cunea larvae significantly decreased in all host plant groups. Furthermore, the H. cunea comprised highly adaptable compensatory mechanisms of digestion involving digestive enzymes and nutrient metabolism in response to digestive enzyme inhibitors. Taken together, digestive physiology mediates the adaptation of H. cunea to multiple host plants, and the compensatory effect of digestive physiology is an important counter-defense strategy implemented by H. cunea to resist plant defense factors, especially the insect digestive enzyme inhibitors.
Collapse
Affiliation(s)
- Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Tao Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Lisha Yuan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
33
|
Bera I, O'Sullivan M, Flynn D, Shields DC. Relationship between Protein Digestibility and the Proteolysis of Legume Proteins during Seed Germination. Molecules 2023; 28:molecules28073204. [PMID: 37049968 PMCID: PMC10096060 DOI: 10.3390/molecules28073204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 04/14/2023] Open
Abstract
Legume seed protein is an important source of nutrition, but generally it is less digestible than animal protein. Poor protein digestibility in legume seeds and seedlings may partly reflect defenses against herbivores. Protein changes during germination typically increase proteolysis and digestibility, by lowering the levels of anti-nutrient protease inhibitors, activating proteases, and breaking down storage proteins (including allergens). Germinating legume sprouts also show striking increases in free amino acids (especially asparagine), but their roles in host defense or other processes are not known. While the net effect of germination is generally to increase the digestibility of legume seed proteins, the extent of improvement in digestibility is species- and strain-dependent. Further research is needed to highlight which changes contribute most to improved digestibility of sprouted seeds. Such knowledge could guide the selection of varieties that are more digestible and also guide the development of food preparations that are more digestible, potentially combining germination with other factors altering digestibility, such as heating and fermentation. Techniques to characterize the shifts in protein make-up, activity and degradation during germination need to draw on traditional analytical approaches, complemented by proteomic and peptidomic analysis of mass spectrometry-identified peptide breakdown products.
Collapse
Affiliation(s)
- Indrani Bera
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Michael O'Sullivan
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Darragh Flynn
- Flynn & Flynn Global Trade Ltd., T/A The Happy Pear, A67 EC56 Wicklow, Ireland
| | - Denis C Shields
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
34
|
Madasamy M, Sahayaraj K, Sayed SM, Al-Shuraym LA, Selvaraj P, El-Arnaouty SA, Madasamy K. Insecticidal Mechanism of Botanical Crude Extracts and Their Silver Nanoliquids on Phenacoccus solenopsis. TOXICS 2023; 11:305. [PMID: 37112532 PMCID: PMC10145954 DOI: 10.3390/toxics11040305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In recent years, intensive studies have been carried out on the management of agricultural insect pests using botanical insecticides in order to decrease the associated environmental hazards. Many studies have tested and characterized the toxic action of plant extracts. Four plant extracts (Justicia adhatoda, Ipomea carnea, Pongamia glabra, and Annona squamosa) containing silver nanoparticles (AgNPs) were studied for their effects on Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) using the leaf dip method. The effects were estimated based on assays of hydrolytic enzyme (amylase, protease, lipase, acid phosphatase, glycosidase, trehalase, phospholipase A2, and invertase) and detoxification enzyme (esterase and lactate dehydrogenase) levels; macromolecular content (total body protein, carbohydrate, and lipid); and protein profile. The results show that the total body of P. solenopsis contains trypsin, pepsin, invertase, lipase, and amylase, whereas J. adathoda and I. carnea aqueous extracts considerably decreased the protease and phospholipase A2 levels, and A. squamosa aqueous extract dramatically increased the trehalase level in a dose-dependent manner. The enzyme levels were dramatically decreased by P. glabura-AgNPs (invertase, protease, trehalase, lipase, and phospholipase A2); I. carnea-AgNPs (invertase, lipase, and phospholipase A2); A. squamosa-AgNPs (protease, phospholipase A2); and J. adathoda-AgNPs (protease, lipase, and acid phosphatase). Plant extracts and their AgNPs significantly reduced P. solenopsis esterase and lactate dehydrogenase levels in a dose-dependent manner. At higher concentrations (10%), all of the investigated plants and their AgNPs consistently decreased the total body carbohydrate, protein, and fat levels. It is clear that the plant extracts, either crude or together with AgNPs, may result in the insects having inadequate nutritional capacity, which will impact on all critical actions of the affected hydrolytic and detoxication enzymes.
Collapse
Affiliation(s)
- Mariappan Madasamy
- Crop Protection Research Centre (CPRC), Department of Zoology, St. Xavier’s College, Palayamkottai 627002, India
| | - Kitherian Sahayaraj
- Crop Protection Research Centre (CPRC), Department of Zoology, St. Xavier’s College, Palayamkottai 627002, India
| | - Samy M. Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Laila A. Al-Shuraym
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Parthas Selvaraj
- Entomology Research Unit, Department of Zoology, St. Xavier’s College, Palayamkottai 627002, India
| | - Sayed-Ashraf El-Arnaouty
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Koilraj Madasamy
- Crop Protection Research Centre (CPRC), Department of Zoology, St. Xavier’s College, Palayamkottai 627002, India
| |
Collapse
|
35
|
Wen F, Wang J, Shang D, Yan H, Yuan X, Wang Y, Xia Q, Wang G. Non-classical digestive lipase BmTGL selected by gene amplification reduces the effects of mulberry inhibitor during silkworm domestication. Int J Biol Macromol 2023; 229:589-599. [PMID: 36587639 DOI: 10.1016/j.ijbiomac.2022.12.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/09/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Efficient utilization of dietary lipids is crucial for Bombyx mori, also known as domesticated silkworms. However, the effects of domestication on the genes encoding lipases remain unknown. In this study, we investigated the expression difference of one triacylglycerol lipase (BmTGL) between B.mori and wild (ancestor) silkworm strains (Bombyx mandarina). An immunofluorescence localization analysis showed that BmTGL was present in all parts of the gut and was released into the intestinal lumen. BmTGL expression was significantly enhanced in different domesticated silkworm strains compared to that in the B. mandarina strains. The BmTGL copy numbers in the genomes of the domesticated silkworm strains were 2-to-3 folds that of the B. mandarina strains and accounted for the enhanced expression of BmTGL in the domesticated silkworm strains. The Ser144Asn substitution in the Ser-Asp-His catalytic triads of BmTGL resulted in relatively lower lipase activity and reduced sensitivity to the lipase inhibitor morachalcone A. Moreover, BmTGL overexpression significantly increased the weights of the B. mori silkworms compared to those of the non-transgenic controls. Thus, the selection of BmTGL by gene amplification may be a trade-off between maintaining high enzymatic activity and reducing the effects of mulberry inhibitors during silkworm domestication.
Collapse
Affiliation(s)
- Feng Wen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Jing Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Deli Shang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Hao Yan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Xingli Yuan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
36
|
Zhang ZY, Li W, Huang QC, Yang L, Chen XL, Xiao RD, Tang CQ, Hu SJ. Cut to Disarm Plant Defence: A Unique Oviposition Behaviour in Rhynchites foveipennis (Coleoptera: Attelabidae). INSECTS 2023; 14:200. [PMID: 36835769 PMCID: PMC9965434 DOI: 10.3390/insects14020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Female weevils of the family Attelabidae (Coleoptera: Curculionoidea) possess a unique behaviour of partially cutting the branches connecting egg-bearing organs of their host plants during oviposition. However, the consequence of such behaviour remains unclear. Using Rhynchites foveipennis and its host pear (Pyrus pyrifolia), the present study tested the hypothesis that the oviposition behaviour could disarm the host plants' defence. We compared the survival rates, growth rates, and performance of eggs and larvae under two conditions: (1) the fruit stems were naturally damaged by the females before and after oviposition, and (2) the fruit stems were artificially protected from the females. When fruit stems were protected from female damage, the survival rates of eggs and larvae were only 21.3-32.6%, respectively; and the larval weight was 3.2-4.1 mg 30 days after laying eggs. When the fruit stems were damaged, the survival rates of eggs and larvae reached 86.1-94.0%, respectively; and the larval weight reached 73.0-74.9 mg 30 days after laying eggs. The contents of tannin and flavonoids in the pears did not change significantly along with the oviposition and larval feeding, but weevil eggs were crushed and killed by the callus in the pears. Once the stunted larvae in branch-growing pears were moved into the picked-off ones, the growth and development recovered. The findings indicate that the oviposition behaviour can significantly increase the survival of the offspring. Our study suggested that the oviposition behaviour of attelabid weevils is a strategy to overcome plant defence.
Collapse
Affiliation(s)
- Zhi-Ying Zhang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Wei Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Qi-Chao Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Liu Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Xiao-Lan Chen
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Ru-Di Xiao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Cindy Q. Tang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Shao-Ji Hu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming 650500, China
| |
Collapse
|
37
|
Wang S, Yang H, Hu Y, Zhang C, Fan D. Multi-Omics Reveals the Effect of Population Density on the Phenotype, Transcriptome and Metabolome of Mythimna separata. INSECTS 2023; 14:68. [PMID: 36661996 PMCID: PMC9861010 DOI: 10.3390/insects14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Population-density-dependent polymorphism is important in the biology of some agricultural pests. The oriental armyworm (Mythimna separata) is a lepidopteran pest (family Noctuidae). As the population density increases, its body color becomes darker, and the insect eats more and causes greater damage to crops. The molecular mechanisms underlying this phase change are not fully clear. Here, we used transcriptomic and metabolomic methods to study the effect of population density on the differentiation of second-day sixth instar M. separata larvae. The transcriptomic analysis identified 1148 differentially expressed genes (DEGs) in gregarious-type (i.e., high-population-density) armyworms compared with solitary-type (low-population-density) armyworms; 481 and 667 genes were up- and downregulated, respectively. The metabolomic analysis identified 137 differentially accumulated metabolites (DAMs), including 59 upregulated and 78 downregulated. The analysis of DEGs and DAMs showed that activation of the insulin-like signaling pathway promotes the melanization of gregarious armyworms and accelerates the decomposition of saccharides, which promotes the gregarious type to take in more food. The gregarious type is more capable of digesting and absorbing proteins and decreases energy consumption by inhibiting transcription and translation processes. The phase change traits of the armyworm are thus attributable to plasticity of its energy metabolism. These data broaden our understanding of the molecular mechanisms of insect-density-dependent polymorphism.
Collapse
|
38
|
Song Y, Liu J, Fu M, Liu H, Wang W, Wang S, Chen F. The efficacy of Azotobacter chroococcum in altering maize plant-defense responses to armyworm at elevated CO 2 concentration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114296. [PMID: 36399994 DOI: 10.1016/j.ecoenv.2022.114296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Elevated atmospheric carbon dioxide (eCO2) concentrations can alter the carbon:nitrogen ratio and palatability of host plants for herbivorous insects, but rhizobacteria likely mitigate the alteration and influence physiological adaptation of insects. In this study, we conducted transcriptomic analysis of maize (Zea mays) response to Azotobacter chroococcum (AC) inoculation under eCO2 conditions in contrast to ambient CO2 (aCO2), and studied the effects of plant-defense change of maize under eCO2 on the oriental armyworm, Mythimna separata. Results showed that there were 16, 14, 16 and 135 differentially expressed genes that were associated with plant-defense response in maize leaves between aCO2-CK and aCO2-AC, eCO2-CK and eCO2-AC, aCO2-CK and eCO2-CK, aCO2-AC and eCO2-AC, respectively. Moreover, A. chroococcum inoculation and eCO2 influenced plant hormone signal transduction of maize. Interestingly, A. chroococcum inoculation significantly decreased the contents of JA (jasmonic acid) and JA-Ile (isoleucine conjugate of JA) in leaves, but eCO2 markedly increased contents of JA-Ile, JA and SA (salicylic acid). Compared to aCO2, eCO2 significantly decreased activity of protective enzyme (catalase), and increased activities of digestive (lipase and protease), protective (peroxidase) and detoxifying enzymes (carboxylesterase, Mixed-functional oxidase and glutathione s-transferase), prolonged developmental time, and decreased survival rate and body weight of larvae (P < 0.05). A. chroococcum inoculation significantly increased the activity of protective enzyme (catalase), and decreased the activities of detoxifying enzymes (carboxylesterase, glutathione s-transferase and mixed-functional oxidase), thus increased the growth rate and body weight of larvae in comparison with no-inoculation of A. chroococcum (P < 0.05). The indices of M. separata were significantly correlated with the foliar contents of JA, JA-Ile and SA (|r| = 0.44-0.85, P < 0.05), indicating that A. chroococcum inoculation altered the physiological adaptation of M. separata under eCO2 by disturbing defense substances in maize. Our results in understanding effects of A. chroococcum inoculation on maize resistance to herbivorous insects will be valuable for agricultural pest control in the future at eCO2 conditions.
Collapse
Affiliation(s)
- Yingying Song
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jiawen Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Menglu Fu
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Hui Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Weitong Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shishi Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
39
|
Adaptation of Helicoverpa armigera to Soybean Peptidase Inhibitors Is Associated with the Transgenerational Upregulation of Serine Peptidases. Int J Mol Sci 2022; 23:ijms232214301. [PMID: 36430785 PMCID: PMC9693090 DOI: 10.3390/ijms232214301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Molecular phenotypes induced by environmental stimuli can be transmitted to offspring through epigenetic inheritance. Using transcriptome profiling, we show that the adaptation of Helicoverpa armigera larvae to soybean peptidase inhibitors (SPIs) is associated with large-scale gene expression changes including the upregulation of genes encoding serine peptidases in the digestive system. Furthermore, approximately 60% of the gene expression changes induced by SPIs persisted in the next generation of larvae fed on SPI-free diets including genes encoding regulatory, oxidoreductase, and protease functions. To investigate the role of epigenetic mechanisms in regulating SPI adaptation, the methylome of the digestive system of first-generation larvae (fed on a diet with and without SPIs) and of the progeny of larvae exposed to SPIs were characterized. A comparative analysis between RNA-seq and Methyl-seq data did not show a direct relationship between differentially methylated and differentially expressed genes, while trypsin and chymotrypsin genes were unmethylated in all treatments. Rather, DNA methylation potential epialleles were associated with transcriptional and translational controls; these may play a regulatory role in the adaptation of H. armigera to SPIs. Altogether, our findings provided insight into the mechanisms of insect adaptation to plant antiherbivore defense proteins and illustrated how large-scale transcriptional reprograming of insect genes can be transmitted across generations.
Collapse
|
40
|
Yadav R, Kumar A, Bano N, Singh P, Pandey A, Dhar YV, Bag SK, Pande V, Sharma P, Singh SP, Iqbal HM, Sanyal I. Co-expression of Cocculus hirsutus trypsin inhibitor with Cry protein reduces resistant development in targeted insects along with complete mortality. INDUSTRIAL CROPS AND PRODUCTS 2022; 188:115674. [DOI: 10.1016/j.indcrop.2022.115674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
41
|
Arnqvist G, Sayadi A. A possible genomic footprint of polygenic adaptation on population divergence in seed beetles? Ecol Evol 2022; 12:e9440. [PMID: 36311399 PMCID: PMC9608792 DOI: 10.1002/ece3.9440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Efforts to unravel the genomic basis of incipient speciation are hampered by a mismatch between our toolkit and our understanding of the ecology and genetics of adaptation. While the former is focused on detecting selective sweeps involving few independently acting or linked speciation genes, the latter states that divergence typically occurs in polygenic traits under stabilizing selection. Here, we ask whether a role of stabilizing selection on polygenic traits in population divergence may be unveiled by using a phenotypically informed integrative approach, based on genome‐wide variation segregating in divergent populations. We compare three divergent populations of seed beetles (Callosobruchus maculatus) where previous work has demonstrated a prominent role for stabilizing selection on, and population divergence in, key life history traits that reflect rate‐dependent metabolic processes. We derive and assess predictions regarding the expected pattern of covariation between genetic variation segregating within populations and genetic differentiation between populations. Population differentiation was considerable (mean FST = 0.23–0.26) and was primarily built by genes showing high selective constraints and an imbalance in inferred selection in different populations (positive Tajima's DNS in one and negative in one), and this set of genes was enriched with genes with a metabolic function. Repeatability of relative population differentiation was low at the level of individual genes but higher at the level of broad functional classes, again spotlighting metabolic genes. Absolute differentiation (dXY) showed a very different general pattern at this scale of divergence, more consistent with an important role for genetic drift. Although our exploration is consistent with stabilizing selection on polygenic metabolic phenotypes as an important engine of genome‐wide relative population divergence and incipient speciation in our study system, we note that it is exceedingly difficult to firmly exclude other scenarios.
Collapse
Affiliation(s)
- Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, EBCUppsala UniversityUppsalaSweden
| | - Ahmed Sayadi
- Animal Ecology, Department of Ecology and Genetics, EBCUppsala UniversityUppsalaSweden,Rheumatology, Department of Medical SciencesUppsala UniversityUppsalaSweden
| |
Collapse
|
42
|
de Almeida Barros R, Meriño-Cabrera Y, Castro JS, da Silva Junior NR, de Oliveira JVA, Schultz H, de Andrade RJ, de Oliveira Ramos HJ, de Almeida Oliveira MG. Bovine pancreatic trypsin inhibitor and soybean Kunitz trypsin inhibitor: Differential effects on proteases and larval development of the soybean pest Anticarsia gemmatalis (Lepidoptera: Noctuidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105188. [PMID: 36127063 DOI: 10.1016/j.pestbp.2022.105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Pest management is challenged with resistant herbivores and problems regarding human health and environmental issues. Indeed, the greatest challenge to modern agriculture is to protect crops from pests and still maintain environmental quality. This study aimed to analyze by in silico, in vitro, and in vivo approaches to the feasibility of using the inhibitory protein extracted from mammals - Bovine Pancreatic Trypsin Inhibitor (BPTI) as a potential inhibitor of digestive trypsins from the pest Anticarsia gemmatalis and comparing the results with the host-plant inhibitor - Soybean Kunitz Trypsin Inhibitor (SKTI). BPTI and SKTI interacts with A. gemmatalis trypsin-like enzyme competitively, through hydrogen and hydrophobic bonds. A. gemmatalis larvae exposed to BPTI did not show two common adaptative mechanisms i.e., proteolytic degradation and overproduction of proteases, presenting highly reduced trypsin-like activity. On the other hand, SKTI-fed larvae did not show reduced trypsin-like activity, presenting overproduction of proteases and SKTI digestion. In addition, the larval survival was reduced by BPTI similarly to SKTI, and additionally caused a decrease in pupal weight. The non-plant protease inhibitor BPTI presents intriguing element to compose biopesticide formulations to help decrease the use of conventional refractory pesticides into integrated pest management programs.
Collapse
Affiliation(s)
- Rafael de Almeida Barros
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Minas Gerais, Brazil; Instituto de Biotecnologia aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - Yaremis Meriño-Cabrera
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Minas Gerais, Brazil; Instituto de Biotecnologia aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - José Severiche Castro
- Departamento de Física, Universidad de Sucre, Sincelejo, Colombia; Instituto de Biotecnologia aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - Neilier Rodrigues da Silva Junior
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Minas Gerais, Brazil; Instituto de Biotecnologia aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - João Vitor Aguilar de Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Minas Gerais, Brazil; Instituto de Biotecnologia aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - Halina Schultz
- Departamento de Entomologia, Universidade Federal de Viçosa, Minas Gerais, Brazil; Instituto de Biotecnologia aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - Rafael Júnior de Andrade
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Minas Gerais, Brazil; Instituto de Biotecnologia aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - Humberto Josué de Oliveira Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Minas Gerais, Brazil; Instituto de Biotecnologia aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - Maria Goreti de Almeida Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Minas Gerais, Brazil; Instituto de Biotecnologia aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
43
|
Sillo F, Brunetti C, Marroni F, Vita F, Dos Santos Nascimento LB, Vizzini A, Mello A, Balestrini R. Systemic effects of Tuber melanosporum inoculation in two Corylus avellana genotypes. TREE PHYSIOLOGY 2022; 42:1463-1480. [PMID: 35137225 DOI: 10.1093/treephys/tpac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Roots of the European hazelnut (Corylus avellana L.), i.e., one of the most economically important nut species, form symbiosis with ectomycorrhizal (ECM) fungi, including truffles. Although physical interactions only occur in roots, the presence of mycorrhizal fungi can lead to metabolic changes at a systemic level, i.e., in leaves. However, how root colonization by ECM fungi modifies these processes in the host plant has so far not been widely studied. This work aimed to investigate the response in two C. avellana genotypes, focusing on leaves from plants inoculated with the black truffle Tuber melanosporum Vittad. Transcriptomic profiles of leaves of colonized plants were compared with those of non-colonized plants, as well as sugar and polyphenolic content. Results suggested that T. melanosporum has the potential to support plants in stressed conditions, leading to the systemic regulation of several genes involved in signaling and defense responses. Although further confirmation is needed, our results open new perspectives for future research aimed to highlight novel aspects in ECM symbiosis.
Collapse
Affiliation(s)
- Fabiano Sillo
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Strada della Cacce 73, 10135 Torino, Italy
| | - Cecilia Brunetti
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019 Firenze, Italy
| | - Fabio Marroni
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Federico Vita
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | | | - Alfredo Vizzini
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Viale Mattioli 25, 10125 Torino, Italy
| | - Antonietta Mello
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Viale Mattioli 25, 10125 Torino, Italy
| | - Raffaella Balestrini
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Strada della Cacce 73, 10135 Torino, Italy
| |
Collapse
|
44
|
Bera S, Arena GD, Ray S, Flannigan S, Casteel CL. The Potyviral Protein 6K1 Reduces Plant Proteases Activity during Turnip mosaic virus Infection. Viruses 2022; 14:1341. [PMID: 35746814 PMCID: PMC9229136 DOI: 10.3390/v14061341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 12/25/2022] Open
Abstract
Potyviral genomes encode just 11 major proteins and multifunctionality is associated with most of these proteins at different stages of the virus infection cycle. Some potyviral proteins modulate phytohormones and protein degradation pathways and have either pro- or anti-viral/insect vector functions. Our previous work demonstrated that the potyviral protein 6K1 has an antagonistic effect on vectors when expressed transiently in host plants, suggesting plant defenses are regulated. However, to our knowledge the mechanisms of how 6K1 alters plant defenses and how 6K1 functions are regulated are still limited. Here we show that the 6K1 from Turnip mosaic virus (TuMV) reduces the abundance of transcripts related to jasmonic acid biosynthesis and cysteine protease inhibitors when expressed in Nicotiana benthamiana relative to controls. 6K1 stability increased when cysteine protease activity was inhibited chemically, showing a mechanism to the rapid turnover of 6K1 when expressed in trans. Using RNAseq, qRT-PCR, and enzymatic assays, we demonstrate TuMV reprograms plant protein degradation pathways on the transcriptional level and increases 6K1 stability at later stages in the infection process. Moreover, we show 6K1 decreases plant protease activity in infected plants and increases TuMV accumulation in systemic leaves compared to controls. These results suggest 6K1 has a pro-viral function in addition to the anti-insect vector function we observed previously. Although the host targets of 6K1 and the impacts of 6K1-induced changes in protease activity on insect vectors are still unknown, this study enhances our understanding of the complex interactions occurring between plants, potyviruses, and vectors.
Collapse
Affiliation(s)
- Sayanta Bera
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| | - Gabriella D. Arena
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo 04014-002, Brazil;
| | - Swayamjit Ray
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| | - Sydney Flannigan
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| | - Clare L. Casteel
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| |
Collapse
|
45
|
Kumari P, Jasrotia P, Kumar D, Kashyap PL, Kumar S, Mishra CN, Kumar S, Singh GP. Biotechnological Approaches for Host Plant Resistance to Insect Pests. Front Genet 2022; 13:914029. [PMID: 35719377 PMCID: PMC9201757 DOI: 10.3389/fgene.2022.914029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Annually, the cost of insect pest control in agriculture crosses billions of dollars around the world. Until recently, broad-spectrum synthetic pesticides were considered as the most effective means of pest control in agriculture. However, over the years, the overreliance on pesticides has caused adverse effects on beneficial insects, human health and the environment, and has led to the development of pesticide resistant insects. There is a critical need for the development of alternative pest management strategies aiming for minimum use of pesticides and conservation of natural enemies for maintaining the ecological balance of the environment. Host plant resistance plays a vital role in integrated pest management but the development of insect-resistant varieties through conventional ways of host plant resistance takes time, and is challenging as it involves many quantitative traits positioned at various loci. Biotechnological approaches such as gene editing, gene transformation, marker-assisted selection etc. in this direction have recently opened up a new era of insect control options. These could contribute towards about exploring a much wider array of novel insecticidal genes that would otherwise be beyond the scope of conventional breeding. Biotechnological interventions can alter the gene expression level and pattern as well as the development of transgenic varieties with insecticidal genes and can improve pest management by providing access to novel molecules. This review will discuss the emerging biotechnological tools available to develop insect-resistant engineered crop genotypes with a better ability to resist the attack of insect pests.
Collapse
Affiliation(s)
- Pritam Kumari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
- CCS Haryana Agricultural University, Hisar, India
| | - Poonam Jasrotia
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Deepak Kumar
- CCS Haryana Agricultural University, Hisar, India
| | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Satish Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | | | - Sudheer Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | | |
Collapse
|
46
|
de Almeida Barros R, Meriño-Cabrera Y, Severiche Castro JG, Rodrigues da Silva Júnior N, Schultz H, de Andrade RJ, Aguilar de Oliveira JV, de Oliveira Ramos HJ, de Almeida Oliveira MG. Inhibition constant and stability of tripeptide inhibitors of gut trypsin-like enzyme of the soybean pest Anticarsia gemmatalis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21887. [PMID: 35315942 DOI: 10.1002/arch.21887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/08/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Insects overcome the action of natural protease inhibitors (PIs) due to evolutionary adaptations through endogenous proteolysis and reprogramming proteases. Insect adaptations complicate the formulation of IP-based crop protection products. However, small peptides designed based on the active site of enzymes have shown promising results that could change this scenario. GORE1 and GORE2 are designed tripeptides that reduce the survival of Anticarsia gemmatalis when ingested orally. In this article, the stability and ability of the peptides to bind trypsin-like enzymes of A. gemmatalis were evaluated by molecular dynamics (MD) simulations. The ability of the peptides to inhibit trypsin-like enzymes in vivo was compared with the SKTI protein by feeding A. gemmatalis larvae at different concentrations, followed by an inhibition persistence assay. During the MD simulation of enzyme-ligand complexes, both peptides showed a small variation of root-mean-square deviation and root-mean-square fluctuation, suggesting that these molecules reach equilibrium when forming a complex with the trypsin-like enzyme. Furthermore, both peptides form hydrogen bonds with substrate recognition sites of A. gemmatalis trypsin-like enzyme, with GORE2 having more interactions than GORE1. Larvae of A. gemmatalis exposed to the peptides and SKTI showed a similar reduction in proteolytic activity, but the persistence of inhibition of trypsin-like enzyme was longer in peptide-fed insects. Despite their size, the peptides exhibit important active and substrate binding site interactions, stability during complex formation, and steadiness effects in vivo. The results provide fundamental information for the development of mimetic molecules and help in decision-making for the selection of delivery methods for larger-scale experiments regarding similar molecules.
Collapse
Affiliation(s)
- Rafael de Almeida Barros
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - Yaremis Meriño-Cabrera
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - José G Severiche Castro
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
- Departamento de Física, Universidad de Sucre, Sincelejo, Sucre, Colombia
| | - Neilier Rodrigues da Silva Júnior
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - Halina Schultz
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Rafael J de Andrade
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - João V Aguilar de Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - Humberto J de Oliveira Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| | - Maria G de Almeida Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
47
|
Kunert KJ, Pillay P. Loop replacement design: a new way to improve potency of plant cystatins. FEBS J 2022; 289:1823-1826. [DOI: 10.1111/febs.16335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 01/26/2023]
Affiliation(s)
- Karl J. Kunert
- Department of Plant and Soil Sciences Department, Forestry and Agricultural Biotechnology Institute University of Pretoria South Africa
| | - Priyen Pillay
- Future Production Chemicals Cluster Council for Scientific and Industrial Research Pretoria South Africa
| |
Collapse
|
48
|
Chen B, Mason CJ, Peiffer M, Zhang D, Shao Y, Felton GW. Enterococcal symbionts of caterpillars facilitate the utilization of a suboptimal diet. JOURNAL OF INSECT PHYSIOLOGY 2022; 138:104369. [PMID: 35157920 DOI: 10.1016/j.jinsphys.2022.104369] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Bacterial gut symbionts of insect herbivores can impact their host through different mechanisms. However, in most lepidopteran systems we lack experimental examples to explain how specific members of the gut bacterial community influence their host. We used fall armyworm (Spodoptera frugiperda) as a model system to address this objective. We implemented axenic and gnotobiotic techniques using two semi-artificial diets with pinto bean and wheat germ-based components. Following an initial screen of bacterial isolates representing different genera, larvae inoculated with Enterococcus FAW 2-1 exhibited increased body mass on the pinto bean diet, but not on the wheat germ diet. We conducted a systematic bioassay screening of Enterococcus isolated from fall armyworm, revealing they had divergent effects on the hosts' usage pinto bean diet, even among phylogenetically similar isolates. Dilution of the pinto bean diet revealed that larvae performed better on less-concentrated diets, suggesting the presence of a potential toxin. Collectively, these results demonstrate that some gut microorganisms of lepidopterans can benefit the host, but the dietary context is key towards understanding the direction of the response and magnitude of the effect. We provide evidence that gut microorganisms may play a wider role in mediating feeding breadth in lepidopteran pests, but overall impacts could be related to the environmental stress and the metabolic potentials of the microorganisms inhabiting the gut.
Collapse
Affiliation(s)
- Bosheng Chen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA; College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, PR China
| | - Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Michelle Peiffer
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dayu Zhang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, PR China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
49
|
Pandey A, Yadav R, Sanyal I. Evaluating the pesticidal impact of plant protease inhibitors: lethal weaponry in the co-evolutionary battle. PEST MANAGEMENT SCIENCE 2022; 78:855-868. [PMID: 34570437 DOI: 10.1002/ps.6659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
In the arsenal of plant defense, protease inhibitors (PIs) are well-designed defensive products to counter field pests. PIs are produced in plant tissues by means of 'stable defense metabolite' and triggered on demand as the perception of the signal and well established as a part of plant active defense. PIs have been utilized for approximately four decades, initially as a gene-alone approach that was later replaced by multiple gene pyramiding/gene stacking due to insect adaptability towards the PI alone. By considering the adaptive responses of the pest to the single insecticidal gene, the concept of gene pyramiding gained continuous appreciation for the development of transgenic crops to deal with co-evolving pests. Gene pyramiding approaches are executed to bypass the insect's adaptive responses against PIs. Stacking PIs with additional insecticidal proteins, plastid engineering, recombinant proteinase inhibitors, RNAi-based methods and CRISPR/Cas9-mediated genome editing are the advanced tools and methods for next-generation pest management. Undoubtedly, the domain associated with the mechanism of PIs in the course of plant-pest interactions will occupy a central role for the advancement of more efficient and sustainable pest control strategies. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ankesh Pandey
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Reena Yadav
- CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Kumaun University, Nainital, India
| | - Indraneel Sanyal
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
50
|
NBS-LRR-WRKY genes and protease inhibitors (PIs) seem essential for cowpea resistance to root-knot nematode. J Proteomics 2022; 261:104575. [DOI: 10.1016/j.jprot.2022.104575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
|