1
|
Chen B, He H, Wang X, Wu S, Wang Q, Zhang J, Qiao Y, Liu H. Research Progress on Shrimp Allergens and Allergenicity Reduction Methods. Foods 2025; 14:895. [PMID: 40077598 DOI: 10.3390/foods14050895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Shrimp are highly favored by consumers for their delicious taste and rich nutritional value. However, reports of allergic reactions caused by shrimp and its derivatives have been increasing, significantly impacting consumer health and posing a growing global food safety concern. This article introduces the structure and biochemical characteristics of major allergenic proteins in shrimp, including tropomyosin (TM), arginine kinase, sarcoplasmic calcium-binding protein, myosin light chain, troponin C, and hemocyanin. Currently, there is no effective treatment for shrimp allergies, and prevention is mainly achieved by avoiding consumption. The study of shrimp allergen sensitization reduction technology is of great significance to the development of hypoallergenic or desensitized products. The article provides a detailed overview of the effects of common processing techniques, including physical, chemical, biological, and combined methods, on the allergenicity of shrimp allergens; for instance, the binding rate to immunoglobulin E (IgE) was reduced by 73.59% after treating TM with high pressure (500 MPa) at 55 °C for 10 min and the recognition rate of TM to IgE decreased by 89.4% on average after treating TM with pepsin (30 μg/mL, pH 2) for 2 h. These techniques provide references for the development of hypoallergenic aquatic products or desensitized foods.
Collapse
Affiliation(s)
- Bingjie Chen
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Hui He
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Xiao Wang
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Songheng Wu
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Qiankun Wang
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Jinglin Zhang
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Yongjin Qiao
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Hongru Liu
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| |
Collapse
|
2
|
Yan Y, Liu S, Wang Z, Zhang X, Ji X, Shi M, Niu B. Improvement of maize starch-lauric acid complexes by plasma pretreatment: Formation, structure, properties and its related mechanisms. Int J Biol Macromol 2025; 291:139024. [PMID: 39708888 DOI: 10.1016/j.ijbiomac.2024.139024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/21/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Starch-lipid complexes have attracted widespread attention owing to high anti-digestibility and thermal stability. However, methods to increase the content of starch-lipid complexes are limited. Therefore, this study aims to investigate the effect of atmospheric cold plasma (ACP) treatment for different times (0, 1, 3, 5, and 7 min) on the formation and structure of complexes between maize starch (MS) and lauric acid (LA). The results showed that the amylose content of MS increased from 18.44 % to 31.01 % after ACP treatment. Moreover, structural characterization of complexes revealed that short-term ACP treatment (1 min) favored the formation of MS-LA complexes, resulting in a better V-type crystalline structure (14.90 %) and short-range ordered structure (0.793) with higher thermal stability (4.47 J/g) and no obvious morphological differences. In addition, the resistant starch content of MS-LA complexes increased from 30 % to 33 % in MS treated with ACP for 1 min. This may be because the active substances in ACP depolymerized starch, destroyed α-1,6 glycosidic bonds, broke branch chains, and increased amylose content, which promoted the formation of complexes to a certain extent. This study proposes a method to promote the formation of starch-lipid complexes, broadening potential application of complexes in low-GI food, stabilizer, and microcapsule carrier.
Collapse
Affiliation(s)
- Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; National & Local Joint Engineering Research Center of Cereal-Based Foods, Henan, Zhengzhou 450001, PR China.
| | - Shuyang Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Ziyu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xinxin Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China.
| |
Collapse
|
3
|
Ma S, Jiang H. The effect of cold plasma on starch: Structure and performance. Carbohydr Polym 2024; 340:122254. [PMID: 38857998 DOI: 10.1016/j.carbpol.2024.122254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
The inherent side effects of the physico-chemical properties of native starches often severely limit their use in food and non-food industries. Plasma is a non-thermal technology that allows rapid improvement of functional properties. This review provides a comprehensive summary of the sources and mechanisms of action of cold plasma and assesses its effects on starch morphology, crystal structure, molecular chain structure and physicochemical properties. The complex relationship between structure and function of plasma-treated starch is also explored. Potential applications of plasma-modified starch are also discussed in detail. The outcome of the modification process is influenced by factors such as starch type and concentration, plasma source, intensity and duration. The properties of starch can be effectively optimised using plasma technology. Plasma-based technologies therefore have the potential to modify starch to create a range of functionalities to meet the growing market demand for clean label ingredients.
Collapse
Affiliation(s)
- Shu Ma
- College of Food Science and Engineering, Northwest A & F University, Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, China
| | - Hao Jiang
- College of Food Science and Engineering, Northwest A & F University, Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, China.
| |
Collapse
|
4
|
Chiappim W, Kodaira FVDP, Castro GFSD, Silva DMD, Tavares TF, Almeida ACDPL, Leal BHS, Quade A, Koga-Ito CY, Kostov KG. Proposing an Affordable Plasma Device for Polymer Surface Modification and Microbial Inactivation. Molecules 2024; 29:4270. [PMID: 39275117 PMCID: PMC11397143 DOI: 10.3390/molecules29174270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
This study proposes an affordable plasma device that utilizes a parallel-plate dielectric barrier discharge geometry with a metallic mesh electrode, featuring a straightforward 3D-printed design. Powered by a high-voltage supply adapted from a cosmetic plasma device, it operates on atmospheric air, eliminating the need for gas flux. Surface modification of polyethylene treated with this device was characterized and showed that the elemental composition after 15 min of plasma treatment decreased the amount of C to ~80 at% due to the insertion of O (~15 at%). Tested against Candida albicans and Staphylococcus aureus, the device achieved a reduction of over 99% in microbial load with exposure times ranging from 1 to 10 min. Simultaneously, the Vero cell viability remained consistently high, namely between 91% and 96% across exposure times. These results highlight this device's potential for the surface modification of materials and various infection-related applications, boasting affordability and facilitating effective antimicrobial interventions.
Collapse
Affiliation(s)
- William Chiappim
- Laboratory of Plasmas and Applications, Department of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
| | - Felipe Vicente de Paula Kodaira
- Laboratory of Plasmas and Applications, Department of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
| | - Gisele Fátima Soares de Castro
- Department of Environment Engineering and Sciences Applied to Oral Health Graduate Program, São José dos Campos Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12247-016, SP, Brazil
| | - Diego Morais da Silva
- Department of Environment Engineering and Sciences Applied to Oral Health Graduate Program, São José dos Campos Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12247-016, SP, Brazil
- Groupe de Recherches sur l'Energétique des Milieux Ionisés (GREMI), UMR 7344, CNRS/Université d'Orléans, 45067 Orléans, France
| | - Thayna Fernandes Tavares
- Laboratory of Plasmas and Applications, Department of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
| | - Ana Carla de Paula Leite Almeida
- Laboratory of Plasmas and Applications, Department of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
| | - Bruno Henrique Silva Leal
- Laboratory of Plasmas and Applications, Department of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
| | - Antje Quade
- Leibniz Institute for Plasma Science and Technology-INP, 17489 Greifswald, Germany
| | - Cristiane Yumi Koga-Ito
- Department of Environment Engineering and Sciences Applied to Oral Health Graduate Program, São José dos Campos Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12247-016, SP, Brazil
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil
| | - Konstantin Georgiev Kostov
- Laboratory of Plasmas and Applications, Department of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
| |
Collapse
|
5
|
de Oliveira Mallia J, Griffin S, Buttigieg C, Gatt R. A rapid prototyped atmospheric non-thermal plasma-activated aerosol device and anti-bacterial characterisation. Front Chem 2024; 12:1416982. [PMID: 38947958 PMCID: PMC11211520 DOI: 10.3389/fchem.2024.1416982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Non-plasma technologies are being extensively investigated for their potential to mitigate microbial growth through the production of various reactive species. Predominantly, studies utilise atmospheric non-thermal plasma to produce plasma-activated liquids. The advancement of plasma-liquid applications has led to the investigation of plasma-activated aerosols (PAAs). This study aimed to produce a rapid-prototyped plasma-activated aerosol setup and perform chemical and anti-bacterial characterisation on the resultant activated aerosols. The setup was produced using stereolithography 3D printing, and air was used as the carrier gas. The novel design of the device allowed for the direct production of PAAs without the prior generation of plasma-activated water and subsequent aerosolisation. The generated PAAs were assessed for nitrite, hydrogen peroxide and ozone content using colourimetric assays. Anti-bacterial efficacy was tested against three human pathogenic strains: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Salmonella enterica. It was observed that nitrite and ozone contact concentration increased with exposure time, yet no hydrogen peroxide was detected. The generated PAAs showed significant zones of no growth for all bacterial strains. These devices, therefore, show potential to be used as anti-bacterial disinfection technologies.
Collapse
Affiliation(s)
- Jefferson de Oliveira Mallia
- Metamaterials Unit, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Sholeem Griffin
- Metamaterials Unit, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | | | - Ruben Gatt
- Metamaterials Unit, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| |
Collapse
|
6
|
Wang J, Zhou X, Ju S, Cai R, Roopesh MS, Pan D, Du L. Influence of atmospheric pressure plasma jet on the structural, functional and digestive properties of chickpea protein isolate. Food Res Int 2023; 174:113565. [PMID: 37986520 DOI: 10.1016/j.foodres.2023.113565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Chickpea protein (CPI) is a promising dietary protein and potential substitute for soy protein in food product development due to its high protein content and low allergenicity. However, CPI possesses denser tertiary and quaternary structures and contains certain amount of anti-nutritional factors, both of which constrain its functional properties and digestibility. The objective of this study was to assess the effectiveness of atmospheric pressure plasma jets (APPJ) as a non-thermal method for enhancing the functional characteristics and digestibility of CPI. In this study, the reactive oxygen and nitrogen species generated by the APPJ treatment led to protein oxidation and increased carbonyl and di-tyrosine contents. At the same time, the secondary, tertiary and microstructural structures of CPI were changed. The solubility, water holding capacity, fat absorption capacity, emulsifying capacity and foaming capacity of CPI were significantly improved after 30 s APPJ treatment, and a higher storage modulus in rheology was observed. Additionally, it was observed that the in vitro protein digestibility (IVPD) of APPJ-treated CPI increased significantly from 44.85 ± 0.6 % to 50.2 ± 0.59 % following in vitro simulated gastric and intestinal digestion, marking a noteworthy improvement of 11.93 %. These findings indicate that APPJ processing can enhance the functional and digestive properties of CPI through structural modification and expand its potential applications within the food industry.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xinyi Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Shilong Ju
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Ruiyi Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton AB T6G 2P5, Canada
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
7
|
Oner ME, Gultekin Subasi B, Ozkan G, Esatbeyoglu T, Capanoglu E. Efficacy of cold plasma technology on the constituents of plant-based food products: Principles, current applications, and future potentials. Food Res Int 2023; 172:113079. [PMID: 37689859 DOI: 10.1016/j.foodres.2023.113079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 09/11/2023]
Abstract
Cold plasma (CP) is one of the novel non-thermal food processing technologies, which has the potential to extend the shelf-life of plant-based food products without adversely affecting the nutritional value and sensory characteristics. Besides microbial inactivation, this technology has been explored for food functionality, pesticide control, and allergen removals. Cold plasma technology presents positive results in applications related to food processing at a laboratory scale. This review discusses applications of CP technology and its effect on the constituents of plant-based food products including proteins, lipids, carbohydrates, and polar and non-polar secondary plant metabolites. As proven by the publications in the food field, the influence of CP on the food constituents and sensory quality of various food materials are mainly based on CP-related factors such as processing time, voltage level, power, frequency, type of gas, gas flow rate as well as the amount of sample, type, and content of food constituents. In addition to these, changes in the secondary plant metabolites depend on the action of CP on both cell membrane breakdown and increase/decrease in the scavenging compounds. This technology offers a good alternative to conventional methods by inactivating enzymes and increasing antioxidant levels. With a waterless and chemical-free property, this sustainable and energy-efficient technology presents several advantages in food applications. However, scaling up CP by ensuring uniform plasma treatment is a major challenge. Further investigation is required to provide information regarding the toxicity of plasma-treated food products.
Collapse
Affiliation(s)
- Manolya Eser Oner
- Department of Food Engineering, Faculty of Engineering, Alanya Alaaddin Keykubat University, 07425 Alanya, Antalya, Turkey; Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Busra Gultekin Subasi
- Chalmers University of Technology, Food and Nutrition Science, 41258 Göteborg, Sweden
| | - Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
8
|
Sahraeian S, Rashidinejad A, Niakousari M. Enhanced properties of non-starch polysaccharide and protein hydrocolloids through plasma treatment: A review. Int J Biol Macromol 2023; 249:126098. [PMID: 37543265 DOI: 10.1016/j.ijbiomac.2023.126098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Hydrocolloids are important ingredients in food formulations and their modification can lead to novel ingredients with unique functionalities beyond their nutritional value. Cold plasma is a promising technology for the modification of food biopolymers due to its non-toxic and eco-friendly nature. This review discusses the recent published studies on the effects of cold plasma treatment on non-starch hydrocolloids and their derivatives. It covers the common phenomena that occur during plasma treatment, including ionization, etching effect, surface modification, and ashing effect, and how they contribute to various changes in food biopolymers. The effects of plasma treatment on important properties such as color, crystallinity, chemical structure, rheological behavior, and thermal properties of non-starch hydrocolloids and their derivatives are also discussed. In addition, this review highlights the potential of cold plasma treatment to enhance the functionality of food biopolymers and improve the quality of food products. The mechanisms underlying the effects of plasma treatment on food biopolymers, which can be useful for future research in this area, are also discussed. Overall, this review paper presents a comprehensive overview of the current knowledge in the field of cold plasma treatment of non-starch hydrocolloids and their derivatives and highlights the areas that require further investigation.
Collapse
Affiliation(s)
- Shahriyar Sahraeian
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Mehrdad Niakousari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
9
|
Wei W, Yang S, Yang F, Hu X, Wang Y, Guo W, Yang B, Xiao X, Zhu L. Cold Plasma Controls Nitrite Hazards by Modulating Microbial Communities in Pickled Radish. Foods 2023; 12:2550. [PMID: 37444288 DOI: 10.3390/foods12132550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The hazard of nitrite caused by microorganisms is the main food safety problem in the pickle production. To seek a method to control the nitrite hazards of pickles by regulating microbial community without additional substances, we focused on cold plasma because Gram-negative and Gram-positive bacteria have different degrees of sensitivity to the sterilization of cold plasma. Using radish pickles as the experimental object, based on colony counting, dynamic monitoring of pH and nitrite, qPCR and high-throughput sequencing, it was found that when the raw material was treated with dielectric barrier discharge (DBD) cold plasma at 40 kV for 60 s, Gram-negative bacteria with the potential to produce nitrite were preferentially sterilized. Meanwhile, Gram-positive bacteria dominated by the lactic acid bacteria were retained to accelerate the acid production rate, initiate the self-degradation of nitrite in advance and significantly reduce the peak value and accumulation of nitrite during the fermentation process of pickled radish. This study preliminarily verified that DBD cold plasma can inhibit the nitrite generation and accelerate the self-degradation of nitrite by regulating the structure and abundance of microbial community in radish pickles, which provides an important reference for the control of nitrite hazards in the fermentation process of pickles without additives.
Collapse
Affiliation(s)
- Wei Wei
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shujing Yang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fan Yang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenjun Guo
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Biyue Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Bakshi S, Paswan VK, Yadav SP, Bhinchhar BK, Kharkwal S, Rose H, Kanetkar P, Kumar V, Al-Zamani ZAS, Bunkar DS. A comprehensive review on infant formula: nutritional and functional constituents, recent trends in processing and its impact on infants' gut microbiota. Front Nutr 2023; 10:1194679. [PMID: 37415910 PMCID: PMC10320619 DOI: 10.3389/fnut.2023.1194679] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Human milk is considered the most valuable form of nutrition for infants for their growth, development and function. So far, there are still some cases where feeding human milk is not feasible. As a result, the market for infant formula is widely increasing, and formula feeding become an alternative or substitute for breastfeeding. The nutritional value of the formula can be improved by adding functional bioactive compounds like probiotics, prebiotics, human milk oligosaccharides, vitamins, minerals, taurine, inositol, osteopontin, lactoferrin, gangliosides, carnitine etc. For processing of infant formula, diverse thermal and non-thermal technologies have been employed. Infant formula can be either in powdered form, which requires reconstitution with water or in ready-to-feed liquid form, among which powder form is readily available, shelf-stable and vastly marketed. Infants' gut microbiota is a complex ecosystem and the nutrient composition of infant formula is recognized to have a lasting effect on it. Likewise, the gut microbiota establishment closely parallels with host immune development and growth. Therefore, it must be contemplated as an important factor for consideration while developing formulas. In this review, we have focused on the formulation and manufacturing of safe and nutritious infant formula equivalent to human milk or aligning with the infant's needs and its ultimate impact on infants' gut microbiota.
Collapse
Affiliation(s)
- Shiva Bakshi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Satya Prakash Yadav
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Basant Kumar Bhinchhar
- Department of Livestock Production Management, Sri Karan Narendra Agriculture University, Jobner, India
| | - Sheela Kharkwal
- Department of Agriculture Economics, Sri Karan Narendra Agriculture University, Jobner, India
| | - Hency Rose
- Division of Dairy Technology, ICAR—National Dairy Research Institute, Karnal, India
| | - Prajasattak Kanetkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Zakarya Ali Saleh Al-Zamani
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
- Department of Food Technology and Science, Faculty of Agriculture and Veterinary Medicine, Ibb University, Ibb, Yemen
| | - Durga Shankar Bunkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
11
|
Khumsupan D, Lin SP, Hsieh CW, Santoso SP, Chou YJ, Hsieh KC, Lin HW, Ting Y, Cheng KC. Current and Potential Applications of Atmospheric Cold Plasma in the Food Industry. Molecules 2023; 28:4903. [PMID: 37446565 DOI: 10.3390/molecules28134903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The cost-effectiveness and high efficiency of atmospheric cold plasma (ACP) incentivise researchers to explore its potentials within the food industry. Presently, the destructive nature of this nonthermal technology can be utilised to inactivate foodborne pathogens, enzymatic ripening, food allergens, and pesticides. However, by adjusting its parameters, ACP can also be employed in other novel applications including food modification, drying pre-treatment, nutrient extraction, active packaging, and food waste processing. Relevant studies were conducted to investigate the impacts of ACP and posit that reactive oxygen and nitrogen species (RONS) play the principal roles in achieving the set objectives. In this review article, operations of ACP to achieve desired results are discussed. Moreover, the recent progress of ACP in food processing and safety within the past decade is summarised while current challenges as well as its future outlook are proposed.
Collapse
Affiliation(s)
- Darin Khumsupan
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, Taipei City 110, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402, Taiwan
| | | | - Yu-Jou Chou
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Kuan-Chen Hsieh
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung City 41354, Taiwan
| | - Yuwen Ting
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
- Department of Optometry, Asia University, Taichung City 41354, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 404327, Taiwan
| |
Collapse
|
12
|
Huo J, Zhang M, Wang D, S Mujumdar A, Bhandari B, Zhang L. New preservation and detection technologies for edible mushrooms: A review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3230-3248. [PMID: 36700618 DOI: 10.1002/jsfa.12472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 01/26/2023] [Indexed: 06/17/2023]
Abstract
Edible mushrooms are nutritious, tasty, and have medicinal value, which makes them very popular. Fresh mushrooms have a high water content and a crisp texture. They demonstrate strong metabolic activity after harvesting. However, they are prone to textural changes, microbial infestation, and nutritional and flavor loss, and they therefore require appropriate post-harvest processing and preservation. Important factors affecting safety and quality during their processing and storage include their quality, source, microbial contamination, physical damage, and chemical residues. Thus, these aspects should be tested carefully to ensure safety. In recent years, many new techniques have been used to preserve mushrooms, including electrofluidic drying and cold plasma treatment, as well as new packaging and coating technologies. In terms of detection, many new detection techniques, such as nuclear magnetic resonance (NMR), imaging technology, and spectroscopy can be used as rapid and effective means of detection. This paper reviews the new technological methods for processing and detecting the quality of mainstream edible mushrooms. It mainly introduces their working principles and application, and highlights the future direction of preservation, processing, and quality detection technologies for edible mushrooms. Adopting appropriate post-harvest processing and preservation techniques can maintain the organoleptic properties, nutrition, and flavor of mushrooms effectively. The use of rapid, accurate, and non-destructive testing methods can provide a strong assurance of food safety. At present, these new processing, preservation and testing methods have achieved good results but at the same time there are certain shortcomings. So it is recommended that they also be continuously researched and improved, for example through the use of new technologies and combinations of different technologies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingyi Huo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Dayuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Quebec, Canada
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
| | - Lujun Zhang
- R&D Center, Shandong Qihe Biotechnology Co., Ltd, Zibo, China
| |
Collapse
|
13
|
Farooq S, Dar AH, Dash KK, Srivastava S, Pandey VK, Ayoub WS, Pandiselvam R, Manzoor S, Kaur M. Cold plasma treatment advancements in food processing and impact on the physiochemical characteristics of food products. Food Sci Biotechnol 2023; 32:621-638. [PMID: 37009036 PMCID: PMC10050620 DOI: 10.1007/s10068-023-01266-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Cold plasma processing is a nonthermal approach that maintains food quality while minimizing the effects of heat on its nutritious qualities. Utilizing activated, highly reactive gaseous molecules, cold plasma processing technique inactivates contaminating microorganisms in food and packaging materials. Pesticides and enzymes that are linked to quality degradation are currently the most critical issues in the fresh produce industry. Using cold plasma causes pesticides and enzymes to degrade, which is associated with quality deterioration. The product surface characteristics and processing variables, such as environmental factors, processing parameters, and intrinsic factors, need to be optimized to obtain higher cold plasma efficiency. The purpose of this review is to analyse the impact of cold plasma processing on qualitative characteristics of food products and to demonstrate the effect of cold plasma on preventing microbiological concerns while also improving the quality of minimally processed products.
Collapse
Affiliation(s)
- Salma Farooq
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal India
| | - Shivangi Srivastava
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh India
| | - Vinay Kumar Pandey
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur, Uttar Pradesh India
| | - Wani Suhana Ayoub
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - R. Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, Kerala 671124 India
| | - Sobiya Manzoor
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, India
| | - Mandeep Kaur
- Amity Institute of Food Technology Department, Amity University, Noida, Uttar Pradesh 201313 India
| |
Collapse
|
14
|
Chiappim W, de Paula Bernardes V, Almeida NA, Pereira VL, Bragotto APA, Cerqueira MBR, Furlong EB, Pessoa R, Rocha LO. Effect of Gliding Arc Plasma Jet on the Mycobiota and Deoxynivalenol Levels in Naturally Contaminated Barley Grains. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5072. [PMID: 36981981 PMCID: PMC10049212 DOI: 10.3390/ijerph20065072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/22/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Fusarium graminearum and Fusarium meridionale are primary contaminants of barley, capable of producing several mycotoxins, mainly type B trichothecenes and zearalenone. Cold plasma decontamination has been gaining prominence, seeking to control the fungal and mycotoxin contamination of food and feed and to improve product quality. To reach this objective, the present study was divided into two parts. In the first part, F. meridionale and F. graminearum strains were exposed to gliding arc plasma jet (GAPJ). Cell viability tests showed the inactivation of F. meridionale after 15-min treatment, whereas F. graminearum showed to be resistant. In the second part, barley grains were treated by GAPJ for 10, 20, and 30 min, demonstrating a reduction of about 2 log CFU/g of the barley's mycobiota, composed of yeasts, strains belonging to the F. graminearum species complex, Alternaria, and Aspergillus. A decrease in DON levels (up to 89%) was observed after exposure for 20 min. However, an increase in the toxin Deoxynivalenol-3-glucoside (D3G) was observed in barley grains, indicating a conversion of DON to D3G.
Collapse
Affiliation(s)
- William Chiappim
- Laboratory of Plasmas and Applications, Department of Physics, Faculty of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, Brazil
| | - Vanessa de Paula Bernardes
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| | - Naara Aparecida Almeida
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| | - Viviane Lopes Pereira
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| | - Adriana Pavesi Arisseto Bragotto
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| | | | - Eliana Badiale Furlong
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande 96203-900, Brazil
| | - Rodrigo Pessoa
- Laboratório de Plasmas e Processos, Departamento de Física, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, Brazil
| | - Liliana Oliveira Rocha
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| |
Collapse
|
15
|
Lim JS, Kim D, Ki S, Mumtaz S, Shaik AM, Han I, Hong YJ, Park G, Choi EH. Characteristics of a Rollable Dielectric Barrier Discharge Plasma and Its Effects on Spinach-Seed Germination. Int J Mol Sci 2023; 24:ijms24054638. [PMID: 36902069 PMCID: PMC10002516 DOI: 10.3390/ijms24054638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
We investigated the characteristics of a rollable dielectric barrier discharge (RDBD) and evaluate its effects on seed germination rate and water uptake. The RDBD source was composed of a polyimide substrate and copper electrode, and it was mounted in a rolled-up structure for omnidirectional and uniform treatment of seeds with flowing synthetic air gas. The rotational and vibrational temperatures were measured to be 342 K and 2860 K, respectively, using optical emission spectroscopy. The chemical species analysis via Fourier-transform infrared spectroscopy and 0D chemical simulation showed that O3 production was dominant and NOx production was restrained at the given temperatures. The water uptake and germination rate of spinach seeds by 5 min treatment of RDBD was increased by 10% and 15%, respectively, and the standard error of germination was reduced by 4% in comparison with the controls. RDBD enables an important step forward in non-thermal atmospheric-pressure plasma agriculture for omnidirectional seed treatment.
Collapse
Affiliation(s)
- Jun Sup Lim
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 01897, Republic of Korea
| | - Daeun Kim
- Electrical and Biological Physics Department, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sehoon Ki
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan 54004, Republic of Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 01897, Republic of Korea
| | - Abdul Munnaf Shaik
- Electrical and Biological Physics Department, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 01897, Republic of Korea
| | - Young June Hong
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 01897, Republic of Korea
| | - Gyungsoon Park
- Electrical and Biological Physics Department, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 01897, Republic of Korea
- Electrical and Biological Physics Department, Kwangwoon University, Seoul 01897, Republic of Korea
- Correspondence:
| |
Collapse
|
16
|
Ashrafudoulla M, Ulrich MSI, Toushik SH, Nahar S, Roy PK, Mizan FR, Park SH, Ha SD. Challenges and opportunities of non-conventional technologies concerning food safety. WORLD POULTRY SCI J 2023. [DOI: 10.1080/00439339.2023.2163044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Md. Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Mevo S. I. Ulrich
- Department of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| | | | - Shamsun Nahar
- Department of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Pantu Kumar Roy
- Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Furkanur Rahaman Mizan
- Department of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| |
Collapse
|
17
|
Inactivation of Soybean Trypsin Inhibitor by Dielectric-Barrier Discharge Plasma and Its Safety Evaluation and Application. Foods 2022; 11:foods11244017. [PMID: 36553759 PMCID: PMC9778619 DOI: 10.3390/foods11244017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
The trypsin inhibitor (TI) is one of the most important anti-nutritive elements in soybeans. As a new nonthermal technology, dielectric-barrier discharge (DBD) cold plasma has attracted increasing attention in food processing. In this research, we investigated the effect of dielectric-barrier discharge (DBD) plasma treatment on soybean trypsin inhibitor content and its structure, evaluated TI toxicity and the safety of its degradation products after treatment with DBD technology in vitro and in vivo, and applied the technology to soybean milk, which was analyzed for quality. Using the statistical analysis of Student’s t-test, the results demonstrated that DBD plasma treatment significantly decreased the content of TI (33.8 kV at 1, 3, or 5 min, p < 0.05, p < 0.01, p < 0.001) and destroyed the secondary and tertiary structures of TI. TI was toxic to Caco-2 cells and could inhibit body weight gain, damage liver and kidney functions, and cause moderate or severe lesions in mouse organ tissues, whereas these phenomena were alleviated in mice treated with degradation products of TI after DBD plasma treatment under the optimal condition (33.8 kV at 5 min). The content of TI in DBD-treated soymilk was also significantly reduced (p < 0.001), while the acidity, alkalinity, conductivity, color, and amino acid composition of soymilk were not affected, and there were no statistical differences (p > 0.05). In summary, DBD plasma is a promising non-thermal processing technology used to eliminate TI from soybean products.
Collapse
|
18
|
Illera AE, Souza VR, Nikmaram N, Tang L, Keener KM. High voltage atmospheric cold plasma decontamination of Salmonella enteritidis on chicken eggs. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Sawangrat C, Phimolsiripol Y, Leksakul K, Thanapornpoonpong SN, Sojithamporn P, Lavilla M, Castagnini JM, Barba FJ, Boonyawan D. Application of Pinhole Plasma Jet Activated Water against Escherichia coli, Colletotrichum gloeosporioides, and Decontamination of Pesticide Residues on Chili ( Capsicum annuum L.). Foods 2022; 11:foods11182859. [PMID: 36140988 PMCID: PMC9498241 DOI: 10.3390/foods11182859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/04/2022] Open
Abstract
Plasma activated water (PAW) generated from pinhole plasma jet using gas mixtures of argon (Ar) and 2% oxygen (O2) was evaluated for pesticide degradation and microorganism decontamination (i.e., Escherichia coli and Colletotrichum gloeosporioides) in chili (Capsicum annuum L.). A flow rate of 10 L/min produced the highest concentration of hydrogen peroxide (H2O2) at 369 mg/L. Results showed that PAW treatment for 30 min and 60 min effectively degrades carbendazim and chlorpyrifos by about 57% and 54% in solution, respectively. In chili, carbendazim and chlorpyrifos were also decreased, to a major extent, by 80% and 65% after PAW treatment for 30 min and 60 min, respectively. E. coli populations were reduced by 1.18 Log CFU/mL and 2.8 Log CFU/g with PAW treatment for 60 min in suspension and chili, respectively. Moreover, 100% of inhibition of fungal spore germination was achieved with PAW treatment. Additionally, PAW treatment demonstrated significantly higher efficiency (p < 0.05) in controlling Anthracnose in chili by about 83% compared to other treatments.
Collapse
Affiliation(s)
- Choncharoen Sawangrat
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
- Agriculture and Bio Plasma Technology Center (ABPlas), Thai—Korean Research Collaboration Center (TKRCC), Science and Technology Park, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yuthana Phimolsiripol
- Agriculture and Bio Plasma Technology Center (ABPlas), Thai—Korean Research Collaboration Center (TKRCC), Science and Technology Park, Chiang Mai University, Chiang Mai 50200, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
- Correspondence: (Y.P.); (F.J.B.); Tel.: +665-394-8236 (Y.P.); +34-963-544-972 (F.J.B.); Fax: +665-394-8230 (Y.P.)
| | - Komgrit Leksakul
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
- Agriculture and Bio Plasma Technology Center (ABPlas), Thai—Korean Research Collaboration Center (TKRCC), Science and Technology Park, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sa-nguansak Thanapornpoonpong
- Agriculture and Bio Plasma Technology Center (ABPlas), Thai—Korean Research Collaboration Center (TKRCC), Science and Technology Park, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phanumas Sojithamporn
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Maria Lavilla
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Juan Manuel Castagnini
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
- Correspondence: (Y.P.); (F.J.B.); Tel.: +665-394-8236 (Y.P.); +34-963-544-972 (F.J.B.); Fax: +665-394-8230 (Y.P.)
| | - Dheerawan Boonyawan
- Agriculture and Bio Plasma Technology Center (ABPlas), Thai—Korean Research Collaboration Center (TKRCC), Science and Technology Park, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Physics and Materials Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
20
|
Ma T, Wang J, Lan T, Bao S, Zhao Q, Sun X, Liu X. How to comprehensively improve juice quality: a review of the impacts of sterilization technology on the overall quality of fruit and vegetable juices in 2010-2021, an updated overview and current issues. Crit Rev Food Sci Nutr 2022; 64:2197-2247. [PMID: 36106453 DOI: 10.1080/10408398.2022.2121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruit and vegetable juices (FVJ) are rich in nutrients, so they easily breed bacteria, which cause microbial pollution and rapid deterioration of their quality and safety. Sterilization is an important operation in FVJ processing. However, regardless of whether thermal sterilization or non-thermal sterilization is used, the effect and its impact on the overall quality of FVJ are strongly dependent on the processing parameters, microbial species, and FVJ matrix. Therefore, for different types of FVJ, an understanding of the impacts that different sterilization technologies have on the overall quality of the juice is important in designing and optimizing technical parameters to produce value-added products. This article provides an overview of the application of thermal and non-thermal technique in the field of FVJ processing over the past 10 years. The operating principle and effects of various technologies on the inactivation of microorganisms and enzymes, nutritional and functional characteristics, physicochemical properties, and sensory quality of a wide range of FVJ are comprehensively discussed. The application of different combinations of hurdle technology in the field of FVJ sterilization processing are also discussed in detail. Additionally, the advantages, limitations, and current application prospects of different sterilization technologies are summarized.
Collapse
Affiliation(s)
- Tingting Ma
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Jiaqi Wang
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Tian Lan
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Shihan Bao
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Qinyu Zhao
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Xiangyu Sun
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| |
Collapse
|
21
|
Shanthakumar P, Klepacka J, Bains A, Chawla P, Dhull SB, Najda A. The Current Situation of Pea Protein and Its Application in the Food Industry. Molecules 2022; 27:5354. [PMID: 36014591 PMCID: PMC9412838 DOI: 10.3390/molecules27165354] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Pea (Pisum sativum) is an important source of nutritional components and is rich in protein, starch, and fiber. Pea protein is considered a high-quality protein and a functional ingredient in the global industry due to its low allergenicity, high protein content, availability, affordability, and deriving from a sustainable crop. Moreover, pea protein has excellent functional properties such as solubility, water, and oil holding capacity, emulsion ability, gelation, and viscosity. Therefore, these functional properties make pea protein a promising ingredient in the food industry. Furthermore, several extraction techniques are used to obtain pea protein isolate and concentrate, including dry fractionation, wet fractionation, salt extraction, and mild fractionation methods. Dry fractionation is chemical-free, has no loss of native functionality, no water use, and is cost-effective, but the protein purity is comparatively low compared to wet extraction. Pea protein can be used as a food emulsifier, encapsulating material, a biodegradable natural polymer, and also in cereals, bakery, dairy, and meat products. Therefore, in this review, we detail the key properties related to extraction techniques, chemistry, and structure, functional properties, and modification techniques, along with their suitable application and health attributes.
Collapse
Affiliation(s)
- Parvathy Shanthakumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10719 Olsztyn, Poland
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, Doświadczalna Street 51A, 20280 Lublin, Poland
| |
Collapse
|
22
|
Souza VR, Illera AE, Keener KM. High voltage atmospheric cold plasma technology as a food safety intervention for decontamination of cutting tools during ready-to-eat poultry meat slicing. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Assessment of physicochemical, functional, thermal, and phytochemical characteristics of refined rice bran wax. Food Chem 2022; 396:133737. [PMID: 35870241 DOI: 10.1016/j.foodchem.2022.133737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
The drastic increase in the utilization and conversion of biomass has been an effect of sustainability and circular economy in the food processing sector. Rice bran wax (RBW), an intermediate by-product of rice bran oil refining industries, has been one of the underutilized waste materials. The FT-IR analysis showed that RBW contains many similar compounds to that of beeswax (BW) and carnauba wax (CW). The DSC thermographs showed melting and crystallization temperatures of RBW as 78.55 and 73.43 °C, respectively, lesser than CW and more than BW. The peak profiling of XRD diffractographs has shown full-width at half-maximum of CW and RBW as 0.61 and 0.45, respectively, indicating distortion in crystal formation. The sequential extracts of RBW in hexane, dichloromethane, and ethylacetate have shown antimicrobial activity against E. coli and S. typhi. The research provides a baseline for extraction and separation of specialty compounds from RBW for by-product utilization.
Collapse
|
24
|
Zhang Y, Lei Y, Huang S, Dong X, Huang J, Huang M. In-package cold plasma treatment of braised chicken: voltage effect. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Jyung S, Kang JW, Kang DH. L. monocytogens exhibited less cell membrane damage, lipid peroxidation, and intracellular reactive oxygen species accumulation after plasma-activated water treatment compared to E. coli O157:H7 and S. Typhimurium. Food Microbiol 2022; 108:104098. [DOI: 10.1016/j.fm.2022.104098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
|
26
|
Cold plasma modification of food macromolecules and effects on related products. Food Chem 2022; 382:132356. [DOI: 10.1016/j.foodchem.2022.132356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 12/27/2022]
|
27
|
|
28
|
Wang Q, Pal RK, Yen HW, Naik SP, Orzeszko MK, Mazzeo A, Salvi D. Cold plasma from flexible and conformable paper-based electrodes for fresh produce sanitation: Evaluation of microbial inactivation and quality changes. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Jenns K, Sassi HP, Zhou R, Cullen PJ, Carter D, Mai-Prochnow A. Inactivation of foodborne viruses: Opportunities for cold atmospheric plasma. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Ye Q, Shin E, Lee C, Choi N, Kim Y, Yoon KS, Lee SJ. Transposition of insertion sequences by dielectric barrier discharge plasma and gamma irradiation in the radiation-resistant bacterium Deinococcus geothermalis. J Microbiol Methods 2022; 196:106473. [DOI: 10.1016/j.mimet.2022.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/27/2022]
|
31
|
Hernández-Torres CJ, Reyes-Acosta YK, Chávez-González ML, Dávila-Medina MD, Kumar Verma D, Martínez-Hernández JL, Narro-Céspedes RI, Aguilar CN. Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi J Biol Sci 2022; 29:1957-1980. [PMID: 35531194 PMCID: PMC9072910 DOI: 10.1016/j.sjbs.2021.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
The rising need for wholesome, fresh, safe and “minimally-processed” foods has led to pioneering research activities in the emerging non-thermal technology of food processing. Cold plasma is such an innovative and promising technology that offers several potential applications in the food industry. It uses the highly reactive, energetic and charged gas molecules and species to decontaminate the food and package surfaces and preserve the foods without causing thermal damage to the nutritional and quality attributes of food. Cold plasma technology showed promising results about the inactivation of pathogens in the food industry without affecting the food quality. It is highly effective for surface decontamination of fruits and vegetables, but extensive research is required before its commercial utilization. Recent patents are focused on the applications of cold plasma in food processing and preservation. However, further studies are strongly needed to scale up this technology for future commercialization and understand plasma physics for getting better results and expand the applications and benefits. This review summarizes the emerging trends of cold plasma along with its recent applications in the food industry to extend shelf life and improve the quality of food. It also gives an overview of plasma generation and principles including mechanism of action. Further, the patents based on cold plasma technology have also been highlighted comprehensively for the first time.
Collapse
Affiliation(s)
- Catalina J. Hernández-Torres
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Yadira K. Reyes-Acosta
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Miriam D. Dávila-Medina
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - José L. Martínez-Hernández
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa I. Narro-Céspedes
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| |
Collapse
|
32
|
Zhou H, Yang Y, Shang W, Rao Y, Chen J, Peng H, Huang J, Hu Z, Zhang R, Rao X. Pyocyanin biosynthesis protects Pseudomonas aeruginosa from nonthermal plasma inactivation. Microb Biotechnol 2022; 15:1910-1921. [PMID: 35290715 PMCID: PMC9151332 DOI: 10.1111/1751-7915.14032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 03/05/2022] [Indexed: 11/27/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic human pathogen, which raises a worldwide concern for its increasing resistance. Nonthermal plasma, which is also called cold atmospheric plasma (CAP), is an alternative therapeutic approach for clinical infectious diseases. However, the bacterial factors that affect CAP treatment remain unclear. The sterilization effect of a portable CAP device on different P. aeruginosa strains was investigated in this study. Results revealed that CAP can directly or indirectly kill P. aeruginosa in a time‐dependent manner. Scanning electron microscopy and transmission electron microscope showed negligible surface changes between CAP‐treated and untreated P. aeruginosa cells. However, cell leakage occurred during the CAP process with increased bacterial lactate dehydrogenase release. More importantly, pigmentation of the P. aeruginosa culture was remarkably reduced after CAP treatment. Further mechanical exploration was performed by utilizing mutants with loss of functional genes involved in pyocyanin biosynthesis, including P. aeruginosa PAO1 strain‐derived phzA1::Tn, phzA2::Tn, ΔphzA1/ΔphzA2, phzM::Tn and phzS::Tn, as well as corresponding gene deletion mutants based on clinical PA1 isolate. The results indicated that pyocyanin and its intermediate 5‐methyl phenazine‐1‐carboxylic acid (5‐Me‐PCA) play important roles in P. aeruginosa resistance to CAP treatment. The unique enzymes, such as PhzM in the pyocyanin biosynthetic pathway, could be novel targets for the therapeutic strategy design to control the growing P. aeruginosa infections.
Collapse
Affiliation(s)
- Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Yifan Rao
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Juan Chen
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
33
|
Non-Thermal Atmospheric Plasma for Microbial Decontamination and Removal of Hazardous Chemicals: An Overview in the Circular Economy Context with Data for Test Applications of Microwave Plasma Torch. Processes (Basel) 2022. [DOI: 10.3390/pr10030554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The transformation of our linear “take-make-waste” system to a cyclic flow of materials and energy is a priority task for society, but the circular use of waste streams from one industry/sector as a material input for another must be completely safe. The need for new advanced technologies and methods ensuring both microbiological safety and the removal of potential chemical residues in used materials and products is urgent. Non-thermal atmospheric plasma (cold atmospheric plasma—CAP) has recently attracted great research interest as an alternative for operative solutions of problems related to safety and quality control. CAP is a powerful tool for the inactivation of different hazardous microorganisms and viruses, and the effective decontamination of surfaces and liquids has been demonstrated. Additionally, the plasma’s active components are strong oxidizers and their synergetic effect can lead to the degradation of toxic chemical compounds such as phenols and azo-dyes.
Collapse
|
34
|
Reduction of E. coli O157: H7 and Bacillus cereus levels in red pepper powder using dielectric barrier discharge (DBD) plasma for enhanced quality. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Ott LC, Jochum J, Burrough L, Clark S, Keener K, Mellata M. High voltage atmospheric cold plasma inactivation of Listeria monocytogenes in fresh Queso Fresco cheese. Food Microbiol 2022; 105:104007. [DOI: 10.1016/j.fm.2022.104007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022]
|
36
|
Guragain RP, Baniya HB, Basnet N, Pradhan SP, Dhungana S, Chhetri GK, Panta GP, Sedhai B, Shrestha B, Shrestha S, Guragain DP, Joshi UM, Pandey BP, Subedi DP. Effects of plasma activated water on soyabean and wheat: germination and seedling development. PLASMA MEDICINE 2022. [DOI: 10.1615/plasmamed.2022042374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Ricciardi EF, Del Nobile MA, Conte A, Fracassi F, Sardella E. Effects of plasma treatments applied to fresh ricotta cheese. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Hage M, Khelissa S, Akoum H, Chihib NE, Jama C. Cold plasma surface treatments to prevent biofilm formation in food industries and medical sectors. Appl Microbiol Biotechnol 2022; 106:81-100. [PMID: 34889984 PMCID: PMC8661349 DOI: 10.1007/s00253-021-11715-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 10/28/2022]
Abstract
Environmental conditions in food and medical fields enable the bacteria to attach and grow on surfaces leading to resistant bacterial biofilm formation. Indeed, the first step in biofilm formation is the bacterial irreversible adhesion. Controlling and inhibiting this adhesion is a passive approach to fight against biofilm development. This strategy is an interesting path in the inhibition of biofilm formation since it targets the first step of biofilm development. Those pathogenic structures are responsible for several foodborne diseases and nosocomial infections. Therefore, to face this public health threat, researchers employed cold plasma technologies in coating development. In this review, the different factors influencing the bacterial adhesion to a substrate are outlined. The goal is to present the passive coating strategies aiming to prevent biofilm formation via cold plasma treatments, highlighting antiadhesive elaborated surfaces. General aspects of surface treatment, including physico-chemical modification and application of cold plasma technologies, were also presented. KEY POINTS: • Factors surrounding pathogenic bacteria influence biofilm development. • Controlling bacterial adhesion prevents biofilm formation. • Materials can be coated via cold plasma to inhibit bacterial adhesion.
Collapse
Affiliation(s)
- Mayssane Hage
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
- Laboratoire d'analyses Chimiques Et Microbiologiques, Faculté de Santé Publique - Université Libanaise, Saida, Lebanon
| | - Simon Khelissa
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
| | - Hikmat Akoum
- Laboratoire d'analyses Chimiques Et Microbiologiques, Faculté de Santé Publique - Université Libanaise, Saida, Lebanon
| | - Nour-Eddine Chihib
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
| | - Charafeddine Jama
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France.
| |
Collapse
|
39
|
Cheng JH, Wang H, Sun DW. An overview of tropomyosin as an important seafood allergen: Structure, cross-reactivity, epitopes, allergenicity, and processing modifications. Compr Rev Food Sci Food Saf 2021; 21:127-147. [PMID: 34954871 DOI: 10.1111/1541-4337.12889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/19/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
Tropomyosin (TM) is a major allergen in crustaceans, which often causes allergy and is fatal to some consumers. Currently, the most effective treatment is to avoid ingesting TM, although most adverse events occur in accidental ingestion. In this review, the molecular characterization, epitopes, cross-reactivity, and pathogenesis of TM are introduced and elucidated. Modification of TM by traditional processing methods such as heat treatment and enzymatic hydrolysis, and innovative processing technologies including high-pressure treatment, cold plasma (CP), ultrasound, pulsed electric field (PEF), pulsed ultraviolet, microwave and irradiation are discussed in detail. Particularly, enzymolysis, PEF, and CP technologies show great potential for modifying TM and more studies are needed to verify their effectiveness for the seafood industry. Possible mechanisms and the advantages/disadvantages of these technologies for the mitigation of TM allergenicity are also highlighted. Further work should be conducted to investigate the allergenicity caused by protein segments such as epitopes, examine the interaction sites between the allergen and the processing techniques and reveal the reduction mechanism of allergenicity.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Huifen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin, Belfield, Ireland
| |
Collapse
|
40
|
Yeasmen N, Orsat V. Green extraction and characterization of leaves phenolic compounds: a comprehensive review. Crit Rev Food Sci Nutr 2021:1-39. [PMID: 34904469 DOI: 10.1080/10408398.2021.2013771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although containing significant levels of phenolic compounds (PCs), leaves biomass coming from either forest, agriculture, or the processing industry are considered as waste, which upon disposal, brings in environmental issues. As the demand for PCs in functional food, pharmaceutical, nutraceutical and cosmetic sector is escalating day by day, recovering PCs from leaves biomass would solve both the waste disposal problem while ensuring a valuable "societal health" ingredient thus highly contributing to a sustainable food chain from both economic and environmental perspectives. In our search for environmentally benign, efficient, and cost-cutting techniques for the extraction of PCs, green extraction (GE) is presenting itself as the best option in modern industrial processing. This current review aims to highlight the recent progress, constraints, legislative framework, and future directions in GE and characterization of PCs from leaves, concentrating particularly on five plant species (tea, moringa, stevia, sea buckthorn, and pistacia) based on the screened journals that precisely showed improvements in extraction efficiency along with maintaining extract quality. This overview will serve researchers and relevant industries engaged in the development of suitable techniques for the extraction of PCs with increasing yield.
Collapse
Affiliation(s)
- Nushrat Yeasmen
- Department of Bioresource Engineering, McGill University, Quebec, Canada.,Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Valérie Orsat
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| |
Collapse
|
41
|
Wang Q, Salvi D. Recent progress in the application of plasma-activated water (PAW) for food decontamination. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Maruyama-Nakashita A, Ishibashi Y, Yamamoto K, Zhang L, Morikawa-Ichinose T, Kim SJ, Hayashi N. Oxygen plasma modulates glucosinolate levels without affecting lipid contents and composition in Brassica napus seeds. Biosci Biotechnol Biochem 2021; 85:2434-2441. [PMID: 34506620 DOI: 10.1093/bbb/zbab157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 01/27/2023]
Abstract
Rapeseed contains high levels of glucosinolates (GSLs), playing pivotal roles in defense against herbivores and pests. As their presence in rapeseed reduces the value of the meal for animal feeding, intensive efforts to reduce them produced low-seed GSL cultivars. However, there is no such variety suitable for the south part of Japan. Here, we tested the effects of cold oxygen plasma (oxygen CP) on seed germination and GSL and lipid content, in 3 rapeseed cultivars. According to the cultivars, oxygen CP slightly stimulated seed germination and modified the GSL levels, and decreased GSL levels in Kizakinonatane but increased those in Nanashikibu. In contrast, it negligibly affected the lipid content and composition in the 3 cultivars. Thus, oxygen CP modulated seed GSL levels without affecting seed viability and lipid content. Future optimization of this technique may help optimize rapeseed GSL content without plant breeding.
Collapse
Affiliation(s)
- Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| | - Kyotaro Yamamoto
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, Fukuoka, Japan
| | - Liu Zhang
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| | - Tomomi Morikawa-Ichinose
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| | - Sun-Ju Kim
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Korea
| | - Nobuya Hayashi
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, Fukuoka, Japan
| |
Collapse
|
43
|
Barbhuiya RI, Singha P, Singh SK. A comprehensive review on impact of non-thermal processing on the structural changes of food components. Food Res Int 2021; 149:110647. [PMID: 34600649 DOI: 10.1016/j.foodres.2021.110647] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Non-thermal food processing is a viable alternative to traditional thermal processing to meet customer needs for high-quality, convenient and minimally processed foods. They are designed to eliminate elevated temperatures during processing and avoid the adverse effects of heat on food products. Numerous thermal and novel non-thermal technologies influence food structure at the micro and macroscopic levels. They affect several properties such as rheology, flavour, process stability, texture, and appearance at microscopic and macroscopic levels. This review presents existing knowledge and advances on the impact of non-thermal technologies, for instance, cold plasma treatment, irradiation, high-pressure processing, ultrasonication, pulsed light technology, high voltage electric field and pulsed electric field treatment on the structural changes of food components. An extensive review of the literature indicates that different non-thermal processing technologies can affect the food components, which significantly affects the structure of food. Applications of novel non-thermal technologies have shown considerable impact on food structure by altering protein structures via free radicals or larger or smaller molecules. Lipid oxidation is another process responsible for undesirable effects in food when treated with non-thermal techniques. Non-thermal technologies may also affect starch properties, reduce molecular weight, and change the starch granule's surface. Such modification of food structure could create novel food textures, enhance sensory properties, improve digestibility, improve water-binding ability and improve mediation of gelation processes. However, it is challenging to determine these technologies' influence on food components due to differences in their primary operation and equipment design mechanisms and different operating conditions. Hence, to get the most value from non-thermal technologies, more in-depth research about their effect on various food components is required.
Collapse
Affiliation(s)
- Rahul Islam Barbhuiya
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, Odisha, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, Odisha, India.
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
44
|
Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106789] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Bang IH, Kim YE, Min SC. Preservation of mandarins using a microbial decontamination system integrating calcium oxide solution washing, modified atmosphere packaging, and dielectric barrier discharge cold plasma treatment. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Braşoveanu M, Nemţanu MR, Ticoș D. Influence of the sample loading on the contribution of competitive effects for granular starch exposed to radio-frequency plasma. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
|
48
|
Manoharan D, Radhakrishnan M. Computational cold plasma dynamics and its potential application in food processing. REV CHEM ENG 2021. [DOI: 10.1515/revce-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Cold plasma is a novel nonthermal technology that has been used for preserving and maintaining the quality of food materials. Researchers developed numerous cold plasma equipment to study the effect of plasma on food materials; however, the degree of processing such as flow of plasma species from the source of plasma to the food material and their interaction/diffusion into the food, differs with respect to the equipment. The computational study can simulate the flow dynamics of plasma which in turn can improve the efficiency of processing and design aspects. Computational fluid dynamics (CFD) is the most reliable, cost-effective, and robust numerical tool used for simulating various high-end food processing technologies. In cold plasma processing, computational study aids in revealing the distribution of reactive species and their flow dynamics on the target surface. As CFD studies on plasma interaction with food materials are not available, this review is focused on covering the basics of using CFD in cold plasma simulation. It also explores the significant use of CFD in cold plasma simulation in various sectors along with its possible and futuristic applications in food processing.
Collapse
Affiliation(s)
- Dharini Manoharan
- Centre of Excellence in Nonthermal Processing Technology , Indian Institute of Food Processing Technology, Ministry of Food Processing Industries, Government of India , Thanjavur 613005 , India
| | - Mahendran Radhakrishnan
- Centre of Excellence in Nonthermal Processing Technology , Indian Institute of Food Processing Technology, Ministry of Food Processing Industries, Government of India , Thanjavur 613005 , India
| |
Collapse
|
49
|
Potential of cold plasma to control Callosobruchus chinensis (Chrysomelidae: Bruchinae) in chickpea cultivars during four year storage. Sci Rep 2021; 11:13425. [PMID: 34183731 PMCID: PMC8238940 DOI: 10.1038/s41598-021-92792-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/01/2021] [Indexed: 11/09/2022] Open
Abstract
Cold plasma has proven itself as a promising method of food preservation by controlling food spoilage bacteria at very low temperatures. It is showing potential for insect control. Synthetic pesticides are mostly used to control Callosobruchus chinensis L. (Chrysomelidae: Coleoptera) to which it has developed resistance. The prospective potential of cold plasma treatment to control pulse beetle infestation of chickpea in the storage for about four years of plasma treatment was studied. The four chickpea cultivars were treated with cold plasma at different power 40, 50, and 60 W each for 10, 15, 20 min. Plasma treated and untreated chickpeas were stored in an airtight ziplock pouch. At regular intervals, the grains were observed for infestation. It was found most effective in controlling the pulse beetle infestation of treated chickpea samples. While plasma untreated chickpeas were attacked and damaged mostly by pulse beetle within the first quarter of the storage study. To avoid the problems created by the use of pesticides cold plasma treatment is found to be the best alternative in the protection of chickpea invasion by pulse beetle during a longer storage period. The findings in the present research may be used for the preparation of legumes which may also soak and cook faster like quick-cooking legumes and preserved for years without invasion of pulse beetle.
Collapse
|
50
|
Nasiru MM, Frimpong EB, Muhammad U, Qian J, Mustapha AT, Yan W, Zhuang H, Zhang J. Dielectric barrier discharge cold atmospheric plasma: Influence of processing parameters on microbial inactivation in meat and meat products. Compr Rev Food Sci Food Saf 2021; 20:2626-2659. [PMID: 33876887 DOI: 10.1111/1541-4337.12740] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/26/2022]
Abstract
Decontamination of meat is commonly practiced to get rid of or decrease the microbial presence on the meat surface. Dielectric barrier discharge cold atmospheric plasma (DBD-CAP) as innovative technology is a food microbial inactivation technique considered in high regard by food scientists and engineers in present times. However, cold atmospheric plasma application is at the experimental stage, due to lack of sufficient information on its mode of action in inactivating microbes, food shelf-life extensibility, whereas, the nutritional value of food is preserved. In this review, we have appraised recent work on DBD-CAP concerning the decontamination treatment of meat products, highlighting the processing value results on the efficacy of the DBD-CAP microbial inactivation technique. Also, the paper will review the configurations, proposed mechanisms, and chemistry of DBD-CAP. Satisfactory microbial inactivation was observed. In terms of DBD-CAP application on sensory evaluation, inferences from reviewed literature showed that DBD has no significant effect on meat color and tenderness, whereas in contrast, TBARS values of fresh and processed meat are affected. DBD seems economically efficient and environmentally sustainable.
Collapse
Affiliation(s)
- Mustapha Muhammad Nasiru
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,Department of Food Science and Technology, Faculty of Agriculture and Agricultural Technology, Federal University Dutsin-Ma, Kankara-Katsina Road, Dutsin-Ma, Katsina, 821101, Nigeria
| | - Evans Boateng Frimpong
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China
| | - Umair Muhammad
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Jing Qian
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China
| | | | - Wenjing Yan
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China
| | - Hong Zhuang
- Quality and Safety Assessment Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
| | - Jianhao Zhang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China
| |
Collapse
|