1
|
Zhang T, Villalba MI, Gao R, Kasas S, von Gunten U. Effect of surfactants on inactivation of Bacillus subtilis spores by chlorine. WATER RESEARCH 2024; 272:122944. [PMID: 39708383 DOI: 10.1016/j.watres.2024.122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
Bacterial spores pose significant risks to human health, yet the inactivation of spores is challenging due to their unique structures and chemical compositions. This study investigated the synergistic effect between surfactants and chlorine on the inactivation kinetics of Bacillus subtilis spores. Two surfactants, cocamidopropyl betaine (CAPB) and cetyltrimethylammonium chloride (CTMA) were selected to investigate chlorine disinfection in absence and presence of surfactants. The concurrent presence of both chlorine and surfactant resulted in a moderate reduction in the lag-phases for spore inactivation and negligible increase in the second-order inactivation rate constants. In contrast, when the spores were pre-exposed to surfactants, the lag-phases decreased by about 50 % for both CAPB and CTMA, and the second-order inactivation rate constants during post-chlorination remained constant for CAPB but increased by a factor of 2.3 for CTMA, compared to the control group with phosphate buffer. This synergistic effect became more pronounced with longer surfactant pre-exposure times, reaching its maximum at 3-6 h. The observed synergistic effect suggests that surfactants can potentially enhance the permeability of the coat which is the outmost layer of B. subtilis spores and a primary barrier for chemical disinfectants. Tracing a group of B. subtilis spores sequentially treated with surfactant and chlorine by atomic force microscopy, a significant decrease in compressive stiffness of the spores was observed due to exposure to surfactants, indicating alterations in the coat by surfactants. The trend in reducing compressive stiffness aligned well with the decrease of lag-phases in inactivation kinetics. Furthermore, CTMA was found to inactivate B. subtilis spores through mechanisms different from chlorine. Chlorine primarily inactivated B. subtilis spores before damaging the inner membrane of the spores which plays a crucial role in protecting the genetic material stored in the core of the spores. In comparison, CTMA damaged 22 % of the inner membrane for an inactivation efficiency of 99 %. A synergistic effect in damaging the inner membrane was observed when applying CTMA and chlorine simultaneously instead of sequentially.
Collapse
Affiliation(s)
- Tianqi Zhang
- School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - María Inés Villalba
- Laboratory of Biological Electron Microscopy (LBEM), École Polytechnique Fédérale de Lausanne (EPFL) and Université de Lausanne (UNIL), CH-1015 Lausanne, Switzerland
| | - Rongjun Gao
- School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sandor Kasas
- Laboratory of Biological Electron Microscopy (LBEM), École Polytechnique Fédérale de Lausanne (EPFL) and Université de Lausanne (UNIL), CH-1015 Lausanne, Switzerland; Centre Universitaire Romand de Médecine Légale, UFAM, Université de Lausanne, 1015 Lausanne, Switzerland
| | - Urs von Gunten
- School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), CH-8600 Dübendorf, Switzerland.
| |
Collapse
|
2
|
Xu W, Wang W, Ma R, Guo D, Wang Y, Li X, Yuan J, Wang Y, Dong H. Dual mechanism of membrane covering on GHG and NH 3 mitigation during industrial-scale experiment on dairy manure composting: Inhibiting formation and blocking emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122585. [PMID: 39303595 DOI: 10.1016/j.jenvman.2024.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
An industrial-scale experiment on dairy manure composting with the control group (Ctrl) and the membrane covering group (CM) was conducted to explore the effects of functional membrane covering on gas emissions, the conversion of carbon and nitrogen, and revealing the underlying mechanisms. Results indicated that CM achieved the synergistic effects on gas mitigation and improved compost product quality. CO2, CH4, N2O, and NH3 emissions were reduced by 81.8%, 87.0%, 82.6%, and 82.2%, respectively. The micro-aerobic condition formed in membrane covering compost pile together with the covering inhibiting effect dominated the mitigation effect. CM significantly downregulated the mcrA gene copies and the value of mcrA/pmoA (p < 0.01), which reduced CH4 emission. CM decreased the nirS and nirK gene copies and increased the nosZ gene copies to reduce N2O emission. Functional Annotation of Prokaryotic Taxa showed that membrane covering effectively amended part of carbon and nitrogen cycles, which stimulated the degradation of organic matter, accelerated compost maturity and reduced the gaseous emissions.
Collapse
Affiliation(s)
- Wenqian Xu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenzan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruiqiang Ma
- Zhongnong Chuangda Environmental Protection Technology Co., Ltd., Beijing, 100081, China
| | - Dongpo Guo
- Beijing Green Tech Science and Technology Co., Ltd., Beijing, 100080, China
| | - Youxu Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Yue Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
3
|
Freire V, Casañas L, Laborda L, Condón S, Gayán E. Influence of Sporulation Temperature on Germination and Growth of B. weihenstephanensis Strains in Specific Nutrients and in an Extended Shelf-Life Refrigerated Matrix Under Commercial Pasteurization and Storage Conditions. Foods 2024; 13:3434. [PMID: 39517218 PMCID: PMC11545089 DOI: 10.3390/foods13213434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Extended shelf-life (ESL) refrigerated ready-to-eat foods are thermally pasteurized to ensure food safety and stability. However, surviving psychrotrophic Bacillus cereus spores can still pose a challenge. Studies predicting their behavior often overlook sporulation conditions. This study investigated the effect of sporulation temperature on germination of three Bacillus weihenstephanensis strains in specific nutrients (inosine and/or amino acids) with or without prior heat activation (80 °C, 10 min). Sporulation temperature variably affected germination, with stronger effects in moderately responsive strains and nutrients. Heat activation strongly stimulated germination, particularly in nutrients with poorer responses, mitigating differences induced by sporulation temperature. The influence of sporulation temperature on germination and growth in an ESL matrix at refrigeration temperatures (4 °C or 8 °C) in vacuum packaging after heat activation or commercial pasteurization (90 °C, 10 min) was also studied. The latter treatment increased germination rates of surviving spores; however, some strains suffered damage and lost viability upon germination at 4 °C but recovered and grew at 8 °C. These findings highlight the need to account for variability in spore recovery and outgrowth during quantitative risk assessments for psychrotrophic B. cereus in ESL foods.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Gayán
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), Faculty of Veterinary, University of Zaragoza-CITA, Miguel Servet 177, 50013 Zaragoza, Spain; (V.F.); (L.C.); (S.C.)
| |
Collapse
|
4
|
Heydenreich R, Delbrück AI, Trunet C, Mathys A. Strategies for effective high pressure germination or inactivation of Bacillus spores involving nisin. Appl Environ Microbiol 2024; 90:e0229923. [PMID: 39311577 PMCID: PMC11505639 DOI: 10.1128/aem.02299-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/10/2024] [Indexed: 10/25/2024] Open
Abstract
The major challenge in employing high pressure (HP) at moderate temperature for sterilization is the remarkable resistance of bacterial spores. High isostatic pressure can initiate spore germination, enabling subsequent inactivation under mild conditions. However, not all spores could be triggered to germinate under pressure at temperatures ≤80°C so far. In this study, germination treatment combinations were evaluated for Bacillus spores involving moderate HP (150 MPa, 37°C, 5 min), very HP (vHP, 550 MPa, 60°C, 2.5 or 9 min), simple and complex nutrient germinants [L-valine, L-alanine, and tryptic soy broth (TSB)], nisin, and incubation at atmospheric pressure (37°C). The most effective combinations for Bacillus subtilis resulted in a reduction of culturable dormant spores by 8 log10 units. The combinations involved nisin, a nutrient germinant (L-valine or TSB), a first vHP treatment (550 MPa, 60°C, 2.5 min), incubation at atmospheric pressure (37°C, 6 h), and a second vHP treatment (550 MPa, 60°C, 2.5 min). Such treatment combination with L-valine reduced Bacillus amyloliquefaciens spores by only 2 log10 units. B. amyloliquefaciens, thus, proved to be substantially more HP-resistant compared to B. subtilis, validating previous studies. Despite combining different germination mechanisms, complete germination could not be achieved for either species. The natural bacteriocin nisin did seemingly not promote HP germination initiation under chosen HP conditions, contrary to previous literature. Nevertheless, nisin might be beneficial to inhibit the growth of HP-germinated or remaining ungerminated spores. Future germination experiments might consider that nisin could not be completely removed from spores by washing, thereby affecting plate count enumeration. IMPORTANCE Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination-inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy's success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination-inactivation efficacy. Mild preservation processes can fulfill the consumers' demand for safe and minimally processed food.
Collapse
Affiliation(s)
- Rosa Heydenreich
- Sustainable Food
Processing Laboratory, Institute of Food, Nutrition, and Health,
Department of Health Science and Technology, ETH
Zurich, Zurich,
Switzerland
| | - Alessia I. Delbrück
- Sustainable Food
Processing Laboratory, Institute of Food, Nutrition, and Health,
Department of Health Science and Technology, ETH
Zurich, Zurich,
Switzerland
| | - Clément Trunet
- Univ Brest, INRAE,
Laboratoire Universitaire de Biodiversité et Écologie
Microbienne, UMT ACTIA 19.03
ALTER’iX, Quimper,
France
| | - Alexander Mathys
- Sustainable Food
Processing Laboratory, Institute of Food, Nutrition, and Health,
Department of Health Science and Technology, ETH
Zurich, Zurich,
Switzerland
| |
Collapse
|
5
|
Vercauteren S, Fiesack S, Maroc L, Verstraeten N, Dewachter L, Michiels J, Vonesch SC. The rise and future of CRISPR-based approaches for high-throughput genomics. FEMS Microbiol Rev 2024; 48:fuae020. [PMID: 39085047 PMCID: PMC11409895 DOI: 10.1093/femsre/fuae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) has revolutionized the field of genome editing. To circumvent the permanent modifications made by traditional CRISPR techniques and facilitate the study of both essential and nonessential genes, CRISPR interference (CRISPRi) was developed. This gene-silencing technique employs a deactivated Cas effector protein and a guide RNA to block transcription initiation or elongation. Continuous improvements and a better understanding of the mechanism of CRISPRi have expanded its scope, facilitating genome-wide high-throughput screens to investigate the genetic basis of phenotypes. Additionally, emerging CRISPR-based alternatives have further expanded the possibilities for genetic screening. This review delves into the mechanism of CRISPRi, compares it with other high-throughput gene-perturbation techniques, and highlights its superior capacities for studying complex microbial traits. We also explore the evolution of CRISPRi, emphasizing enhancements that have increased its capabilities, including multiplexing, inducibility, titratability, predictable knockdown efficacy, and adaptability to nonmodel microorganisms. Beyond CRISPRi, we discuss CRISPR activation, RNA-targeting CRISPR systems, and single-nucleotide resolution perturbation techniques for their potential in genome-wide high-throughput screens in microorganisms. Collectively, this review gives a comprehensive overview of the general workflow of a genome-wide CRISPRi screen, with an extensive discussion of strengths and weaknesses, future directions, and potential alternatives.
Collapse
Affiliation(s)
- Silke Vercauteren
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Simon Fiesack
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Laetitia Maroc
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Natalie Verstraeten
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Liselot Dewachter
- de Duve Institute, Université catholique de Louvain, Hippokrateslaan 75, 1200 Brussels, Belgium
| | - Jan Michiels
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Sibylle C Vonesch
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Heydenreich R, Delbrück AI, Peternell C, Trunet C, Mathys A. Characterization of high-pressure-treated Bacillus subtilis spore populations using flow cytometry - Shedding light on spore superdormancy at 550 MPa. Int J Food Microbiol 2024; 422:110812. [PMID: 38970996 DOI: 10.1016/j.ijfoodmicro.2024.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Mild spore inactivation can be challenging in industry because of the remarkable resistance of bacterial spores. High pressure (HP) can trigger spore germination, which reduces the spore's resistance, and thereby allows mild spore inactivation. However, spore germination is heterogenous. Some slowly germinating or non-germinating spores called superdormant spores remain resistant and can survive. Therefore, superdormant spores need to be characterized to understand the causes of their germination deficiency. Bacillus subtilis spores were pressurized for 50 s - 6 min at a very high pressure (vHP) level of 550 MPa and 60 °C in buffer to trigger germination. For a rapid quantification of the remaining ungerminated superdormant spores, flow cytometry (FCM) analysis was validated using single cell sorting and growth analysis. FCM based on propidium iodide (PI) and SYTO16 can be used for 550 MPa-superdormant spores after short vHP treatments of ≤1 min and post-HP incubation at 37 °C or 60 °C. The need for a post-HP incubation is particular for vHP treatments. The incubation was successful to separate FCM signals from superdormant and germinated spores, thus allowing superdormant spore quantification. The SYTO16 and PI fluorescence levels did not necessarily indicate superdormancy or apparent viability. This highlights the general need for FCM validation for different HP treatment conditions. The ∼7 % of ungerminated, i.e., superdormant, spores were isolated after a vHP treatment (550 MPa, 60 °C, 43-52 s). This allowed the characterization of vHP superdormant spores for the first time. The superdormant spores had a similar dipicolinic acid content as spores of the initial dormant population. Descendants of superdormant spores had a normal vHP germination capacity. The causes of vHP superdormancy were thus unlikely linked to the dipicolinic acid content or a permanent genetic change. Isolated superdormant spores germinated better in a second vHP treatment compared to the initial spore population. This has not been observed for other germination stimuli so far. In addition, the germination capacity of the initial spore population was time-dependent. A vHP germination deficiency can therefore be lost over time and seems to be caused by transient factors. Permanent cellular properties played a minor role as causes of superdormancy under chosen HP treatment conditions. The study gained new fundamental insights in vHP superdormancy which are of applied interest. Understanding superdormancy helps to efficiently develop a strategy to avoid superdormant spores and hence to inactivate all spores. The development of a mild HP spore germination-inactivation process aims at better preserving the food quality.
Collapse
Affiliation(s)
- Rosa Heydenreich
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Alessia I Delbrück
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Christina Peternell
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Clément Trunet
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Quimper, France.
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Heckler C, Vale MG, Canales HDS, Stradiotto GC, Giordano ALPL, Schreiber AZ, Sant'Ana AS. Spore-forming bacteria in gelatin: Characterization, identification by 16S rRNA and MALDI-TOF mass spectrometry (MS), and presence of heat resistance and virulence genes. Int J Food Microbiol 2024; 422:110813. [PMID: 38970997 DOI: 10.1016/j.ijfoodmicro.2024.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Gelatin, a versatile protein derived from collagen, is widely used in the food, pharmaceutical and medical sectors. However, bacterial contamination by spore-forming bacteria during gelatin processing represents a significant concern for product safety and quality. In this study, an investigation was carried out to explore the heat and chemical resistance, as well as the identification and characterization of spore-forming bacteria isolated from gelatin processing. The methodologies involved chemical resistance tests with drastic pH in microplates and thermal resistance tests in capillary tubes of various isolates obtained at different processing stages. In addition, phenotypic and genotypic analyses were carried out to characterize the most resistant isolates of spore-forming bacteria. The findings of this study revealed the presence of several species, including Bacillus cereus, Bacillus licheniformis, Bacillus sonorensis, Bacillus subtilis, Geobacillus stearothermophilus, and Clostridium sporogenes, with some isolates exhibiting remarkable chemical and heat resistances. In addition, a significant proportion of the most resistant isolates showed gelatinase activity (n = 19/21; 90.5 %) and the presence of heat resistance (n = 5/21; 23.8 %), and virulence genes (n = 11/21; 52.4 %). The results of this study suggest that interventions should be done in quality control practices and that process parameter adjustments and effective contamination reduction strategies should be implemented through gelatin processing.
Collapse
Affiliation(s)
- Caroline Heckler
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Matheus G Vale
- Department of Integrated Systems, Faculty of Mechanical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Héctor D S Canales
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Graziele C Stradiotto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana Luisa P L Giordano
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Angelica Z Schreiber
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
8
|
Yeak KYC, Garre A, Membré JM, Zwietering MH, den Besten HMW. Systematic risk ranking of microbiological hazards in infant foods. Food Res Int 2024; 192:114788. [PMID: 39147463 DOI: 10.1016/j.foodres.2024.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Ensuring food safety, particularly for vulnerable groups, like infants and young children, requires identifying and prioritizing potential hazards in food chains. We previously developed a web-based decision support system (DSS) to identify specific microbiological hazards (MHs) in infant and toddler foods through a structured five-step process. This study takes the framework further by introducing systematic risk ranking (RR) steps to rank MH risks with seven criteria: process survival, recontamination, growth opportunity, meal preparation, hazard-food association evidence, food consumption habits of infants and toddlers in the EU, and MH severity. Each criterion is given a semi-quantitative or quantitative score or risk value, contributing to the final MH risk calculation via three aggregation methods: semi-quantitative risk scoring, semi-quantitative risk value, and outranking multi-criteria decision analysis (MCDA). To validate the criteria and ranking approaches, we conducted a case study to rank MH risks in infant formula, compared the results of the three risk ranking methods, and additionally evaluated the ranking results against expert opinions to ensure their accuracy. The results showed strong agreement among the three methods, consistently ranking Salmonella non-Typhi and Cronobacter spp. and Shiga-toxin-producing Escherichia coli as the top MH risks in infant formulae, with minor deviations. When MHs were ranked after an initial hazard identification step, all three methods produced nearly identical MH rankings, reinforcing the reliability of the ranking steps and the selected criteria. Notably, the risk value and MCDA methods provided more informative MH rankings compared to the risk scoring method. The risk value and risk scoring methods were implemented into an online tool, called the MIcrobiological hazards risk RAnking decision support system (Mira-DSS), available at https://foodmicrobiologywur.shinyapps.io/MIcrobial_hazards_RAnking/. In conclusion, our framework enables the ranking of MH risks, facilitating intervention comparisons and resource allocations to mitigate MH risks in infant foods, with potential applicability to broader food categories.
Collapse
Affiliation(s)
- Kah Yen Claire Yeak
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Alberto Garre
- Departamento de Ingeniería de Alimentos y del Equipamiento Agrícola, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena (ETSIA), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain
| | | | - Marcel H Zwietering
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
9
|
Snyder AB, Martin N, Wiedmann M. Microbial food spoilage: impact, causative agents and control strategies. Nat Rev Microbiol 2024; 22:528-542. [PMID: 38570695 DOI: 10.1038/s41579-024-01037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
Microbial food spoilage is a major contributor to food waste and, hence, to the negative environmental sustainability impacts of food production and processing. Globally, it is estimated that 15-20% of food is wasted, with waste, by definition, occurring after primary production and harvesting (for example, in households and food service establishments). Although the causative agents of food spoilage are diverse, many microorganisms are major contributors across different types of foods. For example, the genus Pseudomonas causes spoilage in various raw and ready-to-eat foods. Aerobic sporeformers (for example, members of the genera Bacillus, Paenibacillus and Alicyclobacillus) cause spoilage across various foods and beverages, whereas anaerobic sporeformers (for example, Clostridiales) cause spoilage in a range of products that present low-oxygen environments. Fungi are also important spoilage microorganisms, including in products that are not susceptible to bacterial spoilage due to their low water activity or low pH. Strategies that can reduce spoilage include improved control of spoilage microorganisms in raw material and environmental sources as well as application of microbicidal or microbiostatic strategies (for example, to products and packaging). Emerging tools (for example, systems models and improved genomic tools) represent an opportunity for rational design of systems, processes and products that minimize microbial food spoilage.
Collapse
Affiliation(s)
| | - Nicole Martin
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
10
|
Hassan M, Zhao Y, Zughaier SM. Recent Advances in Bacterial Detection Using Surface-Enhanced Raman Scattering. BIOSENSORS 2024; 14:375. [PMID: 39194603 DOI: 10.3390/bios14080375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Rapid identification of microorganisms with a high sensitivity and selectivity is of great interest in many fields, primarily in clinical diagnosis, environmental monitoring, and the food industry. For over the past decades, a surface-enhanced Raman scattering (SERS)-based detection platform has been extensively used for bacterial detection, and the effort has been extended to clinical, environmental, and food samples. In contrast to other approaches, such as enzyme-linked immunosorbent assays and polymerase chain reaction, SERS exhibits outstanding advantages of rapid detection, being culture-free, low cost, high sensitivity, and lack of water interference. This review aims to cover the development of SERS-based methods for bacterial detection with an emphasis on the source of the signal, techniques used to improve the limit of detection and specificity, and the application of SERS in high-throughput settings and complex samples. The challenges and advancements with the implementation of artificial intelligence (AI) are also discussed.
Collapse
Affiliation(s)
- Manal Hassan
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Yiping Zhao
- Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA
| | - Susu M Zughaier
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
11
|
Dorbani I, Berberian A, Riedel C, Duport C, Carlin F. Comparing resistance of bacterial spores and fungal conidia to pulsed light and UVC radiation at a wavelength of 254 nm. Food Microbiol 2024; 121:104518. [PMID: 38637080 DOI: 10.1016/j.fm.2024.104518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024]
Abstract
Pulsed light (PL) inactivates microorganisms by UV-rich, high-irradiance and short time pulses (250 μs) of white light with wavelengths from 200 nm to 1100 nm. PL is applied for disinfection of food packaging material and food-contact equipment. Spores of seven Bacillus ssp. strains and one Geobacillus stearothermophilus strain and conidia of filamentous fungi (One strain of Aspergillus brasiliensis, A. carbonarius and Penicillium rubens) were submitted to PL (fluence from 0.23 J/cm2 to 4.0 J/cm2) and UVC (at λ = 254 nm; fluence from 0.01 J/cm2 to 3.0 J/cm2). One PL flash at 3 J/cm2 allowed at least 3 log-reduction of all tested microorganisms. The emetic B. cereus strain F4810/72 was the most resistant of the tested spore-forming bacteria. The PL fluence to 3 log-reduction (F3 PL) of its spores suspended in water was 2.9 J/cm2 and F3 UVC was 0.21 J/cm2, higher than F3 PL and F3 UVC of spores of B. pumilus SAFR-032 2.0 J/cm2 and 0.15 J/cm2, respectively), yet reported as a highly UV-resistant spore-forming bacterium. PL and UVC sensitivity of bacterial spores was correlated. Aspergillus spp. conidia suspended in water were poorly sensitive to PL. In contrast, PL inactivated Aspergillus spp. conidia spread on a dry surface more efficiently than UVC. The F2 PL of A. brasiliensis DSM1988 was 0.39 J/cm2 and F2 UVC was 0.83 J/cm2. The resistance of spore-forming bacteria to PL could be reasonably predicted from the knowledge of their UVC resistance. In contrast, the sensitivity of fungal conidia to PL must be specifically explored.
Collapse
Affiliation(s)
- Imed Dorbani
- INRAE, Avignon Université, UMR SQPOV, Avignon, France; Claranor, 862 Rue André-Jean Boudoy, 84140, Avignon, France
| | | | | | | | | |
Collapse
|
12
|
Moiseenko KV, Glazunova OA, Fedorova TV. Fermentation of Rice, Oat, and Wheat Flour by Pure Cultures of Common Starter Lactic Acid Bacteria: Growth Dynamics, Sensory Evaluation, and Functional Properties. Foods 2024; 13:2414. [PMID: 39123605 PMCID: PMC11312058 DOI: 10.3390/foods13152414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Recent consumer demand for non-dairy alternatives has forced many manufacturers to turn their attention to cereal-based non-alcoholic fermented products. In contrast to fermented dairy products, there is no defined and standardized starter culture for manufacturing cereal-based products. Since spontaneous fermentation is rarely suitable for large-scale commercial production, it is not surprising that manufacturers have started to adopt centuries-known dairy starters based on lactic acid bacteria (LABs) for the fermentation of cereals. However, little is known about the fermentation processes of cereals with these starters. In this study, we combined various analytical tools in order to understand how the most common starter cultures of LABs affect the most common types of cereals during fermentation. Specifically, 3% suspensions of rice, oat, and wheat flour were fermented by the pure cultures of 16 LAB strains belonging to five LAB species-Lacticaseibacillus paracasei, Lactobacillus delbrueckii, Lactobacillus helveticus, Streptococcus thermophilus, and Lactococcus lactis. The fermentation process was described in terms of culture growth and changes in the pH, reducing sugars, starch, free proteins, and free phenolic compounds. The organoleptic and rheological features of the obtained fermented products were characterized, and their functional properties, such as their antioxidant capacity and angiotensin-converting enzyme inhibitory activity, were determined.
Collapse
Affiliation(s)
- Konstantin V. Moiseenko
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia; (O.A.G.); (T.V.F.)
| | - Olga A. Glazunova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia; (O.A.G.); (T.V.F.)
| | - Tatyana V. Fedorova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia; (O.A.G.); (T.V.F.)
| |
Collapse
|
13
|
Kim TD, Khanal S, Bäcker LE, Lood C, Kerremans A, Gorivale S, Begyn K, Cambré A, Rajkovic A, Devlieghere F, Heyndrickx M, Michiels C, Duitama J, Aertsen A. Rapid evolutionary tuning of endospore quantity versus quality trade-off via a phase-variable contingency locus. Curr Biol 2024; 34:3077-3085.e5. [PMID: 38925118 DOI: 10.1016/j.cub.2024.05.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
The UV resistance of bacterial endospores is an important quality supporting their survival in inhospitable environments and therefore constitutes an essential driver of the ecological success of spore-forming bacteria. Nevertheless, the variability and evolvability of this trait are poorly understood. In this study, directed evolution and genetics approaches revealed that the Bacillus cereus pdaA gene (encoding the endospore-specific peptidoglycan-N-acetylmuramic acid deacetylase) serves as a contingency locus in which the expansion and contraction of short tandem repeats can readily compromise (PdaAOFF) or restore (PdaAON) the pdaA open reading frame. Compared with B. cereus populations in the PdaAON state, populations in the PdaAOFF state produced a lower yield of viable endospores but endowed them with vastly increased UV resistance. Moreover, selection pressures based on either quantity (i.e., yield of viable endospores) or quality (i.e., UV resistance of viable endospores) aspects could readily shift populations between PdaAON and PdaAOFF states, respectively. Bioinformatic analysis also revealed that pdaA homologs within the Bacillus and Clostridium genera are often equipped with several short tandem repeat regions, suggesting a wider implementation of the pdaA-mediated phase variability in other sporeformers as well. These results for the first time reveal (1) pdaA as a phase-variable contingency locus in the adaptive evolution of endospore properties and (2) bet-hedging between what appears to be a quantity versus quality trade-off in endospore crops.
Collapse
Affiliation(s)
- Tom Dongmin Kim
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Sadhana Khanal
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Leonard E Bäcker
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Cédric Lood
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Alison Kerremans
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Sayali Gorivale
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Katrien Begyn
- Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Alexander Cambré
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Frank Devlieghere
- Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Marc Heyndrickx
- ILVO-Flanders Research Institute for Agriculture, Fishery and Food, Technology and Food Science, Unit-Food Safety, 9090 Melle, Belgium; Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Chris Michiels
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium; Leuven Food Science and Nutritional Research Centre (LeFoRCe), Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, 111711 Bogotá, Colombia
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
14
|
Singh SK, Ali MM, Mok JH, Korza G, Setlow P, Sastry SK. Mechanistic insight into roles of α/β-type small acid-soluble proteins, RecA, and inner membrane proteins during bacterial spore inactivation by ohmic heating. J Appl Microbiol 2024; 135:lxae151. [PMID: 38906847 DOI: 10.1093/jambio/lxae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
AIM Ohmic heating (OH) (i.e. heating by electric field) more effectively kills bacterial spores than traditional wet heating, yet its mechanism remains poorly understood. This study investigates the accelerated spore inactivation mechanism using genetically modified spores. METHODS AND RESULTS We investigated the effects of OH and conventional heating (CH) on various genetically modified strains of Bacillus subtilis: isogenic PS533 (wild type_1), PS578 [lacking spores' α/β-type small acid-soluble proteins (SASP)], PS2318 (lacking recA, encoding a DNA repair protein), isogenic PS4461 (wild type_2), and PS4462 (having the 2Duf protein in spores, which increases spore wet heat resistance and decreases spore inner membrane fluidity). Removal of SASP brought the inactivation profiles of OH and CH closer, suggesting the interaction of these proteins with the field. However, the reemergence of a difference between CH and OH killing for SASP-deficient spores at the highest tested field strength suggested there is also interaction of the field with another spore core component. Additionally, RecA-deficient spores yielded results like those with the wild-type spores for CH, while the OH resistance of this mutant increased at the lower tested temperatures, implying that RecA or DNA are a possible additional target for the electric field. Addition of the 2Duf protein markedly increased spore resistance both to CH and OH, although some acceleration of killing was observed with OH at 50 V/cm. CONCLUSIONS In summary, both membrane fluidity and interaction of the spore core proteins with electric field are key factors in enhanced spore killing with electric field-heat combinations.
Collapse
Affiliation(s)
- Shyam K Singh
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Mohamed Medhat Ali
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Jin Hong Mok
- Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| | - George Korza
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030, United States
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030, United States
| | - Sudhir K Sastry
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
15
|
Chincha AAIA, Marone MP, Pia AKR, Freire L, Amorim-Neto DP, Carazzolle MF, Sant'Ana AS. Phenotypic, genotypic, and resistome of mesophilic spore-forming bacteria isolated from pasteurized liquid whole egg. Food Res Int 2024; 184:114215. [PMID: 38609213 DOI: 10.1016/j.foodres.2024.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024]
Abstract
The production of whole-liquid eggs is of significant economic and nutritional importance. This study aimed to assess the phenotypic and genotypic diversity of mesophilic aerobic spore-forming bacteria (n = 200) isolated from pasteurized whole liquid egg and liquid egg yolk. The majority of the isolates were identified as belonging to the genera Bacillus (86 %), followed by Brevibacillus (10 %) and Lysinibacillus (4 %). For the phenotypic characterization, isolates were subjected to various heat shocks, with the most significant reductions observed at 80 °C/30 min and 90 °C/10 min for isolates recovered from raw materials. On the other hand, the decrease was similar for isolates recovered from raw material and final product at 100 °C/5 min and 110 °C/5 min. Genotypic genes related to heat resistance (cdnL, spoVAD, dacB, clpC, dnaK, and yitF/Tn1546) were examined for genotypic characterization. The dnaK gene showed a positive correlation with the highest thermal condition tested (110 °C/5 min), while 100 °C/5 min had the highest number of positively correlated genes (clpC, cdnL, yitF/Tn1546, and spoVAD). Whole Genome Sequencing of four strains revealed genes related to sporulation, structure formation, initiation and regulation, stress response, and DNA repair in vegetative cells. The findings of this study indicate that these mesophilic aerobic spore-forming bacteria may adopt several strategies to persist through the process and reach the final product. As the inactivation of these microorganisms during egg processing is challenging, preventing raw materials contamination and their establishment in processing premises must be reinforced.
Collapse
Affiliation(s)
- Alexandra A I A Chincha
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marina P Marone
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, SP, Brazil
| | - Arthur K R Pia
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Luisa Freire
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul. Campo Grande, Mato Grosso do Sul, Brazil
| | - Dionisio P Amorim-Neto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marcelo F Carazzolle
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, SP, Brazil; Center for Computing and Engineering Sciences, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
16
|
Jensen CNG, Pang JKY, Gottardi M, Kračun SK, Svendsen BA, Nielsen KF, Kovács ÁT, Moelbak L, Fimognari L, Husted S, Schulz A. Bacillus subtilis promotes plant phosphorus (P) acquisition through P solubilization and stimulation of root and root hair growth. PHYSIOLOGIA PLANTARUM 2024; 176:e14338. [PMID: 38740528 DOI: 10.1111/ppl.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Bacteria can be applied as biofertilizers to improve crop growth in phosphorus (P)-limited conditions. However, their mode of action in a soil environment is still elusive. We used the strain ALC_02 as a case study to elucidate how Bacillus subtilis affects dwarf tomato cultivated in soil-filled rhizoboxes over time. ALC_02 improved plant P acquisition by increasing the size and P content of P-limited plants. We assessed three possible mechanisms, namely root growth stimulation, root hair elongation, and solubilization of soil P. ALC_02 produced auxin, and inoculation with ALC_02 promoted root growth. ALC_02 promoted root hair elongation as the earliest observed response and colonized root hairs specifically. Root and root hair growth stimulation was associated with a subsequent increase in plant P content, indicating that a better soil exploration by the root system improved plant P acquisition. Furthermore, ALC_02 affected the plant-available P content in sterilized soil differently over time and released P from native P pools in the soil. Collectively, ALC_02 exhibited all three mechanisms in a soil environment. To our knowledge, bacterial P biofertilizers have not been reported to colonize and elongate root hairs in the soil so far, and we propose that these traits contribute to the overall effect of ALC_02. The knowledge gained in this research can be applied in the future quest for bacterial P biofertilizers, where we recommend assessing all three parameters, not only root growth and P solubilization, but also root hair elongation. This will ultimately support the development of sustainable agricultural practices.
Collapse
Affiliation(s)
- Camilla Niketa Gadomska Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Plant Health Innovation, Novonesis A/S, Taastrup, Denmark
| | - Janet Ka Yan Pang
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | | | | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Lars Moelbak
- Plant Health Innovation, Novonesis A/S, Taastrup, Denmark
| | | | - Søren Husted
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
17
|
Freire V, Condón S, Gayán E. Impact of sporulation temperature on germination of Bacillus subtilis spores under optimal and adverse environmental conditions. Food Res Int 2024; 182:114064. [PMID: 38519157 DOI: 10.1016/j.foodres.2024.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/13/2024] [Accepted: 01/25/2024] [Indexed: 03/24/2024]
Abstract
Bacillus subtilis spores are important food spoilage agents and are occasionally involved in food poisoning. In foods that are not processed with intense heat, such bacterial spores are controlled by a combination of different hurdles, such as refrigeration, acidification, and low water activity (aw), which inhibit or delay germination and/or growth. Sporulation temperature has long been regarded as a relevant factor for the assessment of germination in chemically defined media, but little is known about its impact on food preservation environments. In this study, we compared germination dynamics of B. subtilis spores produced at optimal temperature (37 °C) with others incubated at suboptimal (20 °C) and supraoptimal (43 °C) temperatures in a variety of nutrients (rich-growth medium, L-alanine, L-valine, and AGFK) under optimal conditions as well as under food-related stresses (low aw, pH, and temperature). Spores produced at 20 °C had a lower germination rate and efficiency than those incubated at 37 °C in all the nutrients, while those sporulated at 43 °C displayed a higher germination rate and/or efficiency in response to rich-growth medium and mostly to L-alanine and AGFK under optimal environmental conditions. However, differences in germination induced by changes in sporulation temperature decreased when spores were activated by heat, mainly due to the greater benefit of heat for spores produced at 20 °C and 37 °C than at 43 °C, especially in AGFK. Non-heat-activated spores produced at 43 °C still displayed superior germination fitness under certain stresses that had considerably impaired the germination of the other two populations, such as reduced temperature and aw. Moreover, they presented lower temperature and pH boundaries for the inhibition of germination in rich-growth medium, while requiring a higher NaCl concentration threshold compared to spores obtained at optimal and suboptimal temperature. Sporulation temperature is therefore a relevant source of variability in spore germination that should be taken into account for the accurate prediction of spore behaviour under variable food preservation conditions with the aim of improving food safety and stability.
Collapse
Affiliation(s)
- Víctor Freire
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Santiago Condón
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Elisa Gayán
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain.
| |
Collapse
|
18
|
Zhang Y, Yang Z, Huang Q, Zhan X, Liu X, Guo D, Wang S, Rui W, Lü X, Shi C. Antimicrobial Activity of Eugenol Against Bacillus cereus and Its Application in Skim Milk. Foodborne Pathog Dis 2024; 21:147-159. [PMID: 38100031 DOI: 10.1089/fpd.2023.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Bacillus cereus is a foodborne pathogen widely distributed in the large-scale catering industry and produces spores. The study explored the antibacterial activity, potential mechanism of eugenol against B. cereus, and spores with germination rate. The minimum inhibitory concentration (MIC; 0.6 mg/mL) of eugenol to six B. cereus strains was compared with the control; B. cereus treated with eugenol had a longer lag phase. Eugenol at a concentration of more than 1/2MIC decreased viable B. cereus (∼5.7 log colony-forming unit [CFU]/mL) counts below detectable limits within 2 h, and eugenol of 3MIC reduced B. cereus (∼5.9 log CFU/mL) in skim milk below detectable limits within 30 min. The pH values of skim milk were unaffected by the addition of eugenol. The ΔE values below 2 show that the color variations of skim milk were not visible to the human eye. For sensory evaluation, eugenol did not significantly affect the color or structural integrity of the skim milk. It had a negative impact on the flavor and general sensory acceptance of the treated milk. Eugenol hyperpolarized B. cereus cell membrane, decreased intracellular ATP concentration, and increased intracellular reactive oxygen species contents and extracellular malondialdehyde contents, resulting in the cell membrane of B. cereus being damaged and permeabilized, and cell morphology being changed. In addition, according to the viable count, confocal laser scanning microscopy, and spore morphology changes, eugenol reduced the germination rate of B. cereus spores. These findings suggest that eugenol can be used as a new natural antibacterial agent to control B. cereus and spores in the food production chain.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhuokai Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qianning Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xing Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wushuang Rui
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Sundaresan A, Cheong I. Elucidating Bacterial Spore Dynamics through Lanthanide-Enhanced Live Imaging. ACS Sens 2024; 9:789-798. [PMID: 38221734 DOI: 10.1021/acssensors.3c02083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Identifying and distinguishing dormant and active bacterial spores are vital for biosecurity, food safety, and space exploration. Yet, there is a lack of simple, quick, and nondestructive methods to achieve this. The common Schaeffer-Fulton method is both sample-destructive and requires significant operator involvement. In this study, we employed lanthanide-beta-diketonate complexes to directly observe both dormant and germinated single spores. Staining is instantaneous and requires minimal sample processing. The complex stains areas outside the core of dormant spores, leaving the core hollow and nonfluorescent. However, upon germination, the complex enters the core, making it brightly fluorescent. This difference was noted in five bacterial species including Bacillus, Clostridium, and Clostridioides. Various lanthanides and beta-diketonates can be mixed to form a range of spore-visualizing complexes. Due to their low toxicity, these complexes allow for live imaging of single germinating spores. We demonstrate low-cost imaging using a USB microscope as well as imaging of spores in milk matrices. This method provides a valuable tool for studying bacterial spores.
Collapse
Affiliation(s)
- Ajitha Sundaresan
- Temasek Life Sciences Laboratory, National University of Singapore, 117604 Singapore
- Department of Biological Sciences, National University of Singapore, 117558 Singapore
| | - Ian Cheong
- Temasek Life Sciences Laboratory, National University of Singapore, 117604 Singapore
- Department of Biological Sciences, National University of Singapore, 117558 Singapore
| |
Collapse
|
20
|
Kyrylenko A, Eijlander RT, Alliney G, de Bos ELV, Wells-Bennik MHJ. Levels and types of microbial contaminants in different plant-based ingredients used in dairy alternatives. Int J Food Microbiol 2023; 407:110392. [PMID: 37729802 DOI: 10.1016/j.ijfoodmicro.2023.110392] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
In this study levels and types of microbial contaminants were investigated in 88 different plant-based ingredients including many that are used to manufacture dairy alternatives. Studied ingredients encompassed samples of pulses (pea, faba bean, chickpea, and mung bean), cereals/pseudocereals (oat, rice, amaranth and quinoa) and drupes (coconut, almond and cashew). The microbial analysis included: i) total viable count (TVC), ii) total aerobic mesophilic spore count (TMS), iii) heat resistant aerobic thermophilic spore count (HRTS), iv) anaerobic sulfite reducing Clostridium spore count (SRCS), and v) Bacillus cereus spore count (BCES). Microorganisms isolated from the counting plates with the highest sample dilutions were identified using 16S rRNA and MALDI-TOF MS analyses. Many of the investigated ingredients showed a high proportion of spores as part of their total aerobic mesophilic counts. In 63 % of the samples, the difference between TVC and TMS counts was 1 Log10 unit or less. This was particularly the case for the majority of pea isolates and concentrates, faba bean isolates, oat kernels and flakes, and for single samples of chickpea isolate, almond, amaranth, rice, quinoa, and coconut flours. Concentrations of TVC ranged between <1.0 and 5.3 Log10 CFU/g in different samples, and TMS varied between <1.0 and 4.1 Log10 CFU/g. Levels of HTRS, BCES and SRCS were generally low, typically around or below the LOD of 1.0 Log10 CFU/g. In total, 845 individual bacterial colonies were isolated belonging to 33 different genera. Bacillus licheniformis and B. cereus group strains were most frequently detected among Bacillus isolates, and these species originated primarily from pea and oat samples. Geobacillus stearothermophilus was the main species encountered as part of the HRTS. Among the Clostridium isolates, Clostridum sporogenes/tepidum were predominant species, which were mostly found in pea and almond samples. Strains with potential to cause foodborne infection or intoxication were typed using the PCR-based method for toxin genes detection. In the B. cereus group, 9 % of isolates contained the ces gene, 28 % contained hbl, 42 % cytK, and 69 % were positive for the nhe gene. Absence of the boNT-A and -B genes was confirmed for all isolated C. sporogenes/tepidum strains. Nearly all (98 %) B. licheniformis isolates were positive for the lchAA gene. Insight into the occurrence of microbial contaminants in plant-based ingredients, combined with knowledge of their key inactivation and growth characteristics, can be used for the microbial risk assessment and effective design of plant-based food processing conditions and formulations to ensure food safety and prevent spoilage.
Collapse
Affiliation(s)
- Alina Kyrylenko
- NIZO food research, Kernhemseweg 2, 6718 ZB Ede, the Netherlands; Wageningen University and Research, Food Microbiology, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| | | | - Giovanni Alliney
- NIZO food research, Kernhemseweg 2, 6718 ZB Ede, the Netherlands; Wageningen University and Research, Food Microbiology, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | | | | |
Collapse
|
21
|
Shin D, Ha E, Kong M, Ryu S. Characterization of thermostable bacteriophage CPD2 and its endolysin LysCPD2 as biocontrol agents against Clostridium perfringens. Food Sci Biotechnol 2023; 32:2069-2077. [PMID: 37860732 PMCID: PMC10581990 DOI: 10.1007/s10068-023-01314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 10/21/2023] Open
Abstract
Clostridium perfringens is one of the major foodborne pathogens in humans and animals. With the prevalence of antibiotic-resistant C. perfringens strains, bacteriophages and their endolysins have received considerable attention as promising alternatives to antibiotics. In this study, C. perfringens phage CPD2 was isolated from retail chicken samples. CPD2 belongs to the Podoviridae family and exhibits remarkable thermostability. While CPD2 has narrow host specificity, its endolysin LysCPD2 showed a broader lytic range, killing not only C. perfringens strains but other Gram-positive bacteria, such as B. cereus and B. subtilis. In addition, due to its exceptional thermal stability, LysCPD2 showed significant antibacterial ability against germinating C. perfringens spores during the heat activation process (75 °C for 20 min). Taken together, these results indicate that both thermostable phage CPD2 and its endolysin LysCPD2 can be used as efficient antimicrobial agents to control C. perfringens during thermal processing of foods.
Collapse
Affiliation(s)
- Daeun Shin
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Eunsu Ha
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Minsuk Kong
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
22
|
Freire V, Del Río J, Gómara P, Salvador M, Condón S, Gayán E. Comparative study on the impact of equally stressful environmental sporulation conditions on thermal inactivation kinetics of B. subtilis spores. Int J Food Microbiol 2023; 405:110349. [PMID: 37591013 DOI: 10.1016/j.ijfoodmicro.2023.110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/30/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023]
Abstract
Control of bacterial spores continues to be one of the main challenges for the food industry due to their wide dissemination and extremely high resistance to processing methods. Furthermore, the large variability in heat resistance in spores that contaminate foods makes it difficult to establish general processing conditions. Such heterogeneity not only derives from inherent differences among species and strains, but also from differences in sporulation environments that are generally ignored in spores encountered in foods. We evaluated heat inactivation kinetics and the thermodependency of resistance parameters in B. subtilis 168 spores sporulated at adverse temperatures, water activity (aw), and pH, applying an experimental approach that allowed us to quantitatively compare the impact of each condition. Reduction of incubation temperature from the optimal temperature dramatically reduced thermal resistance, and it was the most influential factor, especially at the highest treatment temperatures. These spores were also more sensitive to chemicals presumably acting in the inner membrane. Reducing sporulation aw increased heat resistance, although the magnitude of that effect depended on the solute and the treatment temperature. Thus, changes in sporulation environments varied 3D100°C values up to 10.4-fold and z values up to 1.7-fold, highlighting the relevance of taking such a source of variability into account when setting heat processing conditions. UV-C treatment and sodium hypochlorite efficiently inactivated all spore populations, including heat-resistant ones produced at low aw.
Collapse
Affiliation(s)
- Víctor Freire
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Javier Del Río
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Paula Gómara
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Maika Salvador
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Santiago Condón
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Elisa Gayán
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain.
| |
Collapse
|
23
|
Biermann R, Beutel S. Endospore production of Bacillus spp. for industrial use. Eng Life Sci 2023; 23:e2300013. [PMID: 37970521 PMCID: PMC10630785 DOI: 10.1002/elsc.202300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/02/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023] Open
Abstract
The increased occurrence of antibiotic resistance and the harmful use of pesticides are a major problem of modern times. A ban on the use of antibiotics as growth promoters in animal breeding has put a focus on the probiotics market. Probiotic food supplements are versatile and show promising results in animal and human nutrition. Chemical pesticides can be substituted by biopesticides, which are very effective against various pests in plants due to increased research. What these fields have in common is the use of spore-forming bacteria. The endospore-forming Bacillus spp. belonging to this group offer an effective solution to the aforementioned problems. Therefore, the biotechnological production of sufficient qualities of such endospores has become an innovative and financially viable field of research. In this review, the production of different Bacillus spp. endospores will be reviewed. For this purpose, the media compositions, cultivation conditions and bioprocess optimization methods of the last 20 years are presented and reflected.
Collapse
Affiliation(s)
- Riekje Biermann
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Sascha Beutel
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| |
Collapse
|
24
|
Fan L, Zhang Y, Ismail BB, Muhammad AI, Li G, Liu D. Bacillus spore germination: mechanisms, identification, and antibacterial strategies. Crit Rev Food Sci Nutr 2023; 64:11146-11160. [PMID: 37504494 DOI: 10.1080/10408398.2023.2233184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Bacterial spores are metabolically inactive and highly resistant to harsh environmental conditions in nature and during decontamination processes in food and related industries. However, inducing germination using specific germinants in dormant spores can convert them into vegetative cells which are metabolically active and fragile. The potential utility of a "germinate to eradicate" strategy, also known as germination-inactivation, has been validated in foods. Meanwhile, the strategy has sparked much interest in triggering and maximizing spore germination. Although many details of the spore germination process have been identified over the past decades, there remain many uncertainties, including some signal transduction mechanisms involved in germination. In addition, the successful implementation of the germination-inactivation strategy relies on the sensitive detection of germinative biomarkers within minutes of germination initiation and the optimal timing for the subsequent inactivation step. Meanwhile, the emergence of biomarkers has renewed attention to the practical application of the spore germination process. Here, this review presents the current knowledge of the germination mechanisms of Bacillus spore, influencing factors, and germination biomarkers. It also covers a detailed discussion on the development of germination-inactivation as a spore eradication strategy.
Collapse
Affiliation(s)
- Lihua Fan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Shaanxi, China
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Yanru Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Shaanxi, China
| | - Balarabe Bilyaminu Ismail
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
- Department of Food Science and Technology, Faculty of Agriculture, Bayero University, Kano, Nigeria
| | - Aliyu Idris Muhammad
- Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Shaanxi, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Harrellson SG, DeLay MS, Chen X, Cavusoglu AH, Dworkin J, Stone HA, Sahin O. Hydration solids. Nature 2023; 619:500-505. [PMID: 37286609 PMCID: PMC10530534 DOI: 10.1038/s41586-023-06144-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/27/2023] [Indexed: 06/09/2023]
Abstract
Hygroscopic biological matter in plants, fungi and bacteria make up a large fraction of Earth's biomass1. Although metabolically inert, these water-responsive materials exchange water with the environment and actuate movement2-5 and have inspired technological uses6,7. Despite the variety in chemical composition, hygroscopic biological materials across multiple kingdoms of life exhibit similar mechanical behaviours including changes in size and stiffness with relative humidity8-13. Here we report atomic force microscopy measurements on the hygroscopic spores14,15 of a common soil bacterium and develop a theory that captures the observed equilibrium, non-equilibrium and water-responsive mechanical behaviours, finding that these are controlled by the hydration force16-18. Our theory based on the hydration force explains an extreme slowdown of water transport and successfully predicts a strong nonlinear elasticity and a transition in mechanical properties that differs from glassy and poroelastic behaviours. These results indicate that water not only endows biological matter with fluidity but also can-through the hydration force-control macroscopic properties and give rise to a 'hydration solid' with unusual properties. A large fraction of biological matter could belong to this distinct class of solid matter.
Collapse
Affiliation(s)
| | - Michael S DeLay
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Xi Chen
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, New York, NY, USA
| | - Ahmet-Hamdi Cavusoglu
- Department of Chemical Engineering, Columbia University, New York, NY, USA
- Merck Digital Sciences Studio (MDSS), Newark, NJ, USA
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA
| | - Ozgur Sahin
- Department of Physics, Columbia University, New York, NY, USA.
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
26
|
Heydenreich R, Delbrück AI, Mathys A. Post-high-pressure temperature and time - Overlooked parameters in high pressure treatment of bacterial spores. Int J Food Microbiol 2023; 402:110279. [PMID: 37331115 DOI: 10.1016/j.ijfoodmicro.2023.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/19/2023] [Accepted: 06/03/2023] [Indexed: 06/20/2023]
Abstract
High pressure (HP) processing has high potential for bacterial spore inactivation with minimal thermal input. To advance HP germination and subsequent inactivation of spores, this study explored the physiological state of HP-treated spores using flow cytometry (FCM). Bacillus subtilis spores were treated at 550 MPa and 60 °C (very HP (vHP)) in buffer, incubated after the HP treatment, and stained for FCM analysis with SYTO16 indicating germination and propidium iodide (PI) indicating membrane damage. FCM subpopulations were analyzed depending on the HP dwell time (≤20 min), post-HP temperature (ice, 37 °C, 60 °C) and time (≤4 h), germination-relevant cortex-lytic enzymes (CLEs) and small-acid-soluble-proteins-(SASP)-degrading enzymes by using deletion strains. The effect of post-HP temperatures (ice, 37 °C) was additionally studied for moderate HP (150 MPa, 38 °C, 10 min). Post-HP incubation conditions strongly influenced the prevalence of five observed FCM subpopulations. Post-HP incubation on ice did not or only slowly shifted SYTO16-positive spores to higher SYTO16 levels. At 37 °C post-HP, this shift accelerated, and a shift to high PI intensities occurred depending on the HP dwell time. At 60 °C post-HP, the main shift was from SYTO16-positive to PI-positive subpopulations. The enzymes CwlJ and SleB, which are CLEs, seemed both necessary for PI or SYTO16 uptake, and to have different sensitivities to 550 MPa and 60 °C. Different extents of SASP degradation might explain the existence of two SYTO16-positive subpopulations. Shifts to higher SYTO16 intensities during post-HP incubation on ice or at 37 °C might rely on the activity and recovery of CLEs, SASP-degrading enzymes or their associated proteins from reversible HP-induced structural changes. These enzymes seemingly become active only during decompression or after vHP treatments (550 MPa, 60 °C). Based on our results, we provide a refined model of HP germination-inactivation of B. subtilis spores and an optimized FCM method for quantification of the safety-relevant subpopulation, i.e., vHP (550 MPa, 60 °C) superdormant spores. This study contributes to the development of mild spore inactivation processes by shedding light on overlooked parameters: post-HP incubation conditions. Post-HP conditions significantly influenced the physiological state of spores, likely due to varying enzymatic activity. This finding may explain inconsistencies in previous research and shows the importance of reporting post-HP conditions in future research. Furthermore, the addition of post-HP conditions as HP process parameter may open up new possibilities to optimize HP-based inactivation of spores for potential industrial applications in the food industry.
Collapse
Affiliation(s)
- Rosa Heydenreich
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Alessia I Delbrück
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
27
|
Misiou O, Ellouze M, Koutsoumanis K. Cardinal models to describe the effect of temperature and pH on the growth of Anoxybacillus flavithermus & Bacillus licheniformis. Food Microbiol 2023; 112:104230. [PMID: 36906302 DOI: 10.1016/j.fm.2023.104230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Anoxybacillus flavithermus and Bacillus licheniformis are among the predominant spore-formers of heat-processed foods. To our knowledge, no systematic analysis of growth kinetic data of A. flavithermus or B. licheniformis is currently available. In the present study, the growth kinetics of A. flavithermus and B. licheniformis in broth at various temperature and pH conditions were studied. Cardinal models were used to model the effect of the above-mentioned factors on the growth rates. The estimated values for the cardinal parameters Tmin,Topt,Tmax,pHmin and pH1/2 for A. flavithermus were 28.70 ± 0.26, 61.23 ± 0.16 and 71.52 ± 0.32 °C, 5.52 ± 0.01 and 5.73 ± 0.01, respectively, while for B. licheniformis they were 11.68 ± 0.03, 48.05 ± 0.15, 57.14 ± 0.01 °C, 4.71 ± 0.01 and 5.670 ± 0.08, respectively. The growth behaviour of these spoilers was also investigated in a pea beverage at 62 and 49 °C, respectively, to adjust the models to this product. The adjusted models were further validated at static and dynamic conditions and demonstrated good performance with 85.7 and 97.4% of predicted populations for A. flavithermus and B. licheniformis, respectively, being within the -10%-10% relative error (RE) zone. The developed models can be useful tools in assessing the potential of spoilage of heat-processed foods including plant-based milk alternatives.
Collapse
Affiliation(s)
- Ourania Misiou
- Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Mariem Ellouze
- Food Safety Research Department, Nestlé Research, PO BOX44, CH-1000 Lausanne 26, Switzerland
| | - Konstantinos Koutsoumanis
- Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
28
|
Liang D, Cui X, Li M, Zhu Y, Zhao L, Liu S, Zhao G, Wang N, Ma Y, Xu L. Effects of sporulation conditions on the growth, germination, and resistance of Clostridium perfringens spores. Int J Food Microbiol 2023; 396:110200. [PMID: 37119648 DOI: 10.1016/j.ijfoodmicro.2023.110200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/15/2023] [Accepted: 04/01/2023] [Indexed: 05/01/2023]
Abstract
Clostridium perfringens can form metabolically dormant spores that can survive in meat preservation processes and cause food spoilage and human disease upon germination and outgrowth. The characteristics of spores in food products are closely related to the sporulation environment. To control or inactivate C. perfringens spores in food industry, the effects of sporulation conditions on the spores characteristics should be examined. This study aimed to investigate the effects of temperature (T), pH, and water activity (aw) on the growth, germination, and wet-heat resistance of C. perfringens C1 spores isolated from food product. The results showed that C. perfringens C1 spores produced at T = 37 °C, pH = 8, and aw = 0.997 had the highest sporulation rate and germination efficiency and lowest wet-heat resistance. A further increase in pH and sporulation temperature reduced the spore counts and germination efficiency, but enhanced spores' wet-heat resistance. By using air-drying method and Raman spectroscopy analysis, the water content, composition, and levels of calcium dipicolinic acid, proteins, and nucleic acids in spores produced under different sporulation conditions were determined. The results obtained revealed that sporulation conditions should be carefully considered during food production and processing, thus providing a novel insight into prevention and control of spores in food industry.
Collapse
Affiliation(s)
- Dong Liang
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Xiaoshuang Cui
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Miaoyun Li
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China.
| | - Yaodi Zhu
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Lijun Zhao
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Shijie Liu
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Gaiming Zhao
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Na Wang
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Yangyang Ma
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Lina Xu
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China
| |
Collapse
|
29
|
Munir MT, Mtimet N, Guillier L, Meurens F, Fravalo P, Federighi M, Kooh P. Physical Treatments to Control Clostridium botulinum Hazards in Food. Foods 2023; 12:foods12081580. [PMID: 37107375 PMCID: PMC10137509 DOI: 10.3390/foods12081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Clostridium botulinum produces Botulinum neurotoxins (BoNTs), causing a rare but potentially deadly type of food poisoning called foodborne botulism. This review aims to provide information on the bacterium, spores, toxins, and botulisms, and describe the use of physical treatments (e.g., heating, pressure, irradiation, and other emerging technologies) to control this biological hazard in food. As the spores of this bacterium can resist various harsh environmental conditions, such as high temperatures, the thermal inactivation of 12-log of C. botulinum type A spores remains the standard for the commercial sterilization of food products. However, recent advancements in non-thermal physical treatments present an alternative to thermal sterilization with some limitations. Low- (<2 kGy) and medium (3-5 kGy)-dose ionizing irradiations are effective for a log reduction of vegetative cells and spores, respectively; however, very high doses (>10 kGy) are required to inactivate BoNTs. High-pressure processing (HPP), even at 1.5 GPa, does not inactivate the spores and requires heat combination to achieve its goal. Other emerging technologies have also shown some promise against vegetative cells and spores; however, their application to C. botulinum is very limited. Various factors related to bacteria (e.g., vegetative stage, growth conditions, injury status, type of bacteria, etc.) food matrix (e.g., compositions, state, pH, temperature, aw, etc.), and the method (e.g., power, energy, frequency, distance from the source to target, etc.) influence the efficacy of these treatments against C. botulinum. Moreover, the mode of action of different physical technologies is different, which provides an opportunity to combine different physical treatment methods in order to achieve additive and/or synergistic effects. This review is intended to guide the decision-makers, researchers, and educators in using physical treatments to control C. botulinum hazards.
Collapse
Affiliation(s)
- Muhammad Tanveer Munir
- EnvA, Unit of Hygiene, Quality and Food Safety, 94700 Maisons-Alfort, France
- Anses, Laboratory of Food Safety, 94700 Maisons-Alfort, France
| | - Narjes Mtimet
- EnvA, Unit of Hygiene, Quality and Food Safety, 94700 Maisons-Alfort, France
- Anses, Laboratory of Food Safety, 94700 Maisons-Alfort, France
| | | | - François Meurens
- INRAE, Oniris, BIOEPAR, 44307 Nantes, France
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Phillipe Fravalo
- Chaire Agroalimentaire du Cnam, Conservatoire des Arts et Métiers, EPN7, 22440 Ploufragan, France
| | - Michel Federighi
- EnvA, Unit of Hygiene, Quality and Food Safety, 94700 Maisons-Alfort, France
- Anses, Laboratory of Food Safety, 94700 Maisons-Alfort, France
| | - Pauline Kooh
- Anses, Unit UERALIM, 94700 Maisons-Alfort, France
| |
Collapse
|
30
|
Romero-Rodríguez A, Ruiz-Villafán B, Martínez-de la Peña CF, Sánchez S. Targeting the Impossible: A Review of New Strategies against Endospores. Antibiotics (Basel) 2023; 12:antibiotics12020248. [PMID: 36830159 PMCID: PMC9951900 DOI: 10.3390/antibiotics12020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Endospore-forming bacteria are ubiquitous, and their endospores can be present in food, in domestic animals, and on contaminated surfaces. Many spore-forming bacteria have been used in biotechnological applications, while others are human pathogens responsible for a wide range of critical clinical infections. Due to their resistant properties, it is challenging to eliminate spores and avoid the reactivation of latent spores that may lead to active infections. Furthermore, endospores play an essential role in the survival, transmission, and pathogenesis of some harmful strains that put human and animal health at risk. Thus, different methods have been applied for their eradication. Nevertheless, natural products are still a significant source for discovering and developing new antibiotics. Moreover, targeting the spore for clinical pathogens such as Clostridioides difficile is essential to disease prevention and therapeutics. These strategies could directly aim at the structural components of the spore or their germination process. This work summarizes the current advances in upcoming strategies and the development of natural products against endospores. This review also intends to highlight future perspectives in research and applications.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence:
| | - Beatriz Ruiz-Villafán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Claudia Fabiola Martínez-de la Peña
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
31
|
Shao Y, He Q, Fu Y, Liu Y. Construction of the comprehensive evaluation system of waterbody pollution degree and the response of sedimentary microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120837. [PMID: 36493934 DOI: 10.1016/j.envpol.2022.120837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/06/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
This study proposed and established a comprehensive evaluation system for the pollution degree of the waterbody by taking overlying water and sediment as a whole. By dividing different sampling points into three gradients according to the pollution degree, the changes in sedimentary microbes under various pollution gradients were compared. The results showed that microbial diversity, abundance and specific OTUs decreased significantly with the increase in pollution degree. Meanwhile, Firmicutes, Bacteroidota and Caldiseriota increased in the severely polluted group, while Chloroflexi and Acidobacteriota decreased. Spearman correlation analysis and co-occurrence network revealed that COD, pH in overlying water, and Mn, Fe in sediments were the most significant pollution degree evaluation indicators affecting sedimentary microorganisms, which drove the sedimentary microbial communities dominated by Proteobacteria and Firmicutes. FAPROTAX functional prediction indicated that increased pollution levels led to the weakening of functional genes related to nitrogen metabolism and sulfur metabolism and the increase of functional genes related to carbon metabolism in sediment microorganisms. This study not only provided new insights into waterbody pollution evaluation but also verified the feasibility of this evaluation method by the response of sedimentary microbial communities to different pollution degrees.
Collapse
Affiliation(s)
- Yitong Shao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qi He
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yongsheng Fu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yiqing Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
32
|
Kuwana R, Yamazawa R, Asada R, Ito K, Furuta M, Takamatsu H. Excessive ultraviolet C irradiation causes spore protein denaturation and prohibits the initiation of spore germination in Bacillus subtilis. JOURNAL OF MICROORGANISM CONTROL 2023; 28:15-25. [PMID: 37277954 DOI: 10.4265/jmc.28.1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ultraviolet (UV) -C is widely used to kill bacteria as it damages chromosomal DNA. We analyzed the denaturation of the protein function of Bacillus subtilis spores after UV-C irradiation. Almost all of the B. subtilis spores germinated in Luria-Bertani (LB) liquid medium, but the colony-forming unit (CFU) of the spores on LB agar plates decreased to approximately 1/103 by 100 mJ/cm2 of UV-C irradiation. Some of the spores germinated in LB liquid medium under phase-contrast microscopy, but almost no colonies formed on the LB agar plates after 1 J/cm2 of UV-C irradiation. The fluorescence of the green fluorescent protein (GFP) -fused spore proteins, YeeK-GFP, YeeK is a coat protein, decreased following UV-C irradiation of over 1 J/cm2, while that of SspA-GFP, SspA is a core protein, decreased following UV-C irradiation of over 2 J/ cm2, respectively. These results revealed that UV-C affected on coat proteins more than core proteins. We conclude that 25 to 100 mJ/cm2 of UV-C irradiation can cause DNA damage, and more than 1 J/cm2 of UV-C irradiation can cause the denaturation of spore proteins involved in germination. Our study would contribute to improve the technology to detect the bacterial spores, especially after UV sterilization.
Collapse
Affiliation(s)
| | | | - Ryoko Asada
- Graduate School of Engineering, Department of Quantum and Radiation Technology, Osaka Metropolitan University
| | - Kiyoshi Ito
- Faculty of Pharmaceutical Sciences, Setsunan University
| | - Masakazu Furuta
- Graduate School of Engineering, Department of Quantum and Radiation Technology, Osaka Metropolitan University
| | | |
Collapse
|
33
|
Yammine J, Chihib NE, Gharsallaoui A, Dumas E, Ismail A, Karam L. Essential oils and their active components applied as: free, encapsulated and in hurdle technology to fight microbial contaminations. A review. Heliyon 2022; 8:e12472. [PMID: 36590515 PMCID: PMC9798198 DOI: 10.1016/j.heliyon.2022.e12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/24/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Microbial contaminations are responsible for many chronic, healthcare, persistent microbial infections and illnesses in the food sector, therefore their control is an important public health challenge. Over the past few years, essential oils (EOs) have emerged as interesting alternatives to synthetic antimicrobials as they are biodegradable, extracted from natural sources and potent antimicrobials. Through their multiple mechanisms of actions and target sites, no microbial resistance has been developed against them till present. Although extensive documentation has been reported on the antimicrobial activity of EOs, comparisons between the use of whole EOs or their active components alone for an antimicrobial treatment are less abundant. It is also essential to have a good knowledge about EOs to be used as alternatives to the conventional antimicrobial products such as chemical disinfectants. Moreover, it is important to focus not only on planktonic vegetative microorganisms, but to study also the effect on more resistant forms like spores and biofilms. The present article reviews the current knowledge on the mechanisms of antimicrobial activities of EOs and their active components on microorganisms in different forms. Additionally, in this review, the ultimate advantages of encapsulating EOs or combining them with other hurdles for enhanced antimicrobial treatments are discussed.
Collapse
Affiliation(s)
- Jina Yammine
- Univ Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Unité Matériaux et Transformations, Lille, France,Plateforme de Recherches et d’Analyses en Sciences de l’Environnement (PRASE), Ecole Doctorale des Sciences et Technologies, Université Libanaise, Hadath, Lebanon
| | - Nour-Eddine Chihib
- Univ Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Unité Matériaux et Transformations, Lille, France
| | - Adem Gharsallaoui
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Emilie Dumas
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Ali Ismail
- Plateforme de Recherches et d’Analyses en Sciences de l’Environnement (PRASE), Ecole Doctorale des Sciences et Technologies, Université Libanaise, Hadath, Lebanon
| | - Layal Karam
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar,Corresponding author.
| |
Collapse
|
34
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Fernández Escámez P, Griffin J, Ortiz‐Pelaez A, Alvarez‐Ordoñez A. Evaluation of a multi-step catalytic co-processing hydrotreatment for the production of renewable fuels using Category 3 animal fat and used cooking oils. EFSA J 2022; 20:e07591. [PMID: 36381127 PMCID: PMC9644229 DOI: 10.2903/j.efsa.2022.7591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
An alternative method for the production of renewable fuels from rendered animal fats (pretreated using methods 1-5 or method 7 as described in Annex IV of Commission Regulation (EC) No 2011/142) and used cooking oils, derived from Category 3 animal by-products, was assessed. The method is based on a catalytic co-processing hydrotreatment using a middle distillate followed by a stripping step. The materials must be submitted to a pressure of at least 60 bars and a temperature of at least 270°C for at least 4.7 min. The application focuses on the demonstration of the level of reduction of spores from non-pathogenic spore-forming indicator bacterial species (Bacillus subtilis and Desulfotomaculum kuznetsovii), based on a non-systematic review of published data and additional extrapolation analyses. The EFSA BIOHAZ Panel considers that the application and supporting literature contain sufficient evidence that the proposed alternative method can achieve a reduction of at least 5 log10 in the spores of B. subtilis and a 12 log10 reduction in the spores of C. botulinum. The alternative method under evaluation is considered at least equivalent to the processing methods currently approved in the Commission Regulation (EU) No 2011/142.
Collapse
|
35
|
Iacumin L, Pellegrini M, Colautti A, Orecchia E, Comi G. Microbial Characterization of Retail Cocoa Powders and Chocolate Bars of Five Brands Sold in Italian Supermarkets. Foods 2022; 11:foods11182753. [PMID: 36140882 PMCID: PMC9497492 DOI: 10.3390/foods11182753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022] Open
Abstract
A microbial characterization of cocoa powder and chocolate bars of three batches of five different brands sold in Italian markets was performed. The results showed a variable microbial population consisting of mesophilic and thermophilic spore formation in both types of products. The chocolate bars were also contaminated with molds of environmental origin. Bacillus spp. and Geobacillus spp. were found in both products. The chocolate bars were also contaminated by molds belonging to the genera Penicillium and Cladosporium. The sporogenous strains mainly originate from the raw materials, i.e., cocoa beans, as the heat treatments involved (roasting of the beans and conching of the chocolate) are not sufficient to reach commercial sterility. Furthermore, the identified spore-forming species have often been isolated from cocoa beans. The molds isolated from chocolate seem to have an origin strictly linked to the final phases of production (environment and packaging). However, the level of contaminants is limited (<2 log CFU/g); the molds do not develop in both products due to their low Aw (<0.6) and do not affect the safety of the products. However, a case of mold development in chocolate bars was observed. Among the isolated molds, only Penicillium lanosocoeruleum demonstrated a high xero-tolerance and grew under some conditions on chocolate bars. Its growth could be explained by a cocoa butter bloom accompanied by the presence of humidity originating from the bloom or acquired during packaging.
Collapse
|
36
|
Sun R, Vermeulen A, Devlieghere F. Extension of growth/no growth predictive models for the preservation of low-acid pasteurized sauces by incorporating water activity and model validation in sauces. Int J Food Microbiol 2022; 378:109826. [DOI: 10.1016/j.ijfoodmicro.2022.109826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
|
37
|
Lamba S, Mundanda Muthappa D, Fanning S, Scannell AGM. Sporulation and Biofilms as Survival Mechanisms of Bacillus Species in Low-Moisture Food Production Environments. Foodborne Pathog Dis 2022; 19:448-462. [PMID: 35819266 DOI: 10.1089/fpd.2022.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Low-moisture foods (LMF) have clear advantages with respect to limiting the growth of foodborne pathogens. However, the incidences of Bacillus species in LMF reported in recent years raise concerns about food quality and safety, particularly when these foods are used as ingredients in more complex higher moisture products. This literature review describes the interlinked pathways of sporulation and biofilm formation by Bacillus species and their underlying molecular mechanisms that contribute to the bacteriums' persistence in LMF production environments. The long-standing challenges of food safety and quality in the LMF industry are also discussed with a focus on the bakery industry.
Collapse
Affiliation(s)
- Sakshi Lamba
- UCD Institute of Food and Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Agriculture and Food Science, and Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Dechamma Mundanda Muthappa
- UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Agriculture and Food Science, and Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Séamus Fanning
- UCD Institute of Food and Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Amalia G M Scannell
- UCD Institute of Food and Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Agriculture and Food Science, and Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
38
|
Subirats J, Sharpe H, Topp E. Fate of Clostridia and other spore-forming Firmicute bacteria during feedstock anaerobic digestion and aerobic composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114643. [PMID: 35151135 DOI: 10.1016/j.jenvman.2022.114643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Pathogenic spore-forming Firmicutes are commonly present in animal and human wastes that are used as fertilizers in crop production. Pre-treatments of organic waste prior to land application offer the potential to abate enteric microorganisms, and therefore reduce the risk of contamination of crops or adjacent water resources with pathogens carried in these materials. The inactivation and reduction of gram-positive spore formers such as Clostridium spp., Clostridioides spp. and Bacillus spp. from animal and human waste can be challenging given the recalcitrance of the spores these bacteria produce. Given the significance of these organisms to human and animal health, information concerning spore-forming bacteria inactivation during anaerobic digestion (AD) and aerobic composting (AC) is required as the basis for recommending safe organic waste management practices. In this review, an assessment of the inactivation of spore-forming Firmicutes during AD and AC was conducted to provide guidance for practical management of organic matrices of animal or human origin. Temperature and pH may be the main factors contributing to the inactivation of spore-forming Firmicutes during batch lab-scale AD (log reduction <0.5-5 log). In continuous digesters, wet AD systems do not effectively inactivate spore-forming Firmicutes even under thermopholic conditions (log reduction -1.09 - 0.98), but dry AD systems could be a feasible management practice to inactivate spore-forming Firmicutes from organic materials with high solid content (log reduction 1.77-3.1). In contrast, composting is an effective treatment to abate spore-forming Firmicutes (log reduction 1.7-6.5) when thermophilic conditions last at least six consecutive days. Temperature, moisture content and composting scale are the key operating conditions influencing the inactivation of spore-forming Firmicutes during composting. Where possible, undertaking AD with subsequent composting to ensure the biosafety of digestate before its downstream processing and recycling is recommended to abate recalcitrant bacteria in digestate.
Collapse
Affiliation(s)
- Jessica Subirats
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | - Hannah Sharpe
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Edward Topp
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
39
|
Kinetics of heat-induced changes in dairy products: Developments in data analysis and modelling techniques. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Hart A, Anumudu C, Onyeaka H, Miri T. Application of supercritical fluid carbon dioxide in improving food shelf-life and safety by inactivating spores: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:417-428. [PMID: 35185167 PMCID: PMC8814202 DOI: 10.1007/s13197-021-05022-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 02/03/2023]
Abstract
Extending shelf-life of food, ensuring it is safe for consumers and meeting regulatory standards is the food industry's governing principle. Food safety is an essential aspect of food processing. Spores-forming microbes such as Bacillus spp. and Clostridium spp. are problematic in the food industry because of their ability to form endospores and survive processing conditions. Hence, their germination in food poses a threat to both shelf-life and safety of food. This paper reports on the current state of supercritical fluid carbon dioxide (SF-CO2) application in the inactivation of spores-forming microbes in food. Unlike high hydrostatic pressure and thermal processes which struggle to deactivate and destroy spores, and if they do, it impacts adversely on the food nutritional and quality attributes. This technique is viable to inactivate spores and maintain the foods structural and nutritional characteristics. The mechanisms of inactivation can be grouped into: (1) release of cellular content due to rupture of the cell wall, coat and cortex, and disruption of membranes, (2) degradation of proteins as a result of interaction with permeated and penetrated SF-CO2 and (3) deactivation of enzymatic activities. It was discovered that the synergistic effect of ultrasound another non-thermal technique or addition of co-solvent such as water, hydrogen peroxide and ethanol or antimicrobial peptide greatly enhanced inactivation of spores. This work harmonizes published perspectives on spores' inactivation mechanisms, and will help inform further research into the application of SF-CO2 in the sterilization of food products.
Collapse
Affiliation(s)
- Abarasi Hart
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Christian Anumudu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
41
|
Heat activation and inactivation of bacterial spores. Is there an overlap? Appl Environ Microbiol 2022; 88:e0232421. [PMID: 35020450 DOI: 10.1128/aem.02324-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heat activation at a sublethal temperature is widely applied to promote Bacillus species spore germination. This treatment also has potential to be employed in food processing to eliminate undesired bacterial spores by enhancing their germination, and then inactivating the less heat resistant germinated spores at a milder temperature. However, incorrect heat treatment could also generate heat damage in spores, and lead to more heterogeneous spore germination. Here, the heat activation and heat damage profile of Bacillus subtilis spores was determined by testing spore germination and outgrowth at both population and single spore levels. The heat treatments used were 40-80°C, and for 0-300 min. The results were as follows. 1) Heat activation at 40-70°C promoted L-valine and L-asparagine-glucose-fructose-potassium (AGFK) induced germination in a time dependent manner. 2) The optimal heat activation temperatures for AGFK and L-valine germination via the GerB plus GerK or GerA germinant receptors were 65 and 50-65°C, respectively. 3) Heat inactivation of dormant spores appeared at 70°C, and the heat damage of molecules essential for germination and growth began at 70 and 65°C, respectively. 4) Heat treatment at 75°C resulted in both activation of germination and damage to the germination apparatus, and 80°C treatment caused more pronounced heat damage. 5) For the spores that should withstand adverse environmental temperatures in nature, heat activation seems functional for a subsequent optimal germination process, while heat damage affected both germination and outgrowth. Importance Bacterial spores are thermal resistant structures that can thus survive preservation strategies and revive through the process of spore germination. The more heat resistant spores are the more heterogeneous they germinate upon adding germinants. Upon germination spores can cause food spoilage and cause food intoxication. Here we provide new information on both heat activation and inactivation regimes and their effects on the (heterogeneity of) spore germination.
Collapse
|
42
|
Moderate high-pressure superdormancy in Bacillus spores: properties of superdormant spores and proteins potentially influencing moderate high-pressure germination. Appl Environ Microbiol 2021; 88:e0240621. [PMID: 34910565 PMCID: PMC8863042 DOI: 10.1128/aem.02406-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Resistant bacterial spores are a major concern in industrial decontamination processes. An approach known as pressure-mediated germination-inactivation strategy aims to artificially germinate spores by isostatic pressure to mitigate their resistance to inactivation processes. The successful implementation of such a germination-inactivation strategy relies on the germination of all spores. However, germination is heterogeneous, with some “superdormant” spores germinating extremely slowly or not at all. The present study investigated potential underlying reasons for moderate high-pressure (150 MPa; 37°C) superdormancy of Bacillus subtilis spores. The water and dipicolinic acid content of superdormant spores was compared with that of the initial dormant spore population. The results suggest that water and dipicolinic acid content are not major drivers of moderate high-pressure superdormancy. A proteomic analysis was used to identify proteins that were quantified at significantly different levels in superdormant spores. Subsequent validation of the germination capacity of deletion mutants revealed that the presence of protein YhcN is required for efficient moderate high-pressure germination and that proteins MinC, cse60, and SspK may also play a role, albeit a minor one. IMPORTANCE Spore-forming bacteria are ubiquitous in nature and, as a consequence, inevitably enter the food chain or other processing environments. Their presence can lead to significant spoilage or safety-related issues. Intensive treatment is usually required to inactivate them; however, this treatment harms important product quality attributes. A pressure-mediated germination-inactivation approach can balance the need for effective spore inactivation and retention of sensitive ingredients. However, superdormant spores are the bottleneck preventing the successful and safe implementation of such a strategy. An in-depth understanding of moderate high-pressure germination and the underlying causes of superdormancy is necessary to advance the development of mild high pressure-based spore control technologies. The approach used in this work allowed the identification of proteins that have not yet been associated with reduced germination at moderate high pressure. This research paves the way for further studies on the germination and superdormancy mechanisms in spores, assisting the development of mild spore inactivation strategies.
Collapse
|
43
|
Fekraoui F, Ferret É, Paniel N, Auvy O, Chamontin C, André S, Simonin H, Perrier-Cornet JM. Cycling versus Continuous High Pressure treatments at moderate temperatures: Effect on bacterial spores? INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Santamarta S, Aldavero AC, Rojo MA. Essential oil of Cymbopogon martini, source of geraniol, as a potential antibacterial agent against Bacillus subtilis, a pathogen of the bakery industry. F1000Res 2021; 10:1027. [PMID: 36817513 PMCID: PMC9936101 DOI: 10.12688/f1000research.54196.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Bacteria can adhere and grow on any surface due to their chemical and physical interaction, leading to the development of biofilms. Essential oils have a great potential for use in the food industry, as they can effectively prevent the presence of some pathogenic microorganisms. Species such as those in the Bacillus genus have the ability to produce toxins. Some strains of Bacillus subtilis have been related to cases of food-borne diseases. In the bakery industry, B. subtilis also has been related to "rope" disease, linked to bread preservation processes. Methods: The aim of the study was to analyse the antibacterial properties of 24 chemotyped essential oils against the growth of B. subtilis. The biological activity study was carried out using disk diffusion in agar and broth dilution methods. Results: The essential oil of Cymbopogon martinii var. motia had a high geraniol content (>80.53%) and showed a high antimicrobial effect against the Gram-positive bacterium B. subtilis. Binary combinations of Cymbopogon martinii var. motia oil with Eugenia caryophyllus showed antagonistic effects on B. subtilis. Conclusions: The essential oil of Cymbopogon martinii var. motia has an interesting potential use in the bakery industry as a preservative, in applications such as nano encapsulation for bakery doughs, active packaging of baked products, or surface disinfectants.
Collapse
Affiliation(s)
- Sara Santamarta
- Area of Enginering and technology, Miguel de Cervantes European University, Valladolid, Castilla y Leon, 47012, Spain
| | - A. Cristina Aldavero
- Area of Enginering and technology, Miguel de Cervantes European University, Valladolid, Castilla y Leon, 47012, Spain
| | - M Angeles Rojo
- Area of Experimental Sciences, Miguel de Cervantes European University, Valladolid, Castilla y Leon, 47012, Spain
| |
Collapse
|
45
|
Santamarta S, Aldavero AC, Rojo MA. Essential oil of Cymbopogon martini, source of geraniol, as a potential antibacterial agent against Bacillus subtilis, a pathogen of the bakery industry. F1000Res 2021; 10:1027. [PMID: 36817513 PMCID: PMC9936101 DOI: 10.12688/f1000research.54196.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/26/2023] Open
Abstract
Background: Bacteria can adhere and grow on any surface due to their chemical and physical interaction, leading to the development of biofilms. Essential oils have a great potential for use in the food industry, as they can effectively prevent the presence of some pathogenic microorganisms. Species such as those in the Bacillus genus have the ability to produce toxins. Some strains of Bacillus subtilis have been related to cases of food-borne diseases. In the bakery industry, B. subtilis also has been related to "rope" disease, linked to bread preservation processes. Methods: The aim of the study was to analyse the antibacterial properties of 24 chemotyped essential oils against the growth of B. subtilis. The biological activity study was carried out using disk diffusion in agar and broth dilution methods. Results: The essential oil of Cymbopogon martinii var. motia had a high geraniol content (>80.53%) and showed a high antimicrobial effect against the Gram-positive bacterium B. subtilis. Binary combinations of Cymbopogon martinii var. motia oil with Eugenia caryophyllus showed antagonistic effects on B. subtilis. Conclusions: The essential oil of Cymbopogon martinii var. motia has an interesting potential use in the bakery industry as a preservative, in applications such as nano encapsulation for bakery doughs, active packaging of baked products, or surface disinfectants.
Collapse
Affiliation(s)
- Sara Santamarta
- Area of Enginering and technology, Miguel de Cervantes European University, Valladolid, Castilla y Leon, 47012, Spain
| | - A. Cristina Aldavero
- Area of Enginering and technology, Miguel de Cervantes European University, Valladolid, Castilla y Leon, 47012, Spain
| | - M Angeles Rojo
- Area of Experimental Sciences, Miguel de Cervantes European University, Valladolid, Castilla y Leon, 47012, Spain
| |
Collapse
|
46
|
Saeed BQ, Osaili TM, Taha S. Foodborne diseases risk factors associated with food safety knowledge and practices of women in Sharjah-United Arab Emirate. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
47
|
Delbrück AI, Zhang Y, Heydenreich R, Mathys A. Bacillus spore germination at moderate high pressure: A review on underlying mechanisms, influencing factors, and its comparison with nutrient germination. Compr Rev Food Sci Food Saf 2021; 20:4159-4181. [PMID: 34147040 DOI: 10.1111/1541-4337.12789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023]
Abstract
Spore-forming bacteria are resistant to stress conditions owing to their ability to form highly resistant dormant spores. These spores can survive adverse environmental conditions in nature, as well as decontamination processes in the food and related industries. Bacterial spores may return to their vegetative state through a process called germination. As spore germination is critical for the loss of resistance, outgrowth, and development of pathogenicity and spoilage potential, the germination pathway has piqued the interest of the scientific community. The inhibition and induction of germination have critical applications in the food industry. Targeted germination can aid in decreasing the resistance of spores and allow the application of milder inactivation procedures. This germination-inactivation strategy allows better maintenance of important food quality attributes. Different stimuli are reported to trigger germination. Among those, isostatic high pressure (HP) has gained increasing attention due to its potential applications in industrial processes. However, pressure-mediated spore germination is extremely heterogeneous as some spores germinate rapidly, while others exhibit slow germination or do not undergo germination at all. The successful and safe implementation of the germination-inactivation strategy, however, depends on the germination of all spores. Therefore, there is a need to elucidate the mechanisms of HP-mediated germination. This work aimed to critically review the current state of knowledge on Bacillus spore germination at a moderate HP of 50-300 MPa. In this review, the germination mechanism, heterogeneity, and influencing factors have been outlined along with knowledge gaps.
Collapse
Affiliation(s)
- Alessia I Delbrück
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Yifan Zhang
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Rosa Heydenreich
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
48
|
Ultraviolet-C inactivation and hydrophobicity of Bacillus subtilis and Bacillus velezensis spores isolated from extended shelf-life milk. Int J Food Microbiol 2021; 349:109231. [PMID: 34022614 DOI: 10.1016/j.ijfoodmicro.2021.109231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 03/31/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022]
Abstract
Bacterial spores are important in food processing due to their ubiquity, resistance to high temperature and chemical inactivation. This work aims to study the effect of ultraviolet C (UVC) on the spores of Bacillus subtilis and Bacillus velezensis at a molecular and individual level to guide in deciding on the right parameters that must be applied during the processing of liquid foods. The spores were treated with UVC using phosphate buffer saline (PBS) as a suspension medium and their lethality rate was determined for each sample. Purified spore samples of B. velezensis and B. subtilis were treated under one pass in a UVC reactor to inactivate the spores. The resistance pattern of the spores to UVC treatment was determined using dipicolinic acid (Ca-DPA) band of spectral analysis obtained from Raman spectroscopy. Flow cytometry analysis was also done to determine the effect of the UVC treatment on the spore samples at the molecular level. Samples were processed for SEM and the percentage spore surface hydrophobicity was also determined using the Microbial Adhesion to Hydrocarbon (MATH) assay to predict the adhesion strength to a stainless-steel surface. The result shows the maximum lethality rate to be 6.5 for B. subtilis strain SRCM103689 (B47) and highest percentage hydrophobicity was 54.9% from the sample B. velezensis strain LPL-K103 (B44). The difference in surface hydrophobicity for all isolates was statistically significant (P < 0.05). Flow cytometry analysis of UVC treated spore suspensions clarifies them further into sub-populations unaccounted for by plate counting on growth media. The Raman spectroscopy identified B4002 as the isolate possessing the highest concentration of Ca-DPA. The study justifies the critical role of Ca-DPA in spore resistance and the possible sub-populations after UVC treatment that may affect product shelf-life and safety. UVC shows a promising application in the inactivation of resistant spores though there is a need to understand the effects at the molecular level to design the best parameters during processing.
Collapse
|
49
|
Carroll LM, Cheng RA, Wiedmann M, Kovac J. Keeping up with the Bacillus cereus group: taxonomy through the genomics era and beyond. Crit Rev Food Sci Nutr 2021; 62:7677-7702. [PMID: 33939559 DOI: 10.1080/10408398.2021.1916735] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Bacillus cereus group, also known as B. cereus sensu lato (s.l.), is a species complex that contains numerous closely related lineages, which vary in their ability to cause illness in humans and animals. The classification of B. cereus s.l. isolates into species-level taxonomic units is thus essential for informing public health and food safety efforts. However, taxonomic classification of these organisms is challenging. Numerous-often conflicting-taxonomic changes to the group have been proposed over the past two decades, making it difficult to remain up to date. In this review, we discuss the major nomenclatural changes that have accumulated in the B. cereus s.l. taxonomic space prior to 2020, particularly in the genomic sequencing era, and outline the resulting problems. We discuss several contemporary taxonomic frameworks as applied to B. cereus s.l., including (i) phenotypic, (ii) genomic, and (iii) hybrid nomenclatural frameworks, and we discuss the advantages and disadvantages of each. We offer suggestions as to how readers can avoid B. cereus s.l. taxonomic ambiguities, regardless of the nomenclatural framework(s) they choose to employ. Finally, we discuss future directions and open problems in the B. cereus s.l. taxonomic realm, including those that cannot be solved by genomic approaches alone.
Collapse
Affiliation(s)
- Laura M Carroll
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Rachel A Cheng
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
50
|
Fuochi V, Emma R, Furneri PM. Bacteriocins, A Natural Weapon Against Bacterial Contamination for Greater Safety and Preservation of Food: A Review. Curr Pharm Biotechnol 2021; 22:216-231. [PMID: 32621714 DOI: 10.2174/1389201021666200704145427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022]
Abstract
Nowadays, consumers have become increasingly attentive to human health and the use of more natural products. Consequently, the demand for natural preservatives in the food industry is more frequent. This has led to intense research to discover new antimicrobial compounds of natural origin that could effectively fight foodborne pathogens. This research aims to safeguard the health of consumers and, above all, to avoid potentially harmful chemical compounds. Lactobacillus is a bacterial genus belonging to the Lactic Acid Bacteria and many strains are defined GRAS, generally recognized as safe. These strains are able to produce substances with antibacterial activity against food spoilage bacteria and contaminating pathogens: the bacteriocins. The aim of this review was to focus on this genus and its capability to produce antibacterial peptides. The review collected all the information from the last few years about bacteriocins produced by Lactobacillus strains, isolated from clinical or food samples, with remarkable antimicrobial activities useful for being exploited in the food field. In addition, the advantages and disadvantages of their use and the possible ways of improvement for industrial applications were described.
Collapse
Affiliation(s)
- Virginia Fuochi
- Universita degli Studi di Catania, Dipartimento di Scienze Biomediche e Biotecnologiche BIOMETEC, Sez. Microbiologia, Torre Biologica, via S. Sofia 97, 95123 Catania, Italy
| | - Rosalia Emma
- Universita degli Studi di Catania, Dipartimento di Scienze Biomediche e Biotecnologiche BIOMETEC, Sez. Microbiologia, Torre Biologica, via S. Sofia 97, 95123 Catania, Italy
| | - Pio M Furneri
- Universita degli Studi di Catania, Dipartimento di Scienze Biomediche e Biotecnologiche BIOMETEC, Sez. Microbiologia, Torre Biologica, via S. Sofia 97, 95123 Catania, Italy
| |
Collapse
|