1
|
Cela I, Capone E, Trevisi G, Sala G. Extracellular vesicles in glioblastoma: Biomarkers and therapeutic tools. Semin Cancer Biol 2024; 101:25-43. [PMID: 38754752 DOI: 10.1016/j.semcancer.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Glioblastoma (GBM) is the most aggressive tumor among the gliomas and intracranial tumors and to date prognosis for GBM patients remains poor, with a median survival typically measured in months to a few years depending on various factors. Although standardized therapies are routinely employed, it is clear that these strategies are unable to cope with heterogeneity and invasiveness of GBM. Furthermore, diagnosis and monitoring of responses to therapies are directly dependent on tissue biopsies or magnetic resonance imaging (MRI) techniques. From this point of view, liquid biopsies are arising as key sources of a variety of biomarkers with the advantage of being easily accessible and monitorable. In this context, extracellular vesicles (EVs), physiologically shed into body fluids by virtually all cells, are gaining increasing interest both as natural carriers of biomarkers and as specific signatures even for GBM. What makes these vesicles particularly attractive is they are also emerging as therapeutical vehicles to treat GBM given their native ability to cross the blood-brain barrier (BBB). Here, we reviewed recent advances on the use of EVs as biomarker for liquid biopsy and nanocarriers for targeted delivery of anticancer drugs in glioblastoma.
Collapse
Affiliation(s)
- Ilaria Cela
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Emily Capone
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Gianluca Trevisi
- Department of Neurosciences, Imaging and Clinical Sciences, "G. D'Annunzio" University, Chieti, Italy; Neurosurgical Unit, Santo Spirito Hospital, Pescara 65121, Italy
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
2
|
Indira Chandran V, Gopala S, Venkat EH, Kjolby M, Nejsum P. Extracellular vesicles in glioblastoma: a challenge and an opportunity. NPJ Precis Oncol 2024; 8:103. [PMID: 38760427 PMCID: PMC11101656 DOI: 10.1038/s41698-024-00600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Glioblastoma is a highly heterogeneous tumor whose pathophysiological complexities dictate both the diagnosis of disease severity as well as response to therapy. Conventional diagnostic tools and standard treatment regimens have only managed to achieve limited success in the management of patients suspected of glioblastoma. Extracellular vesicles are an emerging liquid biopsy tool that has shown great promise in resolving the limitations presented by the heterogeneous nature of glioblastoma. Here we discuss the contrasting yet interdependent dual role of extracellular vesicles as communication agents that contribute to the progression of glioblastoma by creating a heterogeneous microenvironment and as a liquid biopsy tool providing an opportunity to accurately identify the disease severity and progression.
Collapse
Affiliation(s)
- Vineesh Indira Chandran
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Easwer Hariharan Venkat
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Mads Kjolby
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Pharmacology and Steno Diabetes Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Wang M, Graner AN, Knowles B, McRae C, Fringuello A, Paucek P, Gavrilovic M, Redwine M, Hanson C, Coughlan C, Metzger B, Bolus V, Kopper T, Smith M, Zhou W, Lenz M, Abosch A, Ojemann S, Lillehei KO, Yu X, Graner MW. A tale of two tumors: differential, but detrimental, effects of glioblastoma extracellular vesicles (EVs) on normal human brain cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588622. [PMID: 38645117 PMCID: PMC11030303 DOI: 10.1101/2024.04.08.588622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Glioblastomas (GBMs) are dreadful brain tumors with abysmal survival outcomes. GBM EVs dramatically affect normal brain cells (largely astrocytes) constituting the tumor microenvironment (TME). EVs from different patient-derived GBM spheroids induced differential transcriptomic, secretomic, and proteomic effects on cultured astrocytes/brain tissue slices as GBM EV recipients. The net outcome of brain cell differential changes nonetheless converges on increased tumorigenicity. GBM spheroids and brain slices were derived from neurosurgical patient tissues following informed consent. Astrocytes were commercially obtained. EVs were isolated from conditioned culture media by ultrafiltration, ultraconcentration, and ultracentrifugation. EVs were characterized by nanoparticle tracking analysis, electron microscopy, biochemical markers, and proteomics. Astrocytes/brain tissues were treated with GBM EVs before downstream analyses. EVs from different GBMs induced brain cells to alter secretomes with pro-inflammatory or TME-modifying (proteolytic) effects. Astrocyte responses ranged from anti-viral gene/protein expression and cytokine release to altered extracellular signal-regulated protein kinase (ERK1/2) signaling pathways, and conditioned media from EV-treated cells increased GBM cell proliferation. Thus, astrocytes/brain slices treated with different GBM EVs underwent non-identical changes in various 'omics readouts and other assays, indicating "personalized" tumor-specific GBM EV effects on the TME. This raises concern regarding reliance on "model" systems as a sole basis for translational direction. Nonetheless, net downstream impacts from differential cellular and TME effects still led to increased tumorigenic capacities for the different GBMs.
Collapse
|
4
|
Ma T, Su G, Wu Q, Shen M, Feng X, Zhang Z. Tumor-derived extracellular vesicles: how they mediate glioma immunosuppression. Mol Biol Rep 2024; 51:235. [PMID: 38282090 DOI: 10.1007/s11033-023-09196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
Gliomas, the most common malignant brain tumor, present a grim prognosis despite available treatments such as surgical resection, temozolomide (TMZ) therapy, and radiation therapy. This is due to their aggressive growth, high level of immunosuppression, and the blood-brain barrier (BBB), which obstruct the effective exchange of therapeutic drugs. Gliomas can significantly affect differentiation and function of immune cells by releasing extracellular vesicles (EVs), resulting in a systemic immunosuppressive state and a highly immunosuppressive microenvironment. In the tumor immune microenvironment (TIME), the primary immune cells are regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs). In particular, glioma-associated TAMs are chiefly composed of monocyte-derived macrophages and brain-resident microglia. These cells partially exhibit characteristics of a pro-tumorigenic, anti-inflammatory M2-type. Glioma-derived EVs can hijack TAMs to differentiate into tumor-supporting phenotypes or directly affect the maturation of peripheral blood monocytes (PBMCs) and promote the activation of MDSCs. In addition, EVs impair the ability of dendritic cells (DCs) to process antigens, subsequently hindering the activation of lymphocytes. EVs also impact the proliferation, differentiation, and activation of lymphocytes. This is primarily evident in the overall reduction of CD4 + helper T cells and CD8 + T cells, coupled with a relative increase in Tregs, which possess immunosuppressive characteristics. This study investigates thoroughly how tumor-derived EVs impair the function of immune cells and enhance immunosuppression in gliomas, shedding light on their potential implications for immunotherapy strategies in glioma treatment.
Collapse
Affiliation(s)
- Tianfei Ma
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qionghui Wu
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Minghui Shen
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xinli Feng
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Zhenchang Zhang
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China.
| |
Collapse
|
5
|
Nafe R, Hattingen E. The Spectrum of Molecular Pathways in Gliomas-An Up-to-Date Review. Biomedicines 2023; 11:2281. [PMID: 37626776 PMCID: PMC10452344 DOI: 10.3390/biomedicines11082281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
During the last 20 years, molecular alterations have gained increasing significance in the diagnosis and biological assessment of tumors. Gliomas represent the largest group of tumors of the central nervous system, and the main aim of this review is to present the current knowledge on molecular pathways and their alterations in gliomas. A wide range of new insights has been gained, including evidence for the involvement of the WNT pathway or the hippo pathway in the pathobiology of gliomas, indicating a broad involvement of different pathways formerly not considered to play a central role in gliomas. Even new aspects of angiogenic, apoptotic, and metabolic pathways are presented, as well as the rapidly growing field of epigenetic processes, including non-coding RNAs. The two major conclusions drawn from the present review are the distinct interconnectivity of the whole spectrum of molecular pathways and the prominent role of non-coding RNAs, especially circular RNAs, in the regulation of specific targets. All these new insights are discussed, even considering the topic of the resistance to therapy of gliomas, along with aspects that are still incompletely understood, like the role of hydroxymethylation, or even ferroptosis, in the pathobiology of gliomas.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
6
|
Kopper TJ, Yu X, Graner MW. Immunopathology of Extracellular Vesicles in Macrophage and Glioma Cross-Talk. J Clin Med 2023; 12:jcm12103430. [PMID: 37240536 DOI: 10.3390/jcm12103430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Glioblastomas (GBM) are a devastating disease with extremely poor clinical outcomes. Resident (microglia) and infiltrating macrophages are a substantial component of the tumor environment. In GBM and other cancers, tumor-derived extracellular vesicles (EVs) suppress macrophage inflammatory responses, impairing their ability to identify and phagocytose cancerous tissues. Furthermore, these macrophages then begin to produce EVs that support tumor growth and migration. This cross-talk between macrophages/microglia and gliomas is a significant contributor to GBM pathophysiology. Here, we review the mechanisms through which GBM-derived EVs impair macrophage function, how subsequent macrophage-derived EVs support tumor growth, and the current therapeutic approaches to target GBM/macrophage EV crosstalk.
Collapse
Affiliation(s)
- Timothy J Kopper
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12700 E 19th Ave., Aurora, CO 80045, USA
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12700 E 19th Ave., Aurora, CO 80045, USA
| | - Michael W Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12700 E 19th Ave., Aurora, CO 80045, USA
| |
Collapse
|
7
|
Zhou W, Lovasz D, Zizzo Z, He Q, Coughlan C, Kowalski RG, Kennedy PGE, Graner AN, Lillehei KO, Ormond DR, Youssef AS, Graner MW, Yu X. Phenotype and Neuronal Cytotoxic Function of Glioblastoma Extracellular Vesicles. Biomedicines 2022; 10:biomedicines10112718. [PMID: 36359238 PMCID: PMC9688005 DOI: 10.3390/biomedicines10112718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and lethal form of brain tumor. Extracellular vesicles (EVs) released by tumor cells play a critical role in cellular communication in the tumor microenvironment promoting tumor progression and invasion. We hypothesized that GBM EVs possess unique characteristics which exert effects on endogenous CNS cells including neurons, producing dose-dependent neuronal cytotoxicity. We purified EVs from the plasma of 20 GBM patients, 20 meningioma patients, and 21 healthy controls, and characterized EV phenotypes by electron microscopy, nanoparticle tracking analysis, protein concentration, and proteomics. We evaluated GBM EV functions by determining their cytotoxicity in primary neurons and the neuroblastoma cell line SH-SY5Y. In addition, we determined levels of IgG antibodies in the plasma in GBM (n = 82), MMA (n = 83), and controls (non-tumor CNS disorders and healthy donors, n = 50) with capture ELISA. We discovered that GBM plasma EVs are smaller in size and had no relationship between size and concentration. Importantly, GBM EVs purified from both plasma and tumor cell lines produced IgG-mediated, complement-dependent apoptosis and necrosis in primary human neurons, mouse brain slices, and neuroblastoma cells. The unique phenotype of GBM EVs may contribute to its neuronal cytotoxicity, providing insight into its role in tumor pathogenesis.
Collapse
Affiliation(s)
- Wenbo Zhou
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - Daniel Lovasz
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - Zoë Zizzo
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - Qianbin He
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - Christina Coughlan
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Robert G. Kowalski
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - Peter G. E. Kennedy
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Arin N. Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - Kevin O. Lillehei
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - D. Ryan Ormond
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - A. Samy Youssef
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - Michael W. Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
- Correspondence:
| |
Collapse
|
8
|
Cytokine-Laden Extracellular Vesicles Predict Patient Prognosis after Cerebrovascular Accident. Int J Mol Sci 2021; 22:ijms22157847. [PMID: 34360613 PMCID: PMC8345931 DOI: 10.3390/ijms22157847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Background: A major contributor to disability after hemorrhagic stroke is secondary brain damage induced by the inflammatory response. Following stroke, global increases in numerous cytokines—many associated with worse outcomes—occur within the brain, cerebrospinal fluid, and peripheral blood. Extracellular vesicles (EVs) may traffic inflammatory cytokines from damaged tissue within the brain, as well as peripheral sources, across the blood–brain barrier, and they may be a critical component of post-stroke neuroinflammatory signaling. Methods: We performed a comprehensive analysis of cytokine concentrations bound to plasma EV surfaces and/or sequestered within the vesicles themselves. These concentrations were correlated to patient acute neurological condition by the Glasgow Coma Scale (GCS) and to chronic, long-term outcome via the Glasgow Outcome Scale-Extended (GOS-E). Results: Pro-inflammatory cytokines detected from plasma EVs were correlated to worse outcomes in hemorrhagic stroke patients. Anti-inflammatory cytokines detected within EVs were still correlated to poor outcomes despite their putative neuroprotective properties. Inflammatory cytokines macrophage-derived chemokine (MDC/CCL2), colony stimulating factor 1 (CSF1), interleukin 7 (IL7), and monokine induced by gamma interferon (MIG/CXCL9) were significantly correlated to both negative GCS and GOS-E when bound to plasma EV membranes. Conclusions: These findings correlate plasma-derived EV cytokine content with detrimental outcomes after stroke, highlighting the potential for EVs to provide cytokines with a means of long-range delivery of inflammatory signals that perpetuate neuroinflammation after stroke, thus hindering recovery.
Collapse
|
9
|
Coughlan C, Bruce KD, Burgy O, Boyd TD, Michel CR, Garcia-Perez JE, Adame V, Anton P, Bettcher BM, Chial HJ, Königshoff M, Hsieh EWY, Graner M, Potter H. Exosome Isolation by Ultracentrifugation and Precipitation and Techniques for Downstream Analyses. ACTA ACUST UNITED AC 2021; 88:e110. [PMID: 32633898 DOI: 10.1002/cpcb.110] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exosomes are 50- to 150-nm-diameter extracellular vesicles secreted by all mammalian cells except mature red blood cells and contribute to diverse physiological and pathological functions within the body. Many methods have been used to isolate and analyze exosomes, resulting in inconsistencies across experiments and raising questions about how to compare results obtained using different approaches. Questions have also been raised regarding the purity of the various preparations with regard to the sizes and types of vesicles and to the presence of lipoproteins. Thus, investigators often find it challenging to identify the optimal exosome isolation protocol for their experimental needs. Our laboratories have compared ultracentrifugation and commercial precipitation- and column-based exosome isolation kits for exosome preparation. Here, we present protocols for exosome isolation using two of the most commonly used methods, ultracentrifugation and precipitation, followed by downstream analyses. We use NanoSight nanoparticle tracking analysis and flow cytometry (Cytek® ) to determine exosome concentrations and sizes. Imaging flow cytometry can be utilized to both size exosomes and immunophenotype surface markers on exosomes (ImageStream® ). High-performance liquid chromatography followed by nano-flow liquid chromatography-mass spectrometry (LCMS) of the exosome fractions can be used to determine the presence of lipoproteins, with LCMS able to provide a proteomic profile of the exosome preparations. We found that the precipitation method was six times faster and resulted in a ∼2.5-fold higher concentration of exosomes per milliliter compared to ultracentrifugation. Both methods yielded extracellular vesicles in the size range of exosomes, and both preparations included apoproteins. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Pre-analytic fluid collection and processing Basic Protocol 2: Exosome isolation by ultracentrifugation Alternate Protocol 1: Exosome isolation by precipitation Basic Protocol 3: Analysis of exosomes by NanoSight nanoparticle tracking analysis Alternate Protocol 2: Analysis of exosomes by flow cytometry and imaging flow cytometry Basic Protocol 4: Downstream analysis of exosomes using high-performance liquid chromatography Basic Protocol 5: Downstream analysis of the exosome proteome using nano-flow liquid chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Christina Coughlan
- University of Colorado Alzheimer's and Cognition Center, Department of Neurology, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kimberley D Bruce
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Olivier Burgy
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus. INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France
| | - Timothy D Boyd
- University of Colorado Alzheimer's and Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Cole R Michel
- School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Josselyn E Garcia-Perez
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vanesa Adame
- University of Colorado Alzheimer's and Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Paige Anton
- Department of Pharmaceutical Sciences, University of Colorado Alzheimer's and Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Brianne M Bettcher
- University of Colorado Alzheimer's and Cognition Center, Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Heidi J Chial
- University of Colorado Alzheimer's and Cognition Center, Department of Neurology, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Melanie Königshoff
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Elena W Y Hsieh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael Graner
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Huntington Potter
- University of Colorado Alzheimer's and Cognition Center, Department of Neurology, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
10
|
Performance Comparison of Deep Learning Autoencoders for Cancer Subtype Detection Using Multi-Omics Data. Cancers (Basel) 2021; 13:cancers13092013. [PMID: 33921978 PMCID: PMC8122584 DOI: 10.3390/cancers13092013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
A heterogeneous disease such as cancer is activated through multiple pathways and different perturbations. Depending upon the activated pathway(s), the survival of the patients varies significantly and shows different efficacy to various drugs. Therefore, cancer subtype detection using genomics level data is a significant research problem. Subtype detection is often a complex problem, and in most cases, needs multi-omics data fusion to achieve accurate subtyping. Different data fusion and subtyping approaches have been proposed over the years, such as kernel-based fusion, matrix factorization, and deep learning autoencoders. In this paper, we compared the performance of different deep learning autoencoders for cancer subtype detection. We performed cancer subtype detection on four different cancer types from The Cancer Genome Atlas (TCGA) datasets using four autoencoder implementations. We also predicted the optimal number of subtypes in a cancer type using the silhouette score and found that the detected subtypes exhibit significant differences in survival profiles. Furthermore, we compared the effect of feature selection and similarity measures for subtype detection. For further evaluation, we used the Glioblastoma multiforme (GBM) dataset and identified the differentially expressed genes in each of the subtypes. The results obtained are consistent with other genomic studies and can be corroborated with the involved pathways and biological functions. Thus, it shows that the results from the autoencoders, obtained through the interaction of different datatypes of cancer, can be used for the prediction and characterization of patient subgroups and survival profiles.
Collapse
|
11
|
Role of Tumor-Derived Extracellular Vesicles in Glioblastoma. Cells 2021; 10:cells10030512. [PMID: 33670924 PMCID: PMC7997231 DOI: 10.3390/cells10030512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary central nervous system tumor and one of the most lethal cancers worldwide, with morbidity of 5.26 per 100,000 population per year. These tumors are often associated with poor prognosis and terrible quality of life. Extracellular vesicles (EVs) are membrane-bound nanoparticles secreted by cells and contain lipid, protein, DNA, mRNA, miRNA and other bioactive substances. EVs perform biological functions by binding or horizontal transfer of bioactive substances to target cell receptors. In recent years, EVs have been considered as possible targets for GBM therapy. A great many types of research demonstrated that EVs played a vital role in the GBM microenvironment, development, progression, angiogenesis, invasion, and even the diagnosis of GBM. Nevertheless, the exact molecular mechanisms and roles of EVs in these processes are unclear. It can provide the basis for GBM treatment in the future that clarifying the regulatory mechanism and related signal pathways of EVs derived from GBM and their clinical value in GBM diagnosis and treatment. In this paper, the research progress and clinical application prospects of GBM-derived EVs are reviewed and discussed.
Collapse
|
12
|
Nieland L, Morsett LM, Broekman MLD, Breakefield XO, Abels ER. Extracellular Vesicle-Mediated Bilateral Communication between Glioblastoma and Astrocytes. Trends Neurosci 2020; 44:215-226. [PMID: 33234347 DOI: 10.1016/j.tins.2020.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma the most aggressive form of brain cancer, comprises a complex mixture of tumor cells and nonmalignant stromal cells, including neurons, astrocytes, microglia, infiltrating monocytes/macrophages, lymphocytes, and other cell types. All nonmalignant cells within and surrounding the tumor are affected by the presence of glioblastoma. Astrocytes use multiple modes of communication to interact with neighboring cells. Extracellular vesicle-directed intercellular communication has been found to be an important component of signaling between astrocytes and glioblastoma in tumor progression. In this review, we focus on recent findings on extracellular vesicle-mediated bilateral crosstalk, between glioblastoma cells and astrocytes, highlighting the protumor and antitumor roles of astrocytes in glioblastoma development.
Collapse
Affiliation(s)
- Lisa Nieland
- Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02129, USA
| | - Liza M Morsett
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Marike L D Broekman
- Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02129, USA; Department of Neurosurgery, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands; Department of Neurosurgery, Haaglanden Medical Center, 2512 VA, The Hague, The Netherlands
| | - Xandra O Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02129, USA
| | - Erik R Abels
- Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02129, USA; Department of Neurosurgery, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
13
|
Dong X, Zheng D, Nao J. Circulating Exosome microRNAs as Diagnostic Biomarkers of Dementia. Front Aging Neurosci 2020; 12:580199. [PMID: 33093831 PMCID: PMC7506134 DOI: 10.3389/fnagi.2020.580199] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022] Open
Abstract
Dementia is a syndrome of acquired cognitive impairment that leads to a significant decline in a patient’s daily life, ability to learn, and the ability to communicate with others. Dementia occurs in many diseases, including Alzheimer’s disease (AD), dementia with Lewy bodies, frontotemporal dementia, and Parkinson’s disease dementia (PDD). Although the analysis of biomarkers in the cerebrospinal fluid (CSF) and peripheral blood physicochemical analysis can indicate neurological impairment, there are currently no sensitive biomarkers for early clinical diagnosis of dementia or for identifying the cause of dementia. Previous studies have suggested that circulating micro (mi)RNAs may be used as biomarkers for diagnosing neurological disorders. However, miRNAs are susceptible to interference by other components in the peripheral circulation, bringing into question the diagnostic value of circulating miRNAs. Exosomes secreted by most cell types contain proteins, mRNAs, and miRNAs that are closely associated with changes in cellular functions. Exosome miRNAs (ex-miRNAs) are highly stable and resistant to degradation. Therefore, these may serve as useful biomarkers for the early clinical diagnosis of dementia. Here, we review studies of ex-miRNAs that commonly cause clinical dementia and explore whether ex-miRNAs may be used as early diagnostic biomarkers of dementia.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dongming Zheng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Zeng A, Wei Z, Rabinovsky R, Jun HJ, El Fatimy R, Deforzh E, Arora R, Yao Y, Yao S, Yan W, Uhlmann EJ, Charest A, You Y, Krichevsky AM. Glioblastoma-Derived Extracellular Vesicles Facilitate Transformation of Astrocytes via Reprogramming Oncogenic Metabolism. iScience 2020; 23:101420. [PMID: 32795915 PMCID: PMC7424213 DOI: 10.1016/j.isci.2020.101420] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/24/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) may arise from astrocytes through a multistep process involving a progressive accumulation of mutations. We explored whether GBM-derived extracellular vesicles (EVs) may facilitate neoplastic transformation and malignant growth of astrocytes. We utilized conditioned media (CM) of cultured glioma cells, its sequential filtration, diverse cell-based assays, RNA sequencing, and metabolic assays to compare the effects of EV-containing and EV-depleted CM. GBM EVs facilitated the neoplastic growth of pre-transformed astrocytes but not normal human or mouse astrocytes. They induced proliferation, self-renewal, and colony formation of pre-transformed astrocytes and enhanced astrocytoma growth in a mouse allograft model. GBM EVs appear to reprogram astrocyte metabolism by inducing a shift in gene expression that may be partly associated with EV-mediated transfer of full-length mRNAs encoding ribosomal proteins, oxidative phosphorylation, and glycolytic factors. Our study suggests an EV/extracellular RNA (exRNA)-mediated mechanism that contributes to astrocyte transformation via metabolic reprograming and implicates horizontal mRNA transfer. Extracellular vesicles (EVs) shed by glioma cells are taken up by astrocytes Glioma EVs facilitate astrocyte transformation and tumor growth EVs reprogram glycolysis and oxidative phosphorylation of transformed astrocytes mRNAs coding ribosomal proteins and other factors are dispersed via EVs
Collapse
Affiliation(s)
- Ailiang Zeng
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China.
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hyun Jung Jun
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Rachid El Fatimy
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Evgeny Deforzh
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ramil Arora
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yizheng Yao
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shun Yao
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510062, China
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Erik J Uhlmann
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alain Charest
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|