1
|
Ng R, Kalinousky A, Harris J. Expanding the Neuropsychological Phenotype of KAT6B Disorders: Overlapping Features with KAT6A Syndrome. J Autism Dev Disord 2024:10.1007/s10803-024-06500-5. [PMID: 39153151 DOI: 10.1007/s10803-024-06500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
KAT6B and KAT6A belong to the MYST family of lysine acetyltransferases, and regulate gene expression via histone modification. Although both proteins share similar structure and epigenetic regulatory functions, it remains unclear if KAT6A/6B mutation disorders, both very rare conditions, yield the same neurocognitive presentation and thus benefit from similar treatment approaches. This study provides a preliminary overview of neuropsychological functioning of 13 individuals with KAT6B disorder (Mean age = 9.01 years, SD = 5.46), which was compared to that of a recently published sample of 15 individuals with KAT6A syndrome (Mean age = 10.32 years, SD = 4.12). Participants completed a neuropsychological test battery to assess non-verbal cognition, and caregivers completed a series of standardized rating inventories to assess daily behavioral functioning. Results reveal those with KAT6B disorders present with severe adaptive deficits (92.3%) and autism-related behaviors (83.3%), juxtaposed with relatively low concerns with externalizing behaviors (7.6%), a pattern shared by the KAT6A group. Those with KAT6B disorders present with high levels of autistic features, including reduced affiliative interest, whereas social motivation is less affected within the KAT6A group. Overall, the levels of impairment in nonverbal cognition and receptive language were comparable among those with KAT6B disorders, a trend also seen in the KAT6A group. In brief, KAT6B and KAT6A disorders yield analogous neuropsychological profiles. Findings implicate common molecular pathophysiological mechanisms for these epigenetic disorders, such that similar therapies may have shared effect across diseases.
Collapse
Affiliation(s)
- Rowena Ng
- Dept of Neuropsychology, Kennedy Krieger Institute, 1750 E. Fairmount Ave, Baltimore, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Allison Kalinousky
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jacqueline Harris
- Dept of Neuropsychology, Kennedy Krieger Institute, 1750 E. Fairmount Ave, Baltimore, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
2
|
van der Laan L, ten Voorde N, Mannens MMAM, Henneman P. Molecular signatures in Mendelian neurodevelopment: a focus on ubiquitination driven DNA methylation aberrations. Front Mol Neurosci 2024; 17:1446686. [PMID: 39135741 PMCID: PMC11317395 DOI: 10.3389/fnmol.2024.1446686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Mendelian disorders, arising from pathogenic variations within single genetic loci, often manifest as neurodevelopmental disorders (NDDs), affecting a significant portion of the pediatric population worldwide. These disorders are marked by atypical brain development, intellectual disabilities, and various associated phenotypic traits. Genetic testing aids in clinical diagnoses, but inconclusive results can prolong confirmation processes. Recent focus on epigenetic dysregulation has led to the discovery of DNA methylation signatures, or episignatures, associated with NDDs, accelerating diagnostic precision. Notably, TRIP12 and USP7, genes involved in the ubiquitination pathway, exhibit specific episignatures. Understanding the roles of these genes within the ubiquitination pathway sheds light on their potential influence on episignature formation. While TRIP12 acts as an E3 ligase, USP7 functions as a deubiquitinase, presenting contrasting roles within ubiquitination. Comparison of phenotypic traits in patients with pathogenic variations in these genes reveals both distinctions and commonalities, offering insights into underlying pathophysiological mechanisms. This review contextualizes the roles of TRIP12 and USP7 within the ubiquitination pathway, their influence on episignature formation, and the potential implications for NDD pathogenesis. Understanding these intricate relationships may unveil novel therapeutic targets and diagnostic strategies for NDDs.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Nicky ten Voorde
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
| | - Marcel M. A. M. Mannens
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Peter Henneman
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Avagliano L, Castiglioni S, Lettieri A, Parodi C, Di Fede E, Taci E, Grazioli P, Colombo EA, Gervasini C, Massa V. Intrauterine growth in chromatinopathies: A long road for better understanding and for improving clinical management. Birth Defects Res 2024; 116:e2383. [PMID: 38984779 DOI: 10.1002/bdr2.2383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Chromatinopathies are a heterogeneous group of genetic disorders caused by pathogenic variants in genes coding for chromatin state balance proteins. Remarkably, many of these syndromes present unbalanced postnatal growth, both under- and over-, although little has been described in the literature. Fetal growth measurements are common practice in pregnancy management and values within normal ranges indicate proper intrauterine growth progression; on the contrary, abnormalities in intrauterine fetal growth open the discussion of possible pathogenesis affecting growth even in the postnatal period. METHODS Among the numerous chromatinopathies, we have selected six of the most documented in the literature offering evidence about two fetal overgrowth (Sotos and Weaver syndrome) and four fetal undergrowth syndromes (Bohring Opitz, Cornelia de Lange, Floating-Harbor, and Meier Gorlin syndrome), describing their molecular characteristics, maternal biochemical results and early pregnancy findings, prenatal ultrasound findings, and postnatal characteristics. RESULTS/CONCLUSION To date, the scarce data in the literature on prenatal findings are few and inconclusive, even though these parameters may contribute to a more rapid and accurate diagnosis, calling for a better and more detailed description of pregnancy findings.
Collapse
Affiliation(s)
| | - Silvia Castiglioni
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Antonella Lettieri
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Elisabetta Di Fede
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Esi Taci
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Elisa Adele Colombo
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Gao CW, Lin W, Riddle RC, Chopra S, Kim J, Boukas L, Hansen KD, Björnsson HT, Fahrner JA. Growth deficiency in a mouse model of Kabuki syndrome 2 bears mechanistic similarities to Kabuki syndrome 1. PLoS Genet 2024; 20:e1011310. [PMID: 38857303 PMCID: PMC11192384 DOI: 10.1371/journal.pgen.1011310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/21/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
Growth deficiency is a characteristic feature of both Kabuki syndrome 1 (KS1) and Kabuki syndrome 2 (KS2), Mendelian disorders of the epigenetic machinery with similar phenotypes but distinct genetic etiologies. We previously described skeletal growth deficiency in a mouse model of KS1 and further established that a Kmt2d-/- chondrocyte model of KS1 exhibits precocious differentiation. Here we characterized growth deficiency in a mouse model of KS2, Kdm6atm1d/+. We show that Kdm6atm1d/+ mice have decreased femur and tibia length compared to controls and exhibit abnormalities in cortical and trabecular bone structure. Kdm6atm1d/+ growth plates are also shorter, due to decreases in hypertrophic chondrocyte size and hypertrophic zone height. Given these disturbances in the growth plate, we generated Kdm6a-/- chondrogenic cell lines. Similar to our prior in vitro model of KS1, we found that Kdm6a-/- cells undergo premature, enhanced differentiation towards chondrocytes compared to Kdm6a+/+ controls. RNA-seq showed that Kdm6a-/- cells have a distinct transcriptomic profile that indicates dysregulation of cartilage development. Finally, we performed RNA-seq simultaneously on Kmt2d-/-, Kdm6a-/-, and control lines at Days 7 and 14 of differentiation. This revealed surprising resemblance in gene expression between Kmt2d-/- and Kdm6a-/- at both time points and indicates that the similarity in phenotype between KS1 and KS2 also exists at the transcriptional level.
Collapse
Affiliation(s)
- Christine W. Gao
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - WanYing Lin
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, United States of America
| | - Sheetal Chopra
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jiyoung Kim
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Leandros Boukas
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, United States of America
| | - Kasper D. Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hans T. Björnsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | - Jill A. Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
5
|
Ng R, Kalinousky AJ, Harris J. Neuropsychological profile associated with KAT6A syndrome: Emergent genotype-phenotype trends. Orphanet J Rare Dis 2024; 19:196. [PMID: 38741077 DOI: 10.1186/s13023-024-03175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/30/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND KAT6A (Arboleda-Tham) syndrome is a Mendelian disorder of the epigenetic machinery caused by pathogenic variants in the lysine acetyltransferase 6 A (KAT6A) gene. Intellectual disability and speech/language impairment (e.g., minimally verbal) are common features of the disorder, with late-truncating variants associated with a more severe form of intellectual disability. However, much of the cognitive phenotype remains elusive given the dearth of research. PARTICIPANTS AND METHODS This study examined non-verbal and social skills of 15 individuals with molecularly-confirmed diagnoses of KAT6A syndrome (Mean age = 10.32 years, SD = 4.12). Participants completed select subtests from the DAS-II, the NEPSY-II, and the Beery Buktenica Developmental Test of Visual Motor Integration 6th Edition, and their caregivers completed an assortment of behavior rating inventories. RESULTS Findings suggest global cognitive impairment with nonverbal cognition scores similar to those for receptive language. Autism-related features, particularly restricted interests and repetitive behaviors, and broad adaptive deficits were common in our sample juxtaposed with a relatively strong social drive and low frequency of internalizing and externalizing behavioral problems. A general trend of lower performance scores on nonverbal and receptive language measures was observed among those with protein-truncating variants vs. missense variants; however, no effect was observed on caregiver rating inventories of daily behaviors. Late and early truncating variants yielded comparable neuropsychological profiles. CONCLUSIONS Overall, study results show the cognitive phenotype of KAT6A syndrome includes equally impaired nonverbal cognition and receptive language functioning, paired with relatively intact social drive and strengths in behavior regulation. Emergent genotype-phenotype correlations suggest cognition may be more affected in protein-truncating than missense mutations although similar neurobehavioral profiles were observed.
Collapse
Affiliation(s)
- Rowena Ng
- Department of Neuropsychology, Kennedy Krieger Institute, 1750 E. Fairmount Ave, Baltimore, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Allison J Kalinousky
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jacqueline Harris
- Department of Neuropsychology, Kennedy Krieger Institute, 1750 E. Fairmount Ave, Baltimore, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
6
|
Donoghue S, Wright J, Voss AK, Lockhart PJ, Amor DJ. The Mendelian disorders of chromatin machinery: Harnessing metabolic pathways and therapies for treatment. Mol Genet Metab 2024; 142:108360. [PMID: 38428378 DOI: 10.1016/j.ymgme.2024.108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
The Mendelian disorders of chromatin machinery (MDCMs) represent a distinct subgroup of disorders that present with neurodevelopmental disability. The chromatin machinery regulates gene expression by a range of mechanisms, including by post-translational modification of histones, responding to histone marks, and remodelling nucleosomes. Some of the MDCMs that impact on histone modification may have potential therapeutic interventions. Two potential treatment strategies are to enhance the intracellular pool of metabolites that can act as substrates for histone modifiers and the use of medications that may inhibit or promote the modification of histone residues to influence gene expression. In this article we discuss the influence and potential treatments of histone modifications involving histone acetylation and histone methylation. Genomic technologies are facilitating earlier diagnosis of many Mendelian disorders, providing potential opportunities for early treatment from infancy. This has parallels with how inborn errors of metabolism have been afforded early treatment with newborn screening. Before this promise can be fulfilled, we require greater understanding of the biochemical fingerprint of these conditions, which may provide opportunities to supplement metabolites that can act as substrates for chromatin modifying enzymes. Importantly, understanding the metabolomic profile of affected individuals may also provide disorder-specific biomarkers that will be critical for demonstrating efficacy of treatment, as treatment response may not be able to be accurately assessed by clinical measures.
Collapse
Affiliation(s)
- Sarah Donoghue
- Murdoch Children's Research Institute, Parkville 3052, Australia; Department of Biochemical Genetics, Victorian Clinical Genetics Services, Parkville 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia.
| | - Jordan Wright
- Murdoch Children's Research Institute, Parkville 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Anne K Voss
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, Australia
| | - Paul J Lockhart
- Murdoch Children's Research Institute, Parkville 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - David J Amor
- Murdoch Children's Research Institute, Parkville 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| |
Collapse
|
7
|
Bouman A, Geelen JM, Kummeling J, Schenck A, van der Zwan YG, Klein WM, Kleefstra T. Growth, body composition, and endocrine-metabolic profiles of individuals with Kleefstra syndrome provide directions for clinical management and translational studies. Am J Med Genet A 2024; 194:e63472. [PMID: 38155610 DOI: 10.1002/ajmg.a.63472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 12/30/2023]
Abstract
Mendelian neurodevelopmental disorders caused by variants in genes encoding chromatin modification can be categorized as Mendelian disorders of the epigenetic machinery (MDEMs). These disorders have significant overlap in molecular pathways and phenotypes including intellectual disability, short stature, and obesity. Among the MDEMs is Kleefstra syndrome (KLFS), which is caused by haploinsufficiency of EHMT1. Preclinical studies have identified metabolic dysregulation and obesity in KLFS models, but proper clinical translation lacks. In this study, we aim to delineate growth, body composition, and endocrine-metabolic characteristics in a total of 62 individuals with KLFS. Our results revealed a high prevalence of childhood-onset overweight/obesity (60%; 28/47) with disproportionately high body fat percentage, which aligns perfectly with previous preclinical studies. Short stature was common (33%), likely due to advanced skeletal maturation. Endocrine-metabolic investigations showed thyroid dysregulation (22%; 9/41), elevated triglycerides, and decreased blood ammonia levels. Moreover, hand radiographs identified decreased bone mineralization (57%; 8/14) and negative ulnar variance (71%; 10/14). Our findings indicate a high (cardio)metabolic risk in KLFS. Therefore, we recommend monitoring of weight and endocrine-metabolic profile. Supporting a healthy lifestyle and screening of bone mineralization is advised. Our comprehensive results support translational research and contribute to a better understanding of MDEM-associated phenotypes.
Collapse
Affiliation(s)
- Arianne Bouman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joyce M Geelen
- Department of Pediatrics, Developmental and Genetic Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost Kummeling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annette Schenck
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yvonne G van der Zwan
- Department of Pediatrics, Pediatric Endocrinology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willemijn M Klein
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
- Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
| |
Collapse
|
8
|
Nava AA, Arboleda VA. The omics era: a nexus of untapped potential for Mendelian chromatinopathies. Hum Genet 2024; 143:475-495. [PMID: 37115317 PMCID: PMC11078811 DOI: 10.1007/s00439-023-02560-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
The OMICs cascade describes the hierarchical flow of information through biological systems. The epigenome sits at the apex of the cascade, thereby regulating the RNA and protein expression of the human genome and governs cellular identity and function. Genes that regulate the epigenome, termed epigenes, orchestrate complex biological signaling programs that drive human development. The broad expression patterns of epigenes during human development mean that pathogenic germline mutations in epigenes can lead to clinically significant multi-system malformations, developmental delay, intellectual disabilities, and stem cell dysfunction. In this review, we refer to germline developmental disorders caused by epigene mutation as "chromatinopathies". We curated the largest number of human chromatinopathies to date and our expanded approach more than doubled the number of established chromatinopathies to 179 disorders caused by 148 epigenes. Our study revealed that 20.6% (148/720) of epigenes cause at least one chromatinopathy. In this review, we highlight key examples in which OMICs approaches have been applied to chromatinopathy patient biospecimens to identify underlying disease pathogenesis. The rapidly evolving OMICs technologies that couple molecular biology with high-throughput sequencing or proteomics allow us to dissect out the causal mechanisms driving temporal-, cellular-, and tissue-specific expression. Using the full repertoire of data generated by the OMICs cascade to study chromatinopathies will provide invaluable insight into the developmental impact of these epigenes and point toward future precision targets for these rare disorders.
Collapse
Affiliation(s)
- Aileen A Nava
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Harris JR, Gao CW, Britton JF, Applegate CD, Bjornsson HT, Fahrner JA. Five years of experience in the Epigenetics and Chromatin Clinic: what have we learned and where do we go from here? Hum Genet 2024; 143:607-624. [PMID: 36952035 PMCID: PMC10034257 DOI: 10.1007/s00439-023-02537-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023]
Abstract
The multidisciplinary Epigenetics and Chromatin Clinic at Johns Hopkins provides comprehensive medical care for individuals with rare disorders that involve disrupted epigenetics. Initially centered on classical imprinting disorders, the focus shifted to the rapidly emerging group of genetic disorders resulting from pathogenic germline variants in epigenetic machinery genes. These are collectively called the Mendelian disorders of the epigenetic machinery (MDEMs), or more broadly, Chromatinopathies. In five years, 741 clinic visits have been completed for 432 individual patients, with 153 having confirmed epigenetic diagnoses. Of these, 115 individuals have one of 26 MDEMs with every single one exhibiting global developmental delay and/or intellectual disability. This supports prior observations that intellectual disability is the most common phenotypic feature of MDEMs. Additional common phenotypes in our clinic include growth abnormalities and neurodevelopmental issues, particularly hypotonia, attention-deficit/hyperactivity disorder (ADHD), and anxiety, with seizures and autism being less common. Overall, our patient population is representative of the broader group of MDEMs and includes mostly autosomal dominant disorders impacting writers more so than erasers, readers, and remodelers of chromatin marks. There is an increased representation of dual function components with a reader and an enzymatic domain. As expected, diagnoses were made mostly by sequencing but were aided in some cases by DNA methylation profiling. Our clinic has helped to facilitate the discovery of two new disorders, and our providers are actively developing and implementing novel therapeutic strategies for MDEMs. These data and our high follow-up rate of over 60% suggest that we are achieving our mission to diagnose, learn from, and provide optimal care for our patients with disrupted epigenetics.
Collapse
Affiliation(s)
- Jacqueline R Harris
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christine W Gao
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquelyn F Britton
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carolyn D Applegate
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans T Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Awamleh Z, Choufani S, Wu W, Rots D, Dingemans AJM, Nadif Kasri N, Boronat S, Ibañez-Mico S, Cuesta Herraiz L, Ferrer I, Martínez Carrascal A, Pérez-Jurado LA, Aznar Lain G, Ortigoza-Escobar JD, de Vries BBA, Koolen DA, Weksberg R. A new blood DNA methylation signature for Koolen-de Vries syndrome: Classification of missense KANSL1 variants and comparison to fibroblast cells. Eur J Hum Genet 2024; 32:324-332. [PMID: 38282074 PMCID: PMC10923882 DOI: 10.1038/s41431-024-01538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
Pathogenic variants in KANSL1 and 17q21.31 microdeletions are causative of Koolen-de Vries syndrome (KdVS), a neurodevelopmental syndrome with characteristic facial dysmorphia. Our previous work has shown that syndromic conditions caused by pathogenic variants in epigenetic regulatory genes have identifiable patterns of DNA methylation (DNAm) change: DNAm signatures or episignatures. Given the role of KANSL1 in histone acetylation, we tested whether variants underlying KdVS are associated with a DNAm signature. We profiled whole-blood DNAm for 13 individuals with KANSL1 variants, four individuals with 17q21.31 microdeletions, and 21 typically developing individuals, using Illumina's Infinium EPIC array. In this study, we identified a robust DNAm signature of 456 significant CpG sites in 8 individuals with KdVS, a pattern independently validated in an additional 7 individuals with KdVS. We also demonstrate the diagnostic utility of the signature and classify two KANSL1 VUS as well as four variants in individuals with atypical clinical presentation. Lastly, we investigated tissue-specific DNAm changes in fibroblast cells from individuals with KdVS. Collectively, our findings contribute to the understanding of the epigenetic landscape related to KdVS and aid in the diagnosis and classification of variants in this structurally complex genomic region.
Collapse
Affiliation(s)
- Zain Awamleh
- Genetics and Genome Biology Program, Research Institute, the Hospital for Sick Children, Toronto, ON, M5G 1×8, Canada
| | - Sanaa Choufani
- Genetics and Genome Biology Program, Research Institute, the Hospital for Sick Children, Toronto, ON, M5G 1×8, Canada
| | - Wendy Wu
- Genetics and Genome Biology Program, Research Institute, the Hospital for Sick Children, Toronto, ON, M5G 1×8, Canada
| | - Dmitrijs Rots
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands
| | - Alexander J M Dingemans
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands
| | - Susana Boronat
- Department of Pediatrics, Hospital del Santa Creu y Sant Pau, Barcelona, Spain
| | - Salvador Ibañez-Mico
- Department of Pediatric Neurology, Hospital Virgen de la Arrixaca, Murcia, Madrid, Spain
| | | | - Irene Ferrer
- Department of Genetics, Consorcio Hospital General de Valencia, Valencia, Spain
| | | | - Luis A Pérez-Jurado
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM) and CIBERER, Barcelona, Spain
| | - Gemma Aznar Lain
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM) and CIBERER, Barcelona, Spain
| | - Juan Dario Ortigoza-Escobar
- Movement Disorders Unit, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII and European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| | - Bert B A de Vries
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands
| | - David A Koolen
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands.
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, Research Institute, the Hospital for Sick Children, Toronto, ON, M5G 1×8, Canada.
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, the Hospital for Sick Children, University of Toronto, Toronto, ON, M5G 1×8, Canada.
| |
Collapse
|
11
|
Kaur A, Chaudhry C, Kaur P, Daniel R, Srivastava P. Pattern Recognition of Common Multiple Congenital Malformation Syndromes with Underlying Chromatinopathy. J Pediatr Genet 2024; 13:6-14. [PMID: 38567171 PMCID: PMC10984715 DOI: 10.1055/s-0042-1748019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/07/2022] [Indexed: 10/17/2022]
Abstract
Chromatinopathy is an emerging category of multiple malformation syndromes caused by disruption in global transcriptional regulation with imbalances in the chromatin states (i.e., open or closed chromatin). These syndromes are caused by pathogenic variants in genes coding for the writers, erasers, readers, and remodelers of the epigenetic machinery. Majority of these disorders (93%) show neurological dysfunction in the form of intellectual disability. Other overlapping features are growth abnormalities, limb deformities, and immune dysfunction. In this study, we describe a series of children with six common chromatinopathy syndromes with an aim to develop pattern recognition of this emerging category of multiple malformation syndromes.
Collapse
Affiliation(s)
- Anupriya Kaur
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Chakshu Chaudhry
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Parminder Kaur
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Roshan Daniel
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Priyanka Srivastava
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
12
|
van der Laan L, Karimi K, Rooney K, Lauffer P, McConkey H, Caro P, Relator R, Levy MA, Bhai P, Mignot C, Keren B, Briuglia S, Sobering AK, Li D, Vissers LELM, Dingemans AJM, Valenzuela I, Verberne EA, Misra-Isrie M, Zwijnenburg PJG, Waisfisz Q, Alders M, Sailer S, Schaaf CP, Mannens MMAM, Sadikovic B, van Haelst MM, Henneman P. DNA methylation episignature, extension of the clinical features, and comparative epigenomic profiling of Hao-Fountain syndrome caused by variants in USP7. Genet Med 2024; 26:101050. [PMID: 38126281 DOI: 10.1016/j.gim.2023.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
PURPOSE Hao-Fountain syndrome (HAFOUS) is a neurodevelopmental disorder caused by pathogenic variants in USP7. HAFOUS is characterized by developmental delay, intellectual disability, speech delay, behavioral abnormalities, autism spectrum disorder, seizures, hypogonadism, and mild dysmorphic features. We investigated the phenotype of 18 participants with HAFOUS and performed DNA methylation (DNAm) analysis, aiming to generate a diagnostic biomarker. Furthermore, we performed comparative analysis with known episignatures to gain more insight into the molecular pathophysiology of HAFOUS. METHODS We assessed genomic DNAm profiles of 18 individuals with pathogenic variants and variants of uncertain significance (VUS) in USP7 to map and validate a specific episignature. The comparison between the USP7 cohort and 56 rare genetic disorders with earlier reported DNAm episignatures was performed with statistical and functional correlation. RESULTS We mapped a sensitive and specific DNAm episignature for pathogenic variants in USP7 and utilized this to reclassify the VUS. Comparative epigenomic analysis showed evidence of HAFOUS similarity to a number of other rare genetic episignature disorders. CONCLUSION We discovered a sensitive and specific DNAm episignature as a robust diagnostic biomarker for HAFOUS that enables VUS reclassification in USP7. We also expand the phenotypic spectrum of 9 new and 5 previously reported individuals with HAFOUS.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Karim Karimi
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Peter Lauffer
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Pilar Caro
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Pratibha Bhai
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Cyril Mignot
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Hôpital Armand Trousseau, Paris, France AND Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | - Boris Keren
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Silvana Briuglia
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Andrew K Sobering
- AU/UGA Medical Partnership Campus of the Medical College of Georgia, Athens, Georgia; Windward Islands Research and Education Foundation, True Blue, St. George's, Grenada; St. George's University School of Medicine, Department of Biochemistry, Grenada
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania Perelman school of Medicine, Philadelphia, PA
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Irene Valenzuela
- Àrea de Genètica Clínica i Malalties Minoritàries, Hospital Vall d'Hebron, Barcelona, Spain
| | - Eline A Verberne
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mala Misra-Isrie
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Petra J G Zwijnenburg
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Quinten Waisfisz
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sebastian Sailer
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Marcel M A M Mannens
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Ng R, Bjornsson HT, Fahrner JA, Harris J. Associations Between Executive Functioning, Behavioral Functioning, and Adaptive Functioning Difficulties in Wiedemann-Steiner Syndrome. Arch Clin Neuropsychol 2024; 39:186-195. [PMID: 37565480 PMCID: PMC10879922 DOI: 10.1093/arclin/acad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVES Wiedemann-Steiner syndrome (WSS) is a neurogenetic disorder caused by heterozygous variants in KMT2A. Recent investigations suggest increased anxiety and behavior regulation challenges among those with WSS although the neurobehavioral phenotype remains largely unknown. This study aims to examine the pattern of and associations between executive functioning (EF) and behavior functioning among those with WSS. METHOD This study involved utilizing caregiver-report inventories (Behavior Rating Inventory of Executive Function 2nd Edition, BRIEF-2; Adaptive Behavior Assessment 3rd Edition, ABAS-3; Strengths and Difficulties Questionnaire, SDQ) to assess day-to-day behavior functioning among those with WSS (N = 24; mean age = 10.68 years, SD = 3.19). Frequency of clinical elevations in daily difficulties in EF, adaptive behaviors, and behavior regulation were reported. Correlations and hierarchical linear regressions were used to determine the relationships between EF with behavior and adaptive functioning. RESULTS Out of our sample, 63% met clinical levels of executive functioning difficulties on the BRIEF-2, and 75% with Hyperactivity and 54% with Emotional Problems on the SDQ. In addition, 33% were rated >2 SD below the normative mean in overall adaptive functioning on the ABAS-3. Elevated ratings in BRIEF-2 Shift, reflective of challenges with mental flexibility, predicted more Emotional Problems and accounted for 33.5% of its variance. More difficulties in Emotional Control were related to greater adaptive deficits, accounting for 33.3% of its variance. CONCLUSIONS Those with WSS are at risk for EF deficits, hyperactivity, and emotional dysregulation. EF correlates with adaptive and affective behaviors, highlighting the promise of behavioral interventions to target cognitive flexibility, emotional awareness, and reactivity in this population.
Collapse
Affiliation(s)
- Rowena Ng
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans Tomas Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacqueline Harris
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Abad C, Robayo MC, Muñiz-Moreno MDM, Bernardi MT, Otero MG, Kosanovic C, Griswold AJ, Pierson TM, Walz K, Young JI. Gatad2b, associated with the neurodevelopmental syndrome GAND, plays a critical role in neurodevelopment and cortical patterning. Transl Psychiatry 2024; 14:33. [PMID: 38238293 PMCID: PMC10796954 DOI: 10.1038/s41398-023-02678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 01/22/2024] Open
Abstract
GATAD2B (GATA zinc finger domain containing 2B) variants are associated with the neurodevelopmental syndrome GAND, characterized by intellectual disability (ID), infantile hypotonia, apraxia of speech, epilepsy, macrocephaly and distinct facial features. GATAD2B encodes for a subunit of the Nucleosome Remodeling and Histone Deacetylase (NuRD) complex. NuRD controls transcriptional programs critical for proper neurodevelopment by coupling histone deacetylase with ATP-dependent chromatin remodeling activity. To study mechanisms of pathogenesis for GAND, we characterized a mouse model harboring an inactivating mutation in Gatad2b. Homozygous Gatad2b mutants die perinatally, while haploinsufficient Gatad2b mice exhibit behavioral abnormalities resembling the clinical features of GAND patients. We also observed abnormal cortical patterning, and cellular proportions and cell-specific alterations in the developmental transcriptome in these mice. scRNAseq of embryonic cortex indicated misexpression of genes key for corticogenesis and associated with neurodevelopmental syndromes such as Bcl11b, Nfia and H3f3b and Sox5. These data suggest a crucial role for Gatad2b in brain development.
Collapse
Affiliation(s)
- Clemer Abad
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Maria C Robayo
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Maria Del Mar Muñiz-Moreno
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Maria T Bernardi
- IQUIBICEN - CONICET, School of Exact and Natural Sciences - University of Buenos Aires, Buenos Aires, Argentina
| | - Maria G Otero
- The Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Christina Kosanovic
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Tyler Mark Pierson
- The Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Guerin Children's, Departments of Pediatrics, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA, USA
- The Center for the Undiagnosed Patient, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Katherina Walz
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- IQUIBICEN - CONICET, School of Exact and Natural Sciences - University of Buenos Aires, Buenos Aires, Argentina
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan I Young
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
15
|
Gao CW, Lin W, Riddle RC, Kushwaha P, Boukas L, Björnsson HT, Hansen KD, Fahrner JA. A mouse model of Weaver syndrome displays overgrowth and excess osteogenesis reversible with KDM6A/6B inhibition. JCI Insight 2024; 9:e173392. [PMID: 38015625 PMCID: PMC10906465 DOI: 10.1172/jci.insight.173392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Weaver syndrome is a Mendelian disorder of the epigenetic machinery (MDEM) caused by germline pathogenic variants in EZH2, which encodes the predominant H3K27 methyltransferase and key enzymatic component of Polycomb repressive complex 2 (PRC2). Weaver syndrome is characterized by striking overgrowth and advanced bone age, intellectual disability, and distinctive facies. We generated a mouse model for the most common Weaver syndrome missense variant, EZH2 p.R684C. Ezh2R684C/R684C mouse embryonic fibroblasts (MEFs) showed global depletion of H3K27me3. Ezh2R684C/+ mice had abnormal bone parameters, indicative of skeletal overgrowth, and Ezh2R684C/+ osteoblasts showed increased osteogenic activity. RNA-Seq comparing osteoblasts differentiated from Ezh2R684C/+, and Ezh2+/+ BM-mesenchymal stem cells (BM-MSCs) indicated collective dysregulation of the BMP pathway and osteoblast differentiation. Inhibition of the opposing H3K27 demethylases KDM6A and KDM6B substantially reversed the excessive osteogenesis in Ezh2R684C/+ cells both at the transcriptional and phenotypic levels. This supports both the ideas that writers and erasers of histone marks exist in a fine balance to maintain epigenome state and that epigenetic modulating agents have therapeutic potential for the treatment of MDEMs.
Collapse
Affiliation(s)
- Christine W. Gao
- Department of Genetic Medicine
- Department of Molecular Biology and Genetics, and
| | | | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leandros Boukas
- Department of Genetic Medicine
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| | - Hans T. Björnsson
- Department of Genetic Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | - Kasper D. Hansen
- Department of Genetic Medicine
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jill A. Fahrner
- Department of Genetic Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Audet S, Triassi V, Gelinas M, Legault-Cadieux N, Ferraro V, Duquette A, Tetreault M. Integration of multi-omics technologies for molecular diagnosis in ataxia patients. Front Genet 2024; 14:1304711. [PMID: 38239855 PMCID: PMC10794629 DOI: 10.3389/fgene.2023.1304711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Background: Episodic ataxias are rare neurological disorders characterized by recurring episodes of imbalance and coordination difficulties. Obtaining definitive molecular diagnoses poses challenges, as clinical presentation is highly heterogeneous, and literature on the underlying genetics is limited. While the advent of high-throughput sequencing technologies has significantly contributed to Mendelian disorders genetics, interpretation of variants of uncertain significance and other limitations inherent to individual methods still leaves many patients undiagnosed. This study aimed to investigate the utility of multi-omics for the identification and validation of molecular candidates in a cohort of complex cases of ataxia with episodic presentation. Methods: Eight patients lacking molecular diagnosis despite extensive clinical examination were recruited following standard genetic testing. Whole genome and RNA sequencing were performed on samples isolated from peripheral blood mononuclear cells. Integration of expression and splicing data facilitated genomic variants prioritization. Subsequently, long-read sequencing played a crucial role in the validation of those candidate variants. Results: Whole genome sequencing uncovered pathogenic variants in four genes (SPG7, ATXN2, ELOVL4, PMPCB). A missense and a nonsense variant, both previously reported as likely pathogenic, configured in trans in individual #1 (SPG7: c.2228T>C/p.I743T, c.1861C>T/p.Q621*). An ATXN2 microsatellite expansion (CAG32) in another late-onset case. In two separate individuals, intronic variants near splice sites (ELOVL4: c.541 + 5G>A; PMPCB: c.1154 + 5G>C) were predicted to induce loss-of-function splicing, but had never been reported as disease-causing. Long-read sequencing confirmed the compound heterozygous variants configuration, repeat expansion length, as well as splicing landscape for those pathogenic variants. A potential genetic modifier of the ATXN2 expansion was discovered in ZFYVE26 (c.3022C>T/p.R1008*). Conclusion: Despite failure to identify pathogenic variants through clinical genetic testing, the multi-omics approach enabled the molecular diagnosis in 50% of patients, also giving valuable insights for variant prioritization in remaining cases. The findings demonstrate the value of long-read sequencing for the validation of candidate variants in various scenarios. Our study demonstrates the effectiveness of leveraging complementary omics technologies to unravel the underlying genetics in patients with unresolved rare diseases such as ataxia. Molecular diagnoses not only hold significant promise in improving patient care management, but also alleviates the burden of diagnostic odysseys, more broadly enhancing quality of life.
Collapse
Affiliation(s)
- Sebastien Audet
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Valerie Triassi
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Myriam Gelinas
- Department of Medicine, University of Montreal Hospital Centre (CHUM), Montreal, QC, Canada
| | - Nab Legault-Cadieux
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Vincent Ferraro
- Department of Medicine, University of Montreal Hospital Centre (CHUM), Montreal, QC, Canada
| | - Antoine Duquette
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- Neurology Service, Department of Medicine, André-Barbeau Movement Disorders Unit, University of Montreal Hospital (CHUM), Montreal, QC, Canada
- Genetic Service, Department of Medicine, University of Montreal Hospital (CHUM), Montreal, QC, Canada
| | - Martine Tetreault
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
17
|
Drackley A, De Simone L, Kuntz N, Rahmani S, Ing A, Rao VK, Rathbun P, Yap KL. Expansion of the phenotypic spectrum associated with pathogenic missense variation in DHX16. Am J Med Genet A 2024; 194:53-58. [PMID: 37664979 DOI: 10.1002/ajmg.a.63392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Pathogenic heterozygous variants in DHX16 have been recently identified in association with a variety of clinical features, including neuromuscular disease, sensorineural hearing loss, ocular anomalies, and other phenotypes. All DHX16 disease-causing variants previously reported in affected individuals are missense in nature, nearly all of which were found to be de novo. Here we report on a patient with neuromuscular disease, hearing loss, retinal degeneration, and previously unreported phenotypic features including mitochondrial deficiency and primary ovarian insufficiency, in whom a novel de novo likely pathogenic variant in DHX16 NM_003587.4:c.2033A > G (p.Glu678Gly) was identified. Furthermore, we conducted an in-depth literature review of DHX16's role in disease and utilized high-performing in silico prediction algorithms to compare and contrast the predicted effects of all reported disease-associated DHX16 variants on protein structure and function.
Collapse
Affiliation(s)
- Andy Drackley
- Department of Pathology & Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Lenika De Simone
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Nancy Kuntz
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Safa Rahmani
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexander Ing
- Department of Pathology & Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Vamshi K Rao
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Pamela Rathbun
- Department of Pathology & Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kai Lee Yap
- Department of Pathology & Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
18
|
Ng R, Harris J, Kleefstra T, Morgan AT, Simpson B. Editorial: Characterizing the neurobehavioral phenotype of mendelian disorders of epigenetic machinery. Front Genet 2023; 14:1338078. [PMID: 38116293 PMCID: PMC10728862 DOI: 10.3389/fgene.2023.1338078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Affiliation(s)
- Rowena Ng
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jacqueline Harris
- Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Genetic Medicine, Pediatrics and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tjitske Kleefstra
- Department of Human Genetics and Psychiatry, Radboud University Medical Center, Venray, Netherlands
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, Netherlands
| | - Angela T. Morgan
- Speech and Language, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Audiology and Speech Pathology, University of Melbourne, Parkville, VIC, Australia
- Speech Genomics Clinic, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Brittany Simpson
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
19
|
Quesnel KM, Martin-Kenny N, Bérubé NG. A mouse model of ATRX deficiency with cognitive deficits and autistic traits. J Neurodev Disord 2023; 15:39. [PMID: 37957569 PMCID: PMC10644498 DOI: 10.1186/s11689-023-09508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND ATRX is an ATP-dependent chromatin remodeling protein with essential roles in safeguarding genome integrity and modulating gene expression. Deficiencies in this protein cause ATR-X syndrome, a condition characterized by intellectual disability and an array of developmental abnormalities, including features of autism. Previous studies demonstrated that deleting ATRX in mouse forebrain excitatory neurons postnatally resulted in male-specific memory deficits, but no apparent autistic-like behaviours. METHODS We generated mice with an earlier embryonic deletion of ATRX in forebrain excitatory neurons and characterized their behaviour using a series of memory and autistic-related paradigms. RESULTS We found that mutant mice displayed a broader spectrum of impairments, including fear memory, decreased anxiety-like behaviour, hyperactivity, as well as self-injurious and repetitive grooming. Sex-specific alterations were also observed, including male-specific aggression, sensory gating impairments, and decreased social memory. CONCLUSIONS Collectively, the findings indicate that early developmental abnormalities arising from ATRX deficiency in forebrain excitatory neurons contribute to the presentation of fear memory deficits as well as autistic-like behaviours.
Collapse
Affiliation(s)
- Katherine M Quesnel
- Department of Anatomy & Cell Biology, Western University, London, Canada
- Department of Paediatrics, Western University, London, Canada
- Division of Genetics & Development, Children's Health Research Institute, London, ON, Canada
| | - Nicole Martin-Kenny
- Department of Anatomy & Cell Biology, Western University, London, Canada
- Department of Paediatrics, Western University, London, Canada
- Division of Genetics & Development, Children's Health Research Institute, London, ON, Canada
| | - Nathalie G Bérubé
- Department of Anatomy & Cell Biology, Western University, London, Canada.
- Department of Paediatrics, Western University, London, Canada.
- Division of Genetics & Development, Children's Health Research Institute, London, ON, Canada.
- Department of Oncology, Western University, London, Canada.
| |
Collapse
|
20
|
Ng R, Kalinousky A, Fahrner JA, Bjornsson HT, Harris J. The social phenotype associated with Wiedemann-Steiner syndrome: Autistic traits juxtaposed with high social drive and prosociality. Am J Med Genet A 2023; 191:2591-2601. [PMID: 37470210 DOI: 10.1002/ajmg.a.63351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
The aim of this study was to provide a descriptive overview of the social characteristics associated with Wiedemann-Steiner syndrome (WSS). A total of 24 parents of children/adults with WSS (11F, mean age = 12.94 years, SD = 8.00) completed the Social Responsiveness Scale 2nd Edition (SRS-2); Colorado Learning Difficulties Questionnaire (CLDQ) and Strengths and Difficulties Questionnaire (SDQ). Almost half our sample reported a diagnosis of autism spectrum disorder (ASD) and 70% had intellectual disability. On the SDQ, over 90% of participants were rated in borderline/clinical ranges in Peer Problems, yet the majority fell within normal limits in Prosocial Behaviors. Most fell in the moderate/severe difficulties ranges across SRS-2 Social Cognition, Communication, and Restricted/Repetitive Behaviors scales (all >70%); whereas substantially less participants met these ranges for deficits in Social Awareness (50%) and Social Motivation (33.33%). A pattern of relatively strong prosocial skills and social drive in the context of difficulties with inflexible behaviors, social cognition, and communication was observed, regardless of gender, ASD or intellectual disability diagnosis. The social phenotype associated with WSS is characterized by some autistic features paired with unusually high social motivation and prosocial tendencies.
Collapse
Affiliation(s)
- Rowena Ng
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Allison Kalinousky
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hans Tomas Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - Jacqueline Harris
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Tesi B, Boileau C, Boycott KM, Canaud G, Caulfield M, Choukair D, Hill S, Spielmann M, Wedell A, Wirta V, Nordgren A, Lindstrand A. Precision medicine in rare diseases: What is next? J Intern Med 2023; 294:397-412. [PMID: 37211972 DOI: 10.1111/joim.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Molecular diagnostics is a cornerstone of modern precision medicine, broadly understood as tailoring an individual's treatment, follow-up, and care based on molecular data. In rare diseases (RDs), molecular diagnoses reveal valuable information about the cause of symptoms, disease progression, familial risk, and in certain cases, unlock access to targeted therapies. Due to decreasing DNA sequencing costs, genome sequencing (GS) is emerging as the primary method for precision diagnostics in RDs. Several ongoing European initiatives for precision medicine have chosen GS as their method of choice. Recent research supports the role for GS as first-line genetic investigation in individuals with suspected RD, due to its improved diagnostic yield compared to other methods. Moreover, GS can detect a broad range of genetic aberrations including those in noncoding regions, producing comprehensive data that can be periodically reanalyzed for years to come when further evidence emerges. Indeed, targeted drug development and repurposing of medicines can be accelerated as more individuals with RDs receive a molecular diagnosis. Multidisciplinary teams in which clinical specialists collaborate with geneticists, genomics education of professionals and the public, and dialogue with patient advocacy groups are essential elements for the integration of precision medicine into clinical practice worldwide. It is also paramount that large research projects share genetic data and leverage novel technologies to fully diagnose individuals with RDs. In conclusion, GS increases diagnostic yields and is a crucial step toward precision medicine for RDs. Its clinical implementation will enable better patient management, unlock targeted therapies, and guide the development of innovative treatments.
Collapse
Affiliation(s)
- Bianca Tesi
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Catherine Boileau
- Département de Génétique, APHP, Hôpital Bichat-Claude Bernard, Université Paris Cité, Paris, France
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Guillaume Canaud
- INSERM U1151, Unité de médecine translationnelle et thérapies ciblées, Hôpital Necker-Enfants Malades, Université Paris Cité, AP-HP, Paris, France
| | - Mark Caulfield
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Daniela Choukair
- Division of Pediatric Endocrinology and Diabetes, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany and Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sue Hill
- Chief Scientific Officer, NHS England, London, UK
| | - Malte Spielmann
- Institute of Human Genetics, University Hospitals Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Kiel, Germany
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institutet of Technology, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
St John M, Tripathi T, Morgan AT, Amor DJ. To speak may draw on epigenetic writing and reading: Unravelling the complexity of speech and language outcomes across chromatin-related neurodevelopmental disorders. Neurosci Biobehav Rev 2023; 152:105293. [PMID: 37353048 DOI: 10.1016/j.neubiorev.2023.105293] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Speech and language development are complex neurodevelopmental processes that are incompletely understood, yet current evidence suggests that speech and language disorders are prominent in those with disorders of chromatin regulation. This review aimed to unravel what is known about speech and language outcomes for individuals with chromatin-related neurodevelopmental disorders. A systematic literature search following PRISMA guidelines was conducted on 70 chromatin genes, to identify reports of speech/language outcomes across studies, including clinical reports, formal subjective measures, and standardised/objective measures. 3932 studies were identified and screened and 112 were systematically reviewed. Communication impairment was core across chromatin disorders, and specifically, chromatin writers and readers appear to play an important role in motor speech development. Identification of these relationships is important because chromatin disorders show promise as therapeutic targets due to the capacity for epigenetic modification. Further research is required using standardised and formal assessments to understand the nuanced speech/language profiles associated with variants in each gene, and the influence of chromatin dysregulation on the neurobiology of speech and language development.
Collapse
Affiliation(s)
- Miya St John
- Speech and Language, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Audiology and Speech Pathology, University of Melbourne, VIC, Australia.
| | - Tanya Tripathi
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Angela T Morgan
- Speech and Language, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Audiology and Speech Pathology, University of Melbourne, VIC, Australia; Speech Genomics Clinic, Royal Children's Hospital, Parkville, VIC, Australia.
| | - David J Amor
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, VIC, Australia; Speech Genomics Clinic, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, VIC, Australia.
| |
Collapse
|
23
|
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, Yuan B, Boone PM, Groopman EE, Délot EC, Jain D, Sanchis-Juan A, Starita LM, Talkowski M, Montgomery SB, Bamshad MJ, Chong JX, Wheeler MT, Berger SI, O'Donnell-Luria A, Sedlazeck FJ, Miller DE. Beyond the exome: What's next in diagnostic testing for Mendelian conditions. Am J Hum Genet 2023; 110:1229-1248. [PMID: 37541186 PMCID: PMC10432150 DOI: 10.1016/j.ajhg.2023.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/06/2023] Open
Abstract
Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order, and emerging technologies, such as optical genome mapping and long-read DNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to research consortia focused on elucidating the underlying cause of rare unsolved genetic disorders.
Collapse
Affiliation(s)
- Monica H Wojcik
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chloe M Reuter
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael H Duyzend
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hayk Barseghyan
- Center for Genetics Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Philip M Boone
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emily E Groopman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emmanuèle C Délot
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA; Center for Genetics Medicine Research, Children's National Research and Innovation Campus, Washington, DC, USA; Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lea M Starita
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen B Montgomery
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J Bamshad
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jessica X Chong
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Matthew T Wheeler
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seth I Berger
- Center for Genetics Medicine Research and Rare Disease Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Danny E Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Haghshenas S, Foroutan A, Bhai P, Levy MA, Relator R, Kerkhof J, McConkey H, Skinner CD, Caylor RC, Tedder ML, Stevenson RE, Sadikovic B, Schwartz CE. Identification of a DNA methylation signature for Renpenning syndrome (RENS1), a spliceopathy. Eur J Hum Genet 2023; 31:879-886. [PMID: 36797465 PMCID: PMC10400603 DOI: 10.1038/s41431-023-01313-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The challenges and ambiguities in providing an accurate diagnosis for patients with neurodevelopmental disorders have led researchers to apply epigenetics as a technique to validate the diagnosis provided based on the clinical examination and genetic testing results. Genome-wide DNA methylation analysis has recently been adapted for clinical testing of patients with genetic neurodevelopmental disorders. In this paper, preliminary data demonstrating a DNA methylation signature for Renpenning syndrome (RENS1 - OMIM 309500), which is an X-linked recessive neurodevelopmental disorder caused by variants in polyglutamine-binding protein 1 (PQBP1) is reported. The identified episignature was then utilized to construct a highly sensitive and specific binary classification model. Besides providing evidence for the existence of a DNA methylation episignature for Renpenning syndrome, this study increases the knowledge of the molecular mechanisms related to the disease. Moreover, the availability of more subjects in future may facilitate the establishment of an episignature that can be utilized for diagnosis in a clinical setting and for reclassification of variants of unknown clinical significance.
Collapse
Affiliation(s)
- Sadegheh Haghshenas
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Aidin Foroutan
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Pratibha Bhai
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Haley McConkey
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | | | | | | | | | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada.
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
| | - Charles E Schwartz
- Greenwood Genetic Center, Greenwood, SC, 29646, USA.
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
25
|
Craddock J, Jiang J, Patrick SM, Mutambirwa SBA, Stricker PD, Bornman MSR, Jaratlerdsiri W, Hayes VM. Alterations in the Epigenetic Machinery Associated with Prostate Cancer Health Disparities. Cancers (Basel) 2023; 15:3462. [PMID: 37444571 DOI: 10.3390/cancers15133462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Prostate cancer is driven by acquired genetic alterations, including those impacting the epigenetic machinery. With African ancestry as a significant risk factor for aggressive disease, we hypothesize that dysregulation among the roughly 656 epigenetic genes may contribute to prostate cancer health disparities. Investigating prostate tumor genomic data from 109 men of southern African and 56 men of European Australian ancestry, we found that African-derived tumors present with a longer tail of epigenetic driver gene candidates (72 versus 10). Biased towards African-specific drivers (63 versus 9 shared), many are novel to prostate cancer (18/63), including several putative therapeutic targets (CHD7, DPF3, POLR1B, SETD1B, UBTF, and VPS72). Through clustering of all variant types and copy number alterations, we describe two epigenetic PCa taxonomies capable of differentiating patients by ancestry and predicted clinical outcomes. We identified the top genes in African- and European-derived tumors representing a multifunctional "generic machinery", the alteration of which may be instrumental in epigenetic dysregulation and prostate tumorigenesis. In conclusion, numerous somatic alterations in the epigenetic machinery drive prostate carcinogenesis, but African-derived tumors appear to achieve this state with greater diversity among such alterations. The greater novelty observed in African-derived tumors illustrates the significant clinical benefit to be derived from a much needed African-tailored approach to prostate cancer healthcare aimed at reducing prostate cancer health disparities.
Collapse
Affiliation(s)
- Jenna Craddock
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Sean M Patrick
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa 0208, South Africa
| | - Phillip D Stricker
- Department of Urology, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - M S Riana Bornman
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Weerachai Jaratlerdsiri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Vanessa M Hayes
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
26
|
Gao CW, Lin W, Riddle RC, Kushwaha P, Boukas L, Björnsson HT, Hansen KD, Fahrner JA. Novel mouse model of Weaver syndrome displays overgrowth and excess osteogenesis reversible with KDM6A/6B inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546270. [PMID: 37425751 PMCID: PMC10327066 DOI: 10.1101/2023.06.23.546270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Weaver syndrome is a Mendelian disorder of the epigenetic machinery (MDEM) caused by germline pathogenic variants in EZH2, which encodes the predominant H3K27 methyltransferase and key enzymatic component of Polycomb repressive complex 2 (PRC2). Weaver syndrome is characterized by striking overgrowth and advanced bone age, intellectual disability, and distinctive facies. We generated a mouse model for the most common Weaver syndrome missense variant, EZH2 p.R684C. Ezh2R684C/R684C mouse embryonic fibroblasts (MEFs) showed global depletion of H3K27me3. Ezh2R684C/+ mice had abnormal bone parameters indicative of skeletal overgrowth, and Ezh2R684C/+ osteoblasts showed increased osteogenic activity. RNA-seq comparing osteoblasts differentiated from Ezh2R684C/+ and Ezh2+/+ bone marrow mesenchymal stem cells (BM-MSCs) indicated collective dysregulation of the BMP pathway and osteoblast differentiation. Inhibition of the opposing H3K27 demethylases Kdm6a/6b substantially reversed the excessive osteogenesis in Ezh2R684C/+ cells both at the transcriptional and phenotypic levels. This supports both the ideas that writers and erasers of histone marks exist in a fine balance to maintain epigenome state, and that epigenetic modulating agents have therapeutic potential for the treatment of MDEMs.
Collapse
Affiliation(s)
- Christine W Gao
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - WanYing Lin
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, MD
| | - Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Leandros Boukas
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD
| | - Hans T Björnsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | - Kasper D Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
27
|
Górecki M, Kozioł I, Kopystecka A, Budzyńska J, Zawitkowska J, Lejman M. Updates in KMT2A Gene Rearrangement in Pediatric Acute Lymphoblastic Leukemia. Biomedicines 2023; 11:biomedicines11030821. [PMID: 36979800 PMCID: PMC10045821 DOI: 10.3390/biomedicines11030821] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
The KMT2A (formerly MLL) encodes the histone lysine-specific N-methyltransferase 2A and is mapped on chromosome 11q23. KMT2A is a frequent target for recurrent translocations in acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), or mixed lineage (biphenotypic) leukemia (MLL). Over 90 KMT2A fusion partners have been identified until now, including the most recurring ones—AFF1, MLLT1, and MLLT3—which encode proteins regulating epigenetic mechanisms. The presence of distinct KMT2A rearrangements is an independent dismal prognostic factor, while very few KMT2A rearrangements display either a good or intermediate outcome. KMT2A-rearranged (KMT2A-r) ALL affects more than 70% of new ALL diagnoses in infants (<1 year of age), 5–6% of pediatric cases, and 15% of adult cases. KMT2A-rearranged (KMT2A-r) ALL is characterized by hyperleukocytosis, a relatively high incidence of central nervous system (CNS) involvement, an aggressive course with early relapse, and early relapses resulting in poor prognosis. The exact pathways of fusions and the effects on the final phenotypic activity of the disease are still subjects of much research. Future trials could consider the inclusion of targeted immunotherapeutic agents and prioritize the identification of prognostic factors, allowing for the less intensive treatment of some infants with KMT2A ALL. The aim of this review is to summarize our knowledge and present current insight into the mechanisms of KMT2A-r ALL, portray their characteristics, discuss the clinical outcome along with risk stratification, and present novel therapeutic strategies.
Collapse
Affiliation(s)
- Mateusz Górecki
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ilona Kozioł
- Student Scientific Society of the Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Agnieszka Kopystecka
- Student Scientific Society of the Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Julia Budzyńska
- Student Scientific Society of the Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
28
|
Ng R, Bjornsson HT, Fahrner JA, Harris J. Unique profile of academic learning difficulties in Wiedemann-Steiner syndrome. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2023; 67:101-111. [PMID: 36437529 PMCID: PMC9839653 DOI: 10.1111/jir.12993] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Wiedemann-Steiner syndrome (WSS) is a rare genetic disorder caused by heterozygous variants in KMT2A. To date, the cognitive profile associated with WSS remains largely unknown, although emergent case series implicate increased risk of non-verbal reasoning and visual processing deficits. This study examines the academic and learning concerns associated with WSS based on a parent-report screening measure. PARTICIPANTS AND METHODS A total of 25 parents of children/adults with a molecularly-confirmed diagnosis of WSS (mean age = 12.85 years, SD = 7.82) completed the Colorado Learning Difficulties Questionnaire (CLDQ), a parent-screening measure of learning and academic difficulties. Parent ratings were compared to those from a normative community sample to determine focal areas in Math, Reading and Spatial skills that may be weaker within this clinical population. RESULTS On average, parent ratings on the Math (mean Z = -3.08, SD = 0.87) and Spatial scales (mean Z = -2.52, SD = 0.85) were significantly more elevated than that of Reading (mean Z = -1.31, SD = 1.46) (Wilcoxon sign rank test Z < -3.83, P < 0.001), reflecting relatively more challenges observed in these areas. Distribution of parent ratings in Math items largely reflect a positively skewed distribution with most endorsing over three standard deviations below a community sample. In contrast, distributions of parent ratings in Reading and Spatial domains were more symmetric but flat. Ratings for Reading items yielded much larger variance than the other two domains, reflecting a wider range of performance variability. CONCLUSIONS Parent ratings on the CLDQ suggest more difficulties with Math and Spatial skills among those with WSS within group and relative to a community sample. Study results are consistent with recent case reports on the neuropsychological profile associated with WSS and with Kabuki syndrome, which is caused by variants in the related gene KMT2D. Findings lend support for overlapping cognitive patterns across syndromes, implicating potential common disease pathogenesis.
Collapse
Affiliation(s)
- Rowena Ng
- Kennedy Krieger Institute
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine
| | - Hans Tomas Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine
- Faculty of Medicine, University of Iceland, Reykjavik
- Landspitali University Hospital
| | - Jill A. Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine
| | - Jacqueline Harris
- Kennedy Krieger Institute
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine
- Department of Neurology, Johns Hopkins University School of Medicine
| |
Collapse
|
29
|
Ng R, Bjornsson HT, Fahrner JA, Harris J. Anxiety in Wiedemann-Steiner syndrome. Am J Med Genet A 2023; 191:437-444. [PMID: 36373844 PMCID: PMC9907226 DOI: 10.1002/ajmg.a.63040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
This study examined anxiety in Wiedemann-Steiner syndrome (WSS). Eighteen caregivers and participants with WSS completed the parent- and self-report versions of the Screen for Child Anxiety Related Disorder or the adapted version of the Screen for Adult Anxiety Related Disorder. Approximately 33.33% of parents and 65% of participants with WSS rated in the clinical range for overall anxiety. Across anxiety subtypes, parents primarily indicated concerns with Separation Anxiety (72%), which was also endorsed by the majority of participants with WSS (82%). The emergent trend showed Total Anxiety increased with age based on parent-informant ratings. The behavioral phenotype of WSS includes elevated anxiety. Clinical management should include incorporating early behavioral interventions to bolster emotion regulation given the observed risk of anxiety with age.
Collapse
Affiliation(s)
- Rowena Ng
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hans Tomas Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - Jill A. Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jacqueline Harris
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, Yuan B, Boone PM, Groopman EE, Délot EC, Jain D, Sanchis-Juan A, Starita LM, Talkowski M, Montgomery SB, Bamshad MJ, Chong JX, Wheeler MT, Berger SI, O’Donnell-Luria A, Sedlazeck FJ, Miller DE. Beyond the exome: what's next in diagnostic testing for Mendelian conditions. ARXIV 2023:arXiv:2301.07363v1. [PMID: 36713248 PMCID: PMC9882576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order and emerging technologies, such as optical genome mapping and long-read DNA or RNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to a consortium such as GREGoR, which is focused on elucidating the underlying cause of rare unsolved genetic disorders.
Collapse
Affiliation(s)
- Monica H. Wojcik
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chloe M. Reuter
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030 USA
| | - Michael H. Duyzend
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Hayk Barseghyan
- Center for Genetics Medicine Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010 USA
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037 USA
| | - Bo Yuan
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030 USA
| | - Philip M. Boone
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Emily E. Groopman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Emmanuèle C. Délot
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037 USA
- Center for Genetics Medicine Research, Children’s National Research and Innovation Campus, Washington, DC, USA
- Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037 USA
| | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle WA 98195 USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | | | - Lea M. Starita
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195 USA
| | - Michael Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Stephen B. Montgomery
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael J. Bamshad
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195 USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195 USA
| | - Jessica X. Chong
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195 USA
| | - Matthew T. Wheeler
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Seth I. Berger
- Center for Genetics Medicine Research and Rare Disease Institute, Children’s National Hospital, Washington, DC 20010 USA
| | - Anne O’Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Fritz J. Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030 USA
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, 77005 USA
| | - Danny E. Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
31
|
Gravholt CH, Viuff M, Just J, Sandahl K, Brun S, van der Velden J, Andersen NH, Skakkebaek A. The Changing Face of Turner Syndrome. Endocr Rev 2023; 44:33-69. [PMID: 35695701 DOI: 10.1210/endrev/bnac016] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 01/20/2023]
Abstract
Turner syndrome (TS) is a condition in females missing the second sex chromosome (45,X) or parts thereof. It is considered a rare genetic condition and is associated with a wide range of clinical stigmata, such as short stature, ovarian dysgenesis, delayed puberty and infertility, congenital malformations, endocrine disorders, including a range of autoimmune conditions and type 2 diabetes, and neurocognitive deficits. Morbidity and mortality are clearly increased compared with the general population and the average age at diagnosis is quite delayed. During recent years it has become clear that a multidisciplinary approach is necessary toward the patient with TS. A number of clinical advances has been implemented, and these are reviewed. Our understanding of the genomic architecture of TS is advancing rapidly, and these latest developments are reviewed and discussed. Several candidate genes, genomic pathways and mechanisms, including an altered transcriptome and epigenome, are also presented.
Collapse
Affiliation(s)
- Claus H Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Mette Viuff
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Kristian Sandahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Sara Brun
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Janielle van der Velden
- Department of Pediatrics, Radboud University Medical Centre, Amalia Children's Hospital, 6525 Nijmegen, the Netherlands
| | - Niels H Andersen
- Department of Cardiology, Aalborg University Hospital, Aalborg 9000, Denmark
| | - Anne Skakkebaek
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus 8200 N, Denmark
| |
Collapse
|
32
|
Li S, Li H, Liu D, Xing Q, Chen X, Zhang H, Wen J, Zhu H, Liang D, Li Z, Wu L. Identification of novel mendelian disorders of the epigenetic machinery (MDEMs) associated functional mutations and neurodevelopmental disorders. QJM 2023; 116:355-364. [PMID: 36625521 DOI: 10.1093/qjmed/hcad005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mendelian disorders of the epigenetic machinery (MDEMs) are a newly identified group of neurodevelopmental disorders (NDDs) and multiple congenital anoMalies caused by mutations in genes encoding components of the epigenetic machinery. Many studies have shown that MDEM-associated mutations may disrupt the balance between chromatin states and trigger dysplasia. AIM To help eight Chinese families with neurodevelopmental disorders acquire a definitive diagnosis. METHODS In this study, we used whole-exome sequencing (WES) to diagnose eight unrelated Chinese families with NDDs. We also verified the potential pathogenic variants by Sanger sequencing and analyzed the changes in gene expression along with histone methylation modifications. RESULTS Eight variants of six epigenetic machinery genes were identified, six of which were novel. Six variants were pathogenic (P) or likely pathogenic (LP), while two novel missense variants (c.5113T>C in CHD1 and c.10444C>T in KMT2D) were classified to be variants of uncertain significance (VUS). Further functional studies verified that c.5113T>C in CHD1 results in decreased protein levels and increased chromatin modifications (H3K27me3). In addition, c.10444C>T in KMT2D led to a significant decrease in mRNA transcription and chromatin modifications (H3K4me1). Based on experimental evidence, these two VUS variants could be classified as LP. CONCLUSION This study provided a definitive diagnosis of eight families with NDDs and expanded the mutation spectrum of MDEMs, enriching the pathogenesis study of variants in epigenetic machinery genes.
Collapse
Affiliation(s)
- Shun Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Huijuan Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Dihua Liu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Qin Xing
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Xin Chen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Hongyun Zhang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Juan Wen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Huimin Zhu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, 410078, China
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, 410078, China
| |
Collapse
|
33
|
Grolaux R, Hardy A, Olsen C, Van Dooren S, Smits G, Defrance M. Identification of differentially methylated regions in rare diseases from a single-patient perspective. Clin Epigenetics 2022; 14:174. [PMID: 36527161 PMCID: PMC9758859 DOI: 10.1186/s13148-022-01403-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND DNA methylation (5-mC) is being widely recognized as an alternative in the detection of sequence variants in the diagnosis of some rare neurodevelopmental and imprinting disorders. Identification of alterations in DNA methylation plays an important role in the diagnosis and understanding of the etiology of those disorders. Canonical pipelines for the detection of differentially methylated regions (DMRs) usually rely on inter-group (e.g., case versus control) comparisons. However, these tools might perform suboptimally in the context of rare diseases and multilocus imprinting disturbances due to small cohort sizes and inter-patient heterogeneity. Therefore, there is a need to provide a simple but statistically robust pipeline for scientists and clinicians to perform differential methylation analyses at the single patient level as well as to evaluate how parameter fine-tuning may affect differentially methylated region detection. RESULT We implemented an improved statistical method to detect differentially methylated regions in correlated datasets based on the Z-score and empirical Brown aggregation methods from a single-patient perspective. To accurately assess the predictive power of our method, we generated semi-simulated data using a public control population of 521 samples and investigated how the size of the control population, methylation difference, and region size affect DMR detection. In addition, we validated the detection of methylation events in patients suffering from rare multi-locus imprinting disturbance and evaluated how this method could complement existing tools in the context of clinical diagnosis. CONCLUSION In this study, we present a robust statistical method to perform differential methylation analysis at the single patient level and describe its optimal parameters to increase DMRs identification performance. Finally, we show its diagnostic utility when applied to rare disorders.
Collapse
Affiliation(s)
- Robin Grolaux
- grid.4989.c0000 0001 2348 0746Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexis Hardy
- grid.4989.c0000 0001 2348 0746Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Catharina Olsen
- grid.8767.e0000 0001 2290 8069Clinical Sciences, Research Group Reproduction and Genetics, Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Interuniversity Institute of Bioinformatics in Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Sonia Van Dooren
- grid.8767.e0000 0001 2290 8069Clinical Sciences, Research Group Reproduction and Genetics, Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Interuniversity Institute of Bioinformatics in Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Guillaume Smits
- grid.4989.c0000 0001 2348 0746Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium ,grid.4989.c0000 0001 2348 0746Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Matthieu Defrance
- grid.4989.c0000 0001 2348 0746Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
34
|
Pantothenate and L-Carnitine Supplementation Improves Pathological Alterations in Cellular Models of KAT6A Syndrome. Genes (Basel) 2022; 13:genes13122300. [PMID: 36553567 PMCID: PMC9778406 DOI: 10.3390/genes13122300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in several genes involved in the epigenetic regulation of gene expression have been considered risk alterations to different intellectual disability (ID) syndromes associated with features of autism spectrum disorder (ASD). Among them are the pathogenic variants of the lysine-acetyltransferase 6A (KAT6A) gene, which causes KAT6A syndrome. The KAT6A enzyme participates in a wide range of critical cellular functions, such as chromatin remodeling, gene expression, protein synthesis, cell metabolism, and replication. In this manuscript, we examined the pathophysiological alterations in fibroblasts derived from three patients harboring KAT6A mutations. We addressed survival in a stress medium, histone acetylation, protein expression patterns, and transcriptome analysis, as well as cell bioenergetics. In addition, we evaluated the therapeutic effectiveness of epigenetic modulators and mitochondrial boosting agents, such as pantothenate and L-carnitine, in correcting the mutant phenotype. Pantothenate and L-carnitine treatment increased histone acetylation and partially corrected protein and transcriptomic expression patterns in mutant KAT6A cells. Furthermore, the cell bioenergetics of mutant cells was significantly improved. Our results suggest that pantothenate and L-carnitine can significantly improve the mutant phenotype in cellular models of KAT6A syndrome.
Collapse
|
35
|
van der Laan L, Rooney K, Alders M, Relator R, McConkey H, Kerkhof J, Levy MA, Lauffer P, Aerden M, Theunis M, Legius E, Tedder ML, Vissers LELM, Koene S, Ruivenkamp C, Hoffer MJV, Wieczorek D, Bramswig NC, Herget T, González VL, Santos-Simarro F, Tørring PM, Denomme-Pichon AS, Isidor B, Keren B, Julia S, Schaefer E, Francannet C, Maillard PY, Misra-Isrie M, Van Esch H, Mannens MMAM, Sadikovic B, van Haelst MM, Henneman P. Episignature Mapping of TRIP12 Provides Functional Insight into Clark-Baraitser Syndrome. Int J Mol Sci 2022; 23:ijms232213664. [PMID: 36430143 PMCID: PMC9690904 DOI: 10.3390/ijms232213664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Clark-Baraitser syndrome is a rare autosomal dominant intellectual disability syndrome caused by pathogenic variants in the TRIP12 (Thyroid Hormone Receptor Interactor 12) gene. TRIP12 encodes an E3 ligase in the ubiquitin pathway. The ubiquitin pathway includes activating E1, conjugating E2 and ligating E3 enzymes which regulate the breakdown and sorting of proteins. This enzymatic pathway is crucial for physiological processes. A significant proportion of TRIP12 variants are currently classified as variants of unknown significance (VUS). Episignatures have been shown to represent a powerful diagnostic tool to resolve inconclusive genetic findings for Mendelian disorders and to re-classify VUSs. Here, we show the results of DNA methylation episignature analysis in 32 individuals with pathogenic, likely pathogenic and VUS variants in TRIP12. We identified a specific and sensitive DNA methylation (DNAm) episignature associated with pathogenic TRIP12 variants, establishing its utility as a clinical biomarker for Clark-Baraitser syndrome. In addition, we performed analysis of differentially methylated regions as well as functional correlation of the TRIP12 genome-wide methylation profile with the profiles of 56 additional neurodevelopmental disorders.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Kathleen Rooney
- Department of Pathology and Laboratory Medicine, Western University, London, ON N5A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON N6A 5W9, Canada
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Department of Pathology and Laboratory Medicine, Western University, London, ON N5A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Department of Pathology and Laboratory Medicine, Western University, London, ON N5A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON N6A 5W9, Canada
| | - Michael A. Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON N6A 5W9, Canada
| | - Peter Lauffer
- Department of Pediatric Endocrinology, Emma Children’s Hospital, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mio Aerden
- Centre for Human Genetics, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Miel Theunis
- Centre for Human Genetics, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Eric Legius
- Centre for Human Genetics, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | | | - Lisenka E. L. M. Vissers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Saskia Koene
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Mariette J. V. Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Nuria C. Bramswig
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Theresia Herget
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Vanesa López González
- Sección Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, CIBERER, 30120 Murcia, Spain
| | - Fernando Santos-Simarro
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, 28029 Madrid, Spain
| | - Pernille M. Tørring
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark
| | - Anne-Sophie Denomme-Pichon
- UF6254 Innovation en Diagnostic Genomique des Maladies Rares, 21070 Dijon, France
- Équipe Génétique des Anomalies du Développement (GAD), CHU Dijon-Bourgogne, 21000 Dijon, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France
| | - Boris Keren
- Department of Medical Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne Université, 75013 Paris, France
| | - Sophie Julia
- Service de Génétique Clinique, CHU Toulouse, 31300 Toulouse, France
| | - Elise Schaefer
- Service de Génétique Clinique, CHU Toulouse, 31300 Toulouse, France
| | - Christine Francannet
- Service de Genetique Medicale, CHU de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | | | - Mala Misra-Isrie
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Hilde Van Esch
- Centre for Human Genetics, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Marcel M. A. M. Mannens
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON N5A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON N6A 5W9, Canada
- Correspondence: (B.S.); (P.H.)
| | - Mieke M. van Haelst
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Correspondence: (B.S.); (P.H.)
| |
Collapse
|
36
|
van der Laan L, Rooney K, Trooster TM, Mannens MM, Sadikovic B, Henneman P. DNA methylation episignatures: insight into copy number variation. Epigenomics 2022; 14:1373-1388. [PMID: 36537268 DOI: 10.2217/epi-2022-0287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this review we discuss epigenetic disorders that result from aberrations in genes linked to epigenetic regulation. We describe current testing methods for the detection of copy number variants (CNVs) in Mendelian disorders, dosage sensitivity, reciprocal phenotypes and the challenges of test selection and overlapping clinical features in genetic diagnosis. We discuss aberrations of DNA methylation and propose a role for episignatures as a novel clinical testing method in CNV disorders. Finally, we postulate that episignature mapping in CNV disorders may provide novel insights into the molecular mechanisms of disease and unlock key findings of the genome-wide impact on disease gene networks.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| | - Kathleen Rooney
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, N5A 3K7, Canada.,Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, N6A 5W9, Canada
| | - Tessa Ma Trooster
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| | - Marcel Mam Mannens
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| | - Bekim Sadikovic
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, N5A 3K7, Canada.,Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, N6A 5W9, Canada
| | - Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| |
Collapse
|
37
|
Di Fede E, Grazioli P, Lettieri A, Parodi C, Castiglioni S, Taci E, Colombo EA, Ancona S, Priori A, Gervasini C, Massa V. Epigenetic disorders: Lessons from the animals–animal models in chromatinopathies. Front Cell Dev Biol 2022; 10:979512. [PMID: 36225316 PMCID: PMC9548571 DOI: 10.3389/fcell.2022.979512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatinopathies are defined as genetic disorders caused by mutations in genes coding for protein involved in the chromatin state balance. So far 82 human conditions have been described belonging to this group of congenital disorders, sharing some molecular features and clinical signs. For almost all of these conditions, no specific treatment is available. For better understanding the molecular cascade caused by chromatin imbalance and for envisaging possible therapeutic strategies it is fundamental to combine clinical and basic research studies. To this end, animal modelling systems represent an invaluable tool to study chromatinopathies. In this review, we focused on available data in the literature of animal models mimicking the human genetic conditions. Importantly, affected organs and abnormalities are shared in the different animal models and most of these abnormalities are reported as clinical manifestation, underlying the parallelism between clinics and translational research.
Collapse
Affiliation(s)
- Elisabetta Di Fede
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Antonella Lettieri
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Silvia Castiglioni
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Esi Taci
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Elisa Adele Colombo
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Silvia Ancona
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Alberto Priori
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
- *Correspondence: Valentina Massa,
| |
Collapse
|
38
|
Volpatti JR, Ghahramani-Seno MM, Mansat M, Sabha N, Sarikaya E, Goodman SJ, Chater-Diehl E, Celik A, Pannia E, Froment C, Combes-Soia L, Maani N, Yuki KE, Chicanne G, Uusküla-Reimand L, Monis S, Alvi SA, Genetti CA, Payrastre B, Beggs AH, Bonnemann CG, Muntoni F, Wilson MD, Weksberg R, Viaud J, Dowling JJ. X-linked myotubular myopathy is associated with epigenetic alterations and is ameliorated by HDAC inhibition. Acta Neuropathol 2022; 144:537-563. [PMID: 35844027 PMCID: PMC9381459 DOI: 10.1007/s00401-022-02468-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
X-linked myotubular myopathy (XLMTM) is a fatal neuromuscular disorder caused by loss of function mutations in MTM1. At present, there are no directed therapies for XLMTM, and incomplete understanding of disease pathomechanisms. To address these knowledge gaps, we performed a drug screen in mtm1 mutant zebrafish and identified four positive hits, including valproic acid, which functions as a potent suppressor of the mtm1 zebrafish phenotype via HDAC inhibition. We translated these findings to a mouse XLMTM model, and showed that valproic acid ameliorates the murine phenotype. These observations led us to interrogate the epigenome in Mtm1 knockout mice; we found increased DNA methylation, which is normalized with valproic acid, and likely mediated through aberrant 1-carbon metabolism. Finally, we made the unexpected observation that XLMTM patients share a distinct DNA methylation signature, suggesting that epigenetic alteration is a conserved disease feature amenable to therapeutic intervention.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Epigenesis, Genetic
- Mice
- Muscle, Skeletal/metabolism
- Myopathies, Structural, Congenital/drug therapy
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Valproic Acid/metabolism
- Valproic Acid/pharmacology
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Jonathan R Volpatti
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Mehdi M Ghahramani-Seno
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Mélanie Mansat
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM, UMR-S U1297 and University of Toulouse III, CHU-Rangueil, Toulouse, France
| | - Nesrin Sabha
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Ege Sarikaya
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Sarah J Goodman
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Eric Chater-Diehl
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Alper Celik
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Emanuela Pannia
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Carine Froment
- Institut de Pharmacologie Et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucie Combes-Soia
- Institut de Pharmacologie Et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nika Maani
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Kyoko E Yuki
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Gaëtan Chicanne
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM, UMR-S U1297 and University of Toulouse III, CHU-Rangueil, Toulouse, France
| | - Liis Uusküla-Reimand
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Simon Monis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Sana Akhtar Alvi
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Casie A Genetti
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bernard Payrastre
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM, UMR-S U1297 and University of Toulouse III, CHU-Rangueil, Toulouse, France
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse Cedex, France
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carsten G Bonnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, NIH, Bethesda, MD, USA
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Rosanna Weksberg
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Julien Viaud
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM, UMR-S U1297 and University of Toulouse III, CHU-Rangueil, Toulouse, France
| | - James J Dowling
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
39
|
Mitchener MM, Muir TW. Oncohistones: Exposing the nuances and vulnerabilities of epigenetic regulation. Mol Cell 2022; 82:2925-2938. [PMID: 35985302 PMCID: PMC9482148 DOI: 10.1016/j.molcel.2022.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022]
Abstract
Work over the last decade has uncovered a new layer of epigenetic dysregulation. It is now appreciated that somatic missense mutations in histones, the packaging agents of genomic DNA, are often associated with human pathologies, especially cancer. Although some of these "oncohistone" mutations are thought to be key drivers of cancer, the impacts of the majority of them on disease onset and progression remain to be elucidated. Here, we survey this rapidly expanding research field with particular emphasis on how histone mutants, even at low dosage, can corrupt chromatin states. This work is unveiling the remarkable intricacies of epigenetic control mechanisms. Throughout, we highlight how studies of oncohistones have leveraged, and in some cases fueled, the advances in our ability to manipulate and interrogate chromatin at the molecular level.
Collapse
Affiliation(s)
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
40
|
Montano C, Britton JF, Harris JR, Kerkhof J, Barnes BT, Lee JA, Sadikovic B, Sobreira N, Fahrner JA. Genome-wide DNA methylation profiling confirms a case of low-level mosaic Kabuki syndrome 1. Am J Med Genet A 2022; 188:2217-2225. [PMID: 35384273 PMCID: PMC9321966 DOI: 10.1002/ajmg.a.62754] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/22/2022] [Accepted: 03/18/2022] [Indexed: 12/27/2022]
Abstract
Kabuki syndrome is a Mendelian disorder of the epigenetic machinery characterized by typical dysmorphic features, intellectual disability, and postnatal growth deficiency. Pathogenic variants in the genes encoding the chromatin modifiers KMT2D and KDM6A are responsible for Kabuki syndrome 1 (KS1) and Kabuki syndrome 2 (KS2), respectively. In addition, 11 cases of KS1 caused by mosaic variants in KMT2D have been reported in the literature. Some of these individuals display milder craniofacial and growth phenotypes, and most do not have congenital heart defects. We report the case of an infant with severe hypoplastic left heart syndrome with mitral atresia and aortic atresia (HLHS MA-AA), pulmonary vein stenosis, and atypical facies with a somatic mosaic de novo nonsense variant in KMT2D (c.8200C>T, p.R2734*) identified on trio exome sequencing of peripheral blood and present in 11.2% of sequencing reads. KS was confirmed with EpiSign, a diagnostic genome-wide DNA methylation platform used to identify epigenetic signatures. This case suggests that use of this newly available clinical test can guide the interpretation of low-level mosaic variants identified through sequencing and suggests a new lower limit of mosaicism in whole blood required for a diagnosis of KS.
Collapse
Affiliation(s)
- Carolina Montano
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacquelyn F Britton
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jacqueline R Harris
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jennifer Kerkhof
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada
| | - Benjamin T Barnes
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer A Lee
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Bekim Sadikovic
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Nara Sobreira
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Nothof SA, Magdinier F, Van-Gils J. Chromatin Structure and Dynamics: Focus on Neuronal Differentiation and Pathological Implication. Genes (Basel) 2022; 13:genes13040639. [PMID: 35456445 PMCID: PMC9029427 DOI: 10.3390/genes13040639] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Chromatin structure is an essential regulator of gene expression. Its state of compaction contributes to the regulation of genetic programs, in particular during differentiation. Epigenetic processes, which include post-translational modifications of histones, DNA methylation and implication of non-coding RNA, are powerful regulators of gene expression. Neurogenesis and neuronal differentiation are spatio-temporally regulated events that allow the formation of the central nervous system components. Here, we review the chromatin structure and post-translational histone modifications associated with neuronal differentiation. Studying the impact of histone modifications on neuronal differentiation improves our understanding of the pathophysiological mechanisms of chromatinopathies and opens up new therapeutic avenues. In addition, we will discuss techniques for the analysis of histone modifications on a genome-wide scale and the pathologies associated with the dysregulation of the epigenetic machinery.
Collapse
Affiliation(s)
- Sophie A. Nothof
- Marseille Medical Genetics, Aix Marseille University, Inserm, CEDEX 05, 13385 Marseille, France; (S.A.N.); (F.M.)
| | - Frédérique Magdinier
- Marseille Medical Genetics, Aix Marseille University, Inserm, CEDEX 05, 13385 Marseille, France; (S.A.N.); (F.M.)
| | - Julien Van-Gils
- Marseille Medical Genetics, Aix Marseille University, Inserm, CEDEX 05, 13385 Marseille, France; (S.A.N.); (F.M.)
- Reference Center AD SOOR, AnDDI-RARE, Inserm U 1211, Medical Genetics Department, Bordeaux University, Center Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France
- Correspondence:
| |
Collapse
|
42
|
Castiglioni S, Di Fede E, Bernardelli C, Lettieri A, Parodi C, Grazioli P, Colombo EA, Ancona S, Milani D, Ottaviano E, Borghi E, Massa V, Ghelma F, Vignoli A, Lesma E, Gervasini C. KMT2A: Umbrella Gene for Multiple Diseases. Genes (Basel) 2022; 13:genes13030514. [PMID: 35328068 PMCID: PMC8949091 DOI: 10.3390/genes13030514] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 02/05/2023] Open
Abstract
KMT2A (Lysine methyltransferase 2A) is a member of the epigenetic machinery, encoding a lysine methyltransferase responsible for the transcriptional activation through lysine 4 of histone 3 (H3K4) methylation. KMT2A has a crucial role in gene expression, thus it is associated to pathological conditions when found mutated. KMT2A germinal mutations are associated to Wiedemann–Steiner syndrome and also in patients with initial clinical diagnosis of several other chromatinopathies (i.e., Coffin–Siris syndromes, Kabuki syndrome, Cornelia De Lange syndrome, Rubinstein–Taybi syndrome), sharing an overlapping phenotype. On the other hand, KMT2A somatic mutations have been reported in several tumors, mainly blood malignancies. Due to its evolutionary conservation, the role of KMT2A in embryonic development, hematopoiesis and neurodevelopment has been explored in different animal models, and in recent decades, epigenetic treatments for disorders linked to KMT2A dysfunction have been extensively investigated. To note, pharmaceutical compounds acting on tumors characterized by KMT2A mutations have been formulated, and even nutritional interventions for chromatinopathies have become the object of study due to the role of microbiota in epigenetic regulation.
Collapse
Affiliation(s)
- Silvia Castiglioni
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Elisabetta Di Fede
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Clara Bernardelli
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Antonella Lettieri
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, 20142 Milan, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Paolo Grazioli
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Elisa Adele Colombo
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Silvia Ancona
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Donatella Milani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Emerenziana Ottaviano
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Elisa Borghi
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Valentina Massa
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, 20142 Milan, Italy
| | - Filippo Ghelma
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Aglaia Vignoli
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- Child NeuroPsychiatry Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Elena Lesma
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Cristina Gervasini
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, 20142 Milan, Italy
- Correspondence: ; Tel.: +39-0250-3230-28
| |
Collapse
|
43
|
Ng R, Bjornsson HT, Fahrner JA, Harris J. Sleep disturbances correlate with behavioral problems among individuals with Wiedemann-Steiner syndrome. Front Genet 2022; 13:950082. [PMID: 36313433 PMCID: PMC9608624 DOI: 10.3389/fgene.2022.950082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Wiedemann-Steiner syndrome (WSS) is a rare genetic disorder caused by mutation in KMT2A and characterized by neurodevelopmental delay. This study is the first prospective investigation to examine the sleep and behavioral phenotypes among those with WSS through parent-informant screening inventories. A total of 24 parents of children/adults with WSS (11F, Mean age = 12.71 years, SD = 8.17) completed the Strengths and Difficulties Questionnaire (SDQ) and 22 of these caregivers also completed the Modified Simonds and Parraga Sleep Questionnaire (MSPSQ). On average, the majority of those with WSS (83%) were rated to show borderline to clinical level of behavioral difficulties on the SDQ. Approximately 83% were rated in these ranges for hyperactivity, 63% for emotional problems, and 50% for conduct problems. When applying prior published clinical cut-off for risk of sleep disturbance among those with neurodevelopmental disorders, over 80% of our sample exceeded this limit on the MSPSQ. Largely, caregivers' ratings suggested restless sleep, rigid bedtime rituals, sleep reluctance and breathing through the mouth in sleep were most consistent problems observed. Partial correlations between sleep and behavioral domains showed elevated emotional problems were associated with parasomnia characteristics after controlling for age. Daytime drowsiness and activity were associated with more hyperactivity. Those with more night waking problems and delayed sleep onset were rated to show more severe conduct problems. Overall, these findings suggest dysfunctional sleep behaviors, hyperactivity, and affective problems are part of the neurobehavioral phenotype of WSS. Routine clinical care for those affected by WSS should include close monitoring of sleep and overactive behaviors.
Collapse
Affiliation(s)
- Rowena Ng
- Kennedy Krieger Institute, Baltimore, MD, United States.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hans Tomas Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Landspitali University Hospital, Reykjavik, Iceland
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jacqueline Harris
- Kennedy Krieger Institute, Baltimore, MD, United States.,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
44
|
Xin T, Li Q, Bai R, Zhang T, Zhou Y, Zhang Y, Han B, Yang R. A novel mutation of SATB2 inhibits odontogenesis of human dental pulp stem cells through Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2021; 12:595. [PMID: 34863303 PMCID: PMC8642962 DOI: 10.1186/s13287-021-02660-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND SATB2-associated syndrome (SAS) is a multisystem disorder caused by mutation of human SATB2 gene. Tooth agenesis is one of the most common phenotypes observed in SAS. Our study aimed at identifying novel variant of SATB2 in a patient with SAS, and to investigate the cellular and molecular mechanism of tooth agenesis caused by SATB2 mutation. METHODS We applied whole exome sequencing (WES) to identify the novel mutation of SATB2 in a Chinese patient with SAS. Construction and overexpression of wild-type and the mutant vector was performed, followed by functional analysis including flow cytometry assay, fluorescent immunocytochemistry, western blot, quantitative real-time PCR and Alizarin Red S staining to investigate its impact on hDPSCs and the underlying mechanisms. RESULTS As a result, we identified a novel frameshift mutation of SATB2 (c. 376_378delinsTT) in a patient with SAS exhibiting tooth agenesis. Human DPSCs transfected with mutant SATB2 showed decreased cell proliferation and odontogenic differentiation capacity compared with hDPSCs transfected with wild-type SATB2 plasmid. Mechanistically, mutant SATB2 failed to translocate into nucleus and distributed in the cytoplasm, failing to activate Wnt/β-catenin signaling pathway, whereas the wild-type SATB2 translocated into the nucleus and upregulated the expression of active β-catenin. When we used Wnt inhibitor XAV939 to treat hDPSCs transfected with wild-type SATB2 plasmid, the increased odontogenic differentiation capacity was attenuated. Furthermore, we found that SATB2 mutation resulted in the upregulation of DKK1 and histone demethylase JHDM1D to inhibit Wnt/β-catenin signaling pathway. CONCLUSION We identified a novel frameshift mutation of SATB2 (c.376_378delinsTT, p.Leu126SerfsX6) in a Chinese patient with SATB2-associated syndrome (SAS) exhibiting tooth agenesis. Mechanistically, SATB2 regulated osteo/odontogenesis of human dental pulp stem cells through Wnt/β-catenin signaling pathway by regulating DKK1 and histone demethylase JHDM1D.
Collapse
Affiliation(s)
- Tianyi Xin
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Ting Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| | - Ruili Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
45
|
Levy MA, Beck DB, Metcalfe K, Douzgou S, Sithambaram S, Cottrell T, Ansar M, Kerkhof J, Mignot C, Nougues MC, Keren B, Moore HW, Oegema R, Giltay JC, Simon M, van Jaarsveld RH, Bos J, van Haelst M, Motazacker MM, Boon EMJ, Santen GWE, Ruivenkamp CAL, Alders M, Luperchio TR, Boukas L, Ramsey K, Narayanan V, Schaefer GB, Bonasio R, Doheny KF, Stevenson RE, Banka S, Sadikovic B, Fahrner JA. Deficiency of TET3 leads to a genome-wide DNA hypermethylation episignature in human whole blood. NPJ Genom Med 2021; 6:92. [PMID: 34750377 PMCID: PMC8576018 DOI: 10.1038/s41525-021-00256-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022] Open
Abstract
TET3 encodes an essential dioxygenase involved in epigenetic regulation through DNA demethylation. TET3 deficiency, or Beck-Fahrner syndrome (BEFAHRS; MIM: 618798), is a recently described neurodevelopmental disorder of the DNA demethylation machinery with a nonspecific phenotype resembling other chromatin-modifying disorders, but inconsistent variant types and inheritance patterns pose diagnostic challenges. Given TET3's direct role in regulating 5-methylcytosine and recent identification of syndrome-specific DNA methylation profiles, we analyzed genome-wide DNA methylation in whole blood of TET3-deficient individuals and identified an episignature that distinguishes affected and unaffected individuals and those with mono-allelic and bi-allelic pathogenic variants. Validation and testing of the episignature correctly categorized known TET3 variants and determined pathogenicity of variants of uncertain significance. Clinical utility was demonstrated when the episignature alone identified an affected individual from over 1000 undiagnosed cases and was confirmed upon distinguishing TET3-deficient individuals from those with 46 other disorders. The TET3-deficient signature - and the signature resulting from activating mutations in DNMT1 which normally opposes TET3 - are characterized by hypermethylation, which for BEFAHRS involves CpG sites that may be biologically relevant. This work expands the role of epi-phenotyping in molecular diagnosis and reveals genome-wide DNA methylation profiling as a quantitative, functional readout for characterization of this new biochemical category of disease.
Collapse
Affiliation(s)
- Michael A Levy
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada
| | - David B Beck
- National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Kay Metcalfe
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Health Innovation Manchester, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Sofia Douzgou
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Health Innovation Manchester, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Sivagamy Sithambaram
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Health Innovation Manchester, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Trudie Cottrell
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Health Innovation Manchester, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, 45320, Islamabad, Pakistan
| | - Jennifer Kerkhof
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada
| | - Cyril Mignot
- Assistance Publique-Hopitaux de Paris, Sorbonne Université, Departement de Génétique, Groupe Hospitalier Pitie-Salpetriere et Hopital Trousseau, Paris, 75651, France
| | - Marie-Christine Nougues
- Department of Neuropediatrics, Armand Trousseau Hospital, Assistance Publique-Hopitaux de Paris, Paris, 75012, France
| | - Boris Keren
- Laboratoire de génétique, Hôpital Pïtié-Salpêtrière, Assistance Publique-Hopitaux de Paris, Paris, 75013, France
| | | | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jacques C Giltay
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marleen Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Richard H van Jaarsveld
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jessica Bos
- Section Clinical Genetics, Department Human Genetics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Mieke van Haelst
- Section Clinical Genetics, Department Human Genetics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - M Mahdi Motazacker
- Department of Human Genetics, Laboratory of Genome Diagnostics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Elles M J Boon
- Department of Human Genetics, VU University Medical Center Amsterdam, Amsterdam UMC, van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Claudia A L Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marielle Alders
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Teresa Romeo Luperchio
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Leandros Boukas
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Roberto Bonasio
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kimberly F Doheny
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Health Innovation Manchester, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Bekim Sadikovic
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A5W9, Canada.
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
46
|
Kapoor D, Garg D, Sharma S. Emerging Role of the Ketogenic Dietary Therapies beyond Epilepsy in Child Neurology. Ann Indian Acad Neurol 2021; 24:470-480. [PMID: 34728937 PMCID: PMC8513984 DOI: 10.4103/aian.aian_20_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 01/18/2023] Open
Abstract
Ketogenic dietary therapies (KDTs) have been in use for refractory paediatric epilepsy for a century now. Over time, KDTs themselves have undergone various modifications to improve tolerability and clinical feasibility, including the Modified Atkins diet (MAD), medium chain triglyceride (MCT) diet and the low glycaemic index treatment (LGIT). Animal and observational studies indicate numerous benefits of KDTs in paediatric neurological conditions apart from their evident benefits in childhood intractable epilepsy, including neurodevelopmental disorders such as autism spectrum disorder, rarer neurogenetic conditions such as Rett syndrome, Fragile X syndrome and Kabuki syndrome, neurodegenerative conditions such as Pelizaeus-Merzbacher disease, and other conditions such as stroke and migraine. A large proportion of the evidence is derived from individual case reports, case series and some small clinical trials, emphasising the vast scope for research in this avenue. The term 'neuroketotherapeutics' has been coined recently to encompass the rapid strides in this field. In the 100th year of its use for paediatric epilepsy, this review covers the role of the KDTs in non-epilepsy neurological conditions among children.
Collapse
Affiliation(s)
- Dipti Kapoor
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| | - Divyani Garg
- Department of Neurology, Lady Hardinge Medical College and Smt. Sucheta Kriplani Hospital, New Delhi, India
| | - Suvasini Sharma
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| |
Collapse
|
47
|
Luperchio TR, Boukas L, Zhang L, Pilarowski G, Jiang J, Kalinousky A, Hansen KD, Bjornsson HT. Leveraging the Mendelian disorders of the epigenetic machinery to systematically map functional epigenetic variation. eLife 2021; 10:65884. [PMID: 34463256 PMCID: PMC8443249 DOI: 10.7554/elife.65884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Although each Mendelian Disorder of the Epigenetic Machinery (MDEM) has a different causative gene, there are shared disease manifestations. We hypothesize that this phenotypic convergence is a consequence of shared epigenetic alterations. To identify such shared alterations, we interrogate chromatin (ATAC-seq) and expression (RNA-seq) states in B cells from three MDEM mouse models (Kabuki [KS] type 1 and 2 and Rubinstein-Taybi type 1 [RT1] syndromes). We develop a new approach for the overlap analysis and find extensive overlap primarily localized in gene promoters. We show that disruption of chromatin accessibility at promoters often disrupts downstream gene expression, and identify 587 loci and 264 genes with shared disruption across all three MDEMs. Subtle expression alterations of multiple, IgA-relevant genes, collectively contribute to IgA deficiency in KS1 and RT1, but not in KS2. We propose that the joint study of MDEMs offers a principled approach for systematically mapping functional epigenetic variation in mammals.
Collapse
Affiliation(s)
- Teresa Romeo Luperchio
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Leandros Boukas
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Li Zhang
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Genay Pilarowski
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jenny Jiang
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Allison Kalinousky
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Kasper D Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Hans T Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
48
|
Ciptasari U, van Bokhoven H. The phenomenal epigenome in neurodevelopmental disorders. Hum Mol Genet 2021; 29:R42-R50. [PMID: 32766754 PMCID: PMC7530535 DOI: 10.1093/hmg/ddaa175] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Disruption of chromatin structure due to epimutations is a leading genetic etiology of neurodevelopmental disorders, collectively known as chromatinopathies. We show that there is an increasing level of convergence from the high diversity of genes that are affected by mutations to the molecular networks and pathways involving the respective proteins, the disrupted cellular and subcellular processes, and their consequence for higher order cellular network function. This convergence is ultimately reflected by specific phenotypic features shared across the various chromatinopathies. Based on these observations, we propose that the commonly disrupted molecular and cellular anomalies might provide a rational target for the development of symptomatic interventions for defined groups of genetically distinct neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ummi Ciptasari
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud university medical center, 6500 HB Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud university medical center, 6500 HB Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud university medical center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
49
|
Janowski M, Milewska M, Zare P, Pękowska A. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals (Basel) 2021; 14:765. [PMID: 34451862 PMCID: PMC8399958 DOI: 10.3390/ph14080765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
Neurological disorders (NDs) comprise a heterogeneous group of conditions that affect the function of the nervous system. Often incurable, NDs have profound and detrimental consequences on the affected individuals' lives. NDs have complex etiologies but commonly feature altered gene expression and dysfunctions of the essential chromatin-modifying factors. Hence, compounds that target DNA and histone modification pathways, the so-called epidrugs, constitute promising tools to treat NDs. Yet, targeting the entire epigenome might reveal insufficient to modify a chosen gene expression or even unnecessary and detrimental to the patients' health. New technologies hold a promise to expand the clinical toolkit in the fight against NDs. (Epi)genome engineering using designer nucleases, including CRISPR-Cas9 and TALENs, can potentially help restore the correct gene expression patterns by targeting a defined gene or pathway, both genetically and epigenetically, with minimal off-target activity. Here, we review the implication of epigenetic machinery in NDs. We outline syndromes caused by mutations in chromatin-modifying enzymes and discuss the functional consequences of mutations in regulatory DNA in NDs. We review the approaches that allow modifying the (epi)genome, including tools based on TALENs and CRISPR-Cas9 technologies, and we highlight how these new strategies could potentially change clinical practices in the treatment of NDs.
Collapse
Affiliation(s)
| | | | | | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street, 02-093 Warsaw, Poland; (M.J.); (M.M.); (P.Z.)
| |
Collapse
|
50
|
Brocato E, Wolstenholme JT. Neuroepigenetic consequences of adolescent ethanol exposure. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:45-84. [PMID: 34696879 DOI: 10.1016/bs.irn.2021.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adolescence is a critical developmental period characterized by ongoing brain maturation processes including myelination and synaptic pruning. Adolescents experience heightened reward sensitivity, sensation seeking, impulsivity, and diminished inhibitory self-control, which contribute to increased participation in risky behaviors, including the initiation of alcohol use. Ethanol exposure in adolescence alters memory and cognition, anxiety-like behavior, and ethanol sensitivity as well as brain myelination and dendritic spine morphology, with effects lasting into adulthood. Emerging evidence suggests that epigenetic modifications may explain these lasting effects. Focusing on the amygdala, prefrontal cortex and hippocampus, we review studies investigating the epigenetic consequences of adolescent ethanol exposure. Ethanol metabolism globally increases donor substrates for histone acetylation and histone and DNA methylation, and this chapter discusses how this can further impact epigenetic programming of the adolescent brain. Elucidation of the mechanisms through which ethanol can alter the epigenetic code at specific transcripts may provide therapeutic targets for intervention.
Collapse
Affiliation(s)
- Emily Brocato
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States; VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|