1
|
Zhang X, Wu Z, Zhou X, Tao H. Mitochondrial dysfunction in epilepsy: mechanistic insights and clinical strategies. Mol Biol Rep 2025; 52:470. [PMID: 40392243 DOI: 10.1007/s11033-025-10577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 05/06/2025] [Indexed: 05/22/2025]
Abstract
Epilepsy is a common neurological disorder that is increasingly recognized for its significant association with mitochondrial dysfunction. This review explores the intricate relationship between mitochondrial dysfunction and epilepsy, highlighting the molecular mechanisms, diagnostic strategies, and therapeutic approaches involved. Mitochondrial abnormalities, including defects in the electron transport chain, impaired mitochondrial dynamics, disrupted autophagy, and increased oxidative stress, are implicated in epilepsy pathogenesis. The molecular mechanisms involve respiratory chain impairments, fission-fusion imbalances, inadequate mitophagy, and oxidative stress-induced neuronal excitability. The diagnosis of mitochondrial epilepsy requires a multifaceted approach, combining clinical assessment, biochemical testing, imaging, and genetic analysis, with a particular focus on mtDNA mutations. Therapeutic strategies include antiepileptic drugs with variable mitochondrial effects, the ketogenic diet, and emerging potential approaches such as antioxidants and mitochondrial-targeted therapies. Despite advances in understanding and treatment, challenges persist due to the complexity of mtDNA mutations and treatment resistance. Future directions involve gene-editing technologies, mitochondrial transplantation, and induced pluripotent stem cells, which hold promise for addressing the underlying defects and improving epilepsy management.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, NO.57, Renmindadaonan Road, Xiashan District, Zhanjiang, 524001, Guangdong, China
| | - Zhengjuan Wu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, NO.57, Renmindadaonan Road, Xiashan District, Zhanjiang, 524001, Guangdong, China
| | - Xu Zhou
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, NO.57, Renmindadaonan Road, Xiashan District, Zhanjiang, 524001, Guangdong, China
| | - Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, NO.57, Renmindadaonan Road, Xiashan District, Zhanjiang, 524001, Guangdong, China.
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| |
Collapse
|
2
|
Castelluccio N, Spath K, Li D, De Coo IFM, Butterworth L, Wells D, Mertes H, Poulton J, Heindryckx B. Genetic and reproductive strategies to prevent mitochondrial diseases. Hum Reprod Update 2025:dmaf004. [PMID: 40085924 DOI: 10.1093/humupd/dmaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/28/2025] [Indexed: 03/16/2025] Open
Abstract
Mitochondrial DNA (mtDNA) diseases pose unique challenges for genetic counselling and require tailored approaches to address recurrence risks and reproductive options. The intricate dynamics of mtDNA segregation and heteroplasmy shift significantly impact the chances of having affected children. In addition to natural pregnancy, oocyte donation, and adoption, IVF-based approaches can reduce the risk of disease transmission. Prenatal diagnosis (PND) and preimplantation genetic testing (PGT) remain the standard methods for women carrying pathogenic mtDNA mutations; nevertheless, they are not suitable for every patient. Germline nuclear transfer (NT) has emerged as a novel therapeutic strategy, while mitochondrial gene editing has increasingly become a promising research area in the field. However, challenges and safety concerns associated with all these techniques remain, highlighting the need for long-term follow-up studies, an improved understanding of disease mechanisms, and personalized approaches to diagnosis and treatment. Given the inherent risks of adverse maternal and child outcomes, careful consideration of the balance between potential benefits and drawbacks is also warranted. This review will provide critical insights, identify knowledge gaps, and underscore the importance of advancing mitochondrial disease research in reproductive health.
Collapse
Affiliation(s)
- Noemi Castelluccio
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | | | - Danyang Li
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Irenaeus F M De Coo
- Department of Translational Genomics, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Lyndsey Butterworth
- FutureNeuro Research Ireland Centre for Translational Brain Science, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Dagan Wells
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- Juno Genetics UK, Oxford, UK
| | - Heidi Mertes
- Department of Philosophy and Moral Sciences and Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Björn Heindryckx
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
3
|
Gorman E, Dai H, Feng Y, Craigen WJ, Chen DCY, Xia F, Meng L, Liu P, Rigobello R, Neogi A, Eng CM, Wang Y. Experiences from dual genome next-generation sequencing panel testing for mitochondrial disorders: a comprehensive molecular diagnosis. Front Genet 2025; 16:1488956. [PMID: 40110048 PMCID: PMC11920145 DOI: 10.3389/fgene.2025.1488956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction The molecular diagnosis of mitochondrial disorders is complicated by phenotypic variability, genetic heterogeneity, and the complexity of mitochondrial heteroplasmy. Next-generation sequencing (NGS) of the mitochondrial genome in combination with a targeted panel of nuclear genes associated with mitochondrial disease provides the highest likelihood of obtaining a comprehensive molecular diagnosis. To assess the clinical utility of this approach, we describe the results from a retrospective review of patients having dual genome panel testing for mitochondrial disease. Methods Dual genome panel testing by NGS was performed on a cohort of 1,509 unrelated affected individuals with suspected mitochondrial disorders. This test included 163 nuclear genes associated with mitochondrial diseases and the entire mitochondrial genome. A retrospective review was performed to evaluate diagnostic yield, disease-gene contributions, and heteroplasmy levels of pathogenic/likely pathogenic (P/LP) mitochondrial DNA (mtDNA) variants. Results The overall diagnostic yield was 14.6%, with 7.7% from the nuclear genome and 6.9% from the mtDNA genome. P/LP variants in nuclear genes were enriched in both well-established genes (e.g., POLG) and more recently described genes (e.g., FBXL4), highlighting the importance of keeping the panel design updated. Conclusion Variants in nuclear and mitochondrial genomes equally contributed to a 14.6% diagnostic yield in this patient cohort. Dual genome NGS testing provides a comprehensive framework for diagnosing mitochondrial disorders, offering clinical utility that can be considered as first-tier approach compared to single genome testing. Characterizing disease-causing genes, variants, and mtDNA heteroplasmy enhances understanding of mitochondrial disorders. Testing alternative tissues can further increase diagnostic yield.
Collapse
Affiliation(s)
| | - Hongzheng Dai
- Baylor Genetics, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | | | - William James Craigen
- Baylor Genetics, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | | | - Fan Xia
- Baylor Genetics, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Linyan Meng
- Baylor Genetics, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Pengfei Liu
- Baylor Genetics, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | | | | | - Christine M Eng
- Baylor Genetics, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Yue Wang
- Baylor Genetics, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
4
|
Akar HT, Akduman H, Kolkıran A, Taşadelen E, Aycan N. The rare reason for massive lactic aciduria and mitochondrial disorders: combined oxidative phosphorylation deficiency type 23 (COXPD23). Z Geburtshilfe Neonatol 2025; 229:60-62. [PMID: 39577856 DOI: 10.1055/a-2465-3661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Mitochondrial respiratory chain dysfunction and impaired oxidative phosphorylation are rare but significant causes of mitochondrial diseases in children, presenting with diverse clinical features. Combined oxidative phosphorylation deficiency type 23 (COXPD23), an autosomal recessive disorder due to GTPBP3 gene mutations, typically manifests as lactic acidosis, hypertrophic cardiomyopathy, and encephalopathy. This case report describes a male infant born at 35 weeks gestation, who exhibited severe lactic aciduria and hypotonia but no cardiomyopathy, which is atypical for COXPD23. Genetic analysis revealed a novel homozygous missense variant in the GTPBP3 gene. Despite intensive metabolic and supportive treatments, the patient's condition worsened, leading to death on the 23rd day. This case emphasizes the need to consider mitochondrial cytopathies in neonates with persistent metabolic acidosis and hyperlactatemia and highlights the importance of early genetic screening for accurate diagnosis and management.
Collapse
Affiliation(s)
- Halil Tuna Akar
- Department of Pediatric Metabolism, TC Saglik Bakanligi Ankara Etlik Sehir Hastanesi, Ankara, Turkey
| | - Hasan Akduman
- Department of Neonatology, TC Saglik Bakanligi Ankara Etlik Sehir Hastanesi, Ankara, Turkey
| | - Abdülkerim Kolkıran
- Department of Pediatric Genetics, TC Saglik Bakanligi Ankara Etlik Sehir Hastanesi, Ankara, Turkey
| | - Elifcan Taşadelen
- Department of Medical Genetics, TC Saglik Bakanligi Ankara Etlik Sehir Hastanesi, Ankara, Turkey
| | - Nur Aycan
- Department of Neonatology, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
5
|
van de Wal MAE, Doornbos C, Bibbe JM, Homberg JR, van Karnebeek C, Huynen MA, Keijer J, van Schothorst EM, 't Hoen PAC, Janssen MCH, Adjobo-Hermans MJW, Wieckowski MR, Koopman WJH. Ndufs4 knockout mice with isolated complex I deficiency engage a futile adaptive brain response. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141055. [PMID: 39395749 DOI: 10.1016/j.bbapap.2024.141055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Paediatric Leigh syndrome (LS) is an early-onset and fatal neurodegenerative disorder lacking treatment options. LS is frequently caused by mutations in the NDUFS4 gene, encoding an accessory subunit of mitochondrial complex I (CI), the first complex of the oxidative phosphorylation (OXPHOS) system. Whole-body Ndufs4 knockout (KO) mice (WB-KO mice) are widely used to study isolated CI deficiency, LS pathology and interventions. These animals develop a brain-specific phenotype via an incompletely understood pathomechanism. Here we performed a quantitative analysis of the sub-brain proteome in six-weeks old WB-KO mice vs. wildtype (WT) mice. Brain regions comprised of a brain slice (BrSl), cerebellum (CB), cerebral cortex (CC), hippocampus (HC), inferior colliculus (IC), and superior colliculus (SC). Proteome analysis demonstrated similarities between CC/HC, and between IC/SC, whereas BrSl and CB differed from these two groups and each other. All brain regions displayed greatly reduced levels of two CI structural subunits (NDUFS4, NDUFA12) and an increased level of the CI assembly factor NDUFAF2. The level of CI-Q module subunits was significantly more reduced in IC/SC than in BrSl/CB/CC/HC, whereas other OXPHOS complex levels were not reduced. Gene ontology and pathway analysis demonstrated specific and common proteome changes between brain regions. Across brain regions, upregulation of cold-shock-associated proteins, mitochondrial fatty acid (FA) oxidation and synthesis (mtFAS) were the most prominent. FA-related pathways were predominantly upregulated in CB and HC. Based upon these results, we argue that stimulation of these pathways is futile and pro-pathological and discuss alternative strategies for therapeutic intervention in LS. SIGNIFICANCE: The Ndufs4 knockout mouse model is currently the most relevant and most widely used animal model to study the brain-linked pathophysiology of human Leigh Syndrome (LS) and intervention strategies. We demonstrate that the Ndufs4 knockout brain engages futile and pro-pathological responses. These responses explain both negative and positive outcomes of intervention studies in Leigh Syndrome mice and patients, thereby guiding novel intervention opportunities.
Collapse
Affiliation(s)
- Melissa A E van de Wal
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cenna Doornbos
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Janne M Bibbe
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clara van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands
| | - Martijn A Huynen
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | | | - Peter A C 't Hoen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mirian C H Janssen
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Merel J W Adjobo-Hermans
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
6
|
Vodicka P, Vodenkova S, Danesova N, Vodickova L, Zobalova R, Tomasova K, Boukalova S, Berridge MV, Neuzil J. Mitochondrial DNA damage, repair, and replacement in cancer. Trends Cancer 2025; 11:62-73. [PMID: 39438191 DOI: 10.1016/j.trecan.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Mitochondria are vital organelles with their own DNA (mtDNA). mtDNA is circular and composed of heavy and light chains that are structurally more accessible than nuclear DNA (nDNA). While nDNA is typically diploid, the number of mtDNA copies per cell is higher and varies considerably during development and between tissues. Compared with nDNA, mtDNA is more prone to damage that is positively linked to many diseases, including cancer. Similar to nDNA, mtDNA undergoes repair processes, although these mechanisms are less well understood. In this review, we discuss the various forms of mtDNA damage and repair and their association with cancer initiation and progression. We also propose horizontal mitochondrial transfer as a novel mechanism for replacing damaged mtDNA.
Collapse
Affiliation(s)
- Pavel Vodicka
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic.
| | - Sona Vodenkova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic.
| | - Natalie Danesova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Ludmila Vodickova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Kristyna Tomasova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | | | - Jiri Neuzil
- First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic; School of Pharmacy and Medical Science, Griffith University, Southport, Qld 4222, Australia.
| |
Collapse
|
7
|
Urrutia K, Chen YH, Tang J, Hung TI, Zhang G, Xu W, Zhao W, Tonthat D, Chang CEA, Zhao L. DNA sequence and lesion-dependent mitochondrial transcription factor A (TFAM)-DNA-binding modulates DNA repair activities and products. Nucleic Acids Res 2024; 52:14093-14111. [PMID: 39607700 DOI: 10.1093/nar/gkae1144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Mitochondrial DNA (mtDNA) is indispensable for mitochondrial function and is maintained by DNA repair, turnover, mitochondrial dynamics and mitophagy, along with the inherent redundancy of mtDNA. Base excision repair (BER) is a major DNA repair mechanism in mammalian mitochondria. Mitochondrial BER enzymes are implicated in mtDNA-mediated immune response and inflammation. mtDNA is organized into mitochondrial nucleoids by mitochondrial transcription factor A (TFAM). The regulation of DNA repair activities by TFAM-DNA interactions remains understudied. Here, we demonstrate the modulation of DNA repair enzymes by TFAM concentrations, DNA sequences and DNA modifications. Unlike previously reported inhibitory effects, we observed that human uracil-DNA glycosylase 1 (UNG1) and AP endonuclease I (APE1) have optimal activities at specific TFAM/DNA molar ratios. High TFAM/DNA ratios inhibited other enzymes, OGG1 and AAG. In addition, TFAM reduces the accumulation of certain repair intermediates. Molecular dynamics simulations and DNA-binding experiments demonstrate that the presence of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in certain sequence motifs enhances TFAM-DNA binding, partially explaining the inhibition of OGG1 activity. Bioinformatic analysis of published 8-oxodG, dU, and TFAM-footprint maps reveals a correlation between 8-oxodG and TFAM locations in mtDNA. Collectively, these results highlight the complex regulation of mtDNA repair by DNA sequence, TFAM concentrations, lesions and repair enzymes.
Collapse
Affiliation(s)
- Kathleen Urrutia
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Yu Hsuan Chen
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Jin Tang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Ta I Hung
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Guodong Zhang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Wenyan Xu
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Wenxin Zhao
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Dylan Tonthat
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
8
|
Sambuughin N, Mungunsukh O, Klein MG, Ren M, Bedocs P, Kazman JB, Cofer K, Friel LP, McNally B, Kwon K, Haigney MC, Leggit JC, Pazgier M, Deuster PA, O’Connor FG. Genetics of Exertional Heat Illness: Revealing New Associations and Expanding Heterogeneity. Int J Mol Sci 2024; 25:11269. [PMID: 39457051 PMCID: PMC11508780 DOI: 10.3390/ijms252011269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental heat stress represents a pervasive threat to warfighters, athletes, and occupational workers, impacting performance and increasing the risk of injury. Exertional heat illness (EHI) is a spectrum of clinical disorders of increasing severity. While frequently predictable, EHI can occur unexpectedly and may be followed by long-term comorbidities, including cardiovascular dysfunction and exercise intolerance. The objective of this study was to assess genetic factors contributing to EHI. Whole-exome sequencing was performed in a cohort of 53 cases diagnosed with EHI. Rare variants in prioritized gene sets were analyzed and classified per published guidelines. Clinically significant pathogenic and potentially pathogenic variants were identified in 30.2% of the study cohort. Variants were found in 14 genes, including the previously known RYR1 and ACADVL genes and 12 other genes (CAPN3, MYH7, PFKM, RYR2, TRPM4, and genes for mitochondrial disorders) reported here for the first time in EHI. Supporting structural and functional studies of the TRPM4 p.Arg905Trp variant show that it impairs the thermal sensitivity of the TRPM4 channel, revealing a potentially new molecular mechanism contributing to EHI susceptibility. Our study demonstrates associations between EHI and genes implicated in muscle disorders, cardiomyopathies, thermoregulation, and oxidative phosphorylation deficiencies. These results expand the genetic heterogeneity of EHI and shed light on its molecular pathogenesis.
Collapse
Affiliation(s)
- Nyamkhishig Sambuughin
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; (O.M.); (P.B.)
| | - Ognoon Mungunsukh
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; (O.M.); (P.B.)
- Department of Anatomy Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Michael G. Klein
- Military Cardiovascular Outcomes Research, Cardiology Division, Department of Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.G.K.); (M.C.H.)
| | - Mingqiang Ren
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; (O.M.); (P.B.)
| | - Peter Bedocs
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; (O.M.); (P.B.)
- Defense & Veterans Center for Integrative Pain Management, Department of Anesthesiology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Josh B. Kazman
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; (O.M.); (P.B.)
| | - Kristen Cofer
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; (O.M.); (P.B.)
| | - Liam P. Friel
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; (O.M.); (P.B.)
| | - Beth McNally
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; (O.M.); (P.B.)
| | - Kyung Kwon
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; (O.M.); (P.B.)
| | - Mark C. Haigney
- Military Cardiovascular Outcomes Research, Cardiology Division, Department of Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.G.K.); (M.C.H.)
| | - Jeffrey C. Leggit
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
- Department of Family Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20184, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20184, USA;
| | - Patricia A. Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
| | - Francis G. O’Connor
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
| |
Collapse
|
9
|
Zhang H, Zhu Y, Xue D. Moderate embryonic delay of paternal mitochondrial elimination impairs mating and cognition and alters behaviors of adult animals. SCIENCE ADVANCES 2024; 10:eadp8351. [PMID: 39365857 PMCID: PMC11451536 DOI: 10.1126/sciadv.adp8351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Rapid elimination of paternal mitochondria following fertilization is a conserved event in most animals, but its physiological significance remains unclear. We find that modest delay of paternal mitochondrial elimination (PME) in Caenorhabditis elegans embryos unexpectedly impairs mating and cognition of adult animals and alters their locomotion behaviors. Delayed PME causes decreased adenosine triphosphate (ATP) levels in early embryos, which lead to impaired physiological functions of adult animals through an energy-sensing pathway mediated by an adenosine monophosphate (AMP)-activated protein kinase, AAK-2, and a forkhead box class O (FOXO) transcription factor, DAF-16. Treatment of PME-delayed animals with MK-4, a subtype of vitamin K2 that can improve mitochondrial ATP production, restores ATP levels in early embryos, and rescues physiological defects of adult animals. Our results suggest that moderate PME delay during embryo development adversely affects crucial physiological functions in adults, which could be evolutionarily disadvantageous. These observations provide mechanistic explanations for the need to swiftly remove paternal mitochondria early during embryo development.
Collapse
Affiliation(s)
| | | | - Ding Xue
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
10
|
Haque S, Crawley K, Schofield D, Shrestha R, Sue CM. Cascade testing in mitochondrial diseases: a cross-sectional retrospective study. BMC Neurol 2024; 24:343. [PMID: 39272026 PMCID: PMC11396135 DOI: 10.1186/s12883-024-03850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Cascade testing can offer improved surveillance and timely introduction of clinical management for the at-risk biological relatives. Data on cascade testing and costs in mitochondrial diseases are lacking. To address this gap, we performed a cross-sectional retrospective study to provide a framework for cascade testing in mitochondrial diseases, to estimate the eligibility versus real-time uptake of cascade testing and to evaluate the cost of the genetic diagnosis of index cases and the cost of predictive cascade testing. METHODS Data was collected through retrospective chart review. The variant inheritance pattern guided the identification of eligible first-degree relatives: (i) Males with mitochondrial DNA (mtDNA) single nucleotide variants (SNVs) - siblings and mothers. (ii) Females with mtDNA SNVs - siblings, mothers and offspring. (iii) Autosomal Dominant (AD) nuclear DNA (nDNA) variants - siblings, offspring and both parents. (iv) Autosomal Recessive (AR) nDNA variants - siblings. RESULTS We recruited 99 participants from the Adult Mitochondrial Disease Clinic in Sydney. The uptake of cascade testing was 55.2% in the mtDNA group, 55.8% in the AD nDNA group and 0% in AR nDNA group. Of the relatives in mtDNA group who underwent cascade testing, 65.4% were symptomatic, 20.5% were oligosymptomatic and 14.1% were asymptomatic. The mean cost of cascade testing for eligible first-degree relatives (mtDNA group: $694.7; AD nDNA group: $899.1) was lower than the corresponding index case (mtDNA group: $4578.4; AD nDNA group: $5715.1) (p < 0.001). CONCLUSION The demand for cascade testing in mitochondrial diseases varies according to the genotype and inheritance pattern. The real-time uptake of cascade testing can be influenced by multiple factors. Early diagnosis of at-risk biological relatives of index cases through cascade testing, confirms the diagnosis in those who are symptomatic and facilitates implementation of surveillance strategies and clinical care at an early stage of the disease.
Collapse
Affiliation(s)
- Sameen Haque
- Nepean Hospital, Derby Street, Kingswood, NSW, 2747, Australia.
- The Kolling Institute, Royal North Shore Hospital, Reserve Road, St Leonards, NSW, 2065, Australia.
| | - Karen Crawley
- The Kolling Institute, Royal North Shore Hospital, Reserve Road, St Leonards, NSW, 2065, Australia
- Neuroscience Research Australia (NeuRA), Margarete Ainsworth Building, Barker Street, Randwick, NSW, 2031, Australia
| | - Deborah Schofield
- Centre for Economic Impacts of Genomic Medicine (GenIMPACT), Macquarie Business School, Macquarie University, Eastern Rd, Macquarie Park, NSW, 2109, Australia
| | - Rupendra Shrestha
- Centre for Economic Impacts of Genomic Medicine (GenIMPACT), Macquarie Business School, Macquarie University, Eastern Rd, Macquarie Park, NSW, 2109, Australia
| | - Carolyn M Sue
- Neuroscience Research Australia (NeuRA), Margarete Ainsworth Building, Barker Street, Randwick, NSW, 2031, Australia
- Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| |
Collapse
|
11
|
Yu F, Li X, Sheng C, Li L. DNA Nanotechnology Targeting Mitochondria: From Subcellular Molecular Imaging to Tailor-Made Therapeutics. Angew Chem Int Ed Engl 2024; 63:e202409351. [PMID: 38872505 DOI: 10.1002/anie.202409351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/15/2024]
Abstract
Mitochondria, one of the most important organelles, represent a crucial subcellular target for fundamental research and biomedical applications. Despite significant advances in the design of DNA nanotechnologies for a variety of bio-applications, the dearth of strategies that enable mitochondria targeting for subcellular molecular imaging and therapy remains an outstanding challenge in this field. In this Minireview, we summarize the recent progresses on the emerging design and application of DNA nanotechnology for mitochondria-targeted molecular imaging and tumor treatment. We first highlight the engineering of mitochondria-localized DNA nanosensors for in situ detection and imaging of diverse key molecules that are essential to maintain mitochondrial functions, including mitochondrial DNA and microRNA, enzymes, small molecules, and metal ions. Then, we compile the developments of DNA nanotechnologies for mitochondria-targeted anti-tumor therapy, including modularly designed DNA nanodevices for subcellular delivery of therapeutic agents, and programmed DNA assembly for mitochondrial interference. We will place an emphasis on clarification of the chemical principles of how DNA nanobiotechnology can be designed to target mitochondria for various biomedical applications. Finally, the remaining challenges and future directions in this emerging field will be discussed, hoping to inspire further development of advanced DNA toolkits for both academic and clinical research regarding mitochondria.
Collapse
Affiliation(s)
- Fangzhi Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangfei Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuangui Sheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Zhao X, Yu M, Zhang W, Hou Y, Yuan Y, Wang Z. Demographic characteristics, diagnostic challenges, treatment patterns, and caregiver burden of mitochondrial diseases: a retrospective cross-sectional study. Orphanet J Rare Dis 2024; 19:287. [PMID: 39095827 PMCID: PMC11297657 DOI: 10.1186/s13023-024-03289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/14/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND This study aimed to explore the demographic characteristics, diagnostic challenges, treatment patterns, and caregiver burden of mitochondrial diseases. METHODS This retrospective cross-sectional study enrolled patients diagnosed with mitochondrial diseases from the Department of Neurology at Peking University First Hospital between January 2010 and December 2021. A questionnaire covering demographic characteristics, diagnostic dilemma, treatment, economic aspects, and caregiver stress was administered, and disability was assessed using the modified Rankin Scale (mRS). RESULTS A total of 183 patients (mean age: 16 (IQR: 12-25), 49.72% males) were enrolled, including 124 pediatric patients and 59 adult patients. MELAS (106. 57.92%) and Leigh syndrome (37, 20.22%) were predominant among the mitochondrial disease subtypes. Among them, 132 (72.13%) patients were initially misdiagnosed with other diseases, 58 (31.69%) patients visited 2 hospitals before confirmed as mitochondrial disease, and 39 (21.31%) patients visited 3 hospitals before confirmed as mitochondrial disease. Metabolic modifiers were the most common type of drugs used, including several dietary supplements such as L-carnitine (117, 63.93%), Coenzyme Q10 (102, 55.74%), idebenone (82, 44.81%), and vitamins (99, 54.10%) for proper mitochondrial function. Mothers are the primary caregivers for both children (36.29%) and adults (38.98%). The mRS score ranged from 0 to 5, 92.35% of the patients had different degrees of disability due to mitochondrial disease. The average monthly treatment cost was 3000 RMB for children and 3100 RMB for adults. CONCLUSIONS This study provided valuable insights into the characteristics and challenges of mitochondrial diseases, which underscores the need for improved awareness, diagnostic efficiency, and comprehensive support for patients and caregivers.
Collapse
Affiliation(s)
- Xutong Zhao
- Department of Neurology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 102208, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Yue Hou
- Department of Geriatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
13
|
Yin X, Dong Q, Fan S, Yang L, Li H, Jin Y, Laurentinah MR, Chen X, Sysa A, Fang H, Lyu J, Yu Y, Wang Y. A novel pathogenic mitochondrial DNA variant m.4344T>C in tRNA Gln causes developmental delay. J Hum Genet 2024; 69:381-389. [PMID: 38730005 DOI: 10.1038/s10038-024-01254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Mitochondrial diseases are a group of genetic diseases caused by mutations in mitochondrial DNA and nuclear DNA. However, the genetic spectrum of this disease is not yet complete. In this study, we identified a novel variant m.4344T>C in mitochondrial tRNAGln from a patient with developmental delay. The mutant loads of m.4344T>C were 95% and 89% in the patient's blood and oral epithelial cells, respectively. Multialignment analysis showed high evolutionary conservation of this nucleotide. TrRosettaRNA predicted that m.4344T>C variant would introduce an additional hydrogen bond and alter the conformation of the T-loop. The transmitochondrial cybrid-based study demonstrated that m.4344T>C variant impaired the steady-state level of mitochondrial tRNAGln and decreased the contents of mitochondrial OXPHOS complexes I, III, and IV, resulting in defective mitochondrial respiration, elevated mitochondrial ROS production, reduced mitochondrial membrane potential and decreased mitochondrial ATP levels. Altogether, this is the first report in patient carrying the m.4344T>C variant. Our data uncover the pathogenesis of the m.4344T>C variant and expand the genetic mutation spectrum of mitochondrial diseases, thus contributing to the clinical diagnosis of mitochondrial tRNAGln gene variants-associated mitochondrial diseases.
Collapse
Affiliation(s)
- Xiaojie Yin
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qiyu Dong
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shuanglong Fan
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lina Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hao Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yijun Jin
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Mahlatsi Refiloe Laurentinah
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiandan Chen
- International Sakharov Environmental Institute of Belarusian State University, Minsk, 220070, Republic of Belarus
| | - Aliaksei Sysa
- International Sakharov Environmental Institute of Belarusian State University, Minsk, 220070, Republic of Belarus
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China.
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, 200092, China.
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China.
| | - Ya Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
14
|
Zachos KA, Gamboa JA, Dewji AS, Lee J, Brijbassi S, Andreazza AC. The interplay between mitochondria, the gut microbiome and metabolites and their therapeutic potential in primary mitochondrial disease. Front Pharmacol 2024; 15:1428242. [PMID: 39119601 PMCID: PMC11306032 DOI: 10.3389/fphar.2024.1428242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
The various roles of the mitochondria and the microbiome in health and disease have been thoroughly investigated, though they are often examined independently and in the context of chronic disease. However, the mitochondria and microbiome are closely connected, namely, through their evolution, maternal inheritance patterns, overlapping role in many diseases and their importance in the maintenance of human health. The concept known as the "mitochondria-microbiome crosstalk" is the ongoing bidirectional crosstalk between these two entities and warrants further exploration and consideration, especially in the context of primary mitochondrial disease, where mitochondrial dysfunction can be detrimental for clinical manifestation of disease, and the role and composition of the microbiome is rarely investigated. A potential mechanism underlying this crosstalk is the role of metabolites from both the mitochondria and the microbiome. During digestion, gut microbes modulate compounds found in food, which can produce metabolites with various bioactive effects. Similarly, mitochondrial metabolites are produced from substrates that undergo biochemical processes during cellular respiration. This review aims to provide an overview of current literature examining the mitochondria-microbiome crosstalk, the role of commonly studied metabolites serve in signaling and mediating these biochemical pathways, and the impact diet has on both the mitochondria and the microbiome. As a final point, this review highlights the up-to-date implications of the mitochondria-microbiome crosstalk in mitochondrial disease and its potential as a therapeutic tool or target.
Collapse
Affiliation(s)
- Kassandra A. Zachos
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Jann Aldrin Gamboa
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Aleena S. Dewji
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jocelyn Lee
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Sonya Brijbassi
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Ana C. Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Aguilar K, Jakubek P, Zorzano A, Wieckowski MR. Primary mitochondrial diseases: The intertwined pathophysiology of bioenergetic dysregulation, oxidative stress and neuroinflammation. Eur J Clin Invest 2024; 54:e14217. [PMID: 38644687 DOI: 10.1111/eci.14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVES AND SCOPE Primary mitochondrial diseases (PMDs) are rare genetic disorders resulting from mutations in genes crucial for effective oxidative phosphorylation (OXPHOS) that can affect mitochondrial function. In this review, we examine the bioenergetic alterations and oxidative stress observed in cellular models of primary mitochondrial diseases (PMDs), shedding light on the intricate complexity between mitochondrial dysfunction and cellular pathology. We explore the diverse cellular models utilized to study PMDs, including patient-derived fibroblasts, induced pluripotent stem cells (iPSCs) and cybrids. Moreover, we also emphasize the connection between oxidative stress and neuroinflammation. INSIGHTS The central nervous system (CNS) is particularly vulnerable to mitochondrial dysfunction due to its dependence on aerobic metabolism and the correct functioning of OXPHOS. Similar to other neurodegenerative diseases affecting the CNS, individuals with PMDs exhibit several neuroinflammatory hallmarks alongside neurodegeneration, a pattern also extensively observed in mouse models of mitochondrial diseases. Based on histopathological analysis of postmortem human brain tissue and findings in mouse models of PMDs, we posit that neuroinflammation is not merely a consequence of neurodegeneration but a potential pathogenic mechanism for disease progression that deserves further investigation. This recognition may pave the way for novel therapeutic strategies for this group of devastating diseases that currently lack effective treatments. SUMMARY In summary, this review provides a comprehensive overview of bioenergetic alterations and redox imbalance in cellular models of PMDs while underscoring the significance of neuroinflammation as a potential driver in disease progression.
Collapse
Affiliation(s)
- Kevin Aguilar
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Patrycja Jakubek
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| |
Collapse
|
16
|
Soler-Agesta R, Ripollés-Yuba C, Marco-Brualla J, Moreno-Loshuertos R, Sato A, Beltrán-Visiedo M, Galluzzi L, Anel A. Generation of transmitochondrial cybrids in cancer cells. Methods Cell Biol 2024; 189:23-40. [PMID: 39393884 DOI: 10.1016/bs.mcb.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
At odds with historical views suggesting that mitochondrial functions are largely dispensable for cancer cells, it is now clear that mitochondria have a major impact on malignant transformation, tumor progression and response to treatment. Mitochondria are indeed critical for neoplastic cells not only as an abundant source of ATP and other metabolic intermediates, but also as gatekeepers of apoptotic cell death and inflammation. Interestingly, while mitochondrial components are mostly encoded by nuclear genes, mitochondria contain a small, circular genome that codes for a few mitochondrial proteins, ribosomal RNAs and transfer RNAs. Here, we describe a straightforward method to generate transmitochondrial cybrids, i.e., cancer cells depleted of their mitochondrial DNA and reconstituted with intact mitochondria from another cellular source. Once established, transmitochondrial cybrids can be stably propagated and are valuable to dissect the specific impact of the mitochondrial genome on cancer cell functions.
Collapse
Affiliation(s)
- Ruth Soler-Agesta
- University of Zaragoza/Aragón Health Research Institute, Biochemistry and Molecular and Cell Biology, Zaragoza, Spain; Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Cristina Ripollés-Yuba
- University of Zaragoza/Aragón Health Research Institute, Biochemistry and Molecular and Cell Biology, Zaragoza, Spain
| | - Joaquín Marco-Brualla
- University of Zaragoza/Aragón Health Research Institute, Biochemistry and Molecular and Cell Biology, Zaragoza, Spain
| | - Raquel Moreno-Loshuertos
- University of Zaragoza/Aragón Health Research Institute, Biochemistry and Molecular and Cell Biology, Zaragoza, Spain
| | - Ai Sato
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Manuel Beltrán-Visiedo
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States.
| | - Alberto Anel
- University of Zaragoza/Aragón Health Research Institute, Biochemistry and Molecular and Cell Biology, Zaragoza, Spain.
| |
Collapse
|
17
|
Yildirim RM, Seli E. The role of mitochondrial dynamics in oocyte and early embryo development. Semin Cell Dev Biol 2024; 159-160:52-61. [PMID: 38330625 DOI: 10.1016/j.semcdb.2024.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Mitochondrial dysfunction is widely implicated in various human diseases, through mechanisms that go beyond mitochondria's well-established role in energy generation. These dynamic organelles exert vital control over numerous cellular processes, including calcium regulation, phospholipid synthesis, innate immunity, and apoptosis. While mitochondria's importance is acknowledged in all cell types, research has revealed the exceptionally dynamic nature of the mitochondrial network in oocytes and embryos, finely tuned to meet unique needs during gamete and pre-implantation embryo development. Within oocytes, both the quantity and morphology of mitochondria can significantly change during maturation and post-fertilization. These changes are orchestrated by fusion and fission processes (collectively known as mitochondrial dynamics), crucial for energy production, content exchange, and quality control as mitochondria adjust to the shifting energy demands of oocytes and embryos. The roles of proteins that regulate mitochondrial dynamics in reproductive processes have been primarily elucidated through targeted deletion studies in animal models. Notably, impaired mitochondrial dynamics have been linked to female reproductive health, affecting oocyte quality, fertilization, and embryo development. Dysfunctional mitochondria can lead to fertility problems and can have an impact on the success of pregnancy, particularly in older reproductive age women.
Collapse
Affiliation(s)
- Raziye Melike Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
18
|
Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Romero Domínguez JM, Talaverón-Rey M, Reche-López D, Suárez-Rivero JM, Álvarez-Córdoba M, Romero-González A, López-Cabrera A, Oliveira MCD, Rodríguez-Sacristan A, Sánchez-Alcázar JA. Polydatin and Nicotinamide Rescue the Cellular Phenotype of Mitochondrial Diseases by Mitochondrial Unfolded Protein Response (mtUPR) Activation. Biomolecules 2024; 14:598. [PMID: 38786005 PMCID: PMC11118892 DOI: 10.3390/biom14050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Primary mitochondrial diseases result from mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) genes, encoding proteins crucial for mitochondrial structure or function. Given that few disease-specific therapies are available for mitochondrial diseases, novel treatments to reverse mitochondrial dysfunction are necessary. In this work, we explored new therapeutic options in mitochondrial diseases using fibroblasts and induced neurons derived from patients with mutations in the GFM1 gene. This gene encodes the essential mitochondrial translation elongation factor G1 involved in mitochondrial protein synthesis. Due to the severe mitochondrial defect, mutant GFM1 fibroblasts cannot survive in galactose medium, making them an ideal screening model to test the effectiveness of pharmacological compounds. We found that the combination of polydatin and nicotinamide enabled the survival of mutant GFM1 fibroblasts in stress medium. We also demonstrated that polydatin and nicotinamide upregulated the mitochondrial Unfolded Protein Response (mtUPR), especially the SIRT3 pathway. Activation of mtUPR partially restored mitochondrial protein synthesis and expression, as well as improved cellular bioenergetics. Furthermore, we confirmed the positive effect of the treatment in GFM1 mutant induced neurons obtained by direct reprogramming from patient fibroblasts. Overall, we provide compelling evidence that mtUPR activation is a promising therapeutic strategy for GFM1 mutations.
Collapse
Affiliation(s)
- Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - José Manuel Romero Domínguez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Juan Miguel Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Alejandra López-Cabrera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Marta Castro De Oliveira
- Neuropediatria, Neurolinkia, C. Jardín de la Isla, 8, Local 4 y 5, 41014 Sevilla, Spain;
- FEA Pediatría, Centro Universitario Hospitalar de Faro, R. Leão Penedo, 8000-386 Faro, Portugal
| | - Andrés Rodríguez-Sacristan
- Neuropediatría, Servicio de Pediatría, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain;
- Departamento de Farmacología, Radiología y Pediatría, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
| | - José Antonio Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| |
Collapse
|
19
|
Nithianandam V, Sarkar S, Feany MB. Pathways controlling neurotoxicity and proteostasis in mitochondrial complex I deficiency. Hum Mol Genet 2024; 33:860-871. [PMID: 38324746 PMCID: PMC11070137 DOI: 10.1093/hmg/ddae018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
Neuromuscular disorders caused by dysfunction of the mitochondrial respiratory chain are common, severe and untreatable. We recovered a number of mitochondrial genes, including electron transport chain components, in a large forward genetic screen for mutations causing age-related neurodegeneration in the context of proteostasis dysfunction. We created a model of complex I deficiency in the Drosophila retina to probe the role of protein degradation abnormalities in mitochondrial encephalomyopathies. Using our genetic model, we found that complex I deficiency regulates both the ubiquitin/proteasome and autophagy/lysosome arms of the proteostasis machinery. We further performed an in vivo kinome screen to uncover new and potentially druggable mechanisms contributing to complex I related neurodegeneration and proteostasis failure. Reduction of RIOK kinases and the innate immune signaling kinase pelle prevented neurodegeneration in complex I deficiency animals. Genetically targeting oxidative stress, but not RIOK1 or pelle knockdown, normalized proteostasis markers. Our findings outline distinct pathways controlling neurodegeneration and protein degradation in complex I deficiency and introduce an experimentally facile model in which to study these debilitating and currently treatment-refractory disorders.
Collapse
Affiliation(s)
- Vanitha Nithianandam
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, 5425 Wisconsin Avenue, Chevy Chase, MD 20815, United States
| | - Souvarish Sarkar
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, 5425 Wisconsin Avenue, Chevy Chase, MD 20815, United States
| | - Mel B Feany
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, 5425 Wisconsin Avenue, Chevy Chase, MD 20815, United States
| |
Collapse
|
20
|
Song M, Ye L, Yan Y, Li X, Han X, Hu S, Yu M. Mitochondrial diseases and mtDNA editing. Genes Dis 2024; 11:101057. [PMID: 38292200 PMCID: PMC10825299 DOI: 10.1016/j.gendis.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 02/01/2024] Open
Abstract
Mitochondrial diseases are a heterogeneous group of inherited disorders characterized by mitochondrial dysfunction, and these diseases are often severe or even fatal. Mitochondrial diseases are often caused by mitochondrial DNA mutations. Currently, there is no curative treatment for patients with pathogenic mitochondrial DNA mutations. With the rapid development of traditional gene editing technologies, such as zinc finger nucleases and transcription activator-like effector nucleases methods, there has been a search for a mitochondrial gene editing technology that can edit mutated mitochondrial DNA; however, there are still some problems hindering the application of these methods. The discovery of the DddA-derived cytosine base editor has provided hope for mitochondrial gene editing. In this paper, we will review the progress in the research on several mitochondrial gene editing technologies with the hope that this review will be useful for further research on mitochondrial gene editing technologies to optimize the treatment of mitochondrial diseases in the future.
Collapse
Affiliation(s)
- Min Song
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Lingqun Ye
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Yongjin Yan
- Hai'an People's Hospital, Nantong, Jiangsu 226600, China
| | - Xuechun Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Xinglong Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| |
Collapse
|
21
|
Ichegiri A, Kodolikar K, Bagade V, Selukar M, Dey T. Mitochondria: A source of potential biomarkers for non-communicable diseases. Adv Clin Chem 2024; 121:334-365. [PMID: 38797544 DOI: 10.1016/bs.acc.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mitochondria, as an endosymbiont of eukaryotic cells, controls multiple cellular activities, including respiration, reactive oxygen species production, fatty acid synthesis, and death. Though the majority of functional mitochondrial proteins are translated through a nucleus-controlled process, very few of them (∼10%) are translated within mitochondria through their own machinery. Germline and somatic mutations in mitochondrial and nuclear DNA significantly impact mitochondrial homeostasis and function. Such modifications disturbing mitochondrial biogenesis, metabolism, or mitophagy eventually resulted in cellular pathophysiology. In this chapter, we discussed the impact of mitochondria and its dysfunction on several non-communicable diseases like cancer, diabetes, neurodegenerative, and cardiovascular problems. Mitochondrial dysfunction and its outcome could be screened by currently available omics-based techniques, flow cytometry, and high-resolution imaging. Such characterization could be evaluated as potential biomarkers to assess the disease burden and prognosis.
Collapse
Affiliation(s)
- Amulya Ichegiri
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Kshitij Kodolikar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Vaibhavi Bagade
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Mrunal Selukar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Tuli Dey
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
22
|
Kamenshchyk A, Belenichev I, Oksenych V, Kamyshnyi O. Combined Pharmacological Modulation of Translational and Transcriptional Activity Signaling Pathways as a Promising Therapeutic Approach in Children with Myocardial Changes. Biomolecules 2024; 14:477. [PMID: 38672493 PMCID: PMC11047929 DOI: 10.3390/biom14040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Myocardial hypertrophy is the most common condition that accompanies heart development in children. Transcriptional gene expression regulating pathways play a critical role both in cardiac embryogenesis and in the pathogenesis of congenital hypertrophic cardiomyopathy, neonatal posthypoxic myocardial hypertrophy, and congenital heart diseases. This paper describes the state of cardiac gene expression and potential pharmacological modulators at different transcriptional levels. An experimental model of perinatal cardiac hypoxia showed the downregulated expression of genes responsible for cardiac muscle integrity and overexpressed genes associated with energy metabolism and apoptosis, which may provide a basis for a therapeutic approach. Current evidence suggests that RNA drugs, theaflavin, neuraminidase, proton pumps, and histone deacetylase inhibitors are promising pharmacological agents in progressive cardiac hypertrophy. The different points of application of the above drugs make combined use possible, potentiating the effects of inhibition in specific signaling pathways. The special role of N-acetyl cysteine in both the inhibition of several signaling pathways and the reduction of oxidative stress was emphasized.
Collapse
Affiliation(s)
- Andrii Kamenshchyk
- Department of Hospital Pediatrics, Zaporizhzhya State Medical and Pharmaceutical University, 69035 Zaporizhzhya, Ukraine
| | - Igor Belenichev
- Department of Pharmacology, Zaporizhzhya State Medical and Pharmaceutical University, 69035 Zaporizhzhya, Ukraine;
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
23
|
Wang Y, He J, Dong F, Shou W, Feng X, Yang Y, Li C, Wang J, Li B, Xiao S. A novel mutation in GTPBP3 causes combined oxidative phosphorylation deficiency 23 by affecting pre-mRNA splicing. Heliyon 2024; 10:e27199. [PMID: 38515655 PMCID: PMC10955198 DOI: 10.1016/j.heliyon.2024.e27199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Background Combined Oxidative Phosphorylation Deficiency 23 (COXPD23) is a rare mitochondrial disease caused by mutations in the GTPBP3 gene. The rare incidence of the disease and the high clinical heterogeneity pose challenges in making a precise diagnosis. Investigations into the rare COXPD23 patients are of pathophysiological and etiological value. In this study, we investigated the genotype-phenotype relationship in a COXPD23 patient from a Manchu family, with GTPBP3 mutations. Methods Routine physical examinations, laboratory assays and imaging analyses were performed. The metabolic profiles of amino acids in blood, acylcarnitine in blood and organic acids in urine were used to determine the presence of inherited metabolic diseases. Genetic variations in the family were investigated using whole-exome sequencing and Sanger sequencing. Splicing disruption by a mutation was predicted and verified using a minigene assay. Results The patient presented with severe lactic acidosis, neurological symptoms, multiple symmetrical lesions in the brain and serious mitochondrial energy metabolism disturbances. The c.689A > C (p.Q230P) and c.809-1_809delinsA compound heterozygous mutations were detected in GTPBP3. The novel c.809-1_809delinsA mutation was located at the splicing site of exon 7 and intron 6 and multiple tools predicted that it would disrupt the normal splicing. The minigene assay proved that the novel mutation resulted in two aberrant transcripts that created premature termination codons. Conclusions The clinical manifestations, brain imaging change, mitochondrial metabolism disturbances and the detection and validation of the GTPBP3 mutations expand the profile of COXPD23 and the pathogenic mutation spectrum. Our study improves the understanding of the pathophysiology and etiology of COXPD23.
Collapse
Affiliation(s)
- Yanjun Wang
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Juan He
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Fangling Dong
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Weihua Shou
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, China
| | - Xingxing Feng
- Department of Clinical Laboratory, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Ya Yang
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Cuifen Li
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Jingjing Wang
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Bin Li
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Shufang Xiao
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| |
Collapse
|
24
|
Xuan X, Ruan J, Wu C, Gao Y, Li L, Lei X. A TTC19 mutation associated with progressive movement disorders and peripheral neuropathy: Case report and systematic review. CNS Neurosci Ther 2024; 30:e14425. [PMID: 37927170 PMCID: PMC10948947 DOI: 10.1111/cns.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 08/14/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Mitochondrial complex III (CIII) deficiency is an autosomal recessive disease characterized by symptoms such as ataxia, cognitive dysfunction, and spastic paraplegia. Multiple genes are associated with complex III defects. Among them, the mutation of TTC19 is a rare subtype. METHODS We screened a Chinese boy with weakness of limbs and his non-consanguineous parents by whole exome sequencing and targeted sequencing. RESULTS We report a Chinese boy diagnosed with mitochondrial complex III defect type 2 carrying a homozygous variant (c.719-732del, p.Leu240Serfs*17) of the TTC19 gene. According to the genotype analysis of his family members, this is an autosomal recessive inheritance. We provide his clinical manifestation. CONCLUSIONS A new type of TTC19 mutation (c.719-732del, p.Leu240Serfs*17) was found, which enriched the TTC19 gene mutation spectrum and provided new data for elucidating the pathogenesis of CIII-deficient diseases.
Collapse
Affiliation(s)
- Xianjun Xuan
- Department of NeurologyHangzhou Ninth People's HospitalHangzhouChina
| | - Jie Ruan
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Chunhong Wu
- Department of NeurologyHangzhou Ninth People's HospitalHangzhouChina
| | - Yiyi Gao
- Ningbo Medical Center Lihuili HospitalNingboChina
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaoguang Lei
- First Department of Neurology, First Affiliated Hospital of Kunming Medical UniversityKunming Medical UniversityKunmingChina
| |
Collapse
|
25
|
Nikitchina N, Ulashchik E, Shmanai V, Heckel AM, Tarassov I, Mazunin I, Entelis N. Targeting of CRISPR-Cas12a crRNAs into human mitochondria. Biochimie 2024; 217:74-85. [PMID: 37690471 DOI: 10.1016/j.biochi.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Mitochondrial gene editing holds great promise as a therapeutic approach for mitochondrial diseases caused by mutations in the mitochondrial DNA (mtDNA). Current strategies focus on reducing mutant mtDNA heteroplasmy levels through targeted cleavage or base editing. However, the delivery of editing components into mitochondria remains a challenge. Here we investigate the import of CRISPR-Cas12a system guide RNAs (crRNAs) into human mitochondria and study the structural requirements for this process by northern blot analysis of RNA isolated from nucleases-treated mitoplasts. To investigate whether the fusion of crRNA with known RNA import determinants (MLS) improve its mitochondrial targeting, we added MLS hairpin structures at 3'-end of crRNA and demonstrated that this did not impact crRNA ability to program specific cleavage of DNA in lysate of human cells expressing AsCas12a nuclease. Surprisingly, mitochondrial localization of the fused crRNA molecules was not improved compared to non-modified version, indicating that structured scaffold domain of crRNA can probably function as MLS, assuring crRNA mitochondrial import. Then, we designed a series of crRNAs targeting different regions of mtDNA and demonstrated their ability to program specific cleavage of mtDNA fragments in cell lysate and their partial localization in mitochondrial matrix in human cells transfected with these RNA molecules. We hypothesize that mitochondrial import of crRNAs may depend on their secondary structure/sequence. We presume that imported crRNA allow reconstituting the active crRNA/Cas12a system in human mitochondria, which can contribute to the development of effective strategies for mitochondrial gene editing and potential future treatment of mitochondrial diseases.
Collapse
Affiliation(s)
- Natalia Nikitchina
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France
| | - Egor Ulashchik
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, Minsk, 220072, Belarus
| | - Vadim Shmanai
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, Minsk, 220072, Belarus
| | - Anne-Marie Heckel
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France
| | - Ivan Tarassov
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Nina Entelis
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France.
| |
Collapse
|
26
|
Gao Y, Guo L, Wang F, Wang Y, Li P, Zhang D. Development of mitochondrial gene-editing strategies and their potential applications in mitochondrial hereditary diseases: a review. Cytotherapy 2024; 26:11-24. [PMID: 37930294 DOI: 10.1016/j.jcyt.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023]
Abstract
Mitochondrial DNA (mtDNA) is a critical genome contained within the mitochondria of eukaryotic cells, with many copies present in each mitochondrion. Mutations in mtDNA often are inherited and can lead to severe health problems, including various inherited diseases and premature aging. The lack of efficient repair mechanisms and the susceptibility of mtDNA to damage exacerbate the threat to human health. Heteroplasmy, the presence of different mtDNA genotypes within a single cell, increases the complexity of these diseases and requires an effective editing method for correction. Recently, gene-editing techniques, including programmable nucleases such as restriction endonuclease, zinc finger nuclease, transcription activator-like effector nuclease, clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated 9 and base editors, have provided new tools for editing mtDNA in mammalian cells. Base editors are particularly promising because of their high efficiency and precision in correcting mtDNA mutations. In this review, we discuss the application of these techniques in mitochondrial gene editing and their limitations. We also explore the potential of base editors for mtDNA modification and discuss the opportunities and challenges associated with their application in mitochondrial gene editing. In conclusion, this review highlights the advancements, limitations and opportunities in current mitochondrial gene-editing technologies and approaches. Our insights aim to stimulate the development of new editing strategies that can ultimately alleviate the adverse effects of mitochondrial hereditary diseases.
Collapse
Affiliation(s)
- Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Linlin Guo
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
27
|
Gropman AL, Uittenbogaard MN, Chiaramello AE. Challenges and opportunities to bridge translational to clinical research for personalized mitochondrial medicine. Neurotherapeutics 2024; 21:e00311. [PMID: 38266483 PMCID: PMC10903101 DOI: 10.1016/j.neurot.2023.e00311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Mitochondrial disorders are a group of rare and heterogeneous genetic diseases characterized by dysfunctional mitochondria leading to deficient adenosine triphosphate synthesis and chronic energy deficit in patients. The majority of these patients exhibit a wide range of phenotypic manifestations targeting several organ systems, making their clinical diagnosis and management challenging. Bridging translational to clinical research is crucial for improving the early diagnosis and prognosis of these intractable mitochondrial disorders and for discovering novel therapeutic drug candidates and modalities. This review provides the current state of clinical testing in mitochondrial disorders, discusses the challenges and opportunities for converting basic discoveries into clinical settings, explores the most suited patient-centric approaches to harness the extraordinary heterogeneity among patients affected by the same primary mitochondrial disorder, and describes the current outlook of clinical trials.
Collapse
Affiliation(s)
- Andrea L Gropman
- Children's National Medical Center, Division of Neurogenetics and Neurodevelopmental Pediatrics, Washington, DC 20010, USA
| | - Martine N Uittenbogaard
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Anne E Chiaramello
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| |
Collapse
|
28
|
Wang D, Teng J, Ning C, Wang W, Liu S, Zhang Q, Tang H. Mitogenome-wide association study on body measurement traits of Wenshang Barred chickens. Anim Biotechnol 2023; 34:3154-3161. [PMID: 36282276 DOI: 10.1080/10495398.2022.2137035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Mitochondria are best known for synthesizing ATP through the tricarboxylic acid cycle and oxidative phosphorylation. The cytoplasmic mitochondrial DNA (mtDNA) is important for maintaining the function. This study was designed to reveal the effect of mtDNA on chicken body measurement traits (BMTs). A population of 605 Wenshang Barred chickens were recorded BMTs, including body slope length, keel length, chest width, etc. The single-nucleotide polymorphisms (SNPs) of their mitogenomes were detected by PCR amplification and DNA sequencing. Totally 69 mutations in mitogenome were discovered, including 18 in noncoding region and 51 in coding region. By multi-sequence alignment and haplotype construction, the chickens were clustered into eight haplotypes and further three haplogroups. The association between BMTs and mtDNA SNPs, haplotypes and haplogroups were analyzed in the linear model by ASReml, respectively. Among them, the SNP mt11086 T/C in ND3 was found to significantly affect chest dept (p < .05) and was highly conservative by phylogenetic conservation analyses, which reflected the genetic effect on body size and growth of chickens. No significant association between the mitochondrial haplotypes or haplogroups and BMTs was found. The polymorphic site reflecting body size could be put into chicken breeding programs as the genetic marker.
Collapse
Affiliation(s)
- Dan Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Jun Teng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Chao Ning
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Wenwen Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Shuai Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Qin Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Hui Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
29
|
Li Y, Wu Y, Xu R, Guo J, Quan F, Zhang Y, Huang D, Pei Y, Gao H, Liu W, Liu J, Zhang Z, Deng R, Shi J, Zhang K. In vivo imaging of mitochondrial DNA mutations using an integrated nano Cas12a sensor. Nat Commun 2023; 14:7722. [PMID: 38001092 PMCID: PMC10673915 DOI: 10.1038/s41467-023-43552-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) play critical roles in many human diseases. In vivo visualization of cells bearing mtDNA mutations is important for resolving the complexity of these diseases, which remains challenging. Here we develop an integrated nano Cas12a sensor (InCasor) and show its utility for efficient imaging of mtDNA mutations in live cells and tumor-bearing mouse models. We co-deliver Cas12a/crRNA, fluorophore-quencher reporters and Mg2+ into mitochondria. This process enables the activation of Cas12a's trans-cleavage by targeting mtDNA, which efficiently cleave reporters to generate fluorescent signals for robustly sensing and reporting single-nucleotide variations (SNVs) in cells. Since engineered crRNA significantly increase Cas12a's sensitivity to mismatches in mtDNA, we can identify tumor tissue and metastases by visualizing cells with mutant mtDNAs in vivo using InCasor. This CRISPR imaging nanoprobe holds potential for applications in mtDNA mutation-related basic research, diagnostics and gene therapies.
Collapse
Affiliation(s)
- Yanan Li
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yonghua Wu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Ru Xu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Jialing Guo
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Fenglei Quan
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongyuan Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Di Huang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yiran Pei
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Hua Gao
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Ruijie Deng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
30
|
Ramsey LB, Prows CA, Tang Girdwood S, Van Driest S. Current Practices in Pharmacogenomics. Pediatr Clin North Am 2023; 70:995-1011. [PMID: 37704356 PMCID: PMC10865383 DOI: 10.1016/j.pcl.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Pharmacogenomics, where genomic information is used to tailor medication management, is a strategy to maximize drug efficacy and minimize toxicity. Although pediatric evidence is less robust than for adults, medications influenced by pharmacogenomics are prescribed to children and adolescents. Evidence-based guidelines and drug label annotations are available from the Clinical Pharmacogenetics Implementation Consortium (CPIC) and the Pharmacogenomics Knowledgebase (PharmGKB). Some pediatric health care facilities use pharmacogenomics to provide dosing recommendations to pediatricians. Herein, we use a case-based approach to illustrate the use of pharmacogenomic data in pediatric clinical care and provide resources for finding and using pharmacogenomic guidelines.
Collapse
Affiliation(s)
- Laura B Ramsey
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, MLC 6018, Cincinnati, OH 45229, USA; Division of Research in Patient Services, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, MLC 6018, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 9016, Cincinnati, OH 45529, USA.
| | - Cynthia A Prows
- Division of Human Genetics, Department of Pediatrics and Center for Professional Excellence, Patient Services, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, MLC 6018, Cincinnati, OH 45229, USA
| | - Sonya Tang Girdwood
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 9016, Cincinnati, OH 45529, USA; Division of Hospital Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 9016, Cincinnati, OH 45529, USA; Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 9016, Cincinnati, OH 45529, USA
| | - Sara Van Driest
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, 8232 DOT, Nashville, TN 37205, USA
| |
Collapse
|
31
|
Bai W, Zhang Q, Fan Y, Han T, Gu N, Zhang Y, Liang F, Ma Y, Xiong H. Case report: mitochondrial diabetes mellitus in a Chinese family due to m.3243A>G. J Pediatr Endocrinol Metab 2023; 36:777-781. [PMID: 37459161 DOI: 10.1515/jpem-2023-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/30/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVES Mitochondrial diabetes mellitus is caused by dysfunctional mitochondria and is often misdiagnosed because of its various clinical manifestations. It's even rarer in children, and without a clear family history of diabetes with hearing loss, it's often difficult to diagnose. CASE PRESENTATION This is a case study of a family with maternally inherited diabetes mellitus and deafness (MIDD). The proband was an adolescent girl with diabetes with a family history of type 2 diabetes (T2DM) for three generations. Family members have undetected hearing impaired. The proband could not be diagnosed with type 1 diabetes (T1DM) or T2DM. Therefore, whole exome and mitochondrial gene sequencing was performed, which identified an m.3243A>G mutation in the mitochondrial DNA. CONCLUSIONS This suggests that we should be alert to the possibility of hereditary diabetes, especially mitochondrial diabetes in patients with atypical diabetes. A thorough physical examination is very important. What is new: (1) Mitochondrial diabetes in childhood may not be accompanied by deafness even with highly heteroplasmy levels. (2) In MIDD patients, sometimes hearing loss cannot be perceived, which requires us to conduct detailed physical examinations and related examinations. (3) The use of metformin in MIDD patients did not have adverse consequences.
Collapse
Affiliation(s)
- Wei Bai
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Qian Zhang
- Department of Pediatrics, Peking University First Hospital-Mi Yun Hospital, Beijing, P.R. China
| | - Yanbin Fan
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Tianyan Han
- Department of Pediatrics, Peking University First Hospital-Mi Yun Hospital, Beijing, P.R. China
| | - Nan Gu
- Department of Endocrinology, Peking University First Hospital, Beijing, P.R. China
| | - Yao Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Furong Liang
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Yinan Ma
- Department of Central Laboratory, Peking University First Hospital, Beijing, P.R. China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| |
Collapse
|
32
|
Katsuda T, Cure H, Sussman J, Simeonov KP, Krapp C, Arany Z, Grompe M, Stanger BZ. Rapid in vivo multiplexed editing (RIME) of the adult mouse liver. Hepatology 2023; 78:486-502. [PMID: 36037289 PMCID: PMC11088813 DOI: 10.1002/hep.32759] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Assessing mammalian gene function in vivo has traditionally relied on manipulation of the mouse genome in embryonic stem cells or perizygotic embryos. These approaches are time-consuming and require extensive breeding when simultaneous mutations in multiple genes is desired. The aim of this study is to introduce a rapid in vivo multiplexed editing (RIME) method and provide proof of concept of this system. APPROACH AND RESULTS RIME, a system wherein CRISPR/caspase 9 technology, paired with adeno-associated viruses (AAVs), permits the inactivation of one or more genes in the adult mouse liver. The method is quick, requiring as little as 1 month from conceptualization to knockout, and highly efficient, enabling editing in >95% of target cells. To highlight its use, we used this system to inactivate, alone or in combination, genes with functions spanning metabolism, mitosis, mitochondrial maintenance, and cell proliferation. CONCLUSIONS RIME enables the rapid, efficient, and inexpensive analysis of multiple genes in the mouse liver in vivo .
Collapse
Affiliation(s)
- Takeshi Katsuda
- Department of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania , USA
- Department of Cell and Developmental Biology , University of Pennsylvania , Philadelphia , Pennsylvania , USA
- Abramson Family Cancer Research Institute , University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - Hector Cure
- Department of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania , USA
- Department of Cell and Developmental Biology , University of Pennsylvania , Philadelphia , Pennsylvania , USA
- Abramson Family Cancer Research Institute , University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - Jonathan Sussman
- Department of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania , USA
- Department of Cell and Developmental Biology , University of Pennsylvania , Philadelphia , Pennsylvania , USA
- Abramson Family Cancer Research Institute , University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - Kamen P Simeonov
- Department of Biomedical Sciences, School of Veterinary Medicine , University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - Christopher Krapp
- Department of Cell and Developmental Biology , University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - Markus Grompe
- Department of Pediatrics , Oregon Health & Science University , Portland , Oregon , USA
| | - Ben Z Stanger
- Department of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania , USA
- Department of Cell and Developmental Biology , University of Pennsylvania , Philadelphia , Pennsylvania , USA
- Abramson Family Cancer Research Institute , University of Pennsylvania , Philadelphia , Pennsylvania , USA
| |
Collapse
|
33
|
Del Giudice L, Pontieri P, Aletta M, Calcagnile M. Mitochondrial Neurodegenerative Diseases: Three Mitochondrial Ribosomal Proteins as Intermediate Stage in the Pathway That Associates Damaged Genes with Alzheimer's and Parkinson's. BIOLOGY 2023; 12:972. [PMID: 37508402 PMCID: PMC10376763 DOI: 10.3390/biology12070972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Currently, numerous research endeavors are dedicated to unraveling the intricate nature of neurodegenerative diseases. These conditions are characterized by the gradual and progressive impairment of specific neuronal systems that exhibit anatomical or physiological connections. In particular, in the last twenty years, remarkable efforts have been made to elucidate neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. However, despite extensive research endeavors, no cure or effective treatment has been discovered thus far. With the emergence of studies shedding light on the contribution of mitochondria to the onset and advancement of mitochondrial neurodegenerative disorders, researchers are now directing their investigations toward the development of therapies. These therapies include molecules designed to protect mitochondria and neurons from the detrimental effects of aging, as well as mutant proteins. Our objective is to discuss and evaluate the recent discovery of three mitochondrial ribosomal proteins linked to Alzheimer's and Parkinson's diseases. These proteins represent an intermediate stage in the pathway connecting damaged genes to the two mitochondrial neurological pathologies. This discovery potentially could open new avenues for the production of medicinal substances with curative potential for the treatment of these diseases.
Collapse
Affiliation(s)
- Luigi Del Giudice
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, 80134 Napoli, Italy
| | - Paola Pontieri
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, 80134 Napoli, Italy
| | | | - Matteo Calcagnile
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, 73100 Lecce, Italy
| |
Collapse
|
34
|
Vila-Sanjurjo A, Mallo N, Atkins JF, Elson JL, Smith PM. Our current understanding of the toxicity of altered mito-ribosomal fidelity during mitochondrial protein synthesis: What can it tell us about human disease? Front Physiol 2023; 14:1082953. [PMID: 37457031 PMCID: PMC10349377 DOI: 10.3389/fphys.2023.1082953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/28/2023] [Indexed: 07/18/2023] Open
Abstract
Altered mito-ribosomal fidelity is an important and insufficiently understood causative agent of mitochondrial dysfunction. Its pathogenic effects are particularly well-known in the case of mitochondrially induced deafness, due to the existence of the, so called, ototoxic variants at positions 847C (m.1494C) and 908A (m.1555A) of 12S mitochondrial (mt-) rRNA. It was shown long ago that the deleterious effects of these variants could remain dormant until an external stimulus triggered their pathogenicity. Yet, the link from the fidelity defect at the mito-ribosomal level to its phenotypic manifestation remained obscure. Recent work with fidelity-impaired mito-ribosomes, carrying error-prone and hyper-accurate mutations in mito-ribosomal proteins, have started to reveal the complexities of the phenotypic manifestation of mito-ribosomal fidelity defects, leading to a new understanding of mtDNA disease. While much needs to be done to arrive to a clear picture of how defects at the level of mito-ribosomal translation eventually result in the complex patterns of disease observed in patients, the current evidence indicates that altered mito-ribosome function, even at very low levels, may become highly pathogenic. The aims of this review are three-fold. First, we compare the molecular details associated with mito-ribosomal fidelity to those of general ribosomal fidelity. Second, we gather information on the cellular and organismal phenotypes associated with defective translational fidelity in order to provide the necessary grounds for an understanding of the phenotypic manifestation of defective mito-ribosomal fidelity. Finally, the results of recent experiments directly tackling mito-ribosomal fidelity are reviewed and future paths of investigation are discussed.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Grupo GIBE, Departamento de Bioloxía e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Natalia Mallo
- Grupo GIBE, Departamento de Bioloxía e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - John F Atkins
- Schools of Biochemistry and Microbiology, University College Cork, Cork, Ireland
| | - Joanna L Elson
- The Bioscience Institute, Newcastle University, Newcastle uponTyne, United Kingdom
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Paul M Smith
- Department of Paediatrics, Raigmore Hospital, Inverness, Scotland, United Kingdom
| |
Collapse
|
35
|
Pickett SJ, Hudson G, Greaves LC. Single-cell multiomic analyses sheds light on mitochondrial mutational selection. Nat Genet 2023:10.1038/s41588-023-01436-5. [PMID: 37386252 DOI: 10.1038/s41588-023-01436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Affiliation(s)
- Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University, Newcastle upon Tyne, UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
36
|
Barretta F, Uomo F, Caldora F, Mocerino R, Adamo D, Testa F, Simonelli F, Scudiero O, Tinto N, Frisso G, Mazzaccara C. Combined MITOchondrial-NUCLEAR (MITO-NUCLEAR) Analysis for Mitochondrial Diseases Diagnosis: Validation and Implementation of a One-Step NGS Method. Genes (Basel) 2023; 14:genes14051087. [PMID: 37239447 DOI: 10.3390/genes14051087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) technology is revolutionizing diagnostic screening for mitochondrial diseases (MDs). Moreover, an investigation by NGS still requires analyzing the mitochondrial genome and nuclear genes separately, with limitations in terms of time and costs. We describe the validation and implementation of a custom blended MITOchondrial-NUCLEAR (MITO-NUCLEAR) assay for the simultaneous identification of genetic variants both in whole mtDNA and in nuclear genes included in a clinic exome panel. Furthermore, the MITO-NUCLEAR assay, implemented in our diagnostic process, has allowed us to arrive at a molecular diagnosis in a young patient. METHODS Massive sequencing strategy was applied for the validation experiments, performed using multiple tissues (blood, buccal swab, fresh tissue, tissue from slide, and formalin-fixed paraffin-embedded tissue section) and two different blend-in ratios of the mitochondrial probes: nuclear probes; 1:900 and 1:300. RESULTS Data suggested that 1:300 was the optimal probe dilution, where 100% of the mtDNA was covered at least 3000×, the median coverage was >5000×, and 93.84% of nuclear regions were covered at least 100×. CONCLUSIONS Our custom Agilent SureSelect MITO-NUCLEAR panel provides a potential "one-step" investigation that may be applied to both research and genetic diagnosis of MDs, allowing the simultaneous discovery of nuclear and mitochondrial mutations.
Collapse
Affiliation(s)
- Ferdinando Barretta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, 80131 Naples, Italy
| | - Fabiana Uomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Filomena Caldora
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Rossella Mocerino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Daniela Adamo
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, 80131 Naples, Italy
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, 80131 Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, 80131 Naples, Italy
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, 80131 Naples, Italy
| |
Collapse
|
37
|
Eade KT, Ansell BRE, Giles S, Fallon R, Harkins-Perry S, Nagasaki T, Tzaridis S, Wallace M, Mills EA, Farashi S, Johnson A, Sauer L, Hart B, Diaz-Rubio ME, Bahlo M, Metallo C, Allikmets R, Gantner ML, Bernstein PS, Friedlander M. iPSC-derived retinal pigmented epithelial cells from patients with macular telangiectasia show decreased mitochondrial function. J Clin Invest 2023; 133:e163771. [PMID: 37115691 PMCID: PMC10145939 DOI: 10.1172/jci163771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
Patient-derived induced pluripotent stem cells (iPSCs) provide a powerful tool for identifying cellular and molecular mechanisms of disease. Macular telangiectasia type 2 (MacTel) is a rare, late-onset degenerative retinal disease with an extremely heterogeneous genetic architecture, lending itself to the use of iPSCs. Whole-exome sequencing screens and pedigree analyses have identified rare causative mutations that account for less than 5% of cases. Metabolomic surveys of patient populations and GWAS have linked MacTel to decreased circulating levels of serine and elevated levels of neurotoxic 1-deoxysphingolipids (1-dSLs). However, retina-specific, disease-contributing factors have yet to be identified. Here, we used iPSC-differentiated retinal pigmented epithelial (iRPE) cells derived from donors with or without MacTel to screen for novel cell-intrinsic pathological mechanisms. We show that MacTel iRPE cells mimicked the low serine levels observed in serum from patients with MacTel. Through RNA-Seq and gene set enrichment pathway analysis, we determined that MacTel iRPE cells are enriched in cellular stress pathways and dysregulation of central carbon metabolism. Using respirometry and mitochondrial stress testing, we functionally validated that MacTel iRPE cells had a reduction in mitochondrial function that was independent of defects in serine biosynthesis and 1-dSL accumulation. Thus, we identified phenotypes that may constitute alternative disease mechanisms beyond the known serine/sphingolipid pathway.
Collapse
Affiliation(s)
- Kevin T. Eade
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Brendan Robert E. Ansell
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah Giles
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Regis Fallon
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Sarah Harkins-Perry
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Takayuki Nagasaki
- Department of Ophthalmology and
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Simone Tzaridis
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Martina Wallace
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Elizabeth A. Mills
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Samaneh Farashi
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alec Johnson
- The Lowy Medical Research Institute, La Jolla, California, USA
| | - Lydia Sauer
- Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Barbara Hart
- Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - M. Elena Diaz-Rubio
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Melanie Bahlo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christian Metallo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Rando Allikmets
- Department of Ophthalmology and
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Marin L. Gantner
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Paul S. Bernstein
- Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Martin Friedlander
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| |
Collapse
|
38
|
Gill EL, Wang J, Viaene AN, Master SR, Ganetzky RD. Methodologies in Mitochondrial Testing: Diagnosing a Primary Mitochondrial Respiratory Chain Disorder. Clin Chem 2023:7143230. [PMID: 37099687 DOI: 10.1093/clinchem/hvad037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/03/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Mitochondria are cytosolic organelles within most eukaryotic cells. Mitochondria generate the majority of cellular energy in the form of adenosine triphosphate (ATP) through oxidative phosphorylation (OxPhos). Pathogenic variants in mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) lead to defects in OxPhos and physiological malfunctions (Nat Rev Dis Primer 2016;2:16080.). Patients with primary mitochondrial disorders (PMD) experience heterogeneous symptoms, typically in multiple organ systems, depending on the tissues affected by mitochondrial dysfunction. Because of this heterogeneity, clinical diagnosis is challenging (Annu Rev Genomics Hum Genet 2017;18:257-75.). Laboratory diagnosis of mitochondrial disease depends on a multipronged analysis that can include biochemical, histopathologic, and genetic testing. Each of these modalities has complementary strengths and limitations in diagnostic utility. CONTENT The primary focus of this review is on diagnosis and testing strategies for primary mitochondrial diseases. We review tissue samples utilized for testing, metabolic signatures, histologic findings, and molecular testing approaches. We conclude with future perspectives on mitochondrial testing. SUMMARY This review offers an overview of the current biochemical, histologic, and genetic approaches available for mitochondrial testing. For each we review their diagnostic utility including complementary strengths and weaknesses. We identify gaps in current testing and possible future avenues for test development.
Collapse
Affiliation(s)
- Emily L Gill
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jing Wang
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen R Master
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Rebecca D Ganetzky
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Human Genetics, Children's Hospital of Philadelphia, Mitochondrial Medicine Frontier Program, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
39
|
Gautam M, Genç B, Helmold B, Ahrens A, Kuka J, Makrecka-Kuka M, Günay A, Koçak N, Aguilar-Wickings IR, Keefe D, Zheng G, Swaminathan S, Redmon M, Zariwala HA, Özdinler PH. SBT-272 improves TDP-43 pathology in ALS upper motor neurons by modulating mitochondrial integrity, motility, and function. Neurobiol Dis 2023; 178:106022. [PMID: 36716828 DOI: 10.1016/j.nbd.2023.106022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Mitochondrial defects are one of the common underlying causes of neuronal vulnerability in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), and TDP-43 pathology is the most commonly observed proteinopathy. Disrupted inner mitochondrial membrane (IMM) reported in the upper motor neurons (UMNs) of ALS patients with TDP-43 pathology is recapitulated in the UMNs of well-characterized hTDP-43 mouse model of ALS. The construct validity, such as shared and common cellular pathology in mice and human, offers a unique opportunity to test treatment strategies that may translate to patients. SBT-272 is a well-tolerated brain-penetrant small molecule that stabilizes cardiolipin, a phospholipid found in IMM, thereby restoring mitochondrial structure and respiratory function. We investigated whether SBT-272 can improve IMM structure and health in UMNs diseased with TDP-43 pathology in our well-characterized UMN reporter line for ALS. We found that SBT-272 significantly improved mitochondrial structural integrity and restored mitochondrial motility and function. This led to improved health of diseased UMNs in vitro. In comparison to edaravone and AMX0035, SBT-272 appeared more effective in restoring health of diseased UMNs. Chronic treatment of SBT-272 for sixty days starting at an early symptomatic stage of the disease in vivo led to a significant reduction in astrogliosis, microgliosis, and TDP-43 pathology in the ALS motor cortex. Our results underscore the therapeutic potential of SBT-272, especially within the context of TDP-43 pathology and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mukesh Gautam
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Barış Genç
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Benjamin Helmold
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Angela Ahrens
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Janis Kuka
- Latvian Institute of Organic Synthesis (LIOS), Aizkraukles Street 21, LV-2006 Riga, Latvia
| | - Marina Makrecka-Kuka
- Latvian Institute of Organic Synthesis (LIOS), Aizkraukles Street 21, LV-2006 Riga, Latvia
| | - Aksu Günay
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Nuran Koçak
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Izaak R Aguilar-Wickings
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Dennis Keefe
- Stealth BioTherapeutics, 140 Kendrick St Building C, Needham, MA 02494, USA
| | - Guozhu Zheng
- Stealth BioTherapeutics, 140 Kendrick St Building C, Needham, MA 02494, USA
| | - Suchitra Swaminathan
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, 420 E Superior St, Chicago, IL 60611, USA.; Robert H. Lurie Comprehensive Cancer Research Center, Feinberg School of Medicine, Northwestern University, 675 N St Clair Fl 21 Ste 100, Chicago, IL 60611, USA
| | - Martin Redmon
- Stealth BioTherapeutics, 140 Kendrick St Building C, Needham, MA 02494, USA
| | - Hatim A Zariwala
- Stealth BioTherapeutics, 140 Kendrick St Building C, Needham, MA 02494, USA
| | - P Hande Özdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Research Center, Feinberg School of Medicine, Northwestern University, 675 N St Clair Fl 21 Ste 100, Chicago, IL 60611, USA; Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2205 Tech Dr, Evanston, IL 60208, USA..
| |
Collapse
|
40
|
Proteomics as a Tool for the Study of Mitochondrial Proteome, Its Dysfunctionality and Pathological Consequences in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24054692. [PMID: 36902123 PMCID: PMC10003354 DOI: 10.3390/ijms24054692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The focus of this review is on the proteomic approaches applied to the study of the qualitative/quantitative changes in mitochondrial proteins that are related to impaired mitochondrial function and consequently different types of pathologies. Proteomic techniques developed in recent years have created a powerful tool for the characterization of both static and dynamic proteomes. They can detect protein-protein interactions and a broad repertoire of post-translation modifications that play pivotal roles in mitochondrial regulation, maintenance and proper function. Based on accumulated proteomic data, conclusions can be derived on how to proceed in disease prevention and treatment. In addition, this article will present an overview of the recently published proteomic papers that deal with the regulatory roles of post-translational modifications of mitochondrial proteins and specifically with cardiovascular diseases connected to mitochondrial dysfunction.
Collapse
|
41
|
Ibayashi K, Fujino Y, Mimaki M, Fujimoto K, Matsuda S, Goto YI. Estimation of the Number of Patients With Mitochondrial Diseases: A Descriptive Study Using a Nationwide Database in Japan. J Epidemiol 2023; 33:68-75. [PMID: 33907064 PMCID: PMC9794447 DOI: 10.2188/jea.je20200577] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND To provide a better healthcare system for patients with mitochondrial diseases, it is important to understand the basic epidemiology of these conditions, including the number of patients affected. However, little information about them has appeared in Japan to date. METHODS To gather data of patients with mitochondrial diseases, we estimated the number of patients with mitochondrial diseases from April 2018 through March 2019 using a national Japanese health care claims database, the National Database (NDB). Further, we calculated the prevalence of patients, and sex ratio, age class, and geographical distribution. RESULTS From April 2018 through March 2019, the number of patients with mitochondrial diseases was 3,629, and the prevalence was 2.9 (95% confidence interval [CI], 2.8-3.0) per 100,000 general population. The ratio of females and males was 53 to 47, and the most frequent age class was 40-49 years old. Tokyo had the greatest number of patients with mitochondrial diseases, at 477, whereas Yamanashi had the fewest, at 13. Kagoshima had the highest prevalence of patients with mitochondrial diseases, 8.4 (95% CI, 7.1-10.0) per 100,000 population, whereas Yamanashi had the lowest, 1.6 (95% CI, 0.8-2.7). CONCLUSION The number of patients with mitochondrial diseases estimated by this study, 3,269, was more than double that indicated by the Japanese government. This result may imply that about half of all patients are overlooked for reasons such as low severity of illness, suggesting that the Japanese healthcare system needs to provide additional support for these patients.
Collapse
Affiliation(s)
- Koki Ibayashi
- Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Yoshihisa Fujino
- Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Masakazu Mimaki
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Kenji Fujimoto
- Department of Public Health, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Shinya Matsuda
- Department of Public Health, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Yu-ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
42
|
Mavraki E, Labrum R, Sergeant K, Alston CL, Woodward C, Smith C, Knowles CVY, Patel Y, Hodsdon P, Baines JP, Blakely EL, Polke J, Taylor RW, Fratter C. Genetic testing for mitochondrial disease: the United Kingdom best practice guidelines. Eur J Hum Genet 2023; 31:148-163. [PMID: 36513735 PMCID: PMC9905091 DOI: 10.1038/s41431-022-01249-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Primary mitochondrial disease describes a diverse group of neuro-metabolic disorders characterised by impaired oxidative phosphorylation. Diagnosis is challenging; >350 genes, both nuclear and mitochondrial DNA (mtDNA) encoded, are known to cause mitochondrial disease, leading to all possible inheritance patterns and further complicated by heteroplasmy of the multicopy mitochondrial genome. Technological advances, particularly next-generation sequencing, have driven a shift in diagnostic practice from 'biopsy first' to genome-wide analyses of blood and/or urine DNA. This has led to the need for a reference framework for laboratories involved in mitochondrial genetic testing to facilitate a consistent high-quality service. In the United Kingdom, consensus guidelines have been prepared by a working group of Clinical Scientists from the NHS Highly Specialised Service followed by national laboratory consultation. These guidelines summarise current recommended technologies and methodologies for the analysis of mtDNA and nuclear-encoded genes in patients with suspected mitochondrial disease. Genetic testing strategies for diagnosis, family testing and reproductive options including prenatal diagnosis are outlined. Importantly, recommendations for the minimum levels of mtDNA testing for the most common referral reasons are included, as well as guidance on appropriate referrals and information on the minimal appropriate gene content of panels when analysing nuclear mitochondrial genes. Finally, variant interpretation and recommendations for reporting of results are discussed, focussing particularly on the challenges of interpreting and reporting mtDNA variants.
Collapse
Affiliation(s)
- Eleni Mavraki
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Robyn Labrum
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Kate Sergeant
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Charlotte L Alston
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Cathy Woodward
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Conrad Smith
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Charlotte V Y Knowles
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yogen Patel
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Philip Hodsdon
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jack P Baines
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Emma L Blakely
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - James Polke
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Robert W Taylor
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Carl Fratter
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
43
|
Mann JP, Duan X, Patel S, Tábara LC, Scurria F, Alvarez-Guaita A, Haider A, Luijten I, Page M, Protasoni M, Lim K, Virtue S, O'Rahilly S, Armstrong M, Prudent J, Semple RK, Savage DB. A mouse model of human mitofusin-2-related lipodystrophy exhibits adipose-specific mitochondrial stress and reduced leptin secretion. eLife 2023; 12:e82283. [PMID: 36722855 PMCID: PMC9937658 DOI: 10.7554/elife.82283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/30/2023] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial dysfunction has been reported in obesity and insulin resistance, but primary genetic mitochondrial dysfunction is generally not associated with these, arguing against a straightforward causal relationship. A rare exception, recently identified in humans, is a syndrome of lower body adipose loss, leptin-deficient severe upper body adipose overgrowth, and insulin resistance caused by the p.Arg707Trp mutation in MFN2, encoding mitofusin 2. How the resulting selective form of mitochondrial dysfunction leads to tissue- and adipose depot-specific growth abnormalities and systemic biochemical perturbation is unknown. To address this, Mfn2R707W/R707W knock-in mice were generated and phenotyped on chow and high fat diets. Electron microscopy revealed adipose-specific mitochondrial morphological abnormalities. Oxidative phosphorylation measured in isolated mitochondria was unperturbed, but the cellular integrated stress response was activated in adipose tissue. Fat mass and distribution, body weight, and systemic glucose and lipid metabolism were unchanged, however serum leptin and adiponectin concentrations, and their secretion from adipose explants were reduced. Pharmacological induction of the integrated stress response in wild-type adipocytes also reduced secretion of leptin and adiponectin, suggesting an explanation for the in vivo findings. These data suggest that the p.Arg707Trp MFN2 mutation selectively perturbs mitochondrial morphology and activates the integrated stress response in adipose tissue. In mice, this does not disrupt most adipocyte functions or systemic metabolism, whereas in humans it is associated with pathological adipose remodelling and metabolic disease. In both species, disproportionate effects on leptin secretion may relate to cell autonomous induction of the integrated stress response.
Collapse
Affiliation(s)
- Jake P Mann
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Xiaowen Duan
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Satish Patel
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Luis Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of CambridgeCambridgeUnited Kingdom
| | - Fabio Scurria
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Anna Alvarez-Guaita
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Afreen Haider
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Ineke Luijten
- Centre for Cardiovascular Science, University of EdinburghEdinburghUnited Kingdom
| | | | - Margherita Protasoni
- Medical Research Council Mitochondrial Biology Unit, University of CambridgeCambridgeUnited Kingdom
| | - Koini Lim
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Sam Virtue
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Stephen O'Rahilly
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | | | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of CambridgeCambridgeUnited Kingdom
| | - Robert K Semple
- Centre for Cardiovascular Science, University of EdinburghEdinburghUnited Kingdom
- MRC Human Genetics Unit, University of EdinburghEdinburghUnited Kingdom
| | - David B Savage
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
44
|
Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Reche-López D, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Povea-Cabello S, Suárez-Carrillo A, Romero-González A, Suárez-Rivero JM, Romero-Domínguez JM, Sánchez-Alcázar JA. mtUPR Modulation as a Therapeutic Target for Primary and Secondary Mitochondrial Diseases. Int J Mol Sci 2023; 24:ijms24021482. [PMID: 36674998 PMCID: PMC9865803 DOI: 10.3390/ijms24021482] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial dysfunction is a key pathological event in many diseases. Its role in energy production, calcium homeostasis, apoptosis regulation, and reactive oxygen species (ROS) balance render mitochondria essential for cell survival and fitness. However, there are no effective treatments for most primary and secondary mitochondrial diseases to this day. Therefore, new therapeutic approaches, such as the modulation of the mitochondrial unfolded protein response (mtUPR), are being explored. mtUPRs englobe several compensatory processes related to proteostasis and antioxidant system mechanisms. mtUPR activation, through an overcompensation for mild intracellular stress, promotes cell homeostasis and improves lifespan and disease alterations in biological models of mitochondrial dysfunction in age-related diseases, cardiopathies, metabolic disorders, and primary mitochondrial diseases. Although mtUPR activation is a promising therapeutic option for many pathological conditions, its activation could promote tumor progression in cancer patients, and its overactivation could lead to non-desired side effects, such as the increased heteroplasmy of mitochondrial DNA mutations. In this review, we present the most recent data about mtUPR modulation as a therapeutic approach, its role in diseases, and its potential negative consequences in specific pathological situations.
Collapse
|
45
|
Xu W, Tang J, Zhao L. DNA-protein cross-links between abasic DNA damage and mitochondrial transcription factor A (TFAM). Nucleic Acids Res 2023; 51:41-53. [PMID: 36583367 PMCID: PMC9841407 DOI: 10.1093/nar/gkac1214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
In higher eukaryotic cells, mitochondria are essential organelles for energy production, metabolism, and signaling. Mitochondrial DNA (mtDNA) encodes 13 protein subunits for oxidative phosphorylation and a set of tRNAs and rRNAs. mtDNA damage, sourced from endogenous chemicals and environmental factors, contributes to mitochondrial genomic instability, which has been associated with various mitochondrial diseases. DNA-protein cross-links (DPCs) are deleterious DNA lesions that threaten genomic integrity. Although much has been learned about the formation and repair of DPCs in the nucleus, little is known about DPCs in mitochondria. Here, we present in vitro and in cellulo data to demonstrate the formation of DPCs between a prevalent abasic (AP) DNA lesion and a DNA-packaging protein, mitochondrial transcription factor A (TFAM). TFAM cleaves AP-DNA and forms DPCs and single-strand breaks (SSB). Lys residues of TFAM are critical for the formation of TFAM-DPC and a reactive 3'-phospho-α,β-unsaturated aldehyde (3'pUA) residue on SSB. The 3'pUA residue reacts with two Cys of TFAM and contributes to the stable TFAM-DPC formation. Glutathione reacts with 3'pUA and competes with TFAM-DPC formation, corroborating our cellular experiments showing the accumulation of TFAM-DPCs under limiting glutathione. Our data point to the involvement of TFAM in AP-DNA turnover and fill a knowledge gap regarding the protein factors in processing damaged mtDNA.
Collapse
Affiliation(s)
- Wenyan Xu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Jin Tang
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
46
|
Del Greco C, Antonellis A. The Role of Nuclear-Encoded Mitochondrial tRNA Charging Enzymes in Human Inherited Disease. Genes (Basel) 2022; 13:2319. [PMID: 36553587 PMCID: PMC9777667 DOI: 10.3390/genes13122319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are highly conserved essential enzymes that charge tRNA with cognate amino acids-the first step of protein synthesis. Of the 37 nuclear-encoded human ARS genes, 17 encode enzymes are exclusively targeted to the mitochondria (mt-ARSs). Mutations in nuclear mt-ARS genes are associated with rare, recessive human diseases with a broad range of clinical phenotypes. While the hypothesized disease mechanism is a loss-of-function effect, there is significant clinical heterogeneity among patients that have mutations in different mt-ARS genes and also among patients that have mutations in the same mt-ARS gene. This observation suggests that additional factors are involved in disease etiology. In this review, we present our current understanding of diseases caused by mutations in the genes encoding mt-ARSs and propose explanations for the observed clinical heterogeneity.
Collapse
Affiliation(s)
- Christina Del Greco
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
47
|
Baker MJ, Crameri JJ, Thorburn DR, Frazier AE, Stojanovski D. Mitochondrial biology and dysfunction in secondary mitochondrial disease. Open Biol 2022; 12:220274. [PMID: 36475414 PMCID: PMC9727669 DOI: 10.1098/rsob.220274] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases are a broad, genetically heterogeneous class of metabolic disorders characterized by deficits in oxidative phosphorylation (OXPHOS). Primary mitochondrial disease (PMD) defines pathologies resulting from mutation of mitochondrial DNA (mtDNA) or nuclear genes affecting either mtDNA expression or the biogenesis and function of the respiratory chain. Secondary mitochondrial disease (SMD) arises due to mutation of nuclear-encoded genes independent of, or indirectly influencing OXPHOS assembly and operation. Despite instances of novel SMD increasing year-on-year, PMD is much more widely discussed in the literature. Indeed, since the implementation of next generation sequencing (NGS) techniques in 2010, many novel mitochondrial disease genes have been identified, approximately half of which are linked to SMD. This review will consolidate existing knowledge of SMDs and outline discrete categories within which to better understand the diversity of SMD phenotypes. By providing context to the biochemical and molecular pathways perturbed in SMD, we hope to further demonstrate the intricacies of SMD pathologies outside of their indirect contribution to mitochondrial energy generation.
Collapse
Affiliation(s)
- Megan J. Baker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jordan J. Crameri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David R. Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia,Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Ann E. Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
48
|
Xu W, Zhao L. An Enzyme-Linked Immunosorbent Assay for the Detection of Mitochondrial DNA-Protein Cross-Links from Mammalian Cells. DNA 2022; 2:264-278. [PMID: 37601565 PMCID: PMC10438828 DOI: 10.3390/dna2040019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
DNA-Protein cross-links (DPCs) are cytotoxic DNA lesions with a protein covalently bound to the DNA. Although much has been learned about the formation, repair, and biological consequences of DPCs in the nucleus, little is known regarding mitochondrial DPCs. This is due in part to the lack of robust and specific methods to measure mitochondrial DPCs. Herein, we reported an enzyme-linked immunosorbent assay (ELISA)-based method for detecting mitochondrial DPCs formed between DNA and mitochondrial transcription factor A (TFAM) in cultured human cells. To optimize the purification and detection workflow, we prepared model TFAM-DPCs via Schiff base chemistry using recombinant human TFAM and a DNA substrate containing an abasic (AP) lesion. We optimized the isolation of TFAM-DPCs using commercial silica gel-based columns to achieve a high recovery yield for DPCs. We evaluated the microplate, DNA-coating solution, and HRP substrate for specific and sensitive detection of TFAM-DPCs. Additionally, we optimized the mtDNA isolation procedure to eliminate almost all nuclear DNA contaminants. For proof of concept, we detected the different levels of TFAM-DPCs in mtDNA from HEK293 cells under different biological conditions. The method is based on commercially available materials and can be amended to detect other types of DPCs in mitochondria.
Collapse
Affiliation(s)
- Wenyan Xu
- Department of Chemistry, University of California, Riverside, Riverside, California, 92521, United States
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, California, 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California, 92521, United States
| |
Collapse
|
49
|
Tostes K, dos Santos AC, Alves LO, Bechara LRG, Marascalchi R, Macabelli CH, Grejo MP, Festuccia WT, Gottlieb RA, Ferreira JCB, Chiaratti MR. Autophagy deficiency abolishes liver mitochondrial DNA segregation. Autophagy 2022; 18:2397-2408. [PMID: 35220898 PMCID: PMC9542960 DOI: 10.1080/15548627.2022.2038501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mutations in the mitochondrial genome (mtDNA) are ubiquitous in humans and can lead to a broad spectrum of disorders. However, due to the presence of multiple mtDNA molecules in the cell, co-existence of mutant and wild-type mtDNAs (termed heteroplasmy) can mask disease phenotype unless a threshold of mutant molecules is reached. Importantly, the mutant mtDNA level can change across lifespan as mtDNA segregates in an allele- and cell-specific fashion, potentially leading to disease. Segregation of mtDNA is mainly evident in hepatic cells, resulting in an age-dependent increase of mtDNA variants, including non-synonymous potentially deleterious mutations. Here we modeled mtDNA segregation using a well-established heteroplasmic mouse line with mtDNA of NZB/BINJ and C57BL/6N origin on a C57BL/6N nuclear background. This mouse line showed a pronounced age-dependent NZB mtDNA accumulation in the liver, thus leading to enhanced respiration capacity per mtDNA molecule. Remarkably, liver-specific atg7 (autophagy related 7) knockout abolished NZB mtDNA accumulat ion, resulting in close-to-neutral mtDNA segregation through development into adulthood. prkn (parkin RBR E3 ubiquitin protein ligase) knockout also partially prevented NZB mtDNA accumulation in the liver, but to a lesser extent. Hence, we propose that age-related liver mtDNA segregation is a consequence of macroautophagic clearance of the less-fit mtDNA. Considering that NZB/BINJ and C57BL/6N mtDNAs have a level of divergence comparable to that between human Eurasian and African mtDNAs, these findings have potential implications for humans, including the safe use of mitochondrial replacement therapy.Abbreviations: Apob: apolipoprotein B; Atg1: autophagy-related 1; Atg7: autophagy related 7; Atp5a1: ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1; BL6: C57BL/6N mouse strain; BNIP3: BCL2/adenovirus E1B interacting protein 3; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; MAP1LC3A: microtubule-associated protein 1 light chain 3 alpha; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; mt-Atp8: mitochondrially encoded ATP synthase 8; MT-CO1: mitochondrially encoded cytochrome c oxidase I; MT-CO2: mitochondrially encoded cytochrome c oxidase II; mt-Co3: mitochondrially encoded cytochrome c oxidase III; mt-Cytb: mitochondrially encoded cytochrome b; mtDNA: mitochondrial DNA; MUL1: mitochondrial ubiquitin ligase activator of NFKB 1; nDNA: nuclear DNA; Ndufa9: NADH:ubiquinone oxireductase subunit A9; NDUFB8: NADH:ubiquinone oxireductase subunit B8; Nnt: nicotinamide nucleotide transhydrogenase; NZB: NZB/BINJ mouse strain; OXPHOS: oxidative phosphorylation; PINK1: PTEN induced putative kinase 1; Polg2: polymerase (DNA directed), gamma 2, accessory subunit; Ppara: peroxisome proliferator activated receptor alpha; Ppia: peptidylprolyl isomerase A; Prkn: parkin RBR E3 ubiquitin protein ligase; P10: post-natal day 10; P21: post-natal day 21; P100: post-natal day 100; qPCR: quantitative polymerase chain reaction; Rpl19: ribosomal protein L19; Rps18: ribosomal protein S18; SD: standard deviation; SEM: standard error of the mean; SDHB: succinate dehydrogenase complex, subunit B, iron sulfur (Ip); SQSTM1: sequestosome 1; Ssbp1: single-stranded DNA binding protein 1; TFAM: transcription factor A, mitochondrial; Tfb1m: transcription factor B1, mitochondrial; Tfb2m: transcription factor B2, mitochondrial; TOMM20: translocase of outer mitochondrial membrane 20; UQCRC2: ubiquinol cytochrome c reductase core protein 2; WT: wild-type.
Collapse
Affiliation(s)
- Katiane Tostes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Angélica C. dos Santos
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Lindomar O. Alves
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Luiz R. G. Bechara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Rachel Marascalchi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Carolina H. Macabelli
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Mateus P. Grejo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - William T. Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Roberta A. Gottlieb
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julio C. B. Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil,Department of Chemical and Systems Biology, Stanford University School of Medicine, CA, USA
| | - Marcos R. Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil,CONTACT Marcos R. Chiaratti Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos13565-905, Brazil
| |
Collapse
|
50
|
Li L, Ma J, Wang J, Dong L, Liu S. Two Chinese siblings of combined oxidative phosphorylation deficiency 14 caused by compound heterozygous variants in FARS2. Eur J Med Res 2022; 27:184. [PMID: 36155627 PMCID: PMC9511728 DOI: 10.1186/s40001-022-00808-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background As a rare mitochondrial disease, combined oxidative phosphorylation deficiency 14 (COXPD14) is caused by biallelic variants in the phenylalanyl-tRNA synthetase 2, mitochondrial gene (FARS2) with clinical features of developmental delay, an elevated lactate level, early-onset encephalopathy, liver failure, and hypotonia. The objectives of this study were to analyze the clinical and molecular features of two Chinese siblings affected with COXPD14, and to review relevant literature. Methods Mutation screening was performed by whole exome sequencing (WES) in combination with Sanger sequencing validation to identify the disease-causing variants of the two patients. Results The two siblings presented with severe clinical features and both progressed aggressively and failed to survive after treatment abandonment. We identified two compound heterozygous FARS2 variants c.925G>A p.Gly309Ser and c.943G>C p.Gly315Arg in this proband, which were inherited from the unaffected father and mother, respectively. In addition, Sanger sequencing confirmed that the elder affected sister carried the same compound heterozygous variants. The c.925G>A p.Gly309Ser variant is known and commonly reported in COXPD14 patients, while c.943G>C p.Gly315Arg is a novel one. Neither of the variants was found in 100 Chinese healthy controls. Both variants were classified as “deleterious” and were located in the highly conserved regions of the protein. The above results suggested that the two variants were likely causative in this COXPD14-affected pedigree. Conclusions Our study expands the mutation spectrum of FARS2 and highlights the importance of genetic testing in the diagnosis of diseases with a wide variety of phenotypes, especially in the differential diagnosis of diseases.
Collapse
Affiliation(s)
- Liangshan Li
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Jianhua Ma
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingli Wang
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Liping Dong
- Neonatal Disease Screening Center, Zibo Maternal and Child Health Hospital, Zibo, 255000, China.
| | - Shiguo Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|