1
|
Marciniak M, Stachowicz-Suhs M, Wagner M. The role of innate immune cells in modulating vascular dynamics in skin malignancies. Biochim Biophys Acta Rev Cancer 2025; 1880:189331. [PMID: 40280501 DOI: 10.1016/j.bbcan.2025.189331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
A developing tumor relies heavily on blood vessels to supply oxygen and nutrients. As a result, angiogenesis, the formation of new blood vessels, supports tumor growth and progression. Similarly, lymphangiogenesis, the formation of new lymphatic vessels, plays a critical role in metastatic dissemination by providing pathways for malignant cells to spread. The tumor microenvironment is crucial for establishing and maintaining these vascular networks, with innate immune cells playing a key regulatory role. Notably, immune cells are specifically enriched in barrier tissues, such as the skin, emphasizing their importance in skin malignancies. Therefore, understanding their role in regulating angiogenesis and lymphangiogenesis is essential for developing novel therapeutic strategies. This review article explores how innate immune cells influence tumor vasculature and highlights the therapeutic potential that may arise from this knowledge.
Collapse
Affiliation(s)
- Mateusz Marciniak
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland; Department of Biochemistry and Immunochemistry, Wrocław Medical University, Wrocław, Poland
| | - Martyna Stachowicz-Suhs
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Marek Wagner
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland.
| |
Collapse
|
2
|
McGettigan B, Hernandez-Tejero M, Malhi H, Shah V. Immune Dysfunction and Infection Risk in Advanced Liver Disease. Gastroenterology 2025; 168:1085-1100. [PMID: 39927926 DOI: 10.1053/j.gastro.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 02/11/2025]
Abstract
The risk of microbial infections is increased in cirrhosis and other forms of advanced liver disease such as alcohol-associated hepatitis. Such infections may precipitate new or further decompensation and death, especially in patients with clinical features of acute-on-chronic liver failure. The severe immune dysfunction or "immune paralysis" caused by advanced liver disease is associated with high short-term mortality. However, the pathogenic mechanisms underlying immune dysfunction and immunodeficiency are incompletely understood. Evidence to date suggests a complex, dynamic process that perturbs the physiological roles of the liver as a master regulator of systemic immunity and protector against noxious effects of exogenous molecules in the portal vein flowing from the gut. Thus, in cirrhosis and severe alcohol-associated hepatitis, the ability of hepatocytes and intrahepatic immune cells to balance normal context-dependent dichotomous responses of tolerance vs immune activation is lost. Contributing factors include loss of the gut barrier with translocation of microbial products through the portal vein, culminating in development of functional defects in innate and adaptive immune cells, and generation of immune-regulatory myeloid cells that permit microbial colonization and infection. This review addresses key evidence supporting the paradigm of immune dysfunction as a risk for microbial infections and identifies potential therapeutic targets for intervention. The primary focus is on cirrhosis-associated immune dysfunction and alcohol-associated liver disease, because the bulk of available data are from these 2 conditions.
Collapse
Affiliation(s)
- Brett McGettigan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Maria Hernandez-Tejero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Vijay Shah
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
3
|
Bonfiglio CA, Lacy M, Triantafyllidou V, Farina FM, Janjic A, Nitz K, Wu Y, Bazioti V, Avcilar-Kücükgöze I, Marques YFS, Joppich M, Kumkum M, Röß K, Venkatasubramani AV, Imhof A, Enard W, Maegdefessel L, de Winther M, Weber C, Santovito D, Lutgens E, Atzler D. Ezh2 Shapes T Cell Plasticity to Drive Atherosclerosis. Circulation 2025; 151:1391-1408. [PMID: 39917842 PMCID: PMC12063685 DOI: 10.1161/circulationaha.124.072384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 05/11/2025]
Abstract
BACKGROUND The activation and polarization of T cells play a crucial role in atherosclerosis and dictate athero-inflammation. The epigenetic enzyme EZH2 (enhancer of zeste homolog 2) mediates the H3K27me3 (trimethylation of histone H3 lysine 27) and is pivotal in controlling T cell responses. METHODS To detail the role of T cell EZH2 in atherosclerosis, we used human carotid endarterectomy specimens to reveal plaque expression and geography of EZH2. Atherosclerosis-prone Apoe (apolipoprotein E)-deficient mice with CD (cluster of differentiation) 4+ or CD8+ T cell-specific Ezh2 deletion (Ezh2cd4-knockout [KO], Ezh2cd8-KO) were analyzed to unravel the role of T cell Ezh2 in atherosclerosis and T cell-associated immune status. RESULTS EZH2 expression is elevated in advanced human atherosclerotic plaques and primarily expressed in the T cell nucleus, suggesting the importance of canonical EZH2 function in atherosclerosis. Ezh2cd4-KO, but not Ezh2cd8-KO, mice showed reduced atherosclerosis with fewer advanced plaques, which contained less collagen and macrophages, indicating that Ezh2 in CD4+ T cells drives atherosclerosis. In-depth analysis of CD4+ T cells of Ezh2cd4-KO mice revealed that absence of Ezh2 results in a type 2 immune response with increased Il-4 (interleukin 4) gene and protein expression in the aorta and lymphoid organs. In vitro, Ezh2-deficient T cells polarized macrophages toward an anti-inflammatory phenotype. Single-cell RNA-sequencing of splenic T cells revealed that Ezh2 deficiency reduced naive, Ccl5+ (C-C motif chemokine ligand 5) and regulatory T cell populations and increased the frequencies of memory T cells and invariant natural killer T (iNKT) cells. Flow cytometric analysis identified a shift toward Th2 (type 2 T helper) effector CD4+ T cells in Ezh2cd4-KO mice and confirmed a profound increase in splenic iNKT cells with increased expression of Plzf (promyelocytic leukemia zinc finger), which is the characteristic marker of the iNKT2 subset. Likewise, Zbtb16 ([zinc finger and BTB domain containing 16], the Plzf-encoding gene) transcripts were elevated in the aorta of Ezh2cd4-KO mice, suggesting an accumulation of iNKT2 cells in the plaque. H3K27me3-chromatin immunoprecipitation followed by quantitative polymerase chain reaction showed that T cell-Ezh2 regulates the transcription of the Il-4 and Zbtb16 genes. CONCLUSIONS Our study uncovers the importance of T cell EZH2 in human and mouse atherosclerosis. Inhibition of Ezh2 in CD4+ T cells drives type 2 immune responses, resulting in an accumulation of iNKT2 and Th2 cells, memory T cells and anti-inflammatory macrophages that limit the progression of atherosclerosis.
Collapse
Affiliation(s)
- Cecilia Assunta Bonfiglio
- Institute for Cardiovascular Prevention (C.A.B., M.L., V.T., F.M.F., K.N., Y.W., V.B., I.A-K., Y.F.S.M., M.K., K.R., C.W., D.S., E.L., D.A.), Ludwig Maximilians Universität, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (C.A.B., F.M.F., V.B., I.A-K., M.K., L.M., C.W., D.S., E.L., D.A.)
| | - Michael Lacy
- Institute for Cardiovascular Prevention (C.A.B., M.L., V.T., F.M.F., K.N., Y.W., V.B., I.A-K., Y.F.S.M., M.K., K.R., C.W., D.S., E.L., D.A.), Ludwig Maximilians Universität, Munich, Germany
- Department of Medical Laboratory Sciences, Virginia Commonwealth University, Richmond (M.L.)
| | - Vasiliki Triantafyllidou
- Institute for Cardiovascular Prevention (C.A.B., M.L., V.T., F.M.F., K.N., Y.W., V.B., I.A-K., Y.F.S.M., M.K., K.R., C.W., D.S., E.L., D.A.), Ludwig Maximilians Universität, Munich, Germany
| | - Floriana Maria Farina
- Institute for Cardiovascular Prevention (C.A.B., M.L., V.T., F.M.F., K.N., Y.W., V.B., I.A-K., Y.F.S.M., M.K., K.R., C.W., D.S., E.L., D.A.), Ludwig Maximilians Universität, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (C.A.B., F.M.F., V.B., I.A-K., M.K., L.M., C.W., D.S., E.L., D.A.)
| | - Aleksandar Janjic
- Anthropology and Human Genetics, Faculty of Biology (A.J., W.E.), Ludwig Maximilians Universität, Munich, Germany
| | - Katrin Nitz
- Institute for Cardiovascular Prevention (C.A.B., M.L., V.T., F.M.F., K.N., Y.W., V.B., I.A-K., Y.F.S.M., M.K., K.R., C.W., D.S., E.L., D.A.), Ludwig Maximilians Universität, Munich, Germany
- Department of Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN, (K.N., E.L.)
| | - Yuting Wu
- Institute for Cardiovascular Prevention (C.A.B., M.L., V.T., F.M.F., K.N., Y.W., V.B., I.A-K., Y.F.S.M., M.K., K.R., C.W., D.S., E.L., D.A.), Ludwig Maximilians Universität, Munich, Germany
| | - Venetia Bazioti
- Institute for Cardiovascular Prevention (C.A.B., M.L., V.T., F.M.F., K.N., Y.W., V.B., I.A-K., Y.F.S.M., M.K., K.R., C.W., D.S., E.L., D.A.), Ludwig Maximilians Universität, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (C.A.B., F.M.F., V.B., I.A-K., M.K., L.M., C.W., D.S., E.L., D.A.)
| | - Irem Avcilar-Kücükgöze
- Institute for Cardiovascular Prevention (C.A.B., M.L., V.T., F.M.F., K.N., Y.W., V.B., I.A-K., Y.F.S.M., M.K., K.R., C.W., D.S., E.L., D.A.), Ludwig Maximilians Universität, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (C.A.B., F.M.F., V.B., I.A-K., M.K., L.M., C.W., D.S., E.L., D.A.)
| | - Yonara Freire Soares Marques
- Institute for Cardiovascular Prevention (C.A.B., M.L., V.T., F.M.F., K.N., Y.W., V.B., I.A-K., Y.F.S.M., M.K., K.R., C.W., D.S., E.L., D.A.), Ludwig Maximilians Universität, Munich, Germany
| | - Markus Joppich
- Institute of Informatics (M.J.), Ludwig Maximilians Universität, Munich, Germany
| | - Mahadia Kumkum
- Institute for Cardiovascular Prevention (C.A.B., M.L., V.T., F.M.F., K.N., Y.W., V.B., I.A-K., Y.F.S.M., M.K., K.R., C.W., D.S., E.L., D.A.), Ludwig Maximilians Universität, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (C.A.B., F.M.F., V.B., I.A-K., M.K., L.M., C.W., D.S., E.L., D.A.)
| | - Katja Röß
- Institute for Cardiovascular Prevention (C.A.B., M.L., V.T., F.M.F., K.N., Y.W., V.B., I.A-K., Y.F.S.M., M.K., K.R., C.W., D.S., E.L., D.A.), Ludwig Maximilians Universität, Munich, Germany
| | - Anuroop Venkateswaran Venkatasubramani
- Department of Molecular Biology (A.V.V., A.I.), Ludwig Maximilians Universität, Munich, Germany
- Graduate School of Quantitative Biosciences (A.V.V.), Ludwig Maximilians Universität, Munich, Germany
| | - Axel Imhof
- Department of Molecular Biology (A.V.V., A.I.), Ludwig Maximilians Universität, Munich, Germany
- Protein Analysis Unit (A.I.), Biomedical Center Munich, Faculty of Medicine, Ludwig Maximilians Universität, Munich, Germany
| | - Wolfgang Enard
- Anthropology and Human Genetics, Faculty of Biology (A.J., W.E.), Ludwig Maximilians Universität, Munich, Germany
| | - Lars Maegdefessel
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (C.A.B., F.M.F., V.B., I.A-K., M.K., L.M., C.W., D.S., E.L., D.A.)
- Institute of Molecular Vascular Medicine, Technical University Munich, Klinikum Rechts der Isar, Germany; (L.M.)
- Molecular Vascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden (L.M.)
| | - Menno de Winther
- Department of Medical Biochemistry, Amsterdam Institute for Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam University Medical Center, The Netherlands (M.d.W.)
| | - Christian Weber
- Institute for Cardiovascular Prevention (C.A.B., M.L., V.T., F.M.F., K.N., Y.W., V.B., I.A-K., Y.F.S.M., M.K., K.R., C.W., D.S., E.L., D.A.), Ludwig Maximilians Universität, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (C.A.B., F.M.F., V.B., I.A-K., M.K., L.M., C.W., D.S., E.L., D.A.)
- Munich Cluster for Systems Neurology (SyNergy), Germany (C.W.)
| | - Donato Santovito
- Institute for Cardiovascular Prevention (C.A.B., M.L., V.T., F.M.F., K.N., Y.W., V.B., I.A-K., Y.F.S.M., M.K., K.R., C.W., D.S., E.L., D.A.), Ludwig Maximilians Universität, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (C.A.B., F.M.F., V.B., I.A-K., M.K., L.M., C.W., D.S., E.L., D.A.)
- Institute for Genetic and Biomedical Research, Unit of Milan, National Research Council, Italy (D.S.)
| | - Esther Lutgens
- Institute for Cardiovascular Prevention (C.A.B., M.L., V.T., F.M.F., K.N., Y.W., V.B., I.A-K., Y.F.S.M., M.K., K.R., C.W., D.S., E.L., D.A.), Ludwig Maximilians Universität, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (C.A.B., F.M.F., V.B., I.A-K., M.K., L.M., C.W., D.S., E.L., D.A.)
- Department of Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN, (K.N., E.L.)
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (C.A.B., M.L., V.T., F.M.F., K.N., Y.W., V.B., I.A-K., Y.F.S.M., M.K., K.R., C.W., D.S., E.L., D.A.), Ludwig Maximilians Universität, Munich, Germany
- Walter Straub Institute of Pharmacology and Toxicology (D.A.), Ludwig Maximilians Universität, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (C.A.B., F.M.F., V.B., I.A-K., M.K., L.M., C.W., D.S., E.L., D.A.)
| |
Collapse
|
4
|
Luo Z, Wang Y, Zeng S, Yu L, Zhao Y, Wang H, Fan Y, Zhang Y, Wang L, Li Y, Niu Z, Zhang X, Zhang Y. Harnessing lysosomal genetics: development of a risk stratification panel and unveiling of DPP7 as a biomarker for colon adenocarcinoma. J Genet Genomics 2025:S1673-8527(25)00118-3. [PMID: 40254156 DOI: 10.1016/j.jgg.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/08/2025] [Accepted: 04/12/2025] [Indexed: 04/22/2025]
Abstract
Lysosomal dysfunction has been implicated in the progression of colon adenocarcinoma (COAD), yet the prognostic significance and therapeutic potential of lysosome-related genes (LRGs) remain underexplored. In this study, we construct a 6-LRG-based prognostic risk stratification model (DPP7, ADAM8, CD1B, LRP2, ATP6V1C2, and PLAAT3) by integrating LASSO and Cox regression analyses. Stratifying patients based on median risk scores, we demonstrate that high-risk patients exhibit significantly worse clinical outcomes across the TCGA cohort and five independent GEO datasets. Furthermore, this panel outperforms 136 previously published models in terms of predictive accuracy for 1-, 3-, and 5-year survival rates. Validation multiplex immunofluorescence using an in-house tissue microarray cohort confirms the 6-LRG signature serves as an independent prognostic factor. Additionally, high-risk patients exhibit distinct immunosuppressive tumor microenvironment and aggressive malignancy characteristics. Functional depletion of DPP7 significantly inhibits tumor cell proliferation, migration, and metastasis in both in vitro and in vivo settings. Moreover, DPP7 silencing attenuates epithelial-mesenchymal transition, as evidenced by the upregulation of E-cadherin and downregulation of N-cadherin, Vimentin, and Snail. In conclusion, this study establishes an LRG-based model for COAD prognostic prediction and nominates DPP7 as a promising therapeutic target for COAD treatment.
Collapse
Affiliation(s)
- Zhengdong Luo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China
| | - Yanlei Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shunjie Zeng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China
| | - Longchen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China
| | - Yuxiao Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China
| | - Hong Wang
- Department of Anesthesiology, Yidu Central Hospital, Weifang Medical University, Qingzhou, Shandong 262500, China
| | - Yingjing Fan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China
| | - Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, Shandong 250000, China
| | - Lili Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China
| | - Yaping Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China
| | - Zhongfang Niu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China.
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Chancellor A, Constantin D, Berloffa G, Yang Q, Nosi V, Loureiro JP, Colombo R, Jakob RP, Joss D, Pfeffer M, De Simone G, Morabito A, Schaefer V, Vacchini A, Brunelli L, Montagna D, Heim M, Zippelius A, Davoli E, Häussinger D, Maier T, Mori L, De Libero G. The carbonyl nucleobase adduct M 3Ade is a potent antigen for adaptive polyclonal MR1-restricted T cells. Immunity 2025; 58:431-447.e10. [PMID: 39701104 DOI: 10.1016/j.immuni.2024.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/04/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
The major histocompatibility complex (MHC) class I-related molecule MHC-class-I-related protein 1 (MR1) presents metabolites to distinct MR1-restricted T cell subsets, including mucosal-associated invariant T (MAIT) and MR1T cells. However, self-reactive MR1T cells and the nature of recognized antigens remain underexplored. Here, we report a cell endogenous carbonyl adduct of adenine (8-(9H-purin-6-yl)-2-oxa-8-azabicyclo[3.3.1]nona-3,6-diene-4,6-dicarbaldehyde [M3Ade]) sequestered in the A' pocket of MR1. M3Ade induced in vitro MR1-mediated stimulation of MR1T cell clones that bound MR1-M3Ade tetramers. MR1-M3Ade tetramers identified heterogeneous MR1-reactive T cells ex vivo in healthy donors, individuals with acute myeloid leukemia, and tumor-infiltrating lymphocytes from non-small cell lung adenocarcinoma and hepatocarcinoma. These cells displayed phenotypic, transcriptional, and functional diversity at distinct differentiation stages, indicating their adaptive nature. They were also polyclonal, with some preferential T cell receptor (TCRαβ) pair usage. Thus, M3Ade is an MR1-presented self-metabolite that enables stimulation and tracking of human-MR1T cells from blood and tissue, aiding our understanding of their roles in health and disease.
Collapse
Affiliation(s)
- Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland.
| | - Daniel Constantin
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Qinmei Yang
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - José Pedro Loureiro
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Roman P Jakob
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Michael Pfeffer
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Giulia De Simone
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Aurelia Morabito
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Laura Brunelli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Daniela Montagna
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia and Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Markus Heim
- Hepatology Laboratory, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Enrico Davoli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
6
|
Eskandari T, Eivazzadeh Y, Khaleghinia F, Kashi F, Oksenych V, Haghmorad D. Lipid Antigens: Revealing the Hidden Players in Adaptive Immune Responses. Biomolecules 2025; 15:84. [PMID: 39858478 PMCID: PMC11763959 DOI: 10.3390/biom15010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Traditionally, research on the adaptive immune system has focused on protein antigens, but emerging evidence has underscored the essential role of lipid antigens in immune modulation. Lipid antigens are presented by CD1 molecules and activate invariant natural killer T (iNKT) cells and group 1 CD1-restricted T cells, whereby they impact immune responses to pathogens and tumors. Recent advances in mass spectrometry, imaging techniques, and lipidomics have revolutionized the identification and characterization of lipid antigens and enhanced our understanding of their structural diversity and functional significance. These advancements have paved the way for lipid-based vaccines and immunotherapies through the application of nanoparticles and synthetic lipid antigens designed to boost immune responses against cancers and infectious diseases. Lipid trafficking, CD1 molecule interactions, and the immune system's response to lipid antigens are yet to be completely understood, particularly in the context of autoimmunity and microbial infections. In the years to come, continued research efforts are needed to uncover its underlying biological mechanisms and to exploit the full potential of therapies directed against lipid antigens.
Collapse
Affiliation(s)
- Tamana Eskandari
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Yasamin Eivazzadeh
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Fatemeh Khaleghinia
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Fatemeh Kashi
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | | | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| |
Collapse
|
7
|
Diorio C, Teachey DT, Grupp SA. Allogeneic chimeric antigen receptor cell therapies for cancer: progress made and remaining roadblocks. Nat Rev Clin Oncol 2025; 22:10-27. [PMID: 39548270 DOI: 10.1038/s41571-024-00959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are revolutionizing cancer therapy, particularly for haematological malignancies, conferring durable and sometimes curative responses in patients with advanced-stage disease. The CAR T cell products currently approved for clinical use are all autologous and are often effective; however, in patients who are lymphopenic and/or heavily pretreated with chemotherapy, autologous T cells can be difficult to harvest in sufficient numbers or have functional impairments that might ultimately render them less efficacious. Moreover, autologous products take several weeks to produce, and each product can be used in only one patient. By contrast, allogeneic CAR T cells can be produced for many patients using T cells from a single healthy donor, can be optimized for safety and efficacy, can be instantly available for 'off-the-shelf' use and, therefore, might also be more cost-effective. Despite these potential advantages, the development of allogeneic CAR T cells has lagged behind that of autologous products, owing to the additional challenges such as avoiding graft-versus-host disease and host-mediated graft rejection. Over the past few years, the development of advanced genome-editing techniques has facilitated the generation of novel allogeneic CAR T cell products. Furthermore, CAR cell products derived from other cell types such as induced pluripotent stem cells and natural killer cells are being investigated for clinical use. In this Review, we discuss the potential of allogeneic CAR cell products to expand life-saving immunotherapy to a much broader population of patients in the coming years, the progress made to date and strategies to overcome remaining hurdles.
Collapse
Affiliation(s)
- Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Department of Paediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David T Teachey
- Division of Oncology and Center for Childhood Cancer Research, Department of Paediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephan A Grupp
- Division of Oncology and Center for Childhood Cancer Research, Department of Paediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Iwabuchi K, Van Kaer L. Editorial: Community series in the role of CD1- and MR1-restricted T cells in immunity and disease, volume II. Front Immunol 2024; 15:1490010. [PMID: 39351217 PMCID: PMC11439791 DOI: 10.3389/fimmu.2024.1490010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
9
|
Naskar S, Sriraman N, Sarkar A, Mahajan N, Sarkar K. Tumor antigen presentation and the associated signal transduction during carcinogenesis. Pathol Res Pract 2024; 261:155485. [PMID: 39088877 DOI: 10.1016/j.prp.2024.155485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Numerous developments have been achieved in the study and treatment of cancer throughout the decades that it has been common. After decades of research, about 100 different kinds of cancer have been found, each with unique subgroups within certain organs. This has significantly expanded our understanding of the illness. A mix of genetic, environmental, and behavioral variables contribute to the complicated and diverse process of cancer formation. Mutations, or changes in the DNA sequence, are crucial to the development of cancer. These mutations have the ability to downregulate the expression and function of Major Histocompatibility Complex class I (MHC I) and MHCII receptors, as well as activate oncogenes and inactivate tumor suppressor genes. Cancer cells use this tactic to avoid being recognized by cytotoxic CD8+T lymphocytes, which causes issues with antigen presentation and processing. This review goes into great length into the PI3K pathway, changes to MHC I, and positive impacts of tsMHC-II on disease-free survival and overall survival and the involvement of dendritic cells (DCs) in different tumor microenvironments. The vital functions that the PI3K pathway and its link to the mTOR pathway are highlighted and difficulties in developing effective cancer targeted therapies and feedback systems has also been mentioned, where resistance mechanisms include RAS-mediated oncogenic changes and active PI3K signalling.
Collapse
Affiliation(s)
- Sohom Naskar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nawaneetan Sriraman
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ankita Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nitika Mahajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
10
|
Szoke-Kovacs R, Khakoo S, Gogolak P, Salio M. Insights into the CD1 lipidome. Front Immunol 2024; 15:1462209. [PMID: 39238636 PMCID: PMC11375338 DOI: 10.3389/fimmu.2024.1462209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
CD1 isoforms are MHC class I-like molecules that present lipid-antigens to T cells and have been associated with a variety of immune responses. The lipid repertoire bound and presented by the four CD1 isoforms may be influenced by factors such as the cellular lipidome, subcellular microenvironment, and the properties of the binding pocket. In this study, by shotgun mass spectrometry, we performed a comprehensive lipidomic analysis of soluble CD1 molecules. We identified 1040 lipids, of which 293 were present in all isoforms. Comparative analysis revealed that the isoforms bind almost any cellular lipid.CD1a and CD1c closely mirrored the cellular lipidome, while CD1b and CD1d showed a preference for sphingolipids. Each CD1 isoform was found to have unique lipid species, suggesting some distinct roles in lipid presentation and immune responses. These findings contribute to our understanding of the role of CD1 system in immunity and could have implications for the development of lipid-based therapeutics.
Collapse
Affiliation(s)
- Rita Szoke-Kovacs
- Immunocore Ltd, Experimental Immunology, Abingdon, United Kingdom
- Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Sophie Khakoo
- Immunocore Ltd, Experimental Immunology, Abingdon, United Kingdom
| | - Peter Gogolak
- Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Mariolina Salio
- Immunocore Ltd, Experimental Immunology, Abingdon, United Kingdom
| |
Collapse
|
11
|
Cheng TY, Praveena T, Govindarajan S, Almeida CF, Pellicci DG, Arkins WC, Van Rhijn I, Venken K, Elewaut D, Godfrey DI, Rossjohn J, Moody DB. Lipidomic scanning of self-lipids identifies headless antigens for natural killer T cells. Proc Natl Acad Sci U S A 2024; 121:e2321686121. [PMID: 39141352 PMCID: PMC11348285 DOI: 10.1073/pnas.2321686121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/12/2024] [Indexed: 08/15/2024] Open
Abstract
To broadly measure the spectrum of cellular self-antigens for natural killer T cells (NKT), we developed a sensitive lipidomics system to analyze lipids trapped between CD1d and NKT T cell receptors (TCRs). We captured diverse antigen complexes formed in cells from natural endogenous lipids, with or without inducing endoplasmic reticulum (ER) stress. After separating protein complexes with no, low, or high CD1d-TCR interaction, we eluted lipids to establish the spectrum of self-lipids that facilitate this interaction. Although this unbiased approach identified fifteen molecules, they clustered into only two related groups: previously known phospholipid antigens and unexpected neutral lipid antigens. Mass spectrometry studies identified the neutral lipids as ceramides, deoxyceramides, and diacylglycerols, which can be considered headless lipids because they lack polar headgroups that usually form the TCR epitope. The crystal structure of the TCR-ceramide-CD1d complex showed how the missing headgroup allowed the TCR to predominantly contact CD1d, supporting a model of CD1d autoreactivity. Ceramide and related headless antigens mediated physiological TCR binding affinity, weak NKT cell responses, and tetramer binding to polyclonal human and mouse NKT cells. Ceramide and sphingomyelin are oppositely regulated components of the "sphingomyelin cycle" that are altered during apoptosis, transformation, and ER stress. Thus, the unique molecular link of ceramide to NKT cell response, along with the recent identification of sphingomyelin blockers of NKT cell activation, provide two mutually reinforcing links for NKT cell response to sterile cellular stress conditions.
Collapse
Affiliation(s)
- Tan-Yun Cheng
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| | - T. Praveena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Srinath Govindarajan
- Molecular Immunology and Inflammation Unit, Vlaams Instituut voor Biotechnologie, Center for Inflammation Research, Ghent University, 9052Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, 9000Ghent, Belgium
| | - Catarina F. Almeida
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3010, Australia
| | - Daniel G. Pellicci
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3010, Australia
| | - Wellington C. Arkins
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| | - Koen Venken
- Molecular Immunology and Inflammation Unit, Vlaams Instituut voor Biotechnologie, Center for Inflammation Research, Ghent University, 9052Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, 9000Ghent, Belgium
| | - Dirk Elewaut
- Molecular Immunology and Inflammation Unit, Vlaams Instituut voor Biotechnologie, Center for Inflammation Research, Ghent University, 9052Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, 9000Ghent, Belgium
| | - Dale I. Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3010, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, CardiffCF14 4XN, UK
| | - D. Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| |
Collapse
|
12
|
Wang Y, Zou Y, Jiang Q, Li W, Chai X, Zhao T, Liu S, Yuan Z, Yu C, Wang T. Ox-LDL-induced CD80 + macrophages expand pro-atherosclerotic NKT cells via CD1d in atherosclerotic mice and hyperlipidemic patients. Am J Physiol Cell Physiol 2024; 326:C1563-C1572. [PMID: 38586879 DOI: 10.1152/ajpcell.00043.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Atherosclerosis is an inflammatory disease of blood vessels involving the immune system. Natural killer T (NKT) cells, as crucial components of the innate and acquired immune systems, play critical roles in the development of atherosclerosis. However, the mechanism and clinical relevance of NKT cells in early atherosclerosis are largely unclear. The study investigated the mechanism influencing NKT cell function in apoE deficiency-induced early atherosclerosis. Our findings demonstrated that there were higher populations of NKT cells and interferon-gamma (IFN-γ)-producing NKT cells in the peripheral blood of patients with hyperlipidemia and in the aorta, blood, spleen, and bone marrow of early atherosclerotic mice compared with the control groups. Moreover, we discovered that the infiltration of CD80+ macrophages and CD1d expression on CD80+ macrophages in atherosclerotic mice climbed remarkably. CD1d expression increased in CD80+ macrophages stimulated by oxidized low-density lipoprotein (ox-LDL) ex vivo and in vitro. Ex vivo coculture of macrophages with NKT cells revealed that ox-LDL-induced CD80+ macrophages presented lipid antigen α-Galcer (alpha-galactosylceramide) to NKT cells via CD1d, enabling NKT cells to express more IFN-γ. Furthermore, a greater proportion of CD1d+ monocytes and CD1d+CD80+ monocytes were found in peripheral blood of hyperlipidemic patients compared with that of healthy donors. Positive correlations were found between CD1d+CD80+ monocytes and NKT cells or IFN-γ+ NKT cells in hyperlipidemic patients. Our findings illustrated that CD80+ macrophages stimulated NKT cells to secrete IFN-γ via CD1d-presenting α-Galcer, which may accelerate the progression of early atherosclerosis. Inhibiting lipid antigen presentation by CD80+ macrophages to NKT cells may be a promising immune target for the treatment of early atherosclerosis.NEW & NOTEWORTHY This work proposed the ox-LDL-CD80+ monocyte/macrophage-CD1d-NKT cell-IFN-γ axis in the progression of atherosclerosis. The proinflammatory IFN-γ+ NKT cells are closely related to CD1d+CD80+ monocytes in hyperlipidemic patients. Inhibiting CD80+ macrophages to present lipid antigens to NKT cells through CD1d blocking may be a new therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Yin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Yao Zou
- Department of Pharmacy, People's Hospital of Chongqing Liangjiang New District, Chongqing, People's Republic of China
| | - Qingsong Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, People's Republic of China
| | - Wenming Li
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinyu Chai
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Tingrui Zhao
- Department of Clinical Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Sichuan, People's Republic of China
| | - Siyi Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Zhiyi Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Tingting Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| |
Collapse
|
13
|
Boonchalermvichian C, Yan H, Gupta B, Rubin A, Baker J, Negrin RS. invariant Natural Killer T cell therapy as a novel therapeutic approach in hematological malignancies. FRONTIERS IN TRANSPLANTATION 2024; 3:1353803. [PMID: 38993780 PMCID: PMC11235242 DOI: 10.3389/frtra.2024.1353803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 07/13/2024]
Abstract
Invariant Natural Killer T cell therapy is an emerging platform of immunotherapy for cancer treatment. This unique cell population is a promising candidate for cell therapy for cancer treatment because of its inherent cytotoxicity against CD1d positive cancers as well as its ability to induce host CD8 T cell cross priming. Substantial evidence supports that iNKT cells can modulate myelomonocytic populations in the tumor microenvironment to ameliorate immune dysregulation to antagonize tumor progression. iNKT cells can also protect from graft-versus-host disease (GVHD) through several mechanisms, including the expansion of regulatory T cells (Treg). Ultimately, iNKT cell-based therapy can retain antitumor activity while providing protection against GVHD simultaneously. Therefore, these biological properties render iNKT cells as a promising "off-the-shelf" therapy for diverse hematological malignancies and possible solid tumors. Further the introduction of a chimeric antigen recetor (CAR) can further target iNKT cells and enhance function. We foresee that improved vector design and other strategies such as combinatorial treatments with small molecules or immune checkpoint inhibitors could improve CAR iNKT in vivo persistence, functionality and leverage anti-tumor activity along with the abatement of iNKT cell dysfunction or exhaustion.
Collapse
|
14
|
Bao B, Wang Y, Boudreau P, Song X, Wu M, Chen X, Patik I, Tang Y, Ouahed J, Ringel A, Barends J, Wu C, Balskus E, Thiagarajah J, Liu J, Wessels MR, Lencer WI, Kasper DL, An D, Horwitz BH, Snapper SB. Bacterial Sphingolipids Exacerbate Colitis by Inhibiting ILC3-derived IL-22 Production. Cell Mol Gastroenterol Hepatol 2024; 18:101350. [PMID: 38704148 PMCID: PMC11222953 DOI: 10.1016/j.jcmgh.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND & AIMS Gut bacterial sphingolipids, primarily produced by Bacteroidetes, have dual roles as bacterial virulence factors and regulators of the host mucosal immune system, including regulatory T cells and invariant natural killer T cells. Patients with inflammatory bowel disease display altered sphingolipids profiles in fecal samples. However, how bacterial sphingolipids modulate mucosal homeostasis and regulate intestinal inflammation remains unclear. METHODS We used dextran sodium sulfate (DSS)-induced colitis in mice monocolonized with Bacteroides fragilis strains expressing or lacking sphingolipids to assess the influence of bacterial sphingolipids on intestinal inflammation using transcriptional, protein, and cellular analyses. Colonic explant and organoid were used to study the function of bacterial sphingolipids. Host mucosal immune cells and cytokines were profiled and characterized using flow cytometry, enzyme-linked immunosorbent assay, and Western blot, and cytokine function in vivo was investigated by monoclonal antibody injection. RESULTS B fragilis sphingolipids exacerbated intestinal inflammation. Mice monocolonized with B fragilis lacking sphingolipids exhibited less severe DSS-induced colitis. This amelioration of colitis was associated with increased production of interleukin (IL)-22 by ILC3. Mice colonized with B fragilis lacking sphingolipids following DSS treatment showed enhanced epithelial STAT3 activity, intestinal cell proliferation, and antimicrobial peptide production. Protection against DSS colitis associated with B fragilis lacking sphingolipids was reversed on IL22 blockade. Furthermore, bacterial sphingolipids restricted epithelial IL18 production following DSS treatment and interfered with IL22 production by a subset of ILC3 cells expressing both IL18R and major histocompatibility complex class II. CONCLUSIONS B fragilis-derived sphingolipids exacerbate mucosal inflammation by impeding epithelial IL18 expression and concomitantly suppressing the production of IL22 by ILC3 cells.
Collapse
Affiliation(s)
- Bin Bao
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, China.
| | - Youyuan Wang
- Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Pavl Boudreau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Xinyang Song
- Department of Immunology, Harvard Medical School, Boston, Massachusetts; Shanghai Institute of Biochemistry and Cell Biology, CAS, Shanghai, China
| | - Meng Wu
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Xi Chen
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Izabel Patik
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Ying Tang
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jodie Ouahed
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Amit Ringel
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jared Barends
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Emily Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Jay Thiagarajah
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jian Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Michael R Wessels
- Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Wayne Isaac Lencer
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Dennis L Kasper
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Dingding An
- Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Bruce Harold Horwitz
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
15
|
Kamii Y, Hayashizaki K, Kanno T, Chiba A, Ikegami T, Saito M, Akeda Y, Ohteki T, Kubo M, Yoshida K, Kawakami K, Oishi K, Araya J, Kuwano K, Kronenberg M, Endo Y, Kinjo Y. IL-27 regulates the differentiation of follicular helper NKT cells via metabolic adaptation of mitochondria. Proc Natl Acad Sci U S A 2024; 121:e2313964121. [PMID: 38394242 PMCID: PMC10907256 DOI: 10.1073/pnas.2313964121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are innate-like T lymphocytes that express an invariant T cell receptor α chain and contribute to bridging innate and acquired immunity with rapid production of large amounts of cytokines after stimulation. Among effecter subsets of iNKT cells, follicular helper NKT (NKTFH) cells are specialized to help B cells. However, the mechanisms of NKTFH cell differentiation remain to be elucidated. In this report, we studied the mechanism of NKTFH cell differentiation induced by pneumococcal surface protein A and α-galactosylceramide (P/A) vaccination. We found that Gr-1+ cells helped iNKT cell proliferation and NKTFH cell differentiation in the spleen by producing interleukin-27 (IL-27) in the early phase after vaccination. The neutralization of IL-27 impaired NKTFH cell differentiation, which resulted in compromised antibody production and diminished protection against Streptococcus pneumoniae infection by the P/A vaccine. Our data indicated that Gr-1+ cell-derived IL-27 stimulated mitochondrial metabolism, meeting the energic demand required for iNKT cells to differentiate into NKTFH cells. Interestingly, Gr-1+ cell-derived IL-27 was induced by iNKT cells via interferon-γ production. Collectively, our findings suggest that optimizing the metabolism of iNKT cells was essential for acquiring specific effector functions, and they provide beneficial knowledge on iNKT cell-mediated vaccination-mediated therapeutic strategies.
Collapse
Affiliation(s)
- Yasuhiro Kamii
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Koji Hayashizaki
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Chiba292-0818, Japan
| | - Akio Chiba
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Taku Ikegami
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo162-8640, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo113-8510, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba278-0022, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi980-8575, Japan
| | | | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA92037
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA92093
| | - Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Chiba292-0818, Japan
| | - Yuki Kinjo
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo105-8461, Japan
| |
Collapse
|
16
|
Hammond TC, Purbhoo MA, Kadel S, Ritz J, Nikiforow S, Daley H, Shaw K, van Besien K, Gomez-Arteaga A, Stevens D, Ortuzar W, Michelet X, Smith R, Moskowitz D, Masakayan R, Yigit B, Boi S, Soh KT, Chamberland J, Song X, Qin Y, Mishchenko I, Kirby M, Nasonenko V, Buffa A, Buell JS, Chand D, van Dijk M, Stebbing J, Exley MA. A phase 1/2 clinical trial of invariant natural killer T cell therapy in moderate-severe acute respiratory distress syndrome. Nat Commun 2024; 15:974. [PMID: 38321023 PMCID: PMC10847411 DOI: 10.1038/s41467-024-44905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Invariant natural killer T (iNKT) cells, a unique T cell population, lend themselves for use as adoptive therapy due to diverse roles in orchestrating immune responses. Originally developed for use in cancer, agenT-797 is a donor-unrestricted allogeneic ex vivo expanded iNKT cell therapy. We conducted an open-label study in virally induced acute respiratory distress syndrome (ARDS) caused by the severe acute respiratory syndrome-2 virus (trial registration NCT04582201). Here we show that agenT-797 rescues exhausted T cells and rapidly activates both innate and adaptive immunity. In 21 ventilated patients including 5 individuals receiving veno-venous extracorporeal membrane oxygenation (VV-ECMO), there are no dose-limiting toxicities. We observe an anti-inflammatory systemic cytokine response and infused iNKT cells are persistent during follow-up, inducing only transient donor-specific antibodies. Clinical signals of associated survival and prevention of secondary infections are evident. Cellular therapy using off-the-shelf iNKT cells is safe, can be rapidly scaled and is associated with an anti-inflammatory response. The safety and therapeutic potential of iNKT cells across diseases including infections and cancer, warrants randomized-controlled trials.
Collapse
Affiliation(s)
- Terese C Hammond
- Pulmonary Critical Care Sleep Medicine, Providence Saint John's Health Center, Santa Monica, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | - Jerome Ritz
- Dana Farber Cancer Institute, Boston, MA, USA
| | | | | | - Kit Shaw
- Dana Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yu Qin
- MiNK Therapeutics, Lexington, MA, USA
- Agenus, Lexington, MA, USA
| | | | | | | | - Alexa Buffa
- MiNK Therapeutics, Lexington, MA, USA
- Agenus, Lexington, MA, USA
| | | | | | | | | | | |
Collapse
|
17
|
Venken K, Decruy T, Sparwasser T, Elewaut D. Tregs protect against invariant NKT cell-mediated autoimmune colitis and hepatitis. Immunology 2024; 171:277-285. [PMID: 37984469 DOI: 10.1111/imm.13718] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Immunomodulatory T cells play a pivotal role in protection against (auto)immune-mediated diseases that open perspectives for therapeutic modulation. However, how immune regulatory networks operate in vivo is less understood. To this end, we focused on FOXP3+CD4+CD25+ regulatory T cells (Tregs) and invariant natural killer T (iNKT) cells, two lymphocyte populations that independently regulate adaptive and innate immune responses. In vitro, a functional interplay between Tregs and iNKT cells has been described, but whether Tregs modulate the function and phenotype of iNKT cell subsets in vivo and whether this controls iNKT-mediated autoimmunity is unclear. Taking advantage of the conditional depletion of Tregs, we examined the in vivo interplay between iNKT and Treg cells in steady state and in preclinical models of liver and gut autoimmunity. Under non-inflamed conditions, Treg depletion enhanced glycolipid-mediated iNKT cell responses, with a general impact on Type 1, 2 and 17 iNKT subsets. Moreover, in vivo iNKT activation in the absence of Tregs suppressed the induction of iNKT anergy, consistent with a reduction in programmed cell death receptor 1 (PD-1) expression. Importantly, we unveiled a clear role for an in vivo Treg-iNKT crosstalk both in concanavalin A-induced acute hepatitis and oxazolone-induced colitis. Here, the absence of Tregs led to a markedly enhanced liver and gut pathology, which was not observed in iNKT-deficient mice. Taken together, these results provide evidence for a functional interplay between regulatory T cell subsets critical in controlling the onset of autoimmune disease.
Collapse
Affiliation(s)
- Koen Venken
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Tine Decruy
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Tim Sparwasser
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dirk Elewaut
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Hebbandi Nanjundappa R, Shao K, Krishnamurthy P, Gershwin ME, Leung PSC, Sokke Umeshappa C. Invariant natural killer T cells in autoimmune cholangiopathies: Mechanistic insights and therapeutic implications. Autoimmun Rev 2024; 23:103485. [PMID: 38040101 DOI: 10.1016/j.autrev.2023.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Invariant natural killer T cells (iNKT cells) constitute a specialized subset of lymphocytes that bridges innate and adaptive immunity through a combination of traits characteristic of both conventional T cells and innate immune cells. iNKT cells are characterized by their invariant T cell receptors and discerning recognition of lipid antigens, which are presented by the non-classical MHC molecule, CD1d. Within the hepatic milieu, iNKT cells hold heightened prominence, contributing significantly to the orchestration of organ homeostasis. Their unique positioning to interact with diverse cellular entities, ranging from epithelial constituents like hepatocytes and cholangiocytes to immunocytes including Kupffer cells, B cells, T cells, and dendritic cells, imparts them with potent immunoregulatory abilities. Emergering knowledge of liver iNKT cells subsets enable to explore their therapeutic potential in autoimmne liver diseases. This comprehensive review navigates the landscape of iNKT cell investigations in immune-mediated cholangiopathies, with a particular focus on primary biliary cholangitis and primary sclerosing cholangitis, across murine models and human subjects to unravel the intricate involvements of iNKT cells in liver autoimmunity. Additionally, we also highlight the prospectives of iNKT cells as therapeutic targets in cholangiopathies. Modulation of the equilibrium between regulatory and proinflammatory iNKT subsets can be defining determinant in the dynamics of hepatic autoimmunity. This discernment not only enriches our foundational comprehension but also lays the groundwork for pioneering strategies to navigate the multifaceted landscape of liver autoimmunity.
Collapse
Affiliation(s)
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States.
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Channakeshava Sokke Umeshappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pediatrics, IWK Research Center, Halifax, NS, Canada.
| |
Collapse
|
19
|
Lonez C, Breman E. Allogeneic CAR-T Therapy Technologies: Has the Promise Been Met? Cells 2024; 13:146. [PMID: 38247837 PMCID: PMC10814647 DOI: 10.3390/cells13020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
This last decade, chimeric antigen receptor (CAR) T-cell therapy has become a real treatment option for patients with B-cell malignancies, while multiple efforts are being made to extend this therapy to other malignancies and broader patient populations. However, several limitations remain, including those associated with the time-consuming and highly personalized manufacturing of autologous CAR-Ts. Technologies to establish "off-the-shelf" allogeneic CAR-Ts with low alloreactivity are currently being developed, with a strong focus on gene-editing technologies. Although these technologies have many advantages, they have also strong limitations, including double-strand breaks in the DNA with multiple associated safety risks as well as the lack of modulation. As an alternative, non-gene-editing technologies provide an interesting approach to support the development of allogeneic CAR-Ts in the future, with possibilities of fine-tuning gene expression and easy development. Here, we will review the different ways allogeneic CAR-Ts can be manufactured and discuss which technologies are currently used. The biggest hurdles for successful therapy of allogeneic CAR-Ts will be summarized, and finally, an overview of the current clinical evidence for allogeneic CAR-Ts in comparison to its autologous counterpart will be given.
Collapse
|
20
|
Guan J, Peske JD, Manoharan Valerio M, Park C, Robey EA, Sadegh-Nasseri S. Commensal bacteria maintain a Qa-1 b-restricted unconventional CD8 + T population in gut epithelium. eLife 2023; 12:RP90466. [PMID: 38127067 PMCID: PMC10735220 DOI: 10.7554/elife.90466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Intestinal intraepithelial lymphocytes (IELs) are characterized by an unusual phenotype and developmental pathway, yet their specific ligands and functions remain largely unknown. Here by analysis of QFL T cells, a population of CD8+ T cells critical for monitoring the MHC I antigen processing pathway, we established that unconventional Qa-1b-restricted CD8+ T cells are abundant in intestinal epithelium. We found that QFL T cells showed a Qa-1b-dependent unconventional phenotype in the spleen and small intestine of naïve wild-type mice. The splenic QFL T cells showed innate-like functionality exemplified by rapid response to cytokines or antigens, while the gut population was refractory to stimuli. Microbiota was required for the maintenance, but not the initial gut homing of QFL T cells. Moreover, monocolonization with Pediococcus pentosaceus, which expresses a peptide that cross-activated QFL T cells, was sufficient to maintain QFL T cells in the intestine. Thus, microbiota is critical for shaping the Qa-1b-restricted IEL landscape.
Collapse
Affiliation(s)
- Jian Guan
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute of Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - J David Peske
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute of Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Michael Manoharan Valerio
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Chansu Park
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute of Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ellen A Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | | |
Collapse
|
21
|
Malviya M, Aretz Z, Molvi Z, Lee J, Pierre S, Wallisch P, Dao T, Scheinberg DA. Challenges and solutions for therapeutic TCR-based agents. Immunol Rev 2023; 320:58-82. [PMID: 37455333 PMCID: PMC11141734 DOI: 10.1111/imr.13233] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Recent development of methods to discover and engineer therapeutic T-cell receptors (TCRs) or antibody mimics of TCRs, and to understand their immunology and pharmacology, lag two decades behind therapeutic antibodies. Yet we have every expectation that TCR-based agents will be similarly important contributors to the treatment of a variety of medical conditions, especially cancers. TCR engineered cells, soluble TCRs and their derivatives, TCR-mimic antibodies, and TCR-based CAR T cells promise the possibility of highly specific drugs that can expand the scope of immunologic agents to recognize intracellular targets, including mutated proteins and undruggable transcription factors, not accessible by traditional antibodies. Hurdles exist regarding discovery, specificity, pharmacokinetics, and best modality of use that will need to be overcome before the full potential of TCR-based agents is achieved. HLA restriction may limit each agent to patient subpopulations and off-target reactivities remain important barriers to widespread development and use of these new agents. In this review we discuss the unique opportunities for these new classes of drugs, describe their unique antigenic targets, compare them to traditional antibody therapeutics and CAR T cells, and review the various obstacles that must be overcome before full application of these drugs can be realized.
Collapse
Affiliation(s)
- Manish Malviya
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Zita Aretz
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Zaki Molvi
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Jayop Lee
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Stephanie Pierre
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Tri-Institutional Medical Scientist Program, 1300 York Avenue, New York, NY 10021
| | - Patrick Wallisch
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| |
Collapse
|
22
|
Guan J, Peske JD, Valerio MM, Park C, Robey EA, Sadegh-Nasseri S. Commensal Bacteria Maintain a Qa-1 b -restricted Unconventional CD8 + T Population in Gut Epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530600. [PMID: 36909616 PMCID: PMC10002720 DOI: 10.1101/2023.03.01.530600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Intestinal intraepithelial lymphocytes (IELs) are characterized by an unusual phenotype and developmental pathway, yet their specific ligands and functions remain largely unknown. Here by analysis of QFL T cells, a population of CD8 + T cells critical for monitoring the MHC I antigen processing pathway, we established that unconventional Qa-1 b -restricted CD8 + T cells are abundant in intestinal epithelium. We found that QFL T cells showed a Qa-1 b -dependent unconventional phenotype in the spleen and small intestine of naïve wild-type mice. The splenic QFL T cells showed innate-like functionality exemplified by rapid response to cytokines or antigen, while the gut population was refractory to stimuli. Microbiota was required for the maintenance, but not the initial gut homing of QFL T cells. Moreover, monocolonization with Pediococcus pentosaceus, which expresses a peptide that cross-activated QFL T cells, was sufficient to maintain QFL T cells in the intestine. Thus, microbiota is critical for shaping the Qa-1 b -restricted IEL landscape.
Collapse
|
23
|
Shahine A, Van Rhijn I, Rossjohn J, Moody DB. CD1 displays its own negative regulators. Curr Opin Immunol 2023; 83:102339. [PMID: 37245411 PMCID: PMC10527790 DOI: 10.1016/j.coi.2023.102339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
After two decades of the study of lipid antigens that activate CD1-restricted T cells, new studies show how autoreactive αβ T-cell receptors (TCRs) can directly recognize the outer surface of CD1 proteins in ways that are lipid-agnostic. Most recently, this lipid agnosticism has turned to negativity, with the discovery of natural CD1 ligands that dominantly negatively block autoreactive αβ TCR binding to CD1a and CD1d. This review highlights the basic differences between positive and negative regulation of cellular systems. We outline strategies to discover lipid inhibitors of CD1-reactive T cells, whose roles in vivo are becoming clear, especially in CD1-mediated skin disease.
Collapse
Affiliation(s)
- Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Hackstein CP, Klenerman P. MAITs and their mates: "Innate-like" behaviors in conventional and unconventional T cells. Clin Exp Immunol 2023; 213:1-9. [PMID: 37256718 PMCID: PMC10324555 DOI: 10.1093/cei/uxad058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023] Open
Abstract
Most CD4 and CD8 T cells are restricted by conventional major histocompatibility complex (MHC) molecules and mount TCR-dependent adaptive immune responses. In contrast, MAIT, iNKT, and certain γδ TCR bearing cells are characterized by their abilities to recognize antigens presented by unconventional antigen-presenting molecules and to mount cytokine-mediated TCR-independent responses in an "innate-like" manner. In addition, several more diverse T-cell subsets have been described that in a similar manner are restricted by unconventional antigen-presenting molecules but mainly depend on their TCRs for activation. Vice versa, innate-like behaviour was reported in defined subpopulations of conventional T cells, particularly in barrier sites, showing that these two features are not necessarily linked. The abilities to recognize antigens presented by unconventional antigen-presenting molecules or to mount TCR-independent responses creates unique niches for these T cells and is linked to wide range of functional capabilities. This is especially exemplified by unconventional and innate-like T cells present at barrier sites where they are involved in pathogen defense, tissue homeostasis as well as in pathologic processes.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Wan J, Zhang Q, Hao Y, Tao Z, Song W, Chen S, Qin L, Song W, Shan Y. Infiltrated IL-17A-producing gamma delta T cells play a protective role in sepsis-induced liver injury and are regulated by CCR6 and gut commensal microbes. Front Cell Infect Microbiol 2023; 13:1149506. [PMID: 37475963 PMCID: PMC10354519 DOI: 10.3389/fcimb.2023.1149506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Sepsis is a common but serious disease in intensive care units, which may induce multiple organ dysfunctions such as liver injury. Previous studies have demonstrated that gamma delta (γδ) T cells play a protective role in sepsis. However, the function and mechanism of γδ T cells in sepsis-induced liver injury have not been fully elucidated. IL-17A-producing γδ T cells are a newly identified cell subtype. Methods We utilized IL-17A-deficient mice to investigate the role of IL-17A-producing γδ T cells in sepsis using the cecum ligation and puncture (CLP) model. Results Our findings suggested that these cells were the major source of IL-17A and protected against sepsis-induced liver injury. Flow cytometry analysis revealed that these γδ T cells expressed Vγ4 TCR and migrated into liver from peripheral post CLP, in a CCR6-dependent manner. When CLP mice were treated with anti-CCR6 antibody to block CCR6-CCL20 axis, the recruitment of Vγ4+ γδ T cells was abolished, indicating a CCR6-dependent manner of migration. Interestingly, pseudo germ-free CLP mice treated with antibiotics showed that hepatic IL-17A+ γδ T cells were regulated by gut commensal microbes. E. coli alone were able to restore the protective effect in pseudo germ-free mice by rescuing hepatic IL-17A+ γδ T cell population. Conclusion Our research has shown that Vγ4+ IL-17A+ γδ T cells infiltrating into the liver play a crucial role in protecting against sepsis-induced liver injury. This protection was contingent upon the recruitment of CCR6 and regulated by gut commensal microbes.
Collapse
Affiliation(s)
- Jian Wan
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Qian Zhang
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Yilong Hao
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Zhang Tao
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Wei Song
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Song Chen
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Long Qin
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Weidong Song
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Yi Shan
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
26
|
Furuta A, Coleman M, Casares R, Seepersaud R, Orvis A, Brokaw A, Quach P, Nguyen S, Sweeney E, Sharma K, Wallen G, Sanghavi R, Mateos-Gil J, Cuerva JM, Millán A, Rajagopal L. CD1 and iNKT cells mediate immune responses against the GBS hemolytic lipid toxin induced by a non-toxic analog. PLoS Pathog 2023; 19:e1011490. [PMID: 37384812 DOI: 10.1371/journal.ppat.1011490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Although hemolytic lipids have been discovered from many human pathogens including Group B Streptococcus (GBS), strategies that neutralize their function are lacking. GBS is a leading cause of pregnancy-associated neonatal infections, and adult GBS infections are on the rise. The GBS hemolytic lipid toxin or granadaene, is cytotoxic to many immune cells including T and B cells. We previously showed that mice immunized with a synthetic nontoxic analog of granadaene known as R-P4 had reduced bacterial dissemination during systemic infection. However, mechanisms important for R-P4 mediated immune protection was not understood. Here, we show that immune serum from R-P4-immunized mice facilitate GBS opsonophagocytic killing and protect naïve mice from GBS infection. Further, CD4+ T cells isolated from R-P4-immunized mice proliferated in response to R-P4 stimulation in a CD1d- and iNKT cell-dependent manner. Consistent with these observations, R-P4 immunized mice lacking CD1d or CD1d-restricted iNKT cells exhibit elevated bacterial burden. Additionally, adoptive transfer of iNKT cells from R-P4 vaccinated mice significantly reduced GBS dissemination compared to adjuvant controls. Finally, maternal R-P4 vaccination provided protection against ascending GBS infection during pregnancy. These findings are relevant in the development of therapeutic strategies targeting lipid cytotoxins.
Collapse
Affiliation(s)
- Anna Furuta
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Michelle Coleman
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Raquel Casares
- Department of Organic Chemistry, University of Granada, Granada, Spain
| | - Ravin Seepersaud
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Austyn Orvis
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Alyssa Brokaw
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Phoenicia Quach
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Shayla Nguyen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Erin Sweeney
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Kavita Sharma
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Grace Wallen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Rhea Sanghavi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Jaime Mateos-Gil
- Department of Organic Chemistry, University of Granada, Granada, Spain
| | | | - Alba Millán
- Department of Organic Chemistry, University of Granada, Granada, Spain
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
27
|
Ligthart NAM, de Geus MAR, van de Plassche MAT, Torres García D, Isendoorn MME, Reinalda L, Ofman D, van Leeuwen T, van Kasteren SI. A Lysosome-Targeted Tetrazine for Organelle-Specific Click-to-Release Chemistry in Antigen Presenting Cells. J Am Chem Soc 2023. [PMID: 37269296 DOI: 10.1021/jacs.3c02139] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bioorthogonal deprotections are readily used to control biological function in a cell-specific manner. To further improve the spatial resolution of these reactions, we here present a lysosome-targeted tetrazine for an organelle-specific deprotection reaction. We show that trans-cyclooctene deprotection with this reagent can be used to control the biological activity of ligands for invariant natural killer T cells in the lysosome to shed light on the processing pathway in antigen presenting cells. We then use the lysosome-targeted tetrazine to show that long peptide antigens used for CD8+ T cell activation do not pass through this organelle, suggesting a role for the earlier endosomal compartments for their processing.
Collapse
Affiliation(s)
- Nina A M Ligthart
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mark A R de Geus
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Merel A T van de Plassche
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Diana Torres García
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marjolein M E Isendoorn
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Luuk Reinalda
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Daniëlle Ofman
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Tyrza van Leeuwen
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sander I van Kasteren
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
28
|
Look A, Burns D, Tews I, Roghanian A, Mansour S. Towards a better understanding of human iNKT cell subpopulations for improved clinical outcomes. Front Immunol 2023; 14:1176724. [PMID: 37153585 PMCID: PMC10154573 DOI: 10.3389/fimmu.2023.1176724] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique T lymphocyte population expressing semi-invariant T cell receptors (TCRs) that recognise lipid antigens presented by CD1d. iNKT cells exhibit potent anti-tumour activity through direct killing mechanisms and indirectly through triggering the activation of other anti-tumour immune cells. Because of their ability to induce potent anti-tumour responses, particularly when activated by the strong iNKT agonist αGalCer, they have been the subject of intense research to harness iNKT cell-targeted immunotherapies for cancer treatment. However, despite potent anti-tumour efficacy in pre-clinical models, the translation of iNKT cell immunotherapy into human cancer patients has been less successful. This review provides an overview of iNKT cell biology and why they are of interest within the context of cancer immunology. We focus on the iNKT anti-tumour response, the seminal studies that first reported iNKT cytotoxicity, their anti-tumour mechanisms, and the various described subsets within the iNKT cell repertoire. Finally, we discuss several barriers to the successful utilisation of iNKT cells in human cancer immunotherapy, what is required for a better understanding of human iNKT cells, and the future perspectives facilitating their exploitation for improved clinical outcomes.
Collapse
Affiliation(s)
- Alex Look
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Daniel Burns
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ivo Tews
- Biological Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Salah Mansour
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
29
|
Tang Y, Ma S, Lin S, Wu Y, Chen S, Liu G, Ma L, Wang Z, Jiang L, Wang Y. Cell-free protein synthesis of CD1E and B2M protein and in vitro interaction. Protein Expr Purif 2023; 203:106209. [PMID: 36460227 DOI: 10.1016/j.pep.2022.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
CD1E, one of the most important glycolipid antigens on T cell membranes, is required for glycolipid antigen presentation on the cell surface. Cell-based recombinant expression systems have many limitations for synthesizing transmembrane proteins such as CD1E, including low protein yields and miss folding. To overcome these challenges, here we successfully synthesized high-quality soluble CD1E using an E.coli cell-free protein synthesis system (CFPS) with the aid of detergent. Following purification by Ni2+ affinity chromatography, we were able to obtain CD1E with ≥90% purity. Furthermore, we used the string website to predict the protein interaction network of CD1E and identified a potential binding partner━B2M. Similarly, we synthesized soluble B2M in the E.coli CFPS. Finally, we verified the interaction between CD1E and B2M by using Surface Plasmon Resonance (SPR). Taken together, the methods described here provide an alternative way to obtain active transmembrane protein and may facilitate future structural and functional studies on CD1E.
Collapse
Affiliation(s)
- Yajie Tang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Shengming Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Sen Lin
- Anyang Kindstar Global Medical Laboratory LTD, Anyang, Henan province, 455000, China
| | - Yinrong Wu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Siyang Chen
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Lisong Ma
- State Key Laboratory of North China Crop Improvement and RegμLation, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Zaihua Wang
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lele Jiang
- Surgical Diagnostics Pty Ltd, Roseville, Sydney, 2069, Australia.
| | - Yao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China.
| |
Collapse
|
30
|
Qin Y, Bao X, Zheng M. CD8 + T-cell immunity orchestrated by iNKT cells. Front Immunol 2023; 13:1109347. [PMID: 36741397 PMCID: PMC9889858 DOI: 10.3389/fimmu.2022.1109347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
CD8+ T cells belonging to the adaptive immune system play key roles in defending against viral infections and cancers. The current CD8+ T cell-based immunotherapy has emerged as a superior therapeutic avenue for the eradication of tumor cells and long-term prevention of their recurrence in hematologic malignancies. It is believed that an effective adaptive immune response critically relies on the help of the innate compartment. Invariant natural killer T (iNKT) cells are innate-like T lymphocytes that have been considered some of the first cells to respond to infections and can secrete a large amount of diverse cytokines and chemokines to widely modulate the innate and adaptive immune responders. Like CD8+ T cells, iNKT cells also play an important role in defense against intracellular pathogenic infections and cancers. In this review, we will discuss the CD8+ T-cell immunity contributed by iNKT cells, including iNKT cell-mediated cross-priming and memory formation, and discuss recent advances in our understanding of the mechanisms underlying memory CD8+ T-cell differentiation, as well as aging-induced impairment of T-cell immunity.
Collapse
|
31
|
Tissue resident iNKT17 cells facilitate cancer cell extravasation in liver metastasis via interleukin-22. Immunity 2023; 56:125-142.e12. [PMID: 36630911 PMCID: PMC9839362 DOI: 10.1016/j.immuni.2022.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
During metastasis, cancer cells invade, intravasate, enter the circulation, extravasate, and colonize target organs. Here, we examined the role of interleukin (IL)-22 in metastasis. Immune cell-derived IL-22 acts on epithelial tissues, promoting regeneration and healing upon tissue damage, but it is also associated with malignancy. Il22-deficient mice and mice treated with an IL-22 antibody were protected from colon-cancer-derived liver and lung metastasis formation, while overexpression of IL-22 promoted metastasis. Mechanistically, IL-22 acted on endothelial cells, promoting endothelial permeability and cancer cell transmigration via induction of endothelial aminopeptidase N. Multi-parameter flow cytometry and single-cell sequencing of immune cells isolated during cancer cell extravasation into the liver revealed iNKT17 cells as source of IL-22. iNKT-cell-deficient mice exhibited reduced metastases, which was reversed by injection of wild type, but not Il22-deficient, invariant natural killer T (iNKT) cells. IL-22-producing iNKT cells promoting metastasis were tissue resident, as demonstrated by parabiosis. Thus, IL-22 may present a therapeutic target for prevention of metastasis.
Collapse
|
32
|
Rowan AG, Ponnusamy K, Ren H, Taylor GP, Cook LBM, Karadimitris A. CAR-iNKT cells targeting clonal TCRVβ chains as a precise strategy to treat T cell lymphoma. Front Immunol 2023; 14:1118681. [PMID: 36936927 PMCID: PMC10019783 DOI: 10.3389/fimmu.2023.1118681] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Most T cell receptor (TCR)Vβ chain-expressing T cell lymphomas (TCL) including those caused by Human T cell leukaemia virus type-1 (HTLV-1) have poor prognosis. We hypothesised that chimeric antigen receptor (CAR)-mediated targeting of the clonal, lymphoma-associated TCRβ chains would comprise an effective cell therapy for TCL that would minimally impact the physiological TCR repertoire. Methods As proof of concept, we generated CAR constructs to target four TCRVβ subunits. Efficacy of the CAR constructs was tested using conventional T cells as effectors (CAR-T). Since invariant NKT (iNKT) cell do not incite acute graft-versus-host disease and are suitable for 'off-the-shelf' immunotherapy, we generated anti-TCRVβ CAR-iNKT cells. Results We show that anti-TCRVβ CAR-T cells selectively kill their cognate tumour targets while leaving >90% of the physiological TCR repertoire intact. CAR-iNKT cells inhibited the growth of TCL in vivo, and were also selectively active against malignant cells from Adult T cell leukaemia/lymphoma patients without activating expression of HTLV-1. Discussion Thus we provide proof-of-concept for effective and selective anti-TCRVβ CAR-T and -iNKT cell-based therapy of TCL with the latter providing the option for 'off-the-shelf' immunotherapy.
Collapse
Affiliation(s)
- Aileen G. Rowan
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Kanagaraju Ponnusamy
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Hongwei Ren
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Graham P. Taylor
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
- National Centre for Human Retrovirology, Imperial College Healthcare NHS Trust, St Mary’s Hospital, London, United Kingdom
| | - Lucy B. M. Cook
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
- National Centre for Human Retrovirology, Imperial College Healthcare NHS Trust, St Mary’s Hospital, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Anastasios Karadimitris
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare National Health Service (NHS) Foundation Trust, London, United Kingdom
- *Correspondence: Anastasios Karadimitris,
| |
Collapse
|
33
|
Role of NKT cells in cancer immunotherapy-from bench to bed. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:29. [PMID: 36460881 DOI: 10.1007/s12032-022-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Natural killer T (NKT) cells are a specific T cell subset known to express the αβ-T cell receptor (TCR) for antigens identification and express typical NK cell specifications, such as surface expression of CD56 and CD16 markers as well as production of granzyme. Human NKT cells are divided into two subgroups based on their cytokine receptor and TCR repertoire. Both of them are CD1-restricted and recognize lipid antigens presented by CD1d molecules. Studies have demonstrated that these cells are essential in defense against malignancies. These cells secret proinflammatory and regulatory cytokines that stimulate or suppress immune system responses. In several murine tumor models, activation of type I NKT cells induces tumor rejection and inhibits metastasis's spread. However, type II NKT cells are associated with an inhibitory and regulatory function during tumor immune responses. Variant NKT cells may suppress tumor immunity via different mechanisms that require cross-talk with other immune-regulatory cells. NKT-like cells display high tumor-killing abilities against many tumor cells. In the recent decade, different studies have been performed based on the application of NKT-based immunotherapy for cancer therapy. Moreover, manipulation of NKT cells through administering autologous dendritic cell (DC) loaded with α-galactosylceramide (α-GalCer) and direct α-GalCer injection has also been tested. In this review, we described different subtypes of NKT cells, their function in the anti-tumor immune responses, and the application of NKT cells in cancer immunotherapy from bench to bed.
Collapse
|
34
|
Van Kaer L, Postoak JL, Song W, Wu L. Innate and Innate-like Effector Lymphocytes in Health and Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:199-207. [PMID: 35821102 PMCID: PMC9285656 DOI: 10.4049/jimmunol.2200074] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 04/20/2023]
Abstract
Lymphocytes can be functionally partitioned into subsets belonging to the innate or adaptive arms of the immune system. Subsets of innate and innate-like lymphocytes may or may not express Ag-specific receptors of the adaptive immune system, yet they are poised to respond with innate-like speed to pathogenic insults but lack the capacity to develop classical immunological memory. These lymphocyte subsets display a number of common properties that permit them to integrate danger and stress signals dispatched by innate sensor cells to facilitate the generation of specialized effector immune responses tailored toward specific pathogens or other insults. In this review, we discuss the functions of distinct subsets of innate and innate-like lymphocytes. A better understanding of the mechanisms by which these cells are activated in different contexts, their interactions with other immune cells, and their role in health and disease may inform the development of new or improved immunotherapies.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - J Luke Postoak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Wenqiang Song
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
35
|
Impact of Anti-T-lymphocyte globulin dosing on GVHD and Immune reconstitution in matched unrelated myeloablative peripheral blood stem cell transplantation. Bone Marrow Transplant 2022; 57:1548-1555. [PMID: 35831408 PMCID: PMC9532245 DOI: 10.1038/s41409-022-01666-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Data on the influence of different Anti-lymphocyte globulin (ATLG) doses on graft versus host disease (GVHD) incidence and immune reconstitution in matched unrelated (MUD) allogeneic Stem cell transplantation (allo-SCT) is limited. This retrospective study conducted at the University Medical-Center Hamburg compares GVHD and Immune reconstitution after myeloablative MUD (HLA 10/10) PBSC allogeneic stem cell transplant between 30 mg/Kg (n = 73) and 60 mg/Kg (n = 216) ATLG. Detailed phenotypes of T, B natural killer (NK), natural killer T (NKT) cells were analyzed by multicolor flow at day 30, 100, and 180 posttransplant. Neutrophil and platelet engraftments were significantly delayed in the 60 mg/kg group with a higher Cumulative incidence of Infections (67% vs 75% p = 0.049) and EBV (21% vs 41% p = 0.049) reactivation at day 100 in this group. In the 30 mg/kg group, we observed a faster reconstitution of naïve-B cells (p < 0.0001) and γδ T cells (p = 0.045) at day+30 and a faster naïve helper T-cell (p = 0.046), NK-cells (p = 0.035), and naïve B-cell reconstitution (p = 0.009) at day+180. There were no significant differences in aGVHD, cGVHD, NRM, RI, PFS, and OS between the groups. The choice of ATLG dose has significant impact on IR but not on GVHD after MUD-allo-SCT. Higher doses are associated with delayed engraftment and increased infections.
Collapse
|
36
|
Sadraei SI, Yousif G, Taimoory SM, Kosar M, Mehri S, Alolabi R, Igbokwe E, Toma J, Rahim MMA, Trant JF. The total synthesis of glycolipids from S. pneumoniae and a re‐evaluation of their immunological activity. Chembiochem 2022; 23:e202200361. [DOI: 10.1002/cbic.202200361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/05/2022] [Indexed: 11/11/2022]
Affiliation(s)
| | - Greg Yousif
- University of Windsor Chemistry and Biochemistry CANADA
| | - S. Maryamdokht Taimoory
- University of Windsor Chemistry and Biochemistry 401 Sunset Ave.Department of Chemistry and Biochemistry N9B3P4 Windsor CANADA
| | - Maryam Kosar
- University of Windsor Chemistry and Biochemistry CANADA
| | - Samaneh Mehri
- University of Windsor Chemistry and Biochemistry CANADA
| | | | | | - Jason Toma
- University of Windsor Biomedical Sciences CANADA
| | | | - John F. Trant
- University of Windsor Chemistry and Biochemistry 401 Sunset Ave. N9B 3P4 Windsor CANADA
| |
Collapse
|
37
|
Zahran AM, Saad K, Elsayh KI, Abdou MAA, Abo-Elgheet AM, Eloseily EM, Khalaf SM, Sror S, Ahmad FA, Elhoufey A, Ghandour A, Osman NS. Upregulation of Cytotoxic T-cells in pediatric patients with Gaucher disease. Sci Rep 2022; 12:4977. [PMID: 35323826 PMCID: PMC8942997 DOI: 10.1038/s41598-022-08843-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
Cytotoxic (CD8) T-cells and natural killer (NK) cells have a significant immune function role. The ongoing stimulation of immunity and the excessive release of proinflammatory cytokines observed in pediatric patients with Gaucher disease (GD) can affect immune cells. Few studies have looked at the proportion of cytotoxic CD8 T-cells and their subsets in children with GD. A prospective case-control study was performed involving twenty pediatric patients with type 1 GD and twenty healthy age-matched controls. All patients received regular enzyme replacement therapy (ERT) for at least 6 months before the study. Complete blood count and flow cytometric analyses of CD8 T, Tc1, Tc2, NK, and NK T-cells were performed. GD patients showed significantly increased of CD8 T, Tc1 and significantly decreased NK cells frequencies when compared to healthy controls. However, no significant difference in Tc2 and NK T-cells was found between the studied groups. GD patients on regular ERT have increased CD8+ T-cell frequencies, predominantly Tc1, together with a reduction in NK cells than in healthy controls. These crucial immunological changes may contribute to some extent to the pathogenesis and the progression of GD.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Khaled Saad
- Department of Pediatrics, Assiut University Hospital, Assiut, Egypt.
| | - Khalid I Elsayh
- Department of Pediatrics, Assiut University Hospital, Assiut, Egypt
| | | | | | - Esraa M Eloseily
- Department of Pediatrics, Assiut University Hospital, Assiut, Egypt
| | - Shaimaa M Khalaf
- Department of Pediatrics, Assiut University Hospital, Assiut, Egypt
| | - Shabaan Sror
- Department of Pediatrics, Assiut University Hospital, Assiut, Egypt
| | | | - Amira Elhoufey
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
- Department of Community Health Nursing, Alddrab University College, Jazan University, Jazan, Saudi Arabia
| | - Aliaa Ghandour
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Naglaa S Osman
- Department of Pediatrics, Assiut University Hospital, Assiut, Egypt
| |
Collapse
|
38
|
Miller D, Motomura K, Galaz J, Gershater M, Lee ED, Romero R, Gomez-Lopez N. Cellular immune responses in the pathophysiology of preeclampsia. J Leukoc Biol 2022; 111:237-260. [PMID: 33847419 PMCID: PMC8511357 DOI: 10.1002/jlb.5ru1120-787rr] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Preeclampsia, defined as new-onset hypertension accompanied by proteinuria occurring at 20 weeks of gestation or later, is a leading cause of perinatal morbidity and mortality worldwide. The pathophysiology of this major multi-systemic syndrome includes defective deep placentation, oxidative stress, endothelial dysfunction, the presence of an anti-angiogenic state, and intravascular inflammation, among others. In this review, we provide a comprehensive overview of the cellular immune responses involved in the pathogenesis of preeclampsia. Specifically, we summarize the role of innate and adaptive immune cells in the maternal circulation, reproductive tissues, and at the maternal-fetal interface of women affected by this pregnancy complication. The major cellular subsets involved in the pathogenesis of preeclampsia are regulatory T cells, effector T cells, NK cells, monocytes, macrophages, and neutrophils. We also summarize the literature on those immune cells that have been less characterized in this clinical condition, such as γδ T cells, invariant natural killer T cells, dendritic cells, mast cells, and B cells. Moreover, we discuss in vivo studies utilizing a variety of animal models of preeclampsia to further support the role of immune cells in this disease. Finally, we highlight the existing gaps in knowledge of the immunobiology of preeclampsia that require further investigation. The goal of this review is to promote translational research leading to clinically relevant strategies that can improve adverse perinatal outcomes resulting from the obstetrical syndrome of preeclampsia.
Collapse
Affiliation(s)
- Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Meyer Gershater
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eun D. Lee
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
39
|
Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, et alCossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, Lenz D, Levings MK, Lino AC, Liotta F, Long HM, Lugli E, MacDonald KN, Maggi L, Maini MK, Mair F, Manta C, Manz RA, Mashreghi MF, Mazzoni A, McCluskey J, Mei HE, Melchers F, Melzer S, Mielenz D, Monin L, Moretta L, Multhoff G, Muñoz LE, Muñoz-Ruiz M, Muscate F, Natalini A, Neumann K, Ng LG, Niedobitek A, Niemz J, Almeida LN, Notarbartolo S, Ostendorf L, Pallett LJ, Patel AA, Percin GI, Peruzzi G, Pinti M, Pockley AG, Pracht K, Prinz I, Pujol-Autonell I, Pulvirenti N, Quatrini L, Quinn KM, Radbruch H, Rhys H, Rodrigo MB, Romagnani C, Saggau C, Sakaguchi S, Sallusto F, Sanderink L, Sandrock I, Schauer C, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schober K, Schoen J, Schuh W, Schüler T, Schulz AR, Schulz S, Schulze J, Simonetti S, Singh J, Sitnik KM, Stark R, Starossom S, Stehle C, Szelinski F, Tan L, Tarnok A, Tornack J, Tree TIM, van Beek JJP, van de Veen W, van Gisbergen K, Vasco C, Verheyden NA, von Borstel A, Ward-Hartstonge KA, Warnatz K, Waskow C, Wiedemann A, Wilharm A, Wing J, Wirz O, Wittner J, Yang JHM, Yang J. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol 2021; 51:2708-3145. [PMID: 34910301 PMCID: PMC11115438 DOI: 10.1002/eji.202170126] [Show More Authors] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Institute for Biotechnology, Technische Universität, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Richard Addo
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cristian G. Beccaria
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chotima Böttcher
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Brockmann
- Department of Microbiology & Immunology, Columbia University, New York City, USA
| | - Marie Burns
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eleni Christakou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Cornelis
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martin S. Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - James Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jun Dong
- Cell Biology, German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Regine J. Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charles-Antoine Dutertre
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS, UMR8253, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Aida Fiz-Lopez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Marie Follo
- Department of Medicine I, Lighthouse Core Facility, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gemma A. Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Nicola Gagliani
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - José Antonio Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Laboratory of Molecular Genetics, Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Paola Gruarin
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Christopher M. Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Carolina Hernández
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Hoelsken
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Qing Huang
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna E. Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - William Y. K. Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine M. Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter K. Jani
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Steven Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - H. Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny F. Kuehne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Daniel Lenz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Katherine N. MacDonald
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mala K. Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Calin Manta
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | | | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik E. Mei
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Fritz Melchers
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, Leipzig University, Härtelstr.16, −18, Leipzig, 04107, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Muscate
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jana Niemz
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Samuele Notarbartolo
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Lennard Ostendorf
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura J. Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Amit A. Patel
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gulce Itir Percin
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irma Pujol-Autonell
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
| | - Nadia Pulvirenti
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundorra, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK
| | - Maria B. Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Schauer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Janina Schoen
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel R. Schulz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Schulze
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jeeshan Singh
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katarzyna M. Sitnik
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Regina Stark
- Charité Universitätsmedizin Berlin – BIH Center for Regenerative Therapies, Berlin, Germany
- Sanquin Research – Adaptive Immunity, Amsterdam, The Netherlands
| | - Sarah Starossom
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Franziska Szelinski
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Attila Tarnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instrument, Tsinghua University, Beijing, China
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Julia Tornack
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Timothy I. M. Tree
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jasper J. P. van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Chiara Vasco
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirsten A. Ward-Hartstonge
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Annika Wiedemann
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - James Wing
- Immunology Frontier Research Center, Osaka University, Japan
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Wittner
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jennie H. M. Yang
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
40
|
Babes L, Shim R, Kubes P. Imaging α-GalCer-activated iNKT cells in a hepatic metastatic environment. Cancer Immunol Res 2021; 10:12-25. [PMID: 34785505 DOI: 10.1158/2326-6066.cir-21-0445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/12/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023]
Abstract
Colorectal cancer patients frequently develop liver metastases after, and perhaps as a consequence of, lifesaving surgical resection of the primary tumor. This creates a potential opportunity for prophylactic metastatic treatment with novel immunostimulatory molecules. Here, we used state-of-the-art intravital imaging of an experimental liver metastasis model to visualize the early behavior and function of invariant (i)NKT cells stimulated with α-galactosylceramide (α-GalCer). Intravenous α-GalCer prior to tumor cell seeding in the liver significantly inhibited tumor growth. However, some seeding tumor cells survived. A multiple dosing regimen reduced tumor burden and prolonged the life of mice, whereas tumors returned within 5 days after a single dose of α-GalCer. With multiple doses of α-GalCer, iNKT cells increased in number and granularity (as did NK cells). As a result, the total number of contacts and time in contact with tumors increased substantially. In the absence of iNKT cells, the beneficial effect of α-GalCer was lost. Robust cytokine production dissipated over time. Repeated therapy, even after cytokine dissipation, led to reduced tumor burden and prolonged survival. Serial transplantation of tumors exposed to α-GalCer-activated iNKT cells did not induce greater resistance, suggesting no obvious epigenetic or genetic immunoediting in tumors exposed to activated iNKT cells. Very few tumor cells expressed CD1d in this model, and as such, adding monomers of CD1d-α-GalCer further reduced tumor growth. The data suggest early and repeated stimulation of iNKT cells with α-GalCer could have direct therapeutic benefit for colorectal cancer patients that develop metastatic liver disease.
Collapse
Affiliation(s)
- Liane Babes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Raymond Shim
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
41
|
Li X, Jin C, Chen Q, Zheng X, Xie D, Wu Q, Wang L, Bai S, Zhang H, Bai L. Identification of liver-specific CD24 + invariant NK T cells with low granzyme B production and high proliferative capacity. J Leukoc Biol 2021; 111:1199-1210. [PMID: 34730251 DOI: 10.1002/jlb.1a0621-309r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Invariant NK T (iNKT) cells are innate-like lymphocytes that can recognize the lipid Ag presented by MHC I like molecule CD1d. Distinct tissue distribution of iNKT cells subsets implies a contribution of these subsets to their related tissue regional immunity. iNKT cells are enriched in liver, an organ with unique immunological properties. Whether liver-specific iNKT cells exist and dedicate to the liver immunity remains elusive. Here, a liver-specific CD24+ iNKT subset is shown. Hepatic CD24+ iNKT cells show higher levels of proliferation, glucose metabolism, and mTOR activity comparing to CD24- iNKT cells. Although CD24+ iNKT cells and CD24- iNKT cells in the liver produce similar amounts of cytokines, the hepatic CD24+ iNKT cells exhibit lower granzyme B production. These liver-specific CD24+ iNKT cells are derived from thymus and differentiate into CD24+ iNKT in the liver microenvironment. Moreover, liver microenvironment induces the formation of CD24+ conventional T cells as well, and these cells exhibit higher proliferation ability but lower granzyme B production in comparison with CD24- T cells. The results propose that liver microenvironment might induce the generation of liver-specific iNKT subset that might play an important role in maintaining liver homeostasis.
Collapse
Affiliation(s)
- Xiang Li
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Jin
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qi Chen
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xihua Zheng
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Di Xie
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qielan Wu
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lu Wang
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shiyu Bai
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huimin Zhang
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Li Bai
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
42
|
Goto T, Ito Y, Satoh M, Nakamoto S, Nishizawa N, Hosono K, Naitoh T, Eshima K, Iwabuchi K, Hiki N, Amano H. Activation of iNKT Cells Facilitates Liver Repair After Hepatic Ischemia Reperfusion Injury Through Acceleration of Macrophage Polarization. Front Immunol 2021; 12:754106. [PMID: 34691073 PMCID: PMC8526965 DOI: 10.3389/fimmu.2021.754106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Macrophage polarization is critical for liver tissue repair following acute liver injury. However, the underlying mechanisms of macrophage phenotype switching are not well defined. Invariant natural killer T (iNKT) cells orchestrate tissue inflammation and tissue repair by regulating cytokine production. Herein, we examined whether iNKT cells played an important role in liver repair after hepatic ischemia-reperfusion (I/R) injury by affecting macrophage polarization. To this end, we subjected male C57BL/6 mice to hepatic I/R injury, and mice received an intraperitoneal (ip) injection of α-galactosylceramide (α-GalCer) or vehicle. Compared with that of the vehicle, α-GalCer administration resulted in the promotion of liver repair accompanied by acceleration of macrophage differentiation and by increases in the numbers of Ly6Chigh pro-inflammatory macrophages and Ly6Clow reparative macrophages. iNKT cells activated with α-GalCer produced interleukin (IL)-4 and interferon (IFN)-γ. Treatment with anti-IL-4 antibodies delayed liver repair, which was associated with an increased number of Ly6Chigh macrophages and a decreased number of Ly6Clow macrophages. Treatment with anti-IFN-γ antibodies promoted liver repair, associated with reduced the number of Ly6Chigh macrophages, but did not change the number of Ly6Clow macrophages. Bone marrow-derived macrophages up-regulated the expression of genes related to both a pro-inflammatory and a reparative phenotype when co-cultured with activated iNKT cells. Anti-IL-4 antibodies increased the levels of pro-inflammatory macrophage-related genes and decreased those of reparative macrophage-related genes in cultured macrophages, while anti-IFN-γ antibodies reversed the polarization of macrophages. Cd1d-deficient mice showed delayed liver repair and suppressed macrophage switching, compared with that in wild-type mice. These results suggest that the activation of iNKT cells by α-GalCer facilitated liver repair after hepatic I/R injury by both IL-4-and IFN-γ-mediated acceleration of macrophage polarization. Therefore, the activation of iNKT cells may represent a therapeutic tool for liver repair after hepatic I/R injury.
Collapse
Affiliation(s)
- Takuya Goto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshiya Ito
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Shuji Nakamoto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of General Pediatric Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Nobuyuki Nishizawa
- Department of General Pediatric Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kanako Hosono
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takeshi Naitoh
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Koji Eshima
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Naoki Hiki
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hideki Amano
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
43
|
Toyoda T, Kamata T, Tanaka K, Ihara F, Takami M, Suzuki H, Nakajima T, Ikeuchi T, Kawasaki Y, Hanaoka H, Nakayama T, Yoshino I, Motohashi S. Phase II study of α-galactosylceramide-pulsed antigen-presenting cells in patients with advanced or recurrent non-small cell lung cancer. J Immunother Cancer 2021; 8:jitc-2019-000316. [PMID: 32188702 PMCID: PMC7078938 DOI: 10.1136/jitc-2019-000316] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background Invariant natural killer T (iNKT) cells produce copious amounts of cytokines in response to specific glycolipid antigens such as α-galactosylceramide (αGalCer) presented by CD1d-expressing antigen-presenting cells (APCs), thus orchestrating other immune cells to fight tumors. Because of their ability to induce strong antitumor responses activated by αGalCer, iNKT cells have been studied for their application in cancer immunotherapy. In our previous phase I/II trial in non-small cell lung cancer (NSCLC) patients who had completed the standard treatment, we showed a relatively long median survival time without severe treatment-related adverse events. Based on these results, we performed a phase II trial to evaluate clinical responses, safety profiles and immune responses as a second-line treatment for advanced NSCLC. Methods Patients with advanced or recurrent NSCLC refractory to first-line chemotherapy were eligible. αGalCer-pulsed APCs were intravenously administered four times. Overall survival time was evaluated as the primary endpoint. The safety profile and immune responses after APC injection were also monitored. This study was an open label, single-arm, phase II clinical trial performed at Chiba University Hospital, Japan. Results Thirty-five patients were enrolled in this study, of which 32 (91.4%) completed the trial. No severe adverse events related to the treatment were observed. The estimated median survival time of the 35 cases was 21.9 months (95% CI, 14.8 to 26.0). One case (2.9%) showed a partial response, 14 cases (40.0%) remained as stable disease, and 19 cases (54.3%) were evaluated as progressive disease. The geometric mean number of iNKT cells in all cases was significantly decreased and the mean numbers of natural killer (NK) cells, interferon-γ-producing cells in response to αGalCer, and effector CD8+ T cells were significantly increased after the administration of αGalCer-pulsed APCs. Conclusions The intravenous administration of αGalCer-pulsed APCs was well-tolerated and was accompanied by prolonged overall survival. These results are encouraging and warrant further evaluation in a randomized phase III trial to demonstrate the survival benefit of this immunotherapy. Trial registration number UMIN000007321.
Collapse
Affiliation(s)
- Takahide Toyoda
- Department of Medical Immnunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshiko Kamata
- Department of Medical Immnunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhisa Tanaka
- Department of Medical Immnunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumie Ihara
- Department of Medical Immnunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mariko Takami
- Department of Medical Immnunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidemi Suzuki
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Nakajima
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Ikeuchi
- Center for Advanced Medicine, Chiba University Hospital, Chiba, Japan
| | - Yohei Kawasaki
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Hideki Hanaoka
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immnunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinichiro Motohashi
- Department of Medical Immnunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
44
|
Khan MA, Khan A. Role of NKT Cells during Viral Infection and the Development of NKT Cell-Based Nanovaccines. Vaccines (Basel) 2021; 9:vaccines9090949. [PMID: 34579186 PMCID: PMC8473043 DOI: 10.3390/vaccines9090949] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Natural killer T (NKT) cells, a small population of T cells, are capable of influencing a wide range of the immune cells, including T cells, B cells, dendritic cells and macrophages. In the present review, the antiviral role of the NKT cells and the strategies of viruses to evade the functioning of NKT cell have been illustrated. The nanoparticle-based formulations have superior immunoadjuvant potential by facilitating the efficient antigen processing and presentation that favorably elicits the antigen-specific immune response. Finally, the immunoadjuvant potential of the NKT cell ligand was explored in the development of antiviral vaccines. The use of an NKT cell-activating nanoparticle-based vaccine delivery system was supported in order to avoid the NKT cell anergy. The results from the animal and preclinical studies demonstrated that nanoparticle-incorporated NKT cell ligands may have potential implications as an immunoadjuvant in the formulation of an effective antiviral vaccine that is capable of eliciting the antigen-specific activation of the cell-mediated and humoral immune responses.
Collapse
|
45
|
Zhao M, Quintana A, Zhang C, Andreyev AY, Kiosses W, Kuwana T, Murphy A, Hogan PG, Kronenberg M. Calcium signals regulate the functional differentiation of thymic iNKT cells. EMBO J 2021; 40:e107901. [PMID: 34169542 PMCID: PMC8365263 DOI: 10.15252/embj.2021107901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
How natural or innate-like lymphocytes generate the capacity to produce IL-4 and other cytokines characteristic of type 2 immunity remains unknown. Invariant natural killer T (iNKT) cells differentiate in the thymus into NKT1, NKT2, and NKT17 subsets, similar to mature, peripheral CD4+ T helper cells. The mechanism for this differentiation was not fully understood. Here, we show that NKT2 cells required higher and prolonged calcium (Ca2+ ) signals and continuing activity of the calcium release-activated calcium (CRAC) channel, than their NKT1 counterparts. The sustained Ca2+ entry via CRAC pathway in NKT2 cells was apparently mediated by ORAI and controlled in part by the large mitochondrial Ca2+ uptake. Unique properties of mitochondria in NKT2 cells, including high activity of oxidative phosphorylation, may regulate mitochondrial Ca2+ buffering in NKT2 cells. In addition, the low Ca2+ extrusion rate may also contribute to the higher Ca2+ level in NKT2 cells. Altogether, we identified ORAI-dependent Ca2+ signaling connected with mitochondria and cellular metabolism, as a central regulatory pathway for the differentiation of NKT2 cells.
Collapse
Affiliation(s)
- Meng Zhao
- Division of Developmental ImmunologyLa Jolla Institute for ImmunologyLa JollaCAUSA
- Arthritis and Clinical Immunology ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Ariel Quintana
- Division of Signaling and Gene ExpressionLa Jolla Institute for ImmunologyLa JollaCAUSA
- Translational Science DivisionClinical Science DepartmentMoffitt Cancer Center Magnolia CampusTampaFLUSA
| | - Chen Zhang
- Division of Signaling and Gene ExpressionLa Jolla Institute for ImmunologyLa JollaCAUSA
| | | | - William Kiosses
- Core MicroscopyLa Jolla Institute for ImmunologyLa JollaCAUSA
| | - Tomomi Kuwana
- Division of Immune RegulationLa Jolla Institute for ImmunologyLa JollaCAUSA
| | | | - Patrick G Hogan
- Division of Signaling and Gene ExpressionLa Jolla Institute for ImmunologyLa JollaCAUSA
- Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
| | - Mitchell Kronenberg
- Division of Developmental ImmunologyLa Jolla Institute for ImmunologyLa JollaCAUSA
- Division of Biological SciencesUniversity of California, San DiegoLa JollaCAUSA
| |
Collapse
|
46
|
Vomhof-DeKrey EE, Stover A, Basson MD. Microbiome diversity declines while distinct expansions of Th17, iNKT, and dendritic cell subpopulations emerge after anastomosis surgery. Gut Pathog 2021; 13:51. [PMID: 34376235 PMCID: PMC8353768 DOI: 10.1186/s13099-021-00447-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/30/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Anastomotic failure causes morbidity and mortality even in technically correct anastomoses. Initial leaks must be prevented by mucosal reapproximation across the anastomosis. Healing is a concerted effort between intestinal epithelial cells (IECs), immune cells, and commensal bacteria. IEC TLR4 activation and signaling is required for mucosal healing, leading to inflammatory factor release that recruits immune cells to limit bacteria invasion. TLR4 absence leads to mucosal damage from loss in epithelial proliferation, attenuated inflammatory response, and bacteria translocation. We hypothesize after anastomosis, an imbalance in microbiota will occur due to a decrease in TLR4 expression and will lead to changes in the immune milieu. RESULTS We isolated fecal content and small intestinal leukocytes from murine, Roux-en-Y and end-to-end anastomoses, to identify microbiome changes and subsequent alterations in the regulatory and pro-inflammatory immune cells 3 days post-operative. TLR4+ IECs were impaired after anastomosis. Microbiome diversity was reduced, with Firmicutes, Bacteroidetes, and Saccharibacteria decreased and Proteobacteria increased. A distinct TCRβhi CD4+ T cells subset after anastomosis was 10-20-fold greater than in control mice. 84% were Th17 IL-17A/F+ IL-22+ and/or TNFα+. iNKT cells were increased and TCRβhi. 75% were iNKT IL-10+ and 13% iNKTh17 IL-22+. Additionally, Treg IL-10+ and IL-22+ cells were increased. A novel dendritic cell subset was identified in anastomotic regions that was CD11bhi CD103mid and was 93% IL-10+. CONCLUSIONS This anastomotic study demonstrated a decrease in IEC TLR4 expression and microbiome diversity which then coincided with increased expansion of regulatory and pro-inflammatory immune cells and cytokines. Defining the anastomotic mucosal environment could help inform innovative therapeutics to target excessive pro-inflammatory invasion and microbiome imbalance.
Collapse
Affiliation(s)
- Emilie E. Vomhof-DeKrey
- Department of Surgery, University of North Dakota School of Medicine and the Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND 58202 USA
- Department of Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND 58202 USA
| | - Allie Stover
- Department of Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND 58202 USA
| | - Marc D. Basson
- Department of Surgery, University of North Dakota School of Medicine and the Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND 58202 USA
- Department of Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND 58202 USA
- Department of Pathology, University of North Dakota School of Medicine and the Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND 58202 USA
| |
Collapse
|
47
|
Victor JR, Lezmi G, Leite-de-Moraes M. New Insights into Asthma Inflammation: Focus on iNKT, MAIT, and γδT Cells. Clin Rev Allergy Immunol 2021; 59:371-381. [PMID: 32246390 DOI: 10.1007/s12016-020-08784-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Asthma is a chronic immunological disease affecting all age groups, but often starting in childhood. Although it has long been ascribed to a single pathology, recent studies have highlighted its heterogeneity due to the potential involvement of various pathogenic mechanisms. Here, we present our current understanding of the role of innate-like T (ILT) cells in asthma pathogenesis. These cells constitute a specific family mainly comprising γδT, invariant natural killer (iNKT) and mucosal-associated invariant (MAIT) T cells. They all share the ability to massively secrete a wide range of cytokines in a T-cell receptor (TCR)-dependent or -independent manner. ILT cells are prevalent in mucosal tissues, including airways, where their innate and adaptive immune functions consist primarily in protecting tissue integrity. However, ILT cells may also have detrimental effects leading to asthma symptoms. The immune mechanisms through which this pathogenic effect occurs will be discussed in this overview.
Collapse
Affiliation(s)
- Jefferson Russo Victor
- Laboratory of Medical Investigation LIM 56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Sao Paulo, Brazil
- Division of Environmental Health, FMU, Laureate International Universities, Sao Paulo, Brazil
| | - Guillaume Lezmi
- Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253, INSERM UMR1151, and Université Paris Descartes, 75015, Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et d'Allergologie Pédiatriques, Paris, France
| | - Maria Leite-de-Moraes
- Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253, INSERM UMR1151, and Université Paris Descartes, 75015, Paris, France.
| |
Collapse
|
48
|
Zhu T, Wang R, Miller H, Westerberg LS, Yang L, Guan F, Lee P, Gong Q, Chen Y, Liu C. The interaction between iNKT cells and B cells. J Leukoc Biol 2021; 111:711-723. [PMID: 34312907 DOI: 10.1002/jlb.6ru0221-095rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Invariant natural killer T cells (iNKTs) bridge the innate immunity with the adaptive immunity and their interaction with B cells has been extensively studied. Here, we give a complete overview of these two cells, from their mechanism of interaction to clinical prospects and existing problems. In our introduction, we describe the relationship between iNKTs and B cells and explore the current research hotspots and future directions. We begin with how B cells interact and benefit from the innate and adaptive help of iNKTs. Next, we describe the multiple roles of these cells in infections, autoimmunity, and cancers. Lastly, we look into the potential immunotherapies that can be based on iNKTs and the possible treatments for infectious, autoimmune, and other diseases.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongli Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, GuiZhou Province, Zunyi, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Almeida T, Ohta Y, Gaigher A, Muñoz-Mérida A, Neves F, Castro LFC, Machado AM, Esteves PJ, Veríssimo A, Flajnik MF. A Highly Complex, MHC-Linked, 350 Million-Year-Old Shark Nonclassical Class I Lineage. THE JOURNAL OF IMMUNOLOGY 2021; 207:824-836. [PMID: 34301841 DOI: 10.4049/jimmunol.2000851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 05/09/2021] [Indexed: 11/19/2022]
Abstract
Cartilaginous fish, or Chondrichthyes, are the oldest extant vertebrates to possess the MHC and the Ig superfamily-based Ag receptors, the defining genes of the gnathostome adaptive immune system. In this work, we have identified a novel MHC lineage, UEA, a complex multigene nonclassical class I family found in sharks (division Selachii) but not detected in chimaeras (subclass Holocephali) or rays (division Batoidea). This new lineage is distantly related to the previously reported nonclassical class I lineage UCA, which appears to be present only in dogfish sharks (order Squaliformes). UEA lacks conservation of the nine invariant residues in the peptide (ligand)-binding regions (PBR) that bind to the N and C termini of bound peptide in most vertebrate classical class I proteins, which are replaced by relatively hydrophobic residues compared with the classical UAA. In fact, UEA and UCA proteins have the most hydrophobic-predicted PBR of all identified chondrichthyan class I molecules. UEA genes detected in the whale shark and bamboo shark genome projects are MHC linked. Consistent with UEA comprising a very large gene family, we detected weak expression in different tissues of the nurse shark via Northern blotting and RNA sequencing. UEA genes fall into three sublineages with unique characteristics in the PBR. UEA shares structural and genetic features with certain nonclassical class I genes in other vertebrates, such as the highly complex XNC nonclassical class I genes in Xenopus, and we anticipate that each shark gene, or at least each sublineage, will have a unique function, perhaps in bacterial defense.
Collapse
Affiliation(s)
- Tereza Almeida
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD; and
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD; and
| | - Arnaud Gaigher
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal
| | - Antonio Muñoz-Mérida
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal
| | - Fabiana Neves
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal
| | - L Filipe C Castro
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - André M Machado
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Pedro J Esteves
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Ana Veríssimo
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD; and
| |
Collapse
|
50
|
Cotton RN, Wegrecki M, Cheng TY, Chen YL, Veerapen N, Le Nours J, Orgill DP, Pomahac B, Talbot SG, Willis R, Altman JD, de Jong A, Van Rhijn I, Clark RA, Besra GS, Ogg G, Rossjohn J, Moody DB. CD1a selectively captures endogenous cellular lipids that broadly block T cell response. J Exp Med 2021; 218:e20202699. [PMID: 33961028 PMCID: PMC8111460 DOI: 10.1084/jem.20202699] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/12/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
We optimized lipidomics methods to broadly detect endogenous lipids bound to cellular CD1a proteins. Whereas membrane phospholipids dominate in cells, CD1a preferentially captured sphingolipids, especially a C42, doubly unsaturated sphingomyelin (42:2 SM). The natural 42:2 SM but not the more common 34:1 SM blocked CD1a tetramer binding to T cells in all human subjects tested. Thus, cellular CD1a selectively captures a particular endogenous lipid that broadly blocks its binding to TCRs. Crystal structures show that the short cellular SMs stabilized a triad of surface residues to remain flush with CD1a, but the longer lipids forced the phosphocholine group to ride above the display platform to hinder TCR approach. Whereas nearly all models emphasize antigen-mediated T cell activation, we propose that the CD1a system has intrinsic autoreactivity and is negatively regulated by natural endogenous inhibitors selectively bound in its cleft. Further, the detailed chemical structures of natural blockers could guide future design of therapeutic blockers of CD1a response.
Collapse
Affiliation(s)
- Rachel N. Cotton
- Graduate Program in Immunology, Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Marcin Wegrecki
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Tan-Yun Cheng
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Yi-Ling Chen
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, National Institute for Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Natacha Veerapen
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Dennis P. Orgill
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Bohdan Pomahac
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Simon G. Talbot
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Richard Willis
- National Institutes of Health Tetramer Core Facility, Emory University, Atlanta, GA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - John D. Altman
- National Institutes of Health Tetramer Core Facility, Emory University, Atlanta, GA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Annemieke de Jong
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Rachael A. Clark
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Graham Ogg
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, National Institute for Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - D. Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|