1
|
Bottjer DJ. Analysis of ancient mass extinction recoveries in marine environments: generating strategies for managing outcomes of the current mass extinction. Natl Sci Rev 2024; 11:nwad240. [PMID: 38116096 PMCID: PMC10727839 DOI: 10.1093/nsr/nwad240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 12/21/2023] Open
Affiliation(s)
- David J Bottjer
- Department of Earth Sciences, University of Southern California, USA
| |
Collapse
|
2
|
Haug C, Braig F, Haug JT. Quantitative analysis of lacewing larvae over more than 100 million years reveals a complex pattern of loss of morphological diversity. Sci Rep 2023; 13:6127. [PMID: 37059818 PMCID: PMC10104811 DOI: 10.1038/s41598-023-32103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Loss of biodiversity and especially insect decline are widely recognised in modern ecosystems. This decline has an enormous impact due to the crucial ecological roles of insects as well as their economic relevance. For comparison, the fossil record can provide important insights on past biodiversity losses. One group of insects, for which a significant decline over the last 100 million years has often been postulated, but not demonstrated quantitatively, is Neuroptera (lacewings). Many adult lacewings are pollinators, while the larvae are mostly predators, which becomes very obvious from their prominent stylet-like mouthparts. We investigated the fossil record of larvae of all neuropteran lineages as well as a large share of extant neuropteran larvae. Based on these, we performed an outline analysis of the head with stylets. This analysis provides a quantitative frame for recognising the decline of lacewings since the Cretaceous, indicating also a severe loss of ecological roles.
Collapse
Affiliation(s)
- Carolin Haug
- Ludwig-Maximilians-Universität München (LMU Munich), Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
- GeoBio-Center at LMU, Richard-Wagner-Str. 10, 80333, München, Germany
| | - Florian Braig
- Ludwig-Maximilians-Universität München (LMU Munich), Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Joachim T Haug
- Ludwig-Maximilians-Universität München (LMU Munich), Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
- GeoBio-Center at LMU, Richard-Wagner-Str. 10, 80333, München, Germany.
| |
Collapse
|
3
|
Foster WJ, Allen BJ, Kitzmann NH, Münchmeyer J, Rettelbach T, Witts JD, Whittle RJ, Larina E, Clapham ME, Dunhill AM. How predictable are mass extinction events? ROYAL SOCIETY OPEN SCIENCE 2023; 10:221507. [PMID: 36938535 PMCID: PMC10014245 DOI: 10.1098/rsos.221507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Many modern extinction drivers are shared with past mass extinction events, such as rapid climate warming, habitat loss, pollution and invasive species. This commonality presents a key question: can the extinction risk of species during past mass extinction events inform our predictions for a modern biodiversity crisis? To investigate if it is possible to establish which species were more likely to go extinct during mass extinctions, we applied a functional trait-based model of extinction risk using a machine learning algorithm to datasets of marine fossils for the end-Permian, end-Triassic and end-Cretaceous mass extinctions. Extinction selectivity was inferred across each individual mass extinction event, before testing whether the selectivity patterns obtained could be used to 'predict' the extinction selectivity exhibited during the other mass extinctions. Our analyses show that, despite some similarities in extinction selectivity patterns between ancient crises, the selectivity of mass extinction events is inconsistent, which leads to a poor predictive performance. This lack of predictability is attributed to evolution in marine ecosystems, particularly during the Mesozoic Marine Revolution, associated with shifts in community structure alongside coincident Earth system changes. Our results suggest that past extinctions are unlikely to be informative for predicting extinction risk during a projected mass extinction.
Collapse
Affiliation(s)
| | - Bethany J. Allen
- School of Earth and Environment, University of Leeds, Leeds, UK
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Computational Evolution Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Niklas H. Kitzmann
- Potsdam Institute for Climate Impact Research (PIK)—Member of the Leibniz Association, Potsdam, Germany
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | - Jannes Münchmeyer
- GFZ German Research Centre for Geoscience, Potsdam, Germany
- Department of Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tabea Rettelbach
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
- Department of Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany
- Permafrost Research Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - James D. Witts
- Bristol Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | | | - Ekaterina Larina
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
- Jackson School of Geosciences, University of Texas, Austin, Texas, USA
| | - Matthew E. Clapham
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA, USA
| | | |
Collapse
|
4
|
Trophic provisioning and parental trade-offs lead to successful reproductive performance in corals after a bleaching event. Sci Rep 2022; 12:18702. [PMID: 36333369 PMCID: PMC9636168 DOI: 10.1038/s41598-022-21998-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Warming ocean temperatures are severely compromising the health and resilience of coral reefs worldwide. Coral bleaching can affect coral physiology and the energy available for corals to reproduce. Mechanisms associated with reproductive allocation in corals are poorly understood, especially after a bleaching event occurs. Using isotopic labeling techniques, we traced the acquisition and allocation of carbon from adults to gametes by autotrophy and heterotrophy in previously bleached and non-bleached Montipora capitata and Porites compressa corals. Experiments revealed that both species: (1) relied only on autotrophy to allocate carbon to gametes, while heterotrophy was less relied upon as a carbon source; (2) experienced a trade-off with less carbon available for adult tissues when provisioning gametes, especially when previously bleached; and (3) used different strategies for allocating carbon to gametes. Over time, M. capitata allocated 10% more carbon to gametes despite bleaching by limiting the allocation of carbon to adult tissues, with 50-80% less carbon allocated to bleached compared to non-bleached colonies. Over the same time period, P. compressa maintained carbon allocation to adult tissues, before allocating carbon to gametes. Our study highlights the importance of autotrophy for carbon allocation from adult corals to gametes, and species-specific differences in carbon allocation depending on bleaching susceptibility.
Collapse
|
5
|
Sperling EA, Boag TH, Duncan MI, Endriga CR, Marquez JA, Mills DB, Monarrez PM, Sclafani JA, Stockey RG, Payne JL. Breathless through Time: Oxygen and Animals across Earth's History. THE BIOLOGICAL BULLETIN 2022; 243:184-206. [PMID: 36548971 DOI: 10.1086/721754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractOxygen levels in the atmosphere and ocean have changed dramatically over Earth history, with major impacts on marine life. Because the early part of Earth's history lacked both atmospheric oxygen and animals, a persistent co-evolutionary narrative has developed linking oxygen change with changes in animal diversity. Although it was long believed that oxygen rose to essentially modern levels around the Cambrian period, a more muted increase is now believed likely. Thus, if oxygen increase facilitated the Cambrian explosion, it did so by crossing critical ecological thresholds at low O2. Atmospheric oxygen likely remained at low or moderate levels through the early Paleozoic era, and this likely contributed to high metazoan extinction rates until oxygen finally rose to modern levels in the later Paleozoic. After this point, ocean deoxygenation (and marine mass extinctions) is increasingly linked to large igneous province eruptions-massive volcanic carbon inputs to the Earth system that caused global warming, ocean acidification, and oxygen loss. Although the timescales of these ancient events limit their utility as exact analogs for modern anthropogenic global change, the clear message from the geologic record is that large and rapid CO2 injections into the Earth system consistently cause the same deadly trio of stressors that are observed today. The next frontier in understanding the impact of oxygen changes (or, more broadly, temperature-dependent hypoxia) in deep time requires approaches from ecophysiology that will help conservation biologists better calibrate the response of the biosphere at large taxonomic, spatial, and temporal scales.
Collapse
|
6
|
Miao L, Dai X, Song H, Backes AR, Song H. A new index for quantifying the ornamentational complexity of animals with shells. Ecol Evol 2022; 12:e9247. [PMID: 36035271 PMCID: PMC9412138 DOI: 10.1002/ece3.9247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/03/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022] Open
Abstract
Morphological complexity reflects the biological structure of an organism and is closely linked to its associated functions and phylogenetics. In animals with shells, ornamentation is an important characteristic of morphological complexity, and it has various functions. However, because of the variations in type, shape, density, and strength of ornamentation, a universal quantitative measure of morphological complexity for shelled animals is lacking. We propose an ornamentation index (OI) derived from 3D scanning technology and a virtual model for quantifying ornamentation complexity. This index is designed to measure the extent of folding associated with ornamentation, regardless of shape and size. Ornamentation indices were measured for 15 ammonite specimens from the Permian to Cretaceous, 2 modern bivalves, 2 gastropods from the Pliocene to the present, and a modern echinoid. Compared with other measurements, such as the fractal dimension, rugosity, and surface-volume ratio, the OI displayed superiority in quantifying ornamentational complexity. The present study demonstrates that the OI is suitable for accurately characterizing and quantifying ornamentation complexity, regardless of shape and size. Therefore, the OI is potentially useful for comparing the ornamentational complexity of various organisms and can be exploited to provide further insight into the evolution of conchs. Ultimately, the OI can enhance our understanding of morphological evolution of shelled organisms, for example, whether shell ornaments simplify under ocean acidification or extinction, and how predation pressure is reflected in ornamentation complexity.
Collapse
Affiliation(s)
- Luyi Miao
- State Key Laboratory of Biogeology & Environmental Geology, School of Earth SciencesChina University of GeosciencesWuhanChina
| | - Xu Dai
- State Key Laboratory of Biogeology & Environmental Geology, School of Earth SciencesChina University of GeosciencesWuhanChina
| | - Hanchen Song
- State Key Laboratory of Biogeology & Environmental Geology, School of Earth SciencesChina University of GeosciencesWuhanChina
| | | | - Haijun Song
- State Key Laboratory of Biogeology & Environmental Geology, School of Earth SciencesChina University of GeosciencesWuhanChina
| |
Collapse
|
7
|
Massamba-N'Siala G, Reygondeau G, Simonini R, Cheung WWL, Prevedelli D, Calosi P. Integrating laboratory experiments and biogeographic modelling approaches to understand sensitivity to ocean warming in rare and common marine annelids. Oecologia 2022; 199:453-470. [PMID: 35689680 DOI: 10.1007/s00442-022-05202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/21/2022] [Indexed: 11/25/2022]
Abstract
Among ectotherms, rare species are expected to have a narrower thermal niche breadth and reduced acclimation capacity and thus be more vulnerable to global warming than their common relatives. To assess these hypotheses, we experimentally quantified the thermal sensitivity of seven common, uncommon, and rare species of temperate marine annelids of the genus Ophryotrocha to assess their vulnerability to ocean warming. We measured the upper and lower limits of physiological thermal tolerance, survival, and reproductive performance of each species along a temperature gradient (18, 24, and 30 °C). We then combined this information to produce curves of each species' fundamental thermal niche by including trait plasticity. Each thermal curve was then expressed as a habitat suitability index (HSI) and projected for the Mediterranean Sea and temperate Atlantic Ocean under a present day (1970-2000), mid- (2050-2059) and late- (2090-2099) 21st Century scenario for two climate change scenarios (RCP2.6 and RCP8.5). Rare and uncommon species showed a reduced upper thermal tolerance compared to common species, and the niche breadth and acclimation capacity were comparable among groups. The simulations predicted an overall increase in the HSI for all species and identified potential hotspots of HSI decline for uncommon and rare species along the warm boundaries of their potential distribution, though they failed to project the higher sensitivity of these species into a greater vulnerability to ocean warming. In the discussion, we provide some caveats on the implications of our results for conservation efforts.
Collapse
Affiliation(s)
- Gloria Massamba-N'Siala
- Département de Biologie Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada.
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE-CNRS), UMR 5175, 1919 Route de Mende, Montpellier Cedex 5, France.
- Department of Biological Sciences, Old Dominion University, Mills Godwin Building 110, Norfolk, VA, 23529, USA.
| | - G Reygondeau
- Changing Ocean Research Unit, Global Fisheries Cluster, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - R Simonini
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via campi 213, 41125, Modena, Italy
| | - W W L Cheung
- Changing Ocean Research Unit, Global Fisheries Cluster, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - D Prevedelli
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via campi 213, 41125, Modena, Italy
| | - P Calosi
- Département de Biologie Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
| |
Collapse
|
8
|
Knowledge Gaps and Missing Links in Understanding Mass Extinctions: Can Mathematical Modeling Help? Phys Life Rev 2022; 41:22-57. [DOI: 10.1016/j.plrev.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
|
9
|
Bush AM, Payne JL. Biotic and Abiotic Controls on the Phanerozoic History of Marine Animal Biodiversity. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-035131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the past 541 million years, marine animals underwent three intervals of diversification (early Cambrian, Ordovician, Cretaceous–Cenozoic) separated by nondirectional fluctuation, suggesting diversity-dependent dynamics with the equilibrium diversity shifting through time. Changes in factors such as shallow-marine habitat area and climate appear to have modulated the nondirectional fluctuations. Directional increases in diversity are best explained by evolutionary innovations in marine animals and primary producers coupled with stepwise increases in the availability of food and oxygen. Increasing intensity of biotic interactions such as predation and disturbance may have led to positive feedbacks on diversification as ecosystems became more complex. Important areas for further research include improving the geographic coverage and temporal resolution of paleontological data sets, as well as deepening our understanding of Earth system evolution and the physiological and ecological traits that modulated organismal responses to environmental change.
Collapse
Affiliation(s)
- Andrew M. Bush
- Department of Geosciences and Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Jonathan L. Payne
- Department of Geological Sciences, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
10
|
Morphological response accompanying size reduction of belemnites during an Early Jurassic hyperthermal event modulated by life history. Sci Rep 2021; 11:14480. [PMID: 34262074 PMCID: PMC8280180 DOI: 10.1038/s41598-021-93850-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
One of the most common responses of marine ectotherms to rapid warming is a reduction in body size, but the underlying reasons are unclear. Body size reductions have been documented alongside rapid warming events in the fossil record, such as across the Pliensbachian-Toarcian boundary (PToB) event (~ 183 Mya). As individuals grow, parallel changes in morphology can indicate details of their ecological response to environmental crises, such as changes in resource acquisition, which may anticipate future climate impacts. Here we show that the morphological growth of a marine predator belemnite species (extinct coleoid cephalopods) changed significantly over the PToB warming event. Increasing robustness at different ontogenetic stages likely results from indirect consequences of warming, like resource scarcity or hypercalcification, pointing toward varying ecological tolerances among species. The results of this study stress the importance of taking life history into account as well as phylogeny when studying impacts of environmental stressors on marine organisms.
Collapse
|
11
|
Mathes GH, van Dijk J, Kiessling W, Steinbauer MJ. Extinction risk controlled by interaction of long-term and short-term climate change. Nat Ecol Evol 2021; 5:304-310. [PMID: 33462487 DOI: 10.1038/s41559-020-01377-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023]
Abstract
Assessing extinction risk from climate drivers is a major goal of conservation science. Few studies, however, include a long-term perspective of climate change. Without explicit integration, such long-term temperature trends and their interactions with short-term climate change may be so dominant that they blur or even reverse the apparent direct relationship between climate change and extinction. Here we evaluate how observed genus-level extinctions of arthropods, bivalves, cnidarians, echinoderms, foraminifera, gastropods, mammals and reptiles in the geological past can be predicted from the interaction of long-term temperature trends with short-term climate change. We compare synergistic palaeoclimate interaction (a short-term change on top of a long-term trend in the same direction) to antagonistic palaeoclimate interaction such as long-term cooling followed by short-term warming. Synergistic palaeoclimate interaction increases extinction risk by up to 40%. The memory of palaeoclimate interaction including the climate history experienced by ancestral lineages can be up to 60 Myr long. The effect size of palaeoclimate interaction is similar to other key factors such as geographic range, abundance or clade membership. Insights arising from this previously unknown driver of extinction risk might attenuate recent predictions of climate-change-induced biodiversity loss.
Collapse
Affiliation(s)
- Gregor H Mathes
- Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany. .,Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.
| | - Jeroen van Dijk
- Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Wolfgang Kiessling
- Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Manuel J Steinbauer
- Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
12
|
Edmunds PJ, Putnam HM. Science-based approach to using growth rate to assess coral performance and restoration outcomes. Biol Lett 2020; 16:20200227. [PMID: 32673540 DOI: 10.1098/rsbl.2020.0227] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
One response to the coral reef crisis has been human intervention to enhance selection on the fittest corals through cultivation. This requires genotypes to be identified for intervention, with a primary basis for this choice being growth: corals that quickly grow on contemporary reefs might be future winners. To test for temporal stability of growth as a predictor of future performance, genotypes of the coral Porites spp. were grown in common gardens in Mo'orea, French Polynesia. Growth was measured every two to four months throughout 2018, and each period was used as a predictor of growth over the subsequent period. Area-normalized growth explained less than 29% of the variance in subsequent growth, but for biomass-normalized growth this increased to 45-60%, and was highest when summer growth was used to predict autumn growth. The capacity of initial growth to predict future performance is dependent on the units of measurement and the time of year in which it is measured. The final choice of traits to quantify performance must be informed through consideration of the species and the normalization that best capture the information inherent in the biological processes mediating variation in traits values.
Collapse
Affiliation(s)
- Peter J Edmunds
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| | - Hollie M Putnam
- Department of Biological Science, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| |
Collapse
|
13
|
Tian L, Benton MJ. Predicting biotic responses to future climate warming with classic ecogeographic rules. Curr Biol 2020; 30:R744-R749. [PMID: 32634410 DOI: 10.1016/j.cub.2020.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Models for future environmental change all involve global warming, whether slow or fast. Predicting how plants and animals will respond to such warming can be aided by using ecogeographic biological 'rules', some long-established, that make predictions based on observations in nature, as well as plausible physiological and ecological expectations. Bergmann's rule is well known, namely that warm-blooded animals are generally smaller in warm climates, but six further temperature-related rules - Allen's rule, Gloger's rule, Hesse's rule, Jordan's rule, Rapoport's rule and Thorson's rule - are also worth considering as predictive tools. These rules have been discussed in the recent ecological and physiological literature, and in some cases meta-analytical studies of multiple studies show how they are applicable across taxa and in particular physical environmental situations.
Collapse
Affiliation(s)
- Li Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Michael J Benton
- School of Earth Sciences, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TS, UK.
| |
Collapse
|
14
|
Piazza V, Ullmann CV, Aberhan M. Temperature-related body size change of marine benthic macroinvertebrates across the Early Toarcian Anoxic Event. Sci Rep 2020; 10:4675. [PMID: 32170120 PMCID: PMC7069967 DOI: 10.1038/s41598-020-61393-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/26/2020] [Indexed: 11/09/2022] Open
Abstract
The Toarcian Oceanic Anoxic Event (TOAE, Early Jurassic, ~182 Ma ago) was characterised by severe environmental perturbations which led to habitat degradation and extinction of marine species. Warming-induced anoxia is usually identified as main driver, but because marine life was also affected in oxygenated environments the role of raised temperature and its effects on marine life need to be addressed. Body size is a fundamental characteristic of organisms and is expected to decrease as a response to heat stress. We present quantitative size data of bivalves and brachiopods across the TOAE from oxygenated habitats in the Iberian Basin, integrated with geochemical proxy data (δ13C and δ18O), to investigate the relationship between changes in temperature and body size. We find a strong negative correlation between the mean shell size of bivalve communities and isotope-derived temperature estimates, suggesting heat stress as a main cause of body size reduction. While within-species size changes were minor, we identify changes in the abundance of differently sized species as the dominant mechanism of reduced community shell size during the TOAE. Brachiopods experienced a wholesale turnover across the early warming phase and were replaced by a virtually monotypic assemblage of a smaller-sized, opportunistic species.
Collapse
Affiliation(s)
- Veronica Piazza
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115, Berlin, Germany.
| | - Clemens V Ullmann
- University of Exeter, Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, Penryn, Cornwall, TR10 9FE, UK
| | - Martin Aberhan
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115, Berlin, Germany.
| |
Collapse
|
15
|
Rita P, Nätscher P, Duarte LV, Weis R, De Baets K. Mechanisms and drivers of belemnite body-size dynamics across the Pliensbachian-Toarcian crisis. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190494. [PMID: 31903197 PMCID: PMC6936285 DOI: 10.1098/rsos.190494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/06/2019] [Indexed: 05/15/2023]
Abstract
Body-size reduction is considered an important response to current climate warming and has been observed during past biotic crises, including the Pliensbachian-Toarcian crisis, a second-order mass extinction. However, in fossil cephalopod studies, the mechanisms and their potential link with climate are rarely investigated and palaeobiological scales of organization are not usually differentiated. Here, we hypothesize that belemnites reduce their adult size across the Pliensbachian-Toarcian boundary warming event. Belemnite body-size dynamics across the Pliensbachian-Toarcian boundary in the Peniche section (Lusitanian Basin, Portugal) were analysed based on the newly collected field data. We disentangle the mechanisms and the environmental drivers of the size fluctuations observed from the individual to the assemblage scale. Despite the lack of a major taxonomic turnover, a 40% decrease in rostrum volume is observed across the Pliensbachian-Toarcian boundary, before the Toarcian Oceanic Anoxic Event where belemnites go locally extinct. The pattern is mainly driven by a reduction in adult size of the two dominant species, Pseudohastites longiformis and Passaloteuthis bisulcata. Belemnite-size distribution is best correlated with fluctuations in a palaeotemperature proxy (stable oxygen isotopes); however, potential indirect effects of volcanism and carbon cycle perturbations may also play a role. This highlights the complex interplay between environmental stressors (warming, deoxygenation, nutrient input) and biotic variables (productivity, competition, migration) associated with these hyperthermal events in driving belemnite body-size.
Collapse
Affiliation(s)
- Patrícia Rita
- Geozentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
- MARE (Marine and Environmental Sciences Centre), 3004-517 Coimbra, Portugal
- Author for correspondence: Patrícia Rita e-mail:
| | - Paulina Nätscher
- Geozentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Luís V. Duarte
- MARE (Marine and Environmental Sciences Centre), 3004-517 Coimbra, Portugal
- Department of Earth Sciences, University of Coimbra, 3070-790 Coimbra, Portugal
| | - Robert Weis
- National Museum of Natural History Luxembourg, Department of Palaeontology, 2160 Luxembourg, Luxembourg
| | - Kenneth De Baets
- Geozentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| |
Collapse
|
16
|
Kiessling W, Raja NB, Roden VJ, Turvey ST, Saupe EE. Addressing priority questions of conservation science with palaeontological data. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190222. [PMID: 31679490 DOI: 10.1098/rstb.2019.0222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Palaeontologists often ask identical questions to those asked by ecologists. Despite this, ecology is considered a core discipline of conservation biology, while palaeontologists are rarely consulted in the protection of species, habitats and ecosystems. The recent emergence of conservation palaeobiology presents a big step towards better integration of palaeontology in conservation science, although its focus on historical baselines may not fully capture the potential contributions of geohistorical data to conservation science. In this essay we address previously defined priority questions in conservation and consider which of these questions may be answerable using palaeontological data. Using a statistical assessment of surveys, we find that conservation biologists and younger scientists have a more optimistic view of potential palaeontological contributions to the field compared to experienced palaeontologists. Participants considered questions related to climate change and marine ecosystems to be the best addressable with palaeontological data. As these categories are also deemed most relevant by ecologists and receive the greatest research effort in conservation, they are the natural choice for future academic collaboration. This article is part of a discussion meeting issue 'The past is a foreign country: how much can the fossil record actually inform conservation?'
Collapse
Affiliation(s)
- Wolfgang Kiessling
- GeoZentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander University Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany
| | - Nussaïbah B Raja
- GeoZentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander University Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany
| | - Vanessa Julie Roden
- GeoZentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander University Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany
| | - Samuel T Turvey
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Erin E Saupe
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| |
Collapse
|
17
|
Leiva FP, Calosi P, Verberk WCEP. Scaling of thermal tolerance with body mass and genome size in ectotherms: a comparison between water- and air-breathers. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190035. [PMID: 31203753 PMCID: PMC6606457 DOI: 10.1098/rstb.2019.0035] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Global warming appears to favour smaller-bodied organisms, but whether larger species are also more vulnerable to thermal extremes, as suggested for past mass-extinction events, is still an open question. Here, we tested whether interspecific differences in thermal tolerance (heat and cold) of ectotherm organisms are linked to differences in their body mass and genome size (as a proxy for cell size). Since the vulnerability of larger, aquatic taxa to warming has been attributed to the oxygen limitation hypothesis, we also assessed how body mass and genome size modulate thermal tolerance in species with contrasting breathing modes, habitats and life stages. A database with the upper (CTmax) and lower (CTmin) critical thermal limits and their methodological aspects was assembled comprising more than 500 species of ectotherms. Our results demonstrate that thermal tolerance in ectotherms is dependent on body mass and genome size and these relationships became especially evident in prolonged experimental trials where energy efficiency gains importance. During long-term trials, CTmax was impaired in larger-bodied water-breathers, consistent with a role for oxygen limitation. Variation in CTmin was mostly explained by the combined effects of body mass and genome size and it was enhanced in larger-celled, air-breathing species during long-term trials, consistent with a role for depolarization of cell membranes. Our results also highlight the importance of accounting for phylogeny and exposure duration. Especially when considering long-term trials, the observed effects on thermal limits are more in line with the warming-induced reduction in body mass observed during long-term rearing experiments. This article is part of the theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’.
Collapse
Affiliation(s)
- Félix P Leiva
- 1 Department of Animal Ecology and Physiology, Radboud University Nijmegen , 6500 Nijmegen , The Netherlands
| | - Piero Calosi
- 2 Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski , 300 Allée des Ursulines, Rimouski, Quebec, Canada G5L 3A1
| | - Wilco C E P Verberk
- 1 Department of Animal Ecology and Physiology, Radboud University Nijmegen , 6500 Nijmegen , The Netherlands
| |
Collapse
|