1
|
Ciupe SM, Conway JM. Incorporating Intracellular Processes in Virus Dynamics Models. Microorganisms 2024; 12:900. [PMID: 38792730 PMCID: PMC11124127 DOI: 10.3390/microorganisms12050900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
In-host models have been essential for understanding the dynamics of virus infection inside an infected individual. When used together with biological data, they provide insight into viral life cycle, intracellular and cellular virus-host interactions, and the role, efficacy, and mode of action of therapeutics. In this review, we present the standard model of virus dynamics and highlight situations where added model complexity accounting for intracellular processes is needed. We present several examples from acute and chronic viral infections where such inclusion in explicit and implicit manner has led to improvement in parameter estimates, unification of conclusions, guidance for targeted therapeutics, and crossover among model systems. We also discuss trade-offs between model realism and predictive power and highlight the need of increased data collection at finer scale of resolution to better validate complex models.
Collapse
Affiliation(s)
- Stanca M. Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Jessica M. Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, Penn State University, State College, PA 16802, USA
| |
Collapse
|
2
|
Joon S, Singla RK, Shen B. In Silico Drug Discovery for Treatment of Virus Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1368:73-93. [DOI: 10.1007/978-981-16-8969-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
The Mexican consensus on the treatment of hepatitis C. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2018. [DOI: 10.1016/j.rgmxen.2017.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
4
|
Aiza-Haddad I, Ballesteros-Amozurrutia A, Borjas-Almaguer OD, Castillo-Barradas M, Castro-Narro G, Chávez-Tapia N, Chirino-Sprung RA, Cisneros-Garza L, Dehesa-Violante M, Flores-Calderón J, Flores-Gaxiola A, García-Juárez I, González-Huezo MS, González-Moreno EI, Higuera-de la Tijera F, Kershenobich-Stalnikowitz D, López-Méndez E, Malé-Velázquez R, Marín-López E, Mata-Marín JA, Méndez-Sánchez N, Monreal-Robles R, Moreno-Alcántar R, Muñoz-Espinosa L, Navarro-Alvarez S, Pavia-Ruz N, Pérez-Ríos AM, Poo-Ramírez JL, Rizo-Robles MT, Sánchez-Ávila JF, Sandoval-Salas R, Torre A, Torres-Ibarra R, Trejo-Estrada R, Velarde-Ruiz Velasco JA, Wolpert-Barraza E, Bosques-Padilla F. The Mexican consensus on the treatment of hepatitis C. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2018; 83:275-324. [PMID: 29803325 DOI: 10.1016/j.rgmx.2017.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/17/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
The aim of the Mexican Consensus on the Treatment of HepatitisC was to develop clinical practice guidelines applicable to Mexico. The expert opinion of specialists in the following areas was taken into account: gastroenterology, infectious diseases, and hepatology. A search of the medical literature was carried out on the MEDLINE, EMBASE, and CENTRAL databases through keywords related to hepatitisC treatment. The quality of evidence was subsequently evaluated using the GRADE system and the consensus statements were formulated. The statements were then voted upon, using the modified Delphi system, and reviewed and corrected by a panel of 34 voting participants. Finally, the level of agreement was classified for each statement. The present guidelines provide recommendations with an emphasis on the new direct-acting antivirals, to facilitate their use in clinical practice. Each case must be individualized according to the comorbidities involved and patient management must always be multidisciplinary.
Collapse
Affiliation(s)
| | | | - O D Borjas-Almaguer
- Hospital Universitario «Dr. José Eleuterio González», Monterrey, Nuevo León, México
| | | | - G Castro-Narro
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | | | | | - L Cisneros-Garza
- Centro de Enfermedades Hepáticas del Hospital San José, Monterrey, Nuevo León, México
| | | | - J Flores-Calderón
- Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | | | - I García-Juárez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | | | - E I González-Moreno
- Hospital Universitario «Dr. José Eleuterio González», Monterrey, Nuevo León, México
| | | | | | - E López-Méndez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - R Malé-Velázquez
- Instituto de Salud Digestiva y Hepática, Guadalajara, Jalisco, México
| | | | - J A Mata-Marín
- Hospital de Infectología del Centro Médico Nacional «La Raza», Ciudad de México, México
| | | | - R Monreal-Robles
- Hospital Universitario «Dr. José Eleuterio González», Monterrey, Nuevo León, México
| | | | - L Muñoz-Espinosa
- Hospital Universitario «Dr. José Eleuterio González», Monterrey, Nuevo León, México
| | | | - N Pavia-Ruz
- Hospital Infantil de México «Federico Gómez», Ciudad de México, México
| | - A M Pérez-Ríos
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, México
| | - J L Poo-Ramírez
- Clínica San Jerónimo de Salud Hepática y Digestiva, Ciudad de México, México
| | | | - J F Sánchez-Ávila
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | | | - A Torre
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | | | | | | | | | | |
Collapse
|
5
|
Nappi A, Perrella A, Bellopede P, Lanza A, Izzi A, Spatarella M, Sbreglia C. Safety of new DAAs for chronic HCV infection in a real life experience: role of a surveillance network based on clinician and hospital pharmacist. Infect Agent Cancer 2017; 12:12. [PMID: 28191032 PMCID: PMC5297093 DOI: 10.1186/s13027-017-0119-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/11/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Direct Antiviral Agents (DAAs) for HCV therapy represents a step ahead in the cure of chronic hepatitis C. Notwithstanding the promising results in several clinical trials, few data are available on adverse effects in real life settings. METHODS We have evaluated 170 patients with persistent infection and on those eligible to treatment we have followed up them through a network managed by clinician and hospital pharmacist. RESULTS According to our data we have found that 41% (32 out of 78) of enrolled patients experienced adverse reactions, of these 40% were in those under 65 years while 60% was in patients older than 65 years, SVR was achieved in 88% of the patients (including drop-out). We had 4 drop-out treatment due to major adverse reaction (heart and lung related). CONCLUSION Even if new antiviral drugs seem to be promising, according to SVR, they require careful follow-up, possibly managed by clinician and hospital pharmacist, to avoid unrecognized side effects which may affect adherence and the real impact of these drugs on chronically infected subjects.
Collapse
Affiliation(s)
- A Nappi
- Pharmacy Unit, Hospital D. Cotugno - AORN Azienda dei Colli, Naples, Italy
| | - A Perrella
- VII Division Infectious Disease and Immunology, Hospital D. Cotugno - AORN Azienda dei Colli, Naples, Italy
| | - P Bellopede
- VII Division Infectious Disease and Immunology, Hospital D. Cotugno - AORN Azienda dei Colli, Naples, Italy
| | - A Lanza
- I Division Infectious Disease, Hospital D. Cotugno - AORN Azienda dei Colli, Naples, Italy
| | - A Izzi
- Hepatology Unit, Hospital A. Cardarelli, Naples, Italy
| | - M Spatarella
- Pharmacy Unit, Hospital D. Cotugno - AORN Azienda dei Colli, Naples, Italy
| | - C Sbreglia
- VII Division Infectious Disease and Immunology, Hospital D. Cotugno - AORN Azienda dei Colli, Naples, Italy
| |
Collapse
|
6
|
Successful Treatment of Mixed Hepatitis C Genotypes in a Cirrhotic Patient With an All-Oral, Interferon-Free Regimen. ACG Case Rep J 2017; 4:e16. [PMID: 28184373 PMCID: PMC5291715 DOI: 10.14309/crj.2017.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/09/2016] [Indexed: 01/08/2023] Open
Abstract
Mixed hepatitis C virus (HCV) genotype infection is emerging with improved methods of detection. It is commonly seen in hemodialysis patients and intravenous drug users due to repeated HCV exposure and absence of protective immunity, and can contribute to treatment failure. Direct-acting antiviral regimens have been extensively studied in patients with different individual HCV genotypes; however, there are no reported data on their use in patients with mixed HCV genotype. We present a case of mixed HCV genotype 1a and 2 infection in a decompensated cirrhotic patient treated successfully with sofosbuvir, ledipasvir, and ribavirin.
Collapse
|
7
|
Gutierrez JA, Lawitz EJ, Poordad F. Interferon-free, direct-acting antiviral therapy for chronic hepatitis C. J Viral Hepat 2015; 22:861-70. [PMID: 26083155 DOI: 10.1111/jvh.12422] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/11/2015] [Indexed: 12/13/2022]
Abstract
The treatment environment for chronic hepatitis C has undergone a revolution, particularly in genotype 1. Gone are interferon-based therapy and its associated tolerability challenges, inadequate response rates and numerous baseline factors that affect response to therapy. New and emerging treatment regimens employ all-oral combinations of direct-acting antiviral agents, and results of clinical trials suggest that these regimens routinely achieve cure rates >90%, even in patients who failed prior interferon-based triple therapy. In 2015, three all-oral FDA-approved regiments will be available for genotype 1 (sofosbuvir /ledipasvir, sofosbuvir/simeprevir, and paritaprevir/r/ombitasvir/dasabuvir). Furthermore, new treatment combinations appear to be more tolerable and require shorter duration of therapy. We provide an overview of the classes of direct-acting antiviral agents (DAAs), the clinical factors affecting their integration into combination therapies and recent findings from trials of such combination therapies in patients with genotype 1 HCV infection.
Collapse
Affiliation(s)
- J A Gutierrez
- The Texas Liver Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - E J Lawitz
- The Texas Liver Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - F Poordad
- The Texas Liver Institute, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
8
|
Alexandre FR, Brandt G, Caillet C, Chaves D, Convard T, Derock M, Gloux D, Griffon Y, Lallos L, Leroy F, Liuzzi M, Loi AG, Moulat L, Musiu C, Parsy C, Rahali H, Roques V, Seifer M, Standring D, Surleraux D. Synthesis and antiviral evaluation of a novel series of homoserine-based inhibitors of the hepatitis C virus NS3/4A serine protease. Bioorg Med Chem Lett 2015; 25:3984-91. [DOI: 10.1016/j.bmcl.2015.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 01/01/2023]
|
9
|
Structure-activity relationship studies on quinoxalin-2(1H)-one derivatives containing thiazol-2-amine against hepatitis C virus leading to the discovery of BH6870. Mol Divers 2015. [PMID: 26205408 DOI: 10.1007/s11030-015-9610-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis C virus infection represents a serious global public health problem, typically resulting in fibrosis, cirrhosis, and ultimately hepatocellular carcinoma. Based on our previous discovery of lead compound 2 (Liu et al. J Med Chem 54:5747-5768, 2011), 35 new quinoxalinone derivatives were explored in this study. Outline of the structure-activity relationships (SARs) revealed that compound BH6870 (36) showed high anti-HCV potency ([Formula: see text]) and a good cell safety index (SI [Formula: see text]). SARs analysis indicated that quinoxalin-2(1H)-one containing a 4-aryl-substituted thiazol-2-amine moiety was optimal for antiviral activity. Introducing a hydrogen-bond acceptor (such as ester or amide group) at the C-3 position of quinoxalin-2(1H)-one was beneficial for the antiviral potency, and especially, N,N-disubstituted amide was far superior to N-monosubstituted amide. Incorporation of more than one halogen (fluorine or chlorine atom) or a strong electron-withdrawing group on the benzene ring of the thiazole-phenyl moiety might reduce electron atmosphere density further and resulted in a dramatical loss of activity. The NH-group of the lactam moiety was clearly required for anti-HCV activity. Design and synthesis of quinoxalin-2(1H)-one derivatives as new non-nucleoside small-molecule HCV inhibitors. BH6870 (36), showing higher antiviral potency and a good cell safety index, was identified.
Collapse
|
10
|
Abstract
Chronic hepatitis C virus (HCV) infection results in a progressive disease that may end in cirrhosis and, eventually, in hepatocellular carcinoma. In the last several years, tremendous progress has been made in understanding the HCV life cycle and in the development of small molecule compounds for the treatment of chronic hepatitis C. Nevertheless, the complete understanding of HCV assembly and particle release as well as the detailed characterization and structure of HCV particles is still missing. One of the most important events in the HCV assembly is the nucleocapsid formation which is driven by the core protein, that can oligomerize upon interaction with viral RNA, and is orchestrated by viral and host proteins. Despite a growing number of new factors involved in HCV assembly process, we do not know the three-dimensional structure of the core protein or its topology in the nucleocapsid. Since the core protein contains a hydrophobic C-terminal domain responsible for the binding to cellular membranes, the assembly pathway of HCV virions might proceed via coassembly at endoplasmic reticulum membranes. Recently, new mechanisms involving viral proteins and host factors in HCV particle formation and egress have been described. The present review aims to summarize the advances in our understanding of HCV assembly with an emphasis on the core protein as a structural component of virus particles that possesses the ability to interact with a variety of cellular components and is potentially an attractive target for the development of a novel class of anti-HCV agents.
Collapse
Affiliation(s)
- Katarzyna Gawlik
- Department of Immunology and Microbial Science, IMM-9, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| | | |
Collapse
|
11
|
Harikishore A, Li E, Lee JJ, Cho NJ, Yoon HS. Combination of pharmacophore hypothesis and molecular docking to identify novel inhibitors of HCV NS5B polymerase. Mol Divers 2015; 19:529-39. [PMID: 25862642 DOI: 10.1007/s11030-015-9591-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 03/25/2015] [Indexed: 01/03/2023]
Abstract
Hepatitis C virus (HCV) infection or HCV-related liver diseases are now shown to cause more than 350,000 deaths every year. Adaptability of HCV genome to vary its composition and the existence of multiple strains makes it more difficult to combat the emergence of drug-resistant HCV infections. Among the HCV polyprotein which has both the structural and non-structural regions, the non-structural protein NS5B RNA-dependent RNA polymerase (RdRP) mainly mediates the catalytic role of RNA replication in conjunction with its viral protein machinery as well as host chaperone proteins. Lack of such RNA-dependent RNA polymerase enzyme in host had made it an attractive and hotly pursued target for drug discovery efforts. Recent drug discovery efforts targeting HCV RdRP have seen success with FDA approval for sofosbuvir as a direct-acting antiviral against HCV infection. However, variations in drug-binding sites induce drug resistance, and therefore targeting allosteric sites could delay the emergence of drug resistance. In this study, we focussed on allosteric thumb site II of the non-structural protein NS5B RNA-dependent RNA polymerase and developed a five-feature pharmacophore hypothesis/model which estimated the experimental activity with a strong correlation of 0.971 & 0.944 for training and test sets, respectively. Further, the Güner-Henry score of 0.6 suggests that the model was able to discern the active and inactive compounds and enrich the true positives during a database search. In this study, database search and molecular docking results supported by experimental HCV viral replication inhibition assays suggested ligands with best fitness to the pharmacophore model dock to the key residues involved in thumbs site II, which inhibited the HCV 1b viral replication in sub-micro-molar range.
Collapse
Affiliation(s)
- Amaravadhi Harikishore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore,
| | | | | | | | | |
Collapse
|
12
|
Fast hepatitis C virus RNA elimination and NS5A redistribution by NS5A inhibitors studied by a multiplex assay approach. Antimicrob Agents Chemother 2015; 59:3482-92. [PMID: 25845863 DOI: 10.1128/aac.00223-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/27/2015] [Indexed: 12/18/2022] Open
Abstract
While earlier therapeutic strategies for the treatment of hepatitis C virus (HCV) infection relied exclusively on interferon (IFN) and ribavirin (RBV), four direct-acting antiviral agents (DAAs) have now been approved, aiming for an interferon-free strategy with a short treatment duration and fewer side effects. To facilitate studies on the mechanism of action (MOA) and efficacy of DAAs, we established a multiplex assay approach, which employs flow cytometry, a Gaussia luciferase reporter system, Western blot analysis, reverse transcription-quantitative PCR (RT-qPCR), a limited dilution assay (50% tissue culture infectious dose [TCID50]), and an image profiling assay that follows the NS5A redistribution in response to drug treatment. We used this approach to compare the relative potency of various DAAs and the kinetics of their antiviral effects as a potential preclinical measure of their potential clinical utility. We evaluated the NS5A inhibitors ledipasvir (LDV) and daclatasvir (DCV), the NS3/4A inhibitor danoprevir (DNV), and the NS5B inhibitor sofosbuvir (SOF). In terms of kinetics, our data demonstrate that the NS5A inhibitor LDV, followed closely by DCV, has the fastest effect on suppression of viral proteins and RNA and on redistribution of NS5A. In terms of MOA, LDV has a more pronounced effect than DCV on the viral replication, assembly, and infectivity of released virus. Our approach can be used to facilitate the study of the biological processes involved in HCV replication and help identify optimal drug combinations.
Collapse
|
13
|
Lin MV, King LY, Chung RT. Hepatitis C virus-associated cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 10:345-70. [PMID: 25387053 DOI: 10.1146/annurev-pathol-012414-040323] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hepatitis C virus (HCV) is one of the major etiologic agents of liver cancer. HCV is an RNA virus that, unlike hepatitis B virus, is unable to integrate into the host genome. Through complex interactions between viral and host proteins that induce host responses and promote inflammation, fibrosis, and ultimately cirrhosis, HCV infection can result in the development of hepatocellular carcinoma (HCC). The HCV oncogenic process involves genetic and epigenetic alterations and oncogenic effects mediated by viral proteins in the activation of cellular oncogenes, inactivation of tumor-suppressor genes, and dysregulation of multiple signal-transduction pathways. Advances in genetics and gene expression profiling have enhanced our current understanding of the pathways involved in HCV-associated liver cancer development. In this review, we summarize the current understanding of mechanisms of hepatocarcinogenesis induced by HCV infection.
Collapse
Affiliation(s)
- Ming V Lin
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114; , ,
| | | | | |
Collapse
|
14
|
Lawitz EJ, Membreno FE. Response-guided therapy in patients with genotype 1 hepatitis C virus: current status and future prospects. J Gastroenterol Hepatol 2014; 29:1574-81. [PMID: 24852401 DOI: 10.1111/jgh.12632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2014] [Indexed: 02/06/2023]
Abstract
On-treatment responses to antiviral therapy are used to determine duration of therapy in patients being treated for genotype 1 hepatitis C virus infection. Such use of response-guided therapy has successfully reduced exposure of patients to the side-effects of pegylated interferon and ribavirin without jeopardizing overall treatment success. Response-guided therapy is an integral part of treatment using the current standard treatments involving the direct-acting antiviral (DAA) agents--boceprevir or telaprevir--combined with pegylated interferon/ribavirin. Improvements in our understanding of the kinetics of viral load during antiviral therapy have shown us that more potent suppression of viral replication increases the rate of viral eradication, providing impetus for the development of more potent DAAs. Emerging results from clinical trials of these agents--including trials of interferon-free DAA combinations--suggest that very high rates of viral eradication are achievable, even in patients who failed to respond to previous courses of interferon-based therapy. Furthermore, because of these high rates of treatment success, on-treatment assessment of viral response may become unnecessary. The field of hepatitis C virus therapy is evolving rapidly and current trends indicate that the era of simple treatment regimens with high rates of success and good tolerability are near.
Collapse
Affiliation(s)
- Eric J Lawitz
- The Texas Liver Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
15
|
Du QS, Wang SQ, Chen D, Meng JZ, Huang RB. In depth analysis on the binding sites of adamantane derivatives in HCV (hepatitis C virus) p7 channel based on the NMR structure. PLoS One 2014; 9:e93613. [PMID: 24714586 PMCID: PMC3979700 DOI: 10.1371/journal.pone.0093613] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/07/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The recently solved solution structure of HCV (hepatitis C virus) p7 ion channel provides a solid structure basis for drug design against HCV infection. In the p7 channel the ligand amantadine (or rimantadine) was determined in a hydrophobic pocket. However the pharmocophore (-NH2) of the ligand was not assigned a specific binding site. RESULTS The possible binding sites for amino group of adamantane derivatives is studied based on the NMR structure of p7 channel using QM calculation and molecular modeling. In the hydrophobic cavity and nearby three possible binding sites are proposed: His17, Phe20, and Trp21. The ligand binding energies at the three binding sites are studied using high level QM method CCSD(T)/6-311+G(d,p) and AutoDock calculations, and the interaction details are analyzed. The potential application of the binding sites for rational inhibitor design are discussed. CONCLUSIONS Some useful viewpoints are concluded as follows. (1) The amino group (-NH2) of adamantane derivatives is protonated (-NH3+), and the positively charged cation may form cation-π interactions with aromatic amino acids. (2) The aromatic amino acids (His17, Phe20, and Trp21) are the possible binding sites for the protonated amino group (-NH3+) of adamantane derivatives, and the cation-π bond energies are 3 to 5 times stronger than the energies of common hydrogen bonds. (3) The higher inhibition potent of rimantadine than amantadine probably because of its higher pKa value (pKa = 10.40) and the higher positive charge in the amino group. The potential application of p7 channel structure for inhibitor design is discussed.
Collapse
Affiliation(s)
- Qi-Shi Du
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
- Gordon Life Science Institute, San Diego, California, United States of America
- * E-mail:
| | - Shu-Qing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Dong Chen
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
- Life Science and Biotechnology College, Guangxi University, Nanning, Guangxi, China
| | - Jian-Zong Meng
- Life Science and Biotechnology College, Guangxi University, Nanning, Guangxi, China
| | - Ri-Bo Huang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
- Life Science and Biotechnology College, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
16
|
Lin MV, Chung R. Recent FDA approval of sofosbuvir and simeprevir. Implications for current HCV treatment. Clin Liver Dis (Hoboken) 2014; 3:65-68. [PMID: 30992888 PMCID: PMC6448702 DOI: 10.1002/cld.332] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
17
|
HCV core residues critical for infectivity are also involved in core-NS5A complex formation. PLoS One 2014; 9:e88866. [PMID: 24533158 PMCID: PMC3923060 DOI: 10.1371/journal.pone.0088866] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 01/14/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of liver disease. The molecular machinery of HCV assembly and particle release remains obscure. A better understanding of the assembly events might reveal new potential antiviral strategies. It was suggested that the nonstructural protein 5A (NS5A), an attractive recent drug target, participates in the production of infectious particles as a result of its interaction with the HCV core protein. However, prior to the present study, the NS5A-binding site in the viral core remained unknown. We found that the D1 domain of core contains the NS5A-binding site with the strongest interacting capacity in the basic P38-K74 cluster. We also demonstrated that the N-terminal basic residues of core at positions 50, 51, 59 and 62 were required for NS5A binding. Analysis of all substitution combinations of R50A, K51A, R59A, and R62A, in the context of the HCVcc system, showed that single, double, triple, and quadruple mutants were fully competent for viral RNA replication, but deficient in secretion of viral particles. Furthermore, we found that the extracellular and intracellular infectivity of all the mutants was abolished, suggesting a defect in the formation of infectious particles. Importantly, we showed that the interaction between the single and quadruple core mutants and NS5A was impaired in cells expressing full-length HCV genome. Interestingly, mutations of the four basic residues of core did not alter the association of core or NS5A with lipid droplets. This study showed for the first time that basic residues in the D1 domain of core that are critical for the formation of infectious extracellular and intracellular particles also play a role in core-NS5A interactions.
Collapse
|
18
|
Ramirez S, Li YP, Jensen SB, Pedersen J, Gottwein JM, Bukh J. Highly efficient infectious cell culture of three hepatitis C virus genotype 2b strains and sensitivity to lead protease, nonstructural protein 5A, and polymerase inhibitors. Hepatology 2014; 59:395-407. [PMID: 23913364 DOI: 10.1002/hep.26660] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/25/2013] [Indexed: 12/31/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) is a genetically diverse virus with multiple genotypes exhibiting remarkable differences, particularly in drug susceptibility. Drug and vaccine development will benefit from high-titer HCV cultures mimicking the complete viral life cycle, but such systems only exist for genotypes 1a and 2a. We developed efficient culture systems for the epidemiologically important genotype 2b. Full-length molecular clones of patient strains DH8 and DH10 were adapted to efficient growth in Huh7.5 cells by using F1468L/A1676S/D3001G (LSG) mutations. The previously developed J8cc prototype 2b recombinant was further adapted. DH8 and J8 achieved infectivity titers >4.5 log10 Focus-Forming Units/mL. A defined set of DH8 mutations had cross-isolate adapting potential. A chimeric genome with the DH10 polyprotein coding sequence inserted into a vector with J8 untranslated regions was viable. Importantly, we succeeded in generating DH8, J8, and DH10 viruses with authentic sequences in the regions targeted by lead direct-acting antivirals. Nonstructural protein (NS)5B inhibitors sofosbuvir, mericitabine, and BI207127 had activity against 1a (strain TN), 2a (strains JFH1 and J6), and the 2b strains, whereas VX-222 and filibuvir only inhibited 1a. Genotype 2b strains were least sensitive to seven lead protease inhibitors, including MK-5172 with high overall potency. NS5A inhibitor daclatasvir was exceptionally potent, but efficacy was affected by the HCV strain. CONCLUSION Highly efficient HCV full-length 2b culture systems can be established by using consensus clones with defined mutations. Lead protease and NS5A inhibitors, as well as polymerase inhibitors sofosbuvir, mericitabine, and BI207127, show cross-activity against full-length 1a, 2a, and 2b viruses, but important sensitivity differences exist at the isolate level. Infectious cultures for different HCV strains will advance studies on viral biology and pathogenesis and promote individualized patient treatment.
Collapse
Affiliation(s)
- Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre and Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
19
|
Kakarla R, Liu J, Naduthambi D, Chang W, Mosley RT, Bao D, Steuer HMM, Keilman M, Bansal S, Lam AM, Seibel W, Neilson S, Furman PA, Sofia MJ. Discovery of a novel class of potent HCV NS4B inhibitors: SAR studies on piperazinone derivatives. J Med Chem 2014; 57:2136-60. [PMID: 24476391 DOI: 10.1021/jm4012643] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HTS screening identified compound 2a (piperazinone derivative) as a low micromolar HCV genotype 1 (GT-1) inhibitor. Resistance mapping studies suggested that this piperazinone chemotype targets the HCV nonstructural protein NS4B. Extensive SAR studies were performed around 2a and the amide function and the C-3/C-6 cis stereochemistry of the piperazinone core were essential for HCV activity. A 10-fold increase in GT-1 potency was observed when the chiral phenylcyclopropyl amide side chain of 2a was replaced with p-fluorophenylisoxazole-carbonyl moiety (67). Replacing the C-6 nonpolar hydrophobic moiety of 67 with a phenyl moiety (95) did not diminish the GT-1 potency. A heterocyclic thiophene moiety (103) and an isoxazole moiety (108) were incorporated as isosteric replacements for the C-6 phenyl moiety (95), resulting in significant improvement in GT-1b and 1a potency. However, the piperazonone class of compounds lacks GT-2 activity and, consequently, were not pursued further into development.
Collapse
Affiliation(s)
- Ramesh Kakarla
- Pharmasset, Inc. 303A College Road East, Princeton, New Jersey 08540, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Roberts CD, Peat AJ. HCV Replication Inhibitors That Interact with NS4B. SUCCESSFUL STRATEGIES FOR THE DISCOVERY OF ANTIVIRAL DRUGS 2013. [DOI: 10.1039/9781849737814-00111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We describe the discovery, development and in vivo activity of small molecules that inhibits HCV replication via direct interaction with the viral NS4B protein. The inhibitors were identified through a phenotypic, cell based, high throughput screen using the HCV subgenomic replicon. Compounds were then optimized to extremely high potency and pharmacokinetics. Mechanistic data generated suggests a hypothesis wherein the compounds described function by binding to NS4B, preventing the formation of the characteristic HCV induced sub‐cellular membranous web required for viral replication. Finally, in vivo proof of mechanism was established by employing a chimeric “humanized” mouse model of HCV infection to demonstrate for the first time that a small molecule with high in vitro affinity for NS4B can inhibit viral replication in vivo.
Collapse
Affiliation(s)
- Christopher D. Roberts
- GlaxoSmithKline Research & Development Infectious Diseases Therapeutic Area Unit, 5 Moore Drive, Research Triangle Park, NC 27709 USA
| | - Andrew J. Peat
- GlaxoSmithKline Research & Development Infectious Diseases Therapeutic Area Unit, 5 Moore Drive, Research Triangle Park, NC 27709 USA
| |
Collapse
|
21
|
Jiang Y, Andrews SW, Condroski KR, Buckman B, Serebryany V, Wenglowsky S, Kennedy AL, Madduru MR, Wang B, Lyon M, Doherty GA, Woodard BT, Lemieux C, Geck Do M, Zhang H, Ballard J, Vigers G, Brandhuber BJ, Stengel P, Josey JA, Beigelman L, Blatt L, Seiwert SD. Discovery of danoprevir (ITMN-191/R7227), a highly selective and potent inhibitor of hepatitis C virus (HCV) NS3/4A protease. J Med Chem 2013; 57:1753-69. [PMID: 23672640 DOI: 10.1021/jm400164c] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HCV serine protease NS3 represents an attractive drug target because it is not only essential for viral replication but also implicated in the viral evasion of the host immune response pathway through direct cleavage of key proteins in the human innate immune system. Through structure-based drug design and optimization, macrocyclic peptidomimetic molecules bearing both a lipophilic P2 isoindoline carbamate and a P1/P1' acylsulfonamide/acylsulfamide carboxylic acid bioisostere were prepared that possessed subnanomolar potency against the NS3 protease in a subgenomic replicon-based cellular assay (Huh-7). Danoprevir (compound 49) was selected as the clinical development candidate for its favorable potency profile across multiple HCV genotypes and key mutant strains and for its good in vitro ADME profiles and in vivo target tissue (liver) exposures across multiple animal species. X-ray crystallographic studies elucidated several key features in the binding of danoprevir to HCV NS3 protease and proved invaluable to our iterative structure-based design strategy.
Collapse
Affiliation(s)
- Yutong Jiang
- Array BioPharma , 3200 Walnut Street, Boulder, Colorado 80301, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tripathi LP, Kambara H, Chen YA, Nishimura Y, Moriishi K, Okamoto T, Morita E, Abe T, Mori Y, Matsuura Y, Mizuguchi K. Understanding the Biological Context of NS5A–Host Interactions in HCV Infection: A Network-Based Approach. J Proteome Res 2013; 12:2537-51. [DOI: 10.1021/pr3011217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lokesh P. Tripathi
- National Institute of Biomedical Innovation, 7-6-8 Saito Asagi, Ibaraki,
Osaka, 567-0085, Japan
| | - Hiroto Kambara
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yi-An Chen
- National Institute of Biomedical Innovation, 7-6-8 Saito Asagi, Ibaraki,
Osaka, 567-0085, Japan
| | - Yorihiro Nishimura
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kohji Moriishi
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Toru Okamoto
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Eiji Morita
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Takayuki Abe
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yoshio Mori
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kenji Mizuguchi
- National Institute of Biomedical Innovation, 7-6-8 Saito Asagi, Ibaraki,
Osaka, 567-0085, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-Oka, Suita, Osaka, 565-0871,
Japan
| |
Collapse
|
23
|
Rong L, Perelson AS. Mathematical analysis of multiscale models for hepatitis C virus dynamics under therapy with direct-acting antiviral agents. Math Biosci 2013; 245:22-30. [PMID: 23684949 DOI: 10.1016/j.mbs.2013.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis C virus (HCV) infection remains a world-wide public health problem. Therapy with interferon and ribavirin leads to viral elimination in less than 50% of treated patients. New treatment options aiming at a higher cure rate are focused on direct-acting antiviral agents (DAAs), which directly interfere with different steps in the HCV life cycle. In this paper, we describe and analyze a recently developed multiscale model that predicts HCV dynamics under therapy with DAAs. The model includes both intracellular viral RNA replication and extracellular viral infection. We calculate the steady states of the model and perform a detailed stability analysis. With certain assumptions we obtain analytical approximations of the viral load decline after treatment initiation. One approximation agrees well with the prediction of the model, and can conveniently be used to fit patient data and estimate parameter values. We also discuss other possible ways to incorporate intracellular viral dynamics into the multiscale model.
Collapse
Affiliation(s)
- Libin Rong
- Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, United States
| | | |
Collapse
|
24
|
Miller JF, Chong PY, Shotwell JB, Catalano JG, Tai VWF, Fang J, Banka AL, Roberts CD, Youngman M, Zhang H, Xiong Z, Mathis A, Pouliot JJ, Hamatake RK, Price DJ, Seal JW, Stroup LL, Creech KL, Carballo LH, Todd D, Spaltenstein A, Furst S, Hong Z, Peat AJ. Hepatitis C Replication Inhibitors That Target the Viral NS4B Protein. J Med Chem 2013; 57:2107-20. [DOI: 10.1021/jm400125h] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- John F. Miller
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Pek Y. Chong
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - J. Brad Shotwell
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - John G. Catalano
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Vincent W.-F. Tai
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Jing Fang
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Anna L. Banka
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Christopher D. Roberts
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Michael Youngman
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Huichang Zhang
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Zhiping Xiong
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Amanda Mathis
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Jeffery J. Pouliot
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Robert K. Hamatake
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Daniel J. Price
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - John W. Seal
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Lisa L. Stroup
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Katrina L. Creech
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Luz H. Carballo
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Dan Todd
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Andrew Spaltenstein
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Sylvia Furst
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Zhi Hong
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| | - Andrew J. Peat
- GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park,
North Carolina 27709, United States
| |
Collapse
|
25
|
Rong L, Guedj J, Dahari H, Coffield DJ, Levi M, Smith P, Perelson AS. Analysis of hepatitis C virus decline during treatment with the protease inhibitor danoprevir using a multiscale model. PLoS Comput Biol 2013; 9:e1002959. [PMID: 23516348 PMCID: PMC3597560 DOI: 10.1371/journal.pcbi.1002959] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/16/2013] [Indexed: 01/05/2023] Open
Abstract
The current paradigm for studying hepatitis C virus (HCV) dynamics in patients utilizes a standard viral dynamic model that keeps track of uninfected (target) cells, infected cells, and virus. The model does not account for the dynamics of intracellular viral replication, which is the major target of direct-acting antiviral agents (DAAs). Here we describe and study a recently developed multiscale age-structured model that explicitly considers the potential effects of DAAs on intracellular viral RNA production, degradation, and secretion as virus into the circulation. We show that when therapy significantly blocks both intracellular viral RNA production and virus secretion, the serum viral load decline has three phases, with slopes reflecting the rate of serum viral clearance, the rate of loss of intracellular viral RNA, and the rate of loss of intracellular replication templates and infected cells, respectively. We also derive analytical approximations of the multiscale model and use one of them to analyze data from patients treated for 14 days with the HCV protease inhibitor danoprevir. Analysis suggests that danoprevir significantly blocks intracellular viral production (with mean effectiveness 99.2%), enhances intracellular viral RNA degradation about 5-fold, and moderately inhibits viral secretion (with mean effectiveness 56%). The multiscale model can be used to study viral dynamics in patients treated with other DAAs and explore their mechanisms of action in treatment of hepatitis C. Chronic infection with hepatitis C virus (HCV) remains an important health-care problem worldwide despite significant progress in the development of HCV therapy since the discovery of the virus in 1989. Current treatment options are focused on direct-acting antiviral agents (DAAs) that target specific steps of the HCV life cycle. Danoprevir, one of the DAAs that inhibit the HCV NS3-4A protease, has induced substantial viral load reductions in patients receiving therapy. We study the viral decline during therapy using a multiscale age-structured model that accounts for the dynamics of intracellular viral replication, and which includes the major steps in the HCV life cycle that are targeted by DAAs. We examine the biological parameters contributing to different phases of the viral decline after treatment initiation. We also explore the mechanisms of action of danoprevir and estimate its treatment effectiveness. The multiscale model provides a theoretical framework for studying virus dynamics in hepatitis C patients treated with other DAAs currently in clinical development, and may help one to optimally combine drugs with complementary modes of action to maximize the HCV cure rate.
Collapse
Affiliation(s)
- Libin Rong
- Department of Mathematics and Statistics and Center for Biomedical Research, Oakland University, Rochester, Michigan, United States of America
| | - Jeremie Guedj
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- University Paris Diderot, Sorbonne Paris Cite, 75018 Paris, France
- INSERM, UMR 738, 75018 Paris, France
| | - Harel Dahari
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Daniel J. Coffield
- University of Michigan-Flint, Mathematics Department, Flint, Michigan, United States of America
| | - Micha Levi
- Clinical Pharmacology, Pharma Research and Early Development, Roche, Nutley, New Jersey, United States of America
| | - Patrick Smith
- Clinical Pharmacology, Pharma Research and Early Development, Roche, Nutley, New Jersey, United States of America
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
26
|
Mortimer SA, Doudna JA. Unconventional miR-122 binding stabilizes the HCV genome by forming a trimolecular RNA structure. Nucleic Acids Res 2013; 41:4230-40. [PMID: 23416544 PMCID: PMC3627571 DOI: 10.1093/nar/gkt075] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) typically downregulate protein expression from target mRNAs through limited base-pairing interactions between the 5′ ‘seed’ region of the miRNA and the mRNA 3′ untranslated region (3′UTR). In contrast to this established mode of action, the liver-specific human miR-122 binds at two sites within the hepatitis C viral (HCV) 5′UTR, leading to increased production of infectious virions. We show here that two copies of miR-122 interact with the HCV 5′UTR at partially overlapping positions near the 5′ end of the viral transcript to form a stable ternary complex. Both miR-122 binding sites involve extensive base pairing outside of the seed sequence; yet, they have substantially different interaction affinities. Structural probing reveals changes in the architecture of the HCV 5′UTR that occur on interaction with miR-122. In contrast to previous reports, however, results using both the recombinant cytoplasmic exonuclease Xrn1 and liver cell extracts show that miR-122-mediated protection of the HCV RNA from degradation does not correlate with stimulation of viral propagation in vivo. Thus, the miR-122:HCV ternary complex likely functions at other steps critical to the viral life cycle.
Collapse
Affiliation(s)
- Stefanie A Mortimer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
27
|
Shao RX, Zhang L, Hong Z, Goto K, Cheng D, Chen WC, Jilg N, Kumthip K, Fusco DN, Peng LF, Chung RT. SOCS1 abrogates IFN's antiviral effect on hepatitis C virus replication. Antiviral Res 2012; 97:101-7. [PMID: 23237992 DOI: 10.1016/j.antiviral.2012.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 12/29/2022]
Abstract
Suppressor of cytokine signaling 1 (SOCS1) and suppressor of cytokine signaling 3 (SOCS3) have been thought to block type I interferon (IFN) signaling. We have previously reported that SOCS3 suppresses HCV replication in an mTOR-dependent manner. However, the relationship between SOCS1 and HCV replication remains unclear. Here, we found that overexpression of SOCS1 alone did not have an effect on HCV RNA replication. However, suppression of HCV replication by IFN-α was rescued by SOCS1 overexpression. The upregulation of HCV replication by SOCS1 overexpression in the presence of IFN is likely a result of the impairment of IFN signaling by SOCS1 and subsequent induction of ISGs. Knockdown of SOCS1 alone with specific shRNA enhanced the antiviral effect of IFN compared with negative control. Thus, SOCS1 acts as a suppressor of type I IFN function against HCV.
Collapse
Affiliation(s)
- Run-Xuan Shao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hopkins S, Gallay P. Cyclophilin inhibitors: an emerging class of therapeutics for the treatment of chronic hepatitis C infection. Viruses 2012. [PMID: 23202494 PMCID: PMC3509662 DOI: 10.3390/v4112558] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The advent of the replicon system together with advances in cell culture have contributed significantly to our understanding of the function of virally-encoded structural and nonstructural proteins in the replication cycle of the hepatitis C virus. In addition, in vitro systems have been used to identify several host proteins whose expression is critical for supporting such diverse activities as viral entry, RNA replication, particle assembly, and the release of infectious virions. Among all known host proteins that participate in the HCV replication cycle, cyclophilins are unique because they constitute the only host target that has formed the basis of pharmaceutical drug discovery and drug development programs. The introduction of the nonimmunosuppressive cyclophilin inhibitors into clinical testing has confirmed the clinical utility of CsA-based inhibitors for the treatment of individuals with chronic hepatitis C infection and has yielded new insights into their mechanism(s) of action. This review describes the biochemical evidence for the potential roles played by cyclophilins in supporting HCV RNA replication and summarizes clinical trial results obtained with the first generation of nonimmunosuppressive cyclophilin inhibitors.
Collapse
Affiliation(s)
- Sam Hopkins
- Autoimmune Technologies, LLC, 1010 Common Street, Suite 1705, New Orleans, LA 70112, USA
- Authors to whom correspondence should be addressed; (S.M.); (P.G.); Tel.: +1-504-529-9944 (S.M.); +1-858-784-8180 (P.G.); Fax: +1-858-784-8831 (P.G.)
| | - Philippe Gallay
- Department of Immunology and Microbial Science, IMM-9, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
- Authors to whom correspondence should be addressed; (S.M.); (P.G.); Tel.: +1-504-529-9944 (S.M.); +1-858-784-8180 (P.G.); Fax: +1-858-784-8831 (P.G.)
| |
Collapse
|
29
|
Different mechanisms of hepatitis C virus RNA polymerase activation by cyclophilin A and B in vitro. Biochim Biophys Acta Gen Subj 2012; 1820:1886-92. [PMID: 22954804 DOI: 10.1016/j.bbagen.2012.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/25/2012] [Accepted: 08/21/2012] [Indexed: 01/27/2023]
Abstract
BACKGROUND Cyclophilins (CyPs) are cellular proteins that are essential to hepatitis C virus (HCV) replication. Since cyclosporine A was discovered to inhibit HCV infection, the CyP pathway contributing to HCV replication is a potential attractive stratagem for controlling HCV infection. Among them, CyPA is accepted to interact with HCV nonstructural protein (NS) 5A, although interaction of CyPB and NS5B, an RNA-dependent RNA polymerase (RdRp), was proposed first. METHODS CyPA, CyPB, and HCV RdRp were expressed in bacteria and purified using combination column chromatography. HCV RdRp activity was analyzed in vitro with purified CyPA and CyPB. RESULTS CyPA at a high concentration (50× higher than that of RdRp) but not at low concentration activated HCV RdRp. CyPB had an allosteric effect on genotype 1b RdRp activation. CyPB showed genotype specificity and activated genotype 1b and J6CF (2a) RdRps but not genotype 1a or JFH1 (2a) RdRps. CyPA activated RdRps of genotypes 1a, 1b, and 2a. CyPB may also support HCV genotype 1b replication within the infected cells, although its knockdown effect on HCV 1b replicon activity was controversial in earlier reports. CONCLUSIONS CyPA activated HCV RdRp at the early stages of transcription, including template RNA binding. CyPB also activated genotype 1b RdRp. However, their activation mechanisms are different. GENERAL SIGNIFICANCE These data suggest that both CyPA and CyPB are excellent targets for the treatment of HCV 1b, which shows the greatest resistance to interferon and ribavirin combination therapy.
Collapse
|
30
|
Goyal S, Gupta G, Qin H, Upadya MH, Tan YJ, Chow VTK, Song J. VAPC, an human endogenous inhibitor for hepatitis C virus (HCV) infection, is intrinsically unstructured but forms a "fuzzy complex" with HCV NS5B. PLoS One 2012; 7:e40341. [PMID: 22815741 PMCID: PMC3398895 DOI: 10.1371/journal.pone.0040341] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/04/2012] [Indexed: 01/11/2023] Open
Abstract
Nearly 200 million people are infected by hepatitis C virus (HCV) worldwide. For replicating the HCV genome, the membrane-associated machinery needs to be formed by both HCV non-structural proteins (including NS5B) and human host factors such as VAPB. Recently, the 99-residue VAPC, a splicing variant of VAPB, was demonstrated to inhibit HCV replication via binding to NS5B, thus acting as an endogenous inhibitor of HCV infection. So far, the structure of VAPC remains unknown, and its interaction with NS5B has not been biophysically characterized. In this study, we conducted extensive CD and NMR investigations on VAPC which led to several striking findings: 1) although the N-terminal 70 residues are identical in VAPC and VAPB, they constitute the characteristic β-barrel MSP fold in VAPB, while VAPC is entirely unstructured in solution, only with helical-like conformations weakly populated. 2) VAPC is indeed capable of binding to NS5B, with an average dissociation constant (Kd) of ∼20 µM. Intriguingly, VAPC remains dynamic even in the complex, suggesting that the VAPC-NS5B is a “fuzzy complex”. 3) NMR mapping revealed that the major binding region for NS5B is located over the C-terminal half of VAPC, which is composed of three discrete clusters, of which only the first contains the region identical in VAPC and VAPB. The second region containing ∼12 residues appears to play a key role in binding since mutation of 4 residues within this region leads to almost complete loss of the binding activity. 4) A 14-residue mimetic, VAPC-14 containing the second region, only has a ∼3-fold reduction of the affinity. Our study not only provides critical insights into how a human factor mediates the formation of the HCV replication machinery, but also leads to design of VAPC-14 which may be further used to explore the function of VAPC and to develop anti-HCV molecules.
Collapse
Affiliation(s)
- Shaveta Goyal
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
31
|
Shiryaev SA, Cheltsov AV, Strongin AY. Probing of exosites leads to novel inhibitor scaffolds of HCV NS3/4A proteinase. PLoS One 2012; 7:e40029. [PMID: 22768327 PMCID: PMC3388044 DOI: 10.1371/journal.pone.0040029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 06/01/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hepatitis C is a treatment-resistant disease affecting millions of people worldwide. The hepatitis C virus (HCV) genome is a single-stranded RNA molecule. After infection of the host cell, viral RNA is translated into a polyprotein that is cleaved by host and viral proteinases into functional, structural and non-structural, viral proteins. Cleavage of the polyprotein involves the viral NS3/4A proteinase, a proven drug target. HCV mutates as it replicates and, as a result, multiple emerging quasispecies become rapidly resistant to anti-virals, including NS3/4A inhibitors. METHODOLOGY/PRINCIPAL FINDINGS To circumvent drug resistance and complement the existing anti-virals, NS3/4A inhibitors, which are additional and distinct from the FDA-approved telaprevir and boceprevir α-ketoamide inhibitors, are required. To test potential new avenues for inhibitor development, we have probed several distinct exosites of NS3/4A which are either outside of or partially overlapping with the active site groove of the proteinase. For this purpose, we employed virtual ligand screening using the 275,000 compound library of the Developmental Therapeutics Program (NCI/NIH) and the X-ray crystal structure of NS3/4A as a ligand source and a target, respectively. As a result, we identified several novel, previously uncharacterized, nanomolar range inhibitory scaffolds, which suppressed of the NS3/4A activity in vitro and replication of a sub-genomic HCV RNA replicon with a luciferase reporter in human hepatocarcinoma cells. The binding sites of these novel inhibitors do not significantly overlap with those of α-ketoamides. As a result, the most common resistant mutations, including V36M, R155K, A156T, D168A and V170A, did not considerably diminish the inhibitory potency of certain novel inhibitor scaffolds we identified. CONCLUSIONS/SIGNIFICANCE Overall, the further optimization of both the in silico strategy and software platform we developed and lead compounds we identified may lead to advances in novel anti-virals.
Collapse
Affiliation(s)
- Sergey A. Shiryaev
- Inflammatory and Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Anton V. Cheltsov
- R&D Department, Q-MOL L.L.C., San Diego, California, United States of America
- * E-mail: (AVC) (AC); (AYS) (AS)
| | - Alex Y. Strongin
- Inflammatory and Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (AVC) (AC); (AYS) (AS)
| |
Collapse
|
32
|
Gupta G, Qin H, Song J. Intrinsically unstructured domain 3 of hepatitis C Virus NS5A forms a "fuzzy complex" with VAPB-MSP domain which carries ALS-causing mutations. PLoS One 2012; 7:e39261. [PMID: 22720086 PMCID: PMC3374797 DOI: 10.1371/journal.pone.0039261] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/22/2012] [Indexed: 01/26/2023] Open
Abstract
Hepatitis C virus (HCV) affects nearly 200 million people worldwide and is a leading factor for serious chronic liver diseases. For replicating HCV genome, the membrane-associated replication machinery needs to be formed by both HCV non-structural proteins including NS5A and human host factors. Recently NS5A has been identified to bind ER-anchored human VAP proteins and consequently this interaction may serve as a novel target for design of anti-HCV drugs. So far no biophysical characterization of this interaction has been reported. Here, we dissected the 243-residue VAPB into 4 and 447-residue NS5A into 10 fragments, followed by CD and NMR characterization of their structural properties. Subsequently, binding interactions between these fragments have been extensively assessed by NMR HSQC titration which is very powerful in detecting even very weak binding. The studies lead to three important findings: 1). a "fuzzy complex" is formed between the intrinsically-unstructured third domain (D3) of NS5A and the well-structured MSP domain of VAPB, with an average dissociation constant (Kd) of ~5 µM. 2). The binding-important residues on both NS5A-D3 and VAPB-MSP have been successfully mapped out, which provided experimental constraints for constructing the complex structure. In the complex, unstructured D3 binds to three surface pockets on one side of the MSP structure. Interestingly, two ALS-causing mutations T46I and P56S are also located on the D3-MSP interface. Moreover, NS5A-D3, FFAT-containing proteins and EphA4 appear to have overlapped binding interfaces on the MSP domain. 3). NS5A-D3 has been experimentally confirmed to competes with EphA4 in binding to the MSP domain, and T46I mutation of MSP dramatically abolishes its binding ability to D3. Our study not only provides essential foundation for further deciphering structure and function of the HCV replication machinery, but may also shed light on rationalizing a recent observation that a chronic HCV patient surprisingly developed ALS-like syndrome.
Collapse
Affiliation(s)
- Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Haina Qin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
33
|
Rong L, Ribeiro RM, Perelson AS. Modeling quasispecies and drug resistance in hepatitis C patients treated with a protease inhibitor. Bull Math Biol 2012; 74:1789-817. [PMID: 22639338 DOI: 10.1007/s11538-012-9736-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 05/04/2012] [Indexed: 01/20/2023]
Abstract
Telaprevir, a novel hepatitis C virus (HCV) NS3-4A serine protease inhibitor, has demonstrated substantial antiviral activity in patients infected with HCV. However, drug-resistant HCV variants were detected in vivo at relatively high frequency a few days after drug administration. Here we use a two-strain mathematical model to explain the rapid emergence of drug resistance in HCV patients treated with telaprevir monotherapy. We examine the effects of backward mutation and liver cell proliferation on the preexistence of the mutant virus and the competition between wild-type and drug-resistant virus during therapy. We also extend the two-strain model to a general model with multiple viral strains. Mutations during therapy only have a minor effect on the dynamics of various viral strains, although they are capable of generating low levels of HCV variants that would otherwise be completely suppressed because of fitness disadvantages. Liver cell proliferation may not affect the pretreatment frequency of mutant variants, but is able to influence the quasispecies dynamics during therapy. It is the relative fitness of each mutant strain compared with wild-type that determines which strain(s) will dominate the virus population. This study provides a theoretical framework for exploring the prevalence of preexisting mutant variants and the evolution of drug resistance during treatment with other HCV protease inhibitors or polymerase inhibitors.
Collapse
Affiliation(s)
- Libin Rong
- Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA
| | | | | |
Collapse
|
34
|
Murgueitio MS, Bermudez M, Mortier J, Wolber G. In silico virtual screening approaches for anti-viral drug discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e219-25. [PMID: 24990575 PMCID: PMC7105918 DOI: 10.1016/j.ddtec.2012.07.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite the considerable advances in medical and pharmaceutical research during the past years, diseases caused by viruses have remained a major burden to public health. Virtual in silico screening has repeatedly proven to be useful to meet the special challenges of antiviral drug discovery. Large virtual compound libraries are filtered by different computational screening methods such as docking, ligand-based similarity searches or pharmacophore-based screening, reducing the number of candidate molecules to a smaller set of promising candidates that are then tested biologically. This rational approach makes the drug discovery process more goal-oriented and saves resources in terms of time and money. In this review we discuss how different virtual screening techniques can be applied to antiviral drug discovery, present recent success stories in this field and finally address the main differences between the methods.:
Collapse
Affiliation(s)
- Manuela S Murgueitio
- Freie Universität Berlin, Institute of Pharmacy, Department Pharmaceutical Chemistry, Koenigin-Luise-Str. 2, 14195 Berlin, Germany
| | - Marcel Bermudez
- Freie Universität Berlin, Institute of Pharmacy, Department Pharmaceutical Chemistry, Koenigin-Luise-Str. 2, 14195 Berlin, Germany
| | - Jérémie Mortier
- Freie Universität Berlin, Institute of Pharmacy, Department Pharmaceutical Chemistry, Koenigin-Luise-Str. 2, 14195 Berlin, Germany
| | - Gerhard Wolber
- Freie Universität Berlin, Institute of Pharmacy, Department Pharmaceutical Chemistry, Koenigin-Luise-Str. 2, 14195 Berlin, Germany.
| |
Collapse
|