1
|
Díaz DE, Russman Block SR, Becker HC, Phan KL, Monk CS, Fitzgerald KD. Neural Substrates of Emotion Processing and Cognitive Control Over Emotion in Youth Anxiety: An RDoC-Informed Study Across the Clinical to Nonclinical Continuum of Severity. J Am Acad Child Adolesc Psychiatry 2024:S0890-8567(24)00363-0. [PMID: 39059719 DOI: 10.1016/j.jaac.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE Clinically anxious youth are hypervigilant to emotional stimuli and display difficulty shifting attention from emotional to nonemotional stimuli, suggesting impairments in cognitive control over emotion. However, it is unknown whether the neural substrates of such biases vary across the clinical-to-nonclinical range of anxiety or by age. METHOD Youth aged 7 to 17 years with clinical anxiety (n = 119) or without an anxiety diagnosis (n = 41) matched emotional faces or matched shapes flanked by emotional face distractors during magnetic resonance imaging, probing emotion processing and cognitive control over emotion, respectively. Building from the National Institute of Mental Health Research Domain Criteria (RDoC) framework, clinically anxious youth were sampled across diagnostic categories, and non-clinically affected youth were sampled across minimal-to-subclinical severity. RESULTS Across both conditions, anxiety severity was associated with hyperactivation in the right inferior parietal lobe, a substrate of hypervigilance. Brain-anxiety associations were also differentiated by attentional state; anxiety severity was associated with greater left ventrolateral prefrontal cortex activation during emotion processing (face matching) and greater activation in the left posterior superior temporal sulcus and temporoparietal junction (and slower responses) during cognitive control over emotion (shape matching). Age also moderated associations between anxiety and cognitive control over emotion, such that anxiety was associated with greater right thalamus and bilateral posterior cingulate cortex activation for children at younger and mean ages, but not for older youth. CONCLUSION Aberrant function in brain regions implicated in stimulus-driven attention to emotional distractors may contribute to anxiety in youth. Results support the potential utility of attention modulation interventions for anxiety that are tailored to developmental stage. CLINICAL TRIAL REGISTRATION INFORMATION Dimensional Brain Behavior Predictors of CBT Outcomes in Pediatric Anxiety; https://clinicaltrials.gov; NCT02810171.
Collapse
Affiliation(s)
- Dana E Díaz
- Columbia University Irving Medical Center, New York, New York.
| | | | | | | | | | - Kate D Fitzgerald
- Columbia University Irving Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York
| |
Collapse
|
2
|
Ginder DE, Wright HR, McLaughlin RJ. The stoned age: Sex differences in the effects of adolescent cannabinoid exposure on prefrontal cortex structure and function in animal models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:121-145. [PMID: 34801167 PMCID: PMC11290470 DOI: 10.1016/bs.irn.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cannabis is the most used drug during adolescence, which is a period of enhanced cortical plasticity and synaptic remodeling that supports behavioral, cognitive, and emotional maturity. In this chapter, we review preclinical studies indicating that adolescent exposure to cannabinoids has lasting effects on the morphology and synaptic organization of the prefrontal cortex and associated circuitry, which may lead to cognitive dysfunction later in life. Additionally, we reviewed sex differences in the effects of adolescent cannabinoid exposure with a focus on brain systems that support cognitive functioning. The body of evidence indicates enduring sex-specific effects in behavior and organization of corticolimbic circuitry, which appears to be influenced by species, strain, drug, route of administration, and window/pattern of drug exposure. Caution should be exercised when extrapolating these results to humans. Adopting models that more closely resemble human cannabis use will provide more translationally relevant data concerning the long-term effects of cannabis use on the adolescent brain.
Collapse
Affiliation(s)
- D E Ginder
- Department of Psychology, Washington State University, Pullman, WA, United States
| | - H R Wright
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - R J McLaughlin
- Department of Psychology, Washington State University, Pullman, WA, United States; Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States.
| |
Collapse
|
3
|
Abstract
In the following grant report, we describe initial and planned work supported by our National Institute of Mental Health R01-funded, Research Domain Criteria (RDoc) informed project, “Dimensional Brain Behavior Predictors of CBT Outcomes in Pediatric Anxiety”. This project examines response to cognitive behavioral therapy (CBT) in a large sample of anxiety-affected and low-anxious youth ages 7 to 18 years using multiple levels of analysis, including brain imaging, behavioral performance, and clinical measures. The primary goal of the project is to understand how brain-behavioral markers of anxiety-relevant constructs, namely acute threat, cognitive control, and their interaction, associate with CBT response in youth with clinically significant anxiety. A secondary goal is to determine whether child age influences how these markers predict, and/or change, across varying degrees of CBT response. Now in its fourth year, data from this project has informed the examination of (1) baseline (i.e., pre-CBT) anxiety severity as a function of brain-behavioral measures of cognitive control, and (2) clinical characteristics of youth and parents that associate with anxiety severity and/or predict response to CBT. Analysis of brain-behavioral markers before and after CBT will assess mechanisms of CBT effect, and will be conducted once the data collection in the full sample has been completed. This knowledge will help guide the treatment of clinically anxious youth by informing for whom and how does CBT work.
Collapse
|
4
|
Sylvester CM, Yu Q, Srivastava AB, Marek S, Zheng A, Alexopoulos D, Smyser CD, Shimony JS, Ortega M, Dierker DL, Patel GH, Nelson SM, Gilmore AW, McDermott KB, Berg JJ, Drysdale AT, Perino MT, Snyder AZ, Raut RV, Laumann TO, Gordon EM, Barch DM, Rogers CE, Greene DJ, Raichle ME, Dosenbach NUF. Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry. Proc Natl Acad Sci U S A 2020; 117:3808-3818. [PMID: 32015137 PMCID: PMC7035483 DOI: 10.1073/pnas.1910842117] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The amygdala is central to the pathophysiology of many psychiatric illnesses. An imprecise understanding of how the amygdala fits into the larger network organization of the human brain, however, limits our ability to create models of dysfunction in individual patients to guide personalized treatment. Therefore, we investigated the position of the amygdala and its functional subdivisions within the network organization of the brain in 10 highly sampled individuals (5 h of fMRI data per person). We characterized three functional subdivisions within the amygdala of each individual. We discovered that one subdivision is preferentially correlated with the default mode network; a second is preferentially correlated with the dorsal attention and fronto-parietal networks; and third subdivision does not have any networks to which it is preferentially correlated relative to the other two subdivisions. All three subdivisions are positively correlated with ventral attention and somatomotor networks and negatively correlated with salience and cingulo-opercular networks. These observations were replicated in an independent group dataset of 120 individuals. We also found substantial across-subject variation in the distribution and magnitude of amygdala functional connectivity with the cerebral cortex that related to individual differences in the stereotactic locations both of amygdala subdivisions and of cortical functional brain networks. Finally, using lag analyses, we found consistent temporal ordering of fMRI signals in the cortex relative to amygdala subdivisions. Altogether, this work provides a detailed framework of amygdala-cortical interactions that can be used as a foundation for models relating aberrations in amygdala connectivity to psychiatric symptoms in individual patients.
Collapse
Affiliation(s)
- Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110;
| | - Qiongru Yu
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
| | - A Benjamin Srivastava
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
- Department of Psychiatry, Columbia University, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Scott Marek
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
| | - Annie Zheng
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110
| | | | - Christopher D Smyser
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110
| | - Joshua S Shimony
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Mario Ortega
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110
- Teva Pharmaceuticals, North Wales, PA 19454
| | - Donna L Dierker
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Gaurav H Patel
- Department of Psychiatry, Columbia University, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Steven M Nelson
- VISN 17 Center of Excellence for Research on Returning War Veterans, Doris Miller VA Medical Center, Waco, TX 76711
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX 75235
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706
| | - Adrian W Gilmore
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110
| | - Kathleen B McDermott
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110
| | - Jeffrey J Berg
- Department of Psychology, New York University, New York, NY 10003
| | - Andrew T Drysdale
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
| | - Michael T Perino
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
| | - Abraham Z Snyder
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Ryan V Raut
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Timothy O Laumann
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
| | - Evan M Gordon
- VISN 17 Center of Excellence for Research on Returning War Veterans, Doris Miller VA Medical Center, Waco, TX 76711
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX 75235
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110
| | - Deanna J Greene
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Marcus E Raichle
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110;
| | - Nico U F Dosenbach
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
5
|
Jouroukhin Y, Zhu X, Shevelkin AV, Hasegawa Y, Abazyan B, Saito A, Pevsner J, Kamiya A, Pletnikov MV. Adolescent Δ 9-Tetrahydrocannabinol Exposure and Astrocyte-Specific Genetic Vulnerability Converge on Nuclear Factor-κB-Cyclooxygenase-2 Signaling to Impair Memory in Adulthood. Biol Psychiatry 2019; 85:891-903. [PMID: 30219209 PMCID: PMC6525084 DOI: 10.1016/j.biopsych.2018.07.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although several studies have linked adolescent cannabis use to long-term cognitive dysfunction, there are negative reports as well. The fact that not all users develop cognitive impairment suggests a genetic vulnerability to adverse effects of cannabis, which are attributed to action of Δ9-tetrahydrocannabinol (Δ9-THC), a cannabis constituent and partial agonist of brain cannabinoid receptor 1. As both neurons and glial cells express cannabinoid receptor 1, genetic vulnerability could influence Δ9-THC-induced signaling in a cell type-specific manner. METHODS Here we use an animal model of inducible expression of dominant-negative disrupted in schizophrenia 1 (DN-DISC1) selectively in astrocytes to evaluate the molecular mechanisms, whereby an astrocyte genetic vulnerability could interact with adolescent Δ9-THC exposure to impair recognition memory in adulthood. RESULTS Selective expression of DN-DISC1 in astrocytes and adolescent treatment with Δ9-THC synergistically affected recognition memory in adult mice. Similar deficits in recognition memory were observed following knockdown of endogenous Disc1 in hippocampal astrocytes in mice treated with Δ9-THC during adolescence. At the molecular level, DN-DISC1 and Δ9-THC synergistically activated the nuclear factor-κB-cyclooxygenase-2 pathway in astrocytes and decreased immunoreactivity of parvalbumin-positive presynaptic inhibitory boutons around pyramidal neurons of the hippocampal CA3 area. The cognitive abnormalities were prevented in DN-DISC1 mice exposed to Δ9-THC by simultaneous adolescent treatment with the cyclooxygenase-2 inhibitor, NS398. CONCLUSIONS Our data demonstrate that individual vulnerability to cannabis can be exclusively mediated by astrocytes. Results of this work suggest that genetic predisposition within astrocytes can exaggerate Δ9-THC-produced cognitive impairments via convergent inflammatory signaling, suggesting possible targets for preventing adverse effects of cannabis within susceptible individuals.
Collapse
Affiliation(s)
- Yan Jouroukhin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexey V Shevelkin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuto Hasegawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bagrat Abazyan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Atsushi Saito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan Pevsner
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Kennedy Krieger Institute, Baltimore, Maryland
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
6
|
Baker KD, Richardson R. Pharmacological evidence that a failure to recruit NMDA receptors contributes to impaired fear extinction retention in adolescent rats. Neurobiol Learn Mem 2017; 143:18-26. [DOI: 10.1016/j.nlm.2016.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/12/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023]
|
7
|
Aoki C, Romeo RD, Smith SS. Adolescence as a Critical Period for Developmental Plasticity. Brain Res 2017; 1654:85-86. [DOI: 10.1016/j.brainres.2016.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
|
8
|
Tottenham N, Galván A. Stress and the adolescent brain: Amygdala-prefrontal cortex circuitry and ventral striatum as developmental targets. Neurosci Biobehav Rev 2016; 70:217-227. [PMID: 27473936 PMCID: PMC5074883 DOI: 10.1016/j.neubiorev.2016.07.030] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/16/2022]
Abstract
Adolescence is a time in development when significant changes occur in affective neurobiology. These changes provide a prolonged period of plasticity to prepare the individual for independence. However, they also render the system highly vulnerable to the effects of environmental stress exposures. Here, we review the human literature on the associations between stress-exposure and developmental changes in amygdala, prefrontal cortex, and ventral striatal dopaminergic systems during the adolescent period. Despite the vast differences in types of adverse exposures presented in his review, these neurobiological systems appear consistently vulnerable to stress experienced during development, providing putative mechanisms to explain why affective processes that emerge during adolescence are particularly sensitive to environmental influences.
Collapse
Affiliation(s)
- Nim Tottenham
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue MC 5501, New York, NY 10027, United States.
| | - Adriana Galván
- University of California, Los Angeles, Department of Psychology, 1285 Franz Hall BOX 951563, Los Angeles, CA 90095-1563, United States.
| |
Collapse
|
9
|
Dincheva I, Lynch NB, Lee FS. The Role of BDNF in the Development of Fear Learning. Depress Anxiety 2016; 33:907-916. [PMID: 27699937 PMCID: PMC5089164 DOI: 10.1002/da.22497] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/22/2016] [Indexed: 01/15/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a growth factor that is dynamically expressed in the brain across postnatal development, regulating neuronal differentiation and synaptic plasticity. The neurotrophic hypothesis of psychiatric mood disorders postulates that in the adult brain, decreased BDNF levels leads to altered neural plasticity, contributing to disease. Although BDNF has been established as a key factor regulating the critical period plasticity in the developing visual system, it has recently been shown to also play a role in fear circuitry maturation, which has implications for the emergence of fear-related mood disorders. This review provides a detailed overview of developmental changes in expression of BDNF isoforms, as well as their receptors across postnatal life. In addition, recent developmental studies utilizing a genetic BDNF single nucleotide polymorphism (Val66Met) knock-in mouse highlight the impact of BDNF on fear learning during a sensitive period spanning the transition into adolescent time frame. We hypothesize that BDNF in the developing brain regulates fear circuit plasticity during a sensitive period in early adolescence, and alterations in BDNF expression (genetic or environmental) have a persistent impact on fear behavior and fear-related disorders.
Collapse
Affiliation(s)
- Iva Dincheva
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, New York.
| | - Niccola B. Lynch
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, New York
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, New York,Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York,Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College of Cornell University, New York, New York
| |
Collapse
|
10
|
Liu Y, Angstadt M, Taylor SF, Fitzgerald KD. The typical development of posterior medial frontal cortex function and connectivity during task control demands in youth 8-19years old. Neuroimage 2016; 137:97-106. [PMID: 27173761 DOI: 10.1016/j.neuroimage.2016.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/15/2016] [Accepted: 05/03/2016] [Indexed: 01/23/2023] Open
Abstract
To characterize the development of neural substrate for interference processing and task control, this study examined both linear and non-linear effects of age on activation and connectivity during an interference task designed to engage the posterior medial frontal cortex (pMFC). Seventy-two youth, ages 8-19years, performed the Multi-Source Interference Task (MSIT) during functional magnetic resonance imaging (fMRI). With increasing age, overall performance across high-interference incongruent and low-interference congruent trials became faster and more accurate. Effects of age on activation to interference- (incongruent versus congruent conditions), error- (errors versus correct trials during the incongruent condition) and overall task-processing (incongruent plus congruent conditions, relative to implicit baseline) were tested in whole-brain voxel-wise analyses. Age differentially impacted activation to overall task processing in discrete sub-regions of the pMFC: activation in the pre-supplementary motor area (pre-SMA) decreased with age, whereas activation in the dorsal anterior cingulate cortex (dACC) followed a non-linear (i.e., U-shaped) pattern in relation to age. In addition, connectivity of pre-SMA with anterior insula/frontal operculum (AI/FO) increased with age. These findings suggest differential development of pre-SMA and dACC sub-regions within the pMFC. Moreover, as children age, decreases in pre-SMA activation may couple with increases in pre-SMA-AI/FO connectivity to support gains in processing speed in response to demands for task control.
Collapse
Affiliation(s)
- Yanni Liu
- Department of Psychiatry, Medical School, University of Michigan, Ann Arbor 48109, United States
| | - Mike Angstadt
- Department of Psychiatry, Medical School, University of Michigan, Ann Arbor 48109, United States
| | - Stephan F Taylor
- Department of Psychiatry, Medical School, University of Michigan, Ann Arbor 48109, United States
| | - Kate D Fitzgerald
- Department of Psychiatry, Medical School, University of Michigan, Ann Arbor 48109, United States
| |
Collapse
|
11
|
Dries DR, Zhu Y, Brooks MM, Forero DA, Adachi M, Cenik B, West JM, Han YH, Yu C, Arbella J, Nordin A, Adolfsson R, Del-Favero J, Lu QR, Callaerts P, Birnbaum SG, Yu G. Loss of Nicastrin from Oligodendrocytes Results in Hypomyelination and Schizophrenia with Compulsive Behavior. J Biol Chem 2016; 291:11647-56. [PMID: 27008863 DOI: 10.1074/jbc.m116.715078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 12/12/2022] Open
Abstract
The biological underpinnings and the pathological lesions of psychiatric disorders are centuries-old questions that have yet to be understood. Recent studies suggest that schizophrenia and related disorders likely have their origins in perturbed neurodevelopment and can result from a large number of common genetic variants or multiple, individually rare genetic alterations. It is thus conceivable that key neurodevelopmental pathways underline the various genetic changes and the still unknown pathological lesions in schizophrenia. Here, we report that mice defective of the nicastrin subunit of γ-secretase in oligodendrocytes have hypomyelination in the central nervous system. These mice have altered dopamine signaling and display profound abnormal phenotypes reminiscent of schizophrenia. In addition, we identify an association of the nicastrin gene with a human schizophrenia cohort. These observations implicate γ-secretase and its mediated neurodevelopmental pathways in schizophrenia and provide support for the "myelination hypothesis" of the disease. Moreover, by showing that schizophrenia and obsessive-compulsive symptoms could be modeled in animals wherein a single genetic factor is altered, our work provides a biological basis that schizophrenia with obsessive-compulsive disorder is a distinct subtype of schizophrenia.
Collapse
Affiliation(s)
- Daniel R Dries
- From the Departments of Neuroscience, the Chemistry Department, Juniata College, Huntingdon, Pennsylvania 16652
| | - Yi Zhu
- From the Departments of Neuroscience
| | | | - Diego A Forero
- the Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, 37-94 Bogotá, Colombia
| | | | | | | | | | - Cong Yu
- From the Departments of Neuroscience
| | - Jennifer Arbella
- the Chemistry Department, Juniata College, Huntingdon, Pennsylvania 16652
| | - Annelie Nordin
- the Division of Psychiatry, Department of Clinical Sciences, Umea University, SE-901 87 Umea, Sweden
| | - Rolf Adolfsson
- the Division of Psychiatry, Department of Clinical Sciences, Umea University, SE-901 87 Umea, Sweden
| | - Jurgen Del-Favero
- the Applied Molecular Genomics Unit, VIB Department of Molecular Genetics, University of Antwerp, 2610 Antwerp, Belgium
| | - Q Richard Lu
- the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, and Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Patrick Callaerts
- the Laboratory of Behavioral and Developmental Genetics, Katholieke Universiteit Leuven Center for Human Genetics, VIB Center for the Biology of Disease, 3000 Leuven, Belgium
| | | | - Gang Yu
- From the Departments of Neuroscience,
| |
Collapse
|
12
|
Ontogeny of memory: An update on 40 years of work on infantile amnesia. Behav Brain Res 2016; 298:4-14. [DOI: 10.1016/j.bbr.2015.07.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 01/01/2023]
|
13
|
Smoller JW. The Genetics of Stress-Related Disorders: PTSD, Depression, and Anxiety Disorders. Neuropsychopharmacology 2016; 41:297-319. [PMID: 26321314 PMCID: PMC4677147 DOI: 10.1038/npp.2015.266] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/05/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023]
Abstract
Research into the causes of psychopathology has largely focused on two broad etiologic factors: genetic vulnerability and environmental stressors. An important role for familial/heritable factors in the etiology of a broad range of psychiatric disorders was established well before the modern era of genomic research. This review focuses on the genetic basis of three disorder categories-posttraumatic stress disorder (PTSD), major depressive disorder (MDD), and the anxiety disorders-for which environmental stressors and stress responses are understood to be central to pathogenesis. Each of these disorders aggregates in families and is moderately heritable. More recently, molecular genetic approaches, including genome-wide studies of genetic variation, have been applied to identify specific risk variants. In this review, I summarize evidence for genetic contributions to PTSD, MDD, and the anxiety disorders including genetic epidemiology, the role of common genetic variation, the role of rare and structural variation, and the role of gene-environment interaction. Available data suggest that stress-related disorders are highly complex and polygenic and, despite substantial progress in other areas of psychiatric genetics, few risk loci have been identified for these disorders. Progress in this area will likely require analysis of much larger sample sizes than have been reported to date. The phenotypic complexity and genetic overlap among these disorders present further challenges. The review concludes with a discussion of prospects for clinical translation of genetic findings and future directions for research.
Collapse
Affiliation(s)
- Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
14
|
Abstract
Progress in treating and preventing mental disorders may follow from research that integrates development, genetics, and neuroscience. This review first delineates how longitudinal research has identified three particular groups of disorders shown to differ on the basis of symptom trajectories and risk-factor profiles. In the next section, the review describes how research on genetic contributions to psychopathology has elucidated the nature of risk for two groups of disorders, the neurodevelopmental and psychotic disorders. In the third section, the review describes how research on environmental contributions to psychopathology has targeted early temperament, its associated perturbations in information-processing functions, and its relations to a third group of disorders, the emotional disorders. For all three groups of disorders, such integrative research has generated ideas about novel interventions. The hope is that over the coming decade such ideas will lead to novel treatments that alter the trajectory of risk in developmental psychopathology.
Collapse
Affiliation(s)
- Daniel S Pine
- Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland 20892;
| | | |
Collapse
|
15
|
Casey BJ, Glatt CE, Lee FS. Treating the Developing versus Developed Brain: Translating Preclinical Mouse and Human Studies. Neuron 2015; 86:1358-68. [PMID: 26087163 DOI: 10.1016/j.neuron.2015.05.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Behaviors and underlying brain circuits show characteristic changes across the lifespan that produce sensitive windows of vulnerability and resilience to psychopathology. Understanding the developmental course of these changes may inform which treatments are best at what ages. Focusing on behavioral domains and neurobiological substrates conserved from mouse to human supports reciprocal hypothesis generation and testing that leverages the strengths of each system in understanding their development. Introducing human genetic variants into mice can further define effects of individual variation on normative development, how they contribute to risk and resilience for mental illness, and inform personalized treatment opportunities. This article emphasizes the period of adolescence, when there is a peak in the emergence of mental illness, anxiety disorders in particular. We present cross-species studies relating fear learning to anxiety across development and discuss how clinical treatments can be optimized for individuals and targeted to the biological states of the developing brain.
Collapse
Affiliation(s)
- B J Casey
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Charles E Glatt
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Francis S Lee
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
16
|
Abstract
Anxiety and obsessive compulsive disorders are among the earliest occurring psychopathology and may derive from atypical maturation of neural networks for error processing. Psychological models have alternately suggested that over-detection of errors, excessive caring about errors, or failure of errors to elicit regulatory control could associate with the expression of anxiety. In this review article, the potential relevance of error processing for anxiety and obsessive compulsive disorders is described in the context of neurophysiological and functional magnetic resonance imaging (fMRI) research demonstrating altered brain response to errors in pediatric and adult patients. Finally, hypotheses about developmentally sensitive mechanisms of anxiety and obsessive compulsive disorders are drawn from the extant literature, and avenues for clinical translation are discussed.
Collapse
|
17
|
Barchas JD, Brody BD. Perspectives on depression-past, present, futurea. Ann N Y Acad Sci 2015; 1345:1-15. [DOI: 10.1111/nyas.12773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jack D. Barchas
- Department of Psychiatry; Weill Cornell Medical College; New York New York
| | - Benjamin D. Brody
- Department of Psychiatry; Weill Cornell Medical College; New York New York
| |
Collapse
|
18
|
Bakken TE, Miller JA, Luo R, Bernard A, Bennett JL, Lee CK, Bertagnolli D, Parikshak NN, Smith KA, Sunkin SM, Amaral DG, Geschwind DH, Lein ES. Spatiotemporal dynamics of the postnatal developing primate brain transcriptome. Hum Mol Genet 2015; 24:4327-39. [PMID: 25954031 PMCID: PMC4492396 DOI: 10.1093/hmg/ddv166] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/05/2015] [Indexed: 01/06/2023] Open
Abstract
Developmental changes in the temporal and spatial regulation of gene expression drive the emergence of normal mature brain function, while disruptions in these processes underlie many neurodevelopmental abnormalities. To solidify our foundational knowledge of such changes in a primate brain with an extended period of postnatal maturation like in human, we investigated the whole-genome transcriptional profiles of rhesus monkey brains from birth to adulthood. We found that gene expression dynamics are largest from birth through infancy, after which gene expression profiles transition to a relatively stable state by young adulthood. Biological pathway enrichment analysis revealed that genes more highly expressed at birth are associated with cell adhesion and neuron differentiation, while genes more highly expressed in juveniles and adults are associated with cell death. Neocortex showed significantly greater differential expression over time than subcortical structures, and this trend likely reflects the protracted postnatal development of the cortex. Using network analysis, we identified 27 co-expression modules containing genes with highly correlated expression patterns that are associated with specific brain regions, ages or both. In particular, one module with high expression in neonatal cortex and striatum that decreases during infancy and juvenile development was significantly enriched for autism spectrum disorder (ASD)-related genes. This network was enriched for genes associated with axon guidance and interneuron differentiation, consistent with a disruption in the formation of functional cortical circuitry in ASD.
Collapse
Affiliation(s)
| | | | - Rui Luo
- Human Genetics Program, Department of Neurology and Semel Institute, David Geffen School of Medicine, UC, Los Angeles, Los Angeles, CA, USA and
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeffrey L Bennett
- Department of Psychiatry and Behavioral Science and M.I.N.D. Institute, UC Davis, Sacramento, CA, USA
| | | | | | - Neelroop N Parikshak
- Human Genetics Program, Department of Neurology and Semel Institute, David Geffen School of Medicine, UC, Los Angeles, Los Angeles, CA, USA and
| | | | | | - David G Amaral
- Department of Psychiatry and Behavioral Science and M.I.N.D. Institute, UC Davis, Sacramento, CA, USA
| | - Daniel H Geschwind
- Human Genetics Program, Department of Neurology and Semel Institute, David Geffen School of Medicine, UC, Los Angeles, Los Angeles, CA, USA and
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA,
| |
Collapse
|
19
|
|
20
|
Hartley CA, Lee FS. Sensitive periods in affective development: nonlinear maturation of fear learning. Neuropsychopharmacology 2015; 40:50-60. [PMID: 25035083 PMCID: PMC4262897 DOI: 10.1038/npp.2014.179] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/08/2014] [Accepted: 07/11/2014] [Indexed: 12/11/2022]
Abstract
At specific maturational stages, neural circuits enter sensitive periods of heightened plasticity, during which the development of both brain and behavior are highly receptive to particular experiential information. A relatively advanced understanding of the regulatory mechanisms governing the initiation, closure, and reinstatement of sensitive period plasticity has emerged from extensive research examining the development of the visual system. In this article, we discuss a large body of work characterizing the pronounced nonlinear changes in fear learning and extinction that occur from childhood through adulthood, and their underlying neural substrates. We draw upon the model of sensitive period regulation within the visual system, and present burgeoning evidence suggesting that parallel mechanisms may regulate the qualitative changes in fear learning across development.
Collapse
Affiliation(s)
- Catherine A Hartley
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, NY, USA,Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA,Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA, Tel: +212 746 3781, Fax: +212 746 5755, E-mail:
| | - Francis S Lee
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, NY, USA,Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
21
|
Expression of Nampt in hippocampal and cortical excitatory neurons is critical for cognitive function. J Neurosci 2014; 34:5800-15. [PMID: 24760840 DOI: 10.1523/jneurosci.4730-13.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) is an enzyme cofactor or cosubstrate in many essential biological pathways. To date, the primary source of neuronal NAD(+) has been unclear. NAD(+) can be synthesized from several different precursors, among which nicotinamide is the substrate predominantly used in mammals. The rate-limiting step in the NAD(+) biosynthetic pathway from nicotinamide is performed by nicotinamide phosphoribosyltransferase (Nampt). Here, we tested the hypothesis that neurons use intracellular Nampt-mediated NAD(+) biosynthesis by generating and evaluating mice lacking Nampt in forebrain excitatory neurons (CaMKIIαNampt(-/-) mice). CaMKIIαNampt(-/-) mice showed hippocampal and cortical atrophy, astrogliosis, microgliosis, and abnormal CA1 dendritic morphology by 2-3 months of age. Importantly, these histological changes occurred with altered intrahippocampal connectivity and abnormal behavior; including hyperactivity, some defects in motor skills, memory impairment, and reduced anxiety, but in the absence of impaired sensory processes or long-term potentiation of the Schaffer collateral pathway. These results clearly demonstrate that forebrain excitatory neurons mainly use intracellular Nampt-mediated NAD(+) biosynthesis to mediate their survival and function. Studying this particular NAD(+) biosynthetic pathway in these neurons provides critical insight into their vulnerability to pathophysiological stimuli and the development of therapeutic and preventive interventions for their preservation.
Collapse
|
22
|
Hartley CA, Casey BJ. Risk for anxiety and implications for treatment: developmental, environmental, and genetic factors governing fear regulation. Ann N Y Acad Sci 2013; 1304:1-13. [PMID: 24147742 DOI: 10.1111/nyas.12287] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anxiety disorders are the most common psychiatric disorders, affecting as many as 10% of youth, with diagnoses peaking during adolescence. A core component of these disorders is an unremitting fear in the absence of present threat. One of the most commonly used therapies to treat these disorders is exposure-based cognitive behavioral therapy that identifies the source of the fear and anxiety and then desensitizes the individual to it. This treatment builds on basic principles of fear-extinction learning. A number of patients improve with this therapy, but 40-50% do not. This paper provides an overview of recent empirical studies employing both human imaging and cross-species behavioral genetics to examine how fear regulation varies across individuals and across development, especially during adolescence. These studies have important implications for understanding who may be at risk for anxiety disorders and for whom and when during development exposure-based therapies may be most effective.
Collapse
Affiliation(s)
- Catherine A Hartley
- Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, New York
| | | |
Collapse
|
23
|
Pattwell SS, Lee FS, Casey BJ. Fear learning and memory across adolescent development: Hormones and Behavior Special Issue: Puberty and Adolescence. Horm Behav 2013; 64:380-9. [PMID: 23998679 PMCID: PMC3761221 DOI: 10.1016/j.yhbeh.2013.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/05/2012] [Accepted: 01/25/2013] [Indexed: 11/28/2022]
Abstract
Throughout the past several decades, studies have uncovered a wealth of information about the neural circuitry underlying fear learning and extinction that has helped to inform treatments for fear-related disorders such as post-traumatic stress and anxiety. Yet, up to 40% of people do not respond to such treatments. Adolescence, in particular, is a developmental stage during which anxiety disorders peak, yet little is known about the development of fear-related neural circuitry during this period. Moreover, pharmacological and behavioral therapies that have been developed are based on mature circuitry and function. Here, we review neural circuitry implicated in fear learning and data from adolescent mouse and human fear learning studies. In addition, we propose a developmental model of fear neural circuitry that may optimize current treatments and inform when, during development, specific treatments for anxiety may be most effective.
Collapse
|
24
|
Malter Cohen M, Tottenham N, Casey BJ. Translational developmental studies of stress on brain and behavior: implications for adolescent mental health and illness? Neuroscience 2013; 249:53-62. [PMID: 23340244 DOI: 10.1016/j.neuroscience.2013.01.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/05/2013] [Accepted: 01/10/2013] [Indexed: 01/13/2023]
Abstract
Adolescence is the transition from childhood to adulthood, with onset marked by puberty and the offset by relative independence from parents. Across species, it is a time of incredible change that carries increased risks and rewards. The ability of the individual to respond adequately to the mental, physical and emotional stresses of life during this time is a function of both their early environment and their present state. In this article, we focus on the effects that acute threat and chronic stress have on the brain and behavior in humans and rodents. First, we highlight developmental changes in frontolimbic function as healthy individuals transition into and out of adolescence. Second, we examine genetic factors that may enhance susceptibility to stress in one individual over another using translation from genetic mouse models to human neuroimaging. Third, we examine how the timing and nature of stress varies in its impact on brain and behavior. These findings are discussed in the context of implications for adolescent mental health and illness.
Collapse
Affiliation(s)
- M Malter Cohen
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, 1300 York Avenue, P.O. Box 140, New York, NY 10065, USA.
| | | | | |
Collapse
|