1
|
Li J, Ma X, Xu F, Yan Y, Chen W. Babaodan overcomes cisplatin resistance in cholangiocarcinoma via inhibiting YAP1. PHARMACEUTICAL BIOLOGY 2024; 62:314-325. [PMID: 38571483 PMCID: PMC10997361 DOI: 10.1080/13880209.2024.2331060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
CONTEXT Cholangiocarcinoma with highly heterogeneous, aggressive, and multidrug resistance has a poor prognosis. Although babaodan (BBD) combined with cisplatin improved non-small cell lung cancer efficacy, its impact on overcoming resistance in cholangiocarcinoma remains unexplored. OBJECTIVE This study explored the role and mechanism of BBD on cisplatin resistance in cholangiocarcinoma cells (CCAs). MATERIALS AND METHODS Cisplatin-resistant CCAs were exposed to varying concentrations of cisplatin (25-400 μg/mL) or BBD (0.25-1.00 mg/mL) for 48 h. IC50 values, inhibition ratios, apoptosis levels, DNA damage, glutathione (GSH) levels, oxidized forms of GSH, total GSH content, and glutaminase relative activity were evaluated using the cell counting kit 8, flow cytometry, comet assay, and relevant assay kits. RESULTS BBD-reduced the cisplatin IC50 in CCAs from 118.8 to 61.83 μg/mL, leading to increased inhibition rate, apoptosis, and DNA damage, and decreased expression of B-cell lymphoma-2, p-Yes-associated protein 1/Yes-associated protein 1, solute carrier family 1 member 5, activating transcription factor 4, and ERCC excision repair 1 in a dose-dependent manner with maximum reductions of 78.97%, 51.98%, 54.03%, 56.59%, and 63.22%, respectively; bcl2-associated X and gamma histone levels were increased by 0.43-115.77% and 22.15-53.39%. The impact of YAP1 knockdown on cisplatin-resistant CCAs resembled BBD. GSH, oxidized GSH species, total GSH content, and glutaminase activity in cisplatin-resistant CCAs with BBD treatment also decreased, while YAP1 overexpression countered BBD's effects. DISCUSSION AND CONCLUSION This study provides a scientific basis for BBD clinical application and provides a new direction for BBD biological mechanism research.
Collapse
Affiliation(s)
- Jiong Li
- Department of Traditional Chinese Medicine, The First People’s Hospital of Lin’an District, Hangzhou, China
| | - Xiangjun Ma
- Department of Traditional Chinese Medicine, The First People’s Hospital of Lin’an District, Hangzhou, China
| | - Faying Xu
- College of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiqing Chen
- Department of General Surgery, The First People’s Hospital of Lin’an District, Hangzhou, China
| |
Collapse
|
2
|
Weng Z, Mai Z, Yuan J, Liu Q, Deng F, Yang H, Ling Y, Xie X, Lin X, Lin T, Chen J, Wei X, Luo K, Fu J, Wen J. Evolution of genome and immunogenome in esophageal squamous cell carcinomas driven by neoadjuvant chemoradiotherapy. Int J Cancer 2024; 155:2021-2035. [PMID: 39081132 DOI: 10.1002/ijc.35118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 10/04/2024]
Abstract
Neoadjuvant chemoradiotherapy (NCRT) followed by surgery is a standard treatment for locally advanced esophageal squamous cell carcinomas (ESCCs). However, the evolution of genome and immunogenome in ESCCs driven by NCRT remains incompletely elucidated. We performed whole-exome sequencing of 51 ESCC tumors collected before and after NCRT, 36 of which were subjected to transcriptome sequencing. Clonal analysis identified clonal extinction in 13 ESCC patients wherein all pre-NCRT clones disappeared after NCRT, and clonal persistence in 9 patients wherein clones endured following NCRT. The clone-persistent patients showed higher pre-NCRT genomic intratumoral heterogeneity and worse prognosis than the clone-extinct ones. In contrast to the clone-extinct patients, the clone-persistent patients demonstrated a high proportion of subclonal neoantigens within pre-treatment specimens. Transcriptome analysis revealed increased immune infiltrations and up-regulated immune-related pathways after NCRT, especially in the clone-extinct patients. The number of T cell receptor-neoantigen interactions was higher in the clone-extinct patients than in the clone-persistent ones. The decrease in T cell repertoire evenness positively correlated to the decreased number of clonal neoantigens after NCRT, especially in the clone-extinct patients. In conclusion, we identified two prognosis-related clonal dynamic modes driven by NCRT in ESCCs. This study extended our knowledge of the ESCC genome and immunogenome evolutions driven by NCRT.
Collapse
Affiliation(s)
- Zelin Weng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zihang Mai
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianye Yuan
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Qianwen Liu
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fangqi Deng
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hong Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yihong Ling
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiuying Xie
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaodan Lin
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Lin
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiyang Chen
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoli Wei
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kongjia Luo
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianhua Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
3
|
Wang F, Li K, Wang W, Hui J, He J, Cai J, Ren W, Zhao Y, Song Q, He Y, Ma Y, Feng X, Liu Y, Yu J, Siriporn J, Ma D, Cai Z. Sensing of endogenous retroviruses-derived RNA by ZBP1 triggers PANoptosis in DNA damage and contributes to toxic side effects of chemotherapy. Cell Death Dis 2024; 15:779. [PMID: 39465258 PMCID: PMC11514216 DOI: 10.1038/s41419-024-07175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Excessive DNA damage triggers various types of programmed cell death (PCD), yet the regulatory mechanism of DNA damage-induced cell death is not fully understood. Here, we report that PANoptosis, a coordinated PCD pathway, including pyroptosis, apoptosis and necroptosis, is activated by DNA damage. The Z-DNA binding protein 1 (ZBP1) is the apical sensor of PANoptosis and essential for PANoptosome assembly in response to DNA damage. We find endogenous retroviruses (ERVs) are activated by DNA damage and act as ligands for ZBP1 to trigger PANoptosis. By using ZBP1 knock-out and knock-in mice disrupting ZBP1 nucleic acid-binding activity, we demonstrate that ZBP1-mediated PANoptosis contributes to the toxic effects of chemotherapeutic drugs, which is dependent on ZBP1 nucleic acid-binding activity. We found that ZBP1 expression is downregulated in tumor tissue. Furthermore, in colorectal cancer patients, dsRNA is induced by chemotherapy and sensed by ZBP1 in normal colonic tissues, suggesting ZBP1-mediated PANoptosis is activated by chemotherapy in normal tissues. Our findings indicate that ZBP1-mediated PANoptosis is activated by DNA damage and contributes to the toxic side effects of DNA-damage-based chemotherapy. These data suggest that ZBP1 could be a promising therapeutic target to alleviate chemotherapy-related side effects.
Collapse
Affiliation(s)
- Fang Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 200331, Shanghai, China
| | - Kaiying Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 200331, Shanghai, China
| | - Wensheng Wang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, 400037, Chongqing, China
| | - Jiang Hui
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 200331, Shanghai, China
| | - Jiangping He
- Guangzhou National Laboratory, 510005, Guangzhou, China
| | - Jin Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 200331, Shanghai, China
| | - Wenqing Ren
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Yaxing Zhao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Qianqian Song
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 200331, Shanghai, China
| | - Yuan He
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
| | - Xiaona Feng
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jitkaew Siriporn
- Center of Excellence for Cancer and Inflammation, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Dan Ma
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, 400037, Chongqing, China.
| | - Zhenyu Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 200331, Shanghai, China.
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China.
| |
Collapse
|
4
|
Huang YZ, Sang MY, Xi PW, Xu RX, Cai MY, Wang ZW, Zhao JY, Li YH, Wei JF, Ding Q. FANCI Inhibition Induces PARP1 Redistribution to Enhance the Efficacy of PARP Inhibitors in Breast Cancer. Cancer Res 2024; 84:3447-3463. [PMID: 39037758 DOI: 10.1158/0008-5472.can-23-2738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/27/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Breast cancer is a global public health concern with high mortality rates, necessitating the development of innovative treatment strategies. PARP inhibitors have shown efficacy in certain patient populations, but their application is largely limited to cancers with homologous recombination deficiency. Here, we identified the suppression of FANCI as a therapeutic strategy to enhance the efficacy of PARP inhibitors in breast cancer. Elevated FANCI expression in breast cancer was associated with poor prognosis and increased cell proliferation and migration. FANCI interacted with PARP1, and suppressing FANCI limited the nuclear localization and functionality of PARP1. Importantly, FANCI inhibition sensitized breast cancer cells to the PARP inhibitor talazoparib in the absence of BRCA mutations. Additionally, the CDK4/6 inhibitor palbociclib enhanced the sensitivity of breast cancer cells to talazoparib through FANCI inhibition. These findings highlight the potential of targeting FANCI to enhance the efficacy of PARP inhibitors in treating breast cancer. Significance: Targeting FANCI is a promising therapeutic strategy for enhancing PARP inhibitor sensitivity in breast cancer that holds potential for broader therapeutic applications beyond cancers harboring BRCA mutations.
Collapse
Affiliation(s)
- Yu-Zhou Huang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, PR China
| | - Ming-Yi Sang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, PR China
| | - Pei-Wen Xi
- Health Management Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, PR China
| | - Ruo-Xi Xu
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, PR China
| | - Meng-Yuan Cai
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, PR China
| | - Zi-Wen Wang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, PR China
| | - Jian-Yi Zhao
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, PR China
| | - Yi-Han Li
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, PR China
| | - Ji-Fu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, PR China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
5
|
Xing S, Yang H, Chen X, Wang Y, Zhang S, Wang P, Chen C, Wang K, Liu Z, Zheng X. Discovery of pyrimidine-2,4-diamine analogues as efficiency anticancer drug by targeting GTSE1. Bioorg Chem 2024; 151:107700. [PMID: 39128245 DOI: 10.1016/j.bioorg.2024.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
A series of pyrimidine-2,4-diamine analogues were designed and synthesized. Their anticancer activity and the underlying mechanism against colorectal cancer (CRC) HCT116 cells and non-small cell lung cancer (NSCLC) A549 cells were investigated. The results demonstrated that the active compound Y18 significantly inhibited cancer cell proliferation by inducing robust cell cycle arrest and cell senescence through the persistence of DNA damage. Additionally, Y18 exhibited significant inhibitory effects on the adhesion, migration and invasion of cancer cells in vitro. Mechanistically, Y18 achieved these anticancer activities by suppressing GTSE1 transcription and expression. Y18 also effectively inhibited tumor growth in vivo with minimal side effects. Furthermore, Y18 exhibited a suitable half-life and oral bioavailability (16.27%), with limited inhibitory activity on CYP isoforms. Taken together, these results suggested that Y18 could be a potential chemotherapeutic drug for cancer treatment, particularly in cases of GTSE1 overexpressed cancers.
Collapse
Affiliation(s)
- Sunhui Xing
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Huamao Yang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xiaojian Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yan Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Shuyuan Zhang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Peipei Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Chaoyue Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Kun Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Zhiguo Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Xiaohui Zheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; The Key Laboratory of Pediatric Hematology and oncology Diseases of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
6
|
Yang Z, Zhou Z, Meng Q, Chen Z, Yun L, Jiang J, He Y, Dian M, Zhang R, Ge H, Yan T, Men B, Li Z, Wu X, He J, Rao S. Dihydroartemisinin Sensitizes Lung Cancer Cells to Cisplatin Treatment by Upregulating ZIP14 Expression and Inducing Ferroptosis. Cancer Med 2024; 13:e70271. [PMID: 39394878 PMCID: PMC11470233 DOI: 10.1002/cam4.70271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Despite significant advances in lung cancer treatment, cisplatin (DDP)-based chemotherapy remains a cornerstone for managing the disease. However, the prevalence of chemoresistance presents a major challenge, limiting its effectiveness and contributing to poor outcomes. This underscores the urgent need for novel therapeutic strategies to overcome chemoresistance and improve chemotherapy efficacy in lung cancer patients. Exploring approaches to sensitize tumors to cisplatin could enhance treatment responses and overall survival rates. METHODS AND RESULTS Our study utilized a variety of lung cancer models, including cell lines, mouse models, and patient-derived organoids, to validate the synergistic cytotoxic effects of dihydroartemisinin (DHA) and cisplatin (DDP). When combined with DDP, we demonstrate that DHA is a promising therapeutic agent that effectively triggers ferroptosis in lung cancer cells, offering a potential strategy for overcoming chemoresistance. Mechanistically, the combination of DHA and DDP synergistically enhances ZIP14 expression, modulating iron homeostasis and upregulating oxidative stress, leading to both in vitro and in vivo ferroptosis. Notably, our findings revealed that the sequential administration of DDP followed by DHA significantly increases ZIP14 expression and induces superior therapeutic outcomes compared to the simultaneous administration or DHA followed by DDP. This observation underscores the importance of the drug administration order in optimizing treatment efficacy, providing new insights into enhancing chemotherapy response in lung cancer. CONCLUSION Our findings suggest that combining dihydroartemisinin (DHA) with cisplatin (DDP) presents a promising strategy to overcome chemoresistance in lung cancer patients. Importantly, administering DHA during chemotherapy intervals could further optimize treatment outcomes, enhancing the overall efficacy of lung cancer chemotherapy.
Collapse
Affiliation(s)
- Zhuoying Yang
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zehao Zhou
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Qingyu Meng
- Department of Radiation Oncology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Zhijie Chen
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Liang Yun
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jianjun Jiang
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yujing He
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Meijuan Dian
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ruihao Zhang
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Haotian Ge
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Tianbao Yan
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Biying Men
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zichao Li
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xu Wu
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Junming He
- Department of Hepatobiliary SurgeryThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
7
|
Saha B, Pallatt S, Banerjee A, Banerjee AG, Pathak R, Pathak S. Current Insights into Molecular Mechanisms and Potential Biomarkers for Treating Radiation-Induced Liver Damage. Cells 2024; 13:1560. [PMID: 39329744 PMCID: PMC11429644 DOI: 10.3390/cells13181560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Highly conformal delivery of radiation therapy (RT) has revolutionized the treatment landscape for primary and metastatic liver cancers, yet concerns persist regarding radiation-induced liver disease (RILD). Despite advancements, RILD remains a major dose-limiting factor due to the potential damage to normal liver tissues by therapeutic radiation. The toxicity to normal liver tissues is associated with a multitude of physiological and pathological consequences. RILD unfolds as multifaceted processes, intricately linking various responses, such as DNA damage, oxidative stress, inflammation, cellular senescence, fibrosis, and immune reactions, through multiple signaling pathways. The DNA damage caused by ionizing radiation (IR) is a major contributor to the pathogenesis of RILD. Moreover, current treatment options for RILD are limited, with no established biomarker for early detection. RILD diagnosis often occurs at advanced stages, highlighting the critical need for early biomarkers to adjust treatment strategies and prevent liver failure. This review provides an outline of the diverse molecular and cellular mechanisms responsible for the development of RILD and points out all of the available biomarkers for early detection with the aim of helping clinicians decide on advance treatment strategies from a single literature recourse.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Sneha Pallatt
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Abhijit G. Banerjee
- R&D, Genomic Bio-Medicine Research and Incubation (GBMRI), Durg 491001, Chhattisgarh, India
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
8
|
Bera A, Nepalia A, Upadhyay A, Saini DK, Chakravarty AR. Biotin-Pt(IV)-Ru(II)-Boron-Dipyrromethene Prodrug as "Platin Bullet" for Targeted Chemo- and Photodynamic Therapy. Inorg Chem 2024; 63:17249-17262. [PMID: 39235210 DOI: 10.1021/acs.inorgchem.4c03083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Using the principle of "Magic Bullet", a cisplatin-derived platinum(IV) prodrug heterobimetallic Pt(IV)-Ru(II) complex, cis,cis,trans-[Pt(NH3)2Cl2{Ru(tpy-BODIPY)(tpy-COO)}(biotin)]Cl2 (Pt-Ru-B, 2), having two axial ligands, namely, biotin as water-soluble B-vitamin for enhanced cellular uptake and a BODIPY-ruthenium(II) (Ru-B, 1) photosensitizer having N,N,N-donor tpy (4'-phenyl-2,2':6',2″-terpyridine) bonded to boron-dipyrromethene (BODIPY), is developed as a "Platin Bullet" for targeted photodynamic therapy (PDT). Pt-Ru-B exhibited intense absorption near 500 nm and emission near 513 nm (λex = 488 nm) in a 10% dimethyl sulfoxide-Dulbecco's phosphate-buffered saline medium (pH 7.2). The BODIPY complex on light activation generates singlet oxygen as the reactive oxygen species (ROS) giving a quantum yield (ΦΔ) of ∼0.64 from 1,3-diphenylisobenzofuran experiments. Pt-Ru-B exhibited preferential cellular uptake in cancer cells over noncancerous cells. The dichlorodihydrofluorescein diacetate assay confirmed the generation of cellular ROS. Confocal images revealed its mitochondrial internalization. Pt-Ru-B showed submicromolar photocytotoxicity in visible light (400-700 nm) in A549 and multidrug-resistant MDA-MB-231 cancer cells. It remained nontoxic in the dark and less toxic in nontumorigenic cells. Cellular apoptosis and alteration of the mitochondrial membrane potential were evidenced from the respective Annexin V-FITC/propidium iodide assay and JC-1 dye assay. A wound healing assay using A549 cells and Pt-Ru-B revealed inhibition of cancer cell migration, highlighting its potential as an antimetastatic agent.
Collapse
Affiliation(s)
- Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Amrita Nepalia
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
Gao D, Zhang H, Sun W, Wang H, Wang H. Radiation-Induced Intestinal Injury: Molecular Mechanisms and Therapeutic Status. DNA Cell Biol 2024. [PMID: 39235407 DOI: 10.1089/dna.2024.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Radiation-induced intestinal injury is one of the most common intestinal complications caused by pelvic and abdominal tumor radiotherapy, severely impacting patients' quality of life. Ionizing radiation, while killing tumor cells, inevitably damages healthy tissue. Radiation-induced enteropathy results from radiation therapy-induced intestinal tissue damage and inflammatory responses. This damage involves various complex molecular mechanisms, including cell apoptosis, oxidative stress, release of inflammatory mediators, disruption of immune responses, and imbalance of intestinal microbiota. A thorough understanding of these molecular mechanisms is crucial for developing effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Dandan Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin 300121, China
| | - Heng Zhang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin 300121, China
| | - Wanjun Sun
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin 300121, China
| | - Huaqing Wang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin 300121, China
| | - Hui Wang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin 300121, China
| |
Collapse
|
10
|
Ooki A, Osumi H, Yoshino K, Yamaguchi K. Potent therapeutic strategy in gastric cancer with microsatellite instability-high and/or deficient mismatch repair. Gastric Cancer 2024; 27:907-931. [PMID: 38922524 PMCID: PMC11335850 DOI: 10.1007/s10120-024-01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Gastric cancer (GC) is a common malignancy that presents challenges in patient care worldwide. The mismatch repair (MMR) system is a highly conserved DNA repair mechanism that protects genome integrity during replication. Deficient MMR (dMMR) results in an increased accumulation of genetic errors in microsatellite sequences, leading to the development of a microsatellite instability-high (MSI-H) phenotype. Most MSI-H/dMMR GCs arise sporadically, mainly due to MutL homolog 1 (MLH1) epigenetic silencing. Unlike microsatellite-stable (MSS)/proficient MMR (pMMR) GCs, MSI-H/dMMR GCs are relatively rare and represent a distinct subtype with genomic instability, a high somatic mutational burden, favorable immunogenicity, different responses to treatment, and prognosis. dMMR/MSI-H status is a robust predictive biomarker for treatment with immune checkpoint inhibitors (ICIs) due to high neoantigen load, prominent tumor-infiltrating lymphocytes, and programmed cell death ligand 1 (PD-L1) overexpression. However, a subset of MSI-H/dMMR GC patients does not benefit from immunotherapy, highlighting the need for further research into predictive biomarkers and resistance mechanisms. This review provides a comprehensive overview of the clinical, molecular, immunogenic, and therapeutic aspects of MSI-H/dMMR GC, with a focus on the impact of ICIs in immunotherapy and their potential as neoadjuvant therapies. Understanding the complexity and diversity of the molecular and immunological profiles of MSI-H/dMMR GC will drive the development of more effective therapeutic strategies and molecular targets for future precision medicine.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan.
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Koichiro Yoshino
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| |
Collapse
|
11
|
Al-Hawary SIS, Abdalkareem Jasim S, Altalbawy FMA, Kumar A, Kaur H, Pramanik A, Jawad MA, Alsaad SB, Mohmmed KH, Zwamel AH. miRNAs in radiotherapy resistance of cancer; a comprehensive review. Cell Biochem Biophys 2024; 82:1665-1679. [PMID: 38805114 DOI: 10.1007/s12013-024-01329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
While intensity-modulated radiation therapy-based comprehensive therapy increases outcomes, cancer patients still have a low five-year survival rate and a high recurrence rate. The primary factor contributing to cancer patients' poor prognoses is radiation resistance. A class of endogenous non-coding RNAs, known as microRNAs (miRNAs), controls various biological processes in eukaryotes. These miRNAs influence tumor cell growth, death, migration, invasion, and metastasis, which controls how human carcinoma develops and spreads. The correlation between the unbalanced expression of miRNAs and the prognosis and sensitivity to radiation therapy is well-established. MiRNAs have a significant impact on the regulation of DNA repair, the epithelial-to-mesenchymal transition (EMT), and stemness in the tumor radiation response. But because radio resistance is a complicated phenomena, further research is required to fully comprehend these mechanisms. Radiation response rates vary depending on the modality used, which includes the method of delivery, radiation dosage, tumor stage and grade, confounding medical co-morbidities, and intrinsic tumor microenvironment. Here, we summarize the possible mechanisms through which miRNAs contribute to human tumors' resistance to radiation.
Collapse
Affiliation(s)
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Salim Basim Alsaad
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
12
|
Gao Z, Luan X, Wang X, Han T, Li X, Li Z, Li P, Zhou Z. DNA damage response-related ncRNAs as regulators of therapy resistance in cancer. Front Pharmacol 2024; 15:1390300. [PMID: 39253383 PMCID: PMC11381396 DOI: 10.3389/fphar.2024.1390300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The DNA damage repair (DDR) pathway is a complex signaling cascade that can sense DNA damage and trigger cellular responses to DNA damage to maintain genome stability and integrity. A typical hallmark of cancer is genomic instability or nonintegrity, which is closely related to the accumulation of DNA damage within cancer cells. The treatment principles of radiotherapy and chemotherapy for cancer are based on their cytotoxic effects on DNA damage, which are accompanied by severe and unnecessary side effects on normal tissues, including dysregulation of the DDR and induced therapeutic tolerance. As a driving factor for oncogenes or tumor suppressor genes, noncoding RNA (ncRNA) have been shown to play an important role in cancer cell resistance to radiotherapy and chemotherapy. Recently, it has been found that ncRNA can regulate tumor treatment tolerance by altering the DDR induced by radiotherapy or chemotherapy in cancer cells, indicating that ncRNA are potential regulatory factors targeting the DDR to reverse tumor treatment tolerance. This review provides an overview of the basic information and functions of the DDR and ncRNAs in the tolerance or sensitivity of tumors to chemotherapy and radiation therapy. We focused on the impact of ncRNA (mainly microRNA [miRNA], long noncoding RNA [lncRNA], and circular RNA [circRNA]) on cancer treatment by regulating the DDR and the underlying molecular mechanisms of their effects. These findings provide a theoretical basis and new insights for tumor-targeted therapy and the development of novel drugs targeting the DDR or ncRNAs.
Collapse
Affiliation(s)
- Ziru Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xinchi Luan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xuezhe Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Tianyue Han
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiaoyuan Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zeyang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Chen H, Yang F, Zhao Q, Wang H, Zhu M, Li H, Ge Z, Zhang S, Guo Q, Hui H. GL-V9 synergizes with oxaliplatin of colorectal cancer via Wee1 degradation mediated by HSP90 inhibition. J Pharm Pharmacol 2024; 76:1006-1017. [PMID: 38767973 DOI: 10.1093/jpp/rgae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVES GL-V9 exhibited anti-tumour effects on various types of tumours. This study aimed to verify if GL-V9 synergized with oxaliplatin in suppressing colorectal cancer (CRC) and to explore the synergistic mechanism. METHODS The synergy effect was tested by MTT assays and the mechanism was examined by comet assay, western blotting and immunohistochemistry (IHC). Xenograft model was constructed to substantiated the synergy effect and its mechanism in vivo. RESULTS GL-V9 was verified to enhance the DNA damage effect of oxaliplatin, so as to synergistically suppress colon cancer cells in vitro and in vivo. In HCT-116 cells, GL-V9 accelerated the degradation of Wee1 and induced the abrogation of cell cycle arrest and mis-entry into mitosis, bypassing the DNA damage response caused by oxaliplatin. Our findings suggested that GL-V9 binding to HSP90 was responsible for the degradation of Wee1 and the vulnerability of colon cancer cells to oxaliplatin. Functionally, overexpression of either HSP90 or WEE1 annulled the synergistic effect of GL-V9 and oxaliplatin. CONCLUSIONS Collectively, our findings revealed that GL-V9 synergized with oxaliplatin to suppress CRC and displayed a promising strategy to improve the efficacy of oxaliplatin.
Collapse
Affiliation(s)
- Hongyu Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Fan Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Qianying Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Hongzheng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Mengyuan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing 210009, People's Republic of China
| | - Shuai Zhang
- Department of General Thoractic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
14
|
Ai C, Huang Z, Rong T, Shen W, Yang F, Li Q, Bi L, Li W. The impact of SOX4-activated CTHRC1 transcriptional activity regulating DNA damage repair on cisplatin resistance in lung adenocarcinoma. Electrophoresis 2024; 45:1408-1417. [PMID: 38629299 DOI: 10.1002/elps.202300255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 03/02/2024] [Indexed: 08/22/2024]
Abstract
Lung adenocarcinoma (LUAD) is the predominant subtype within the spectrum of lung malignancies. CTHRC1 has a pro-oncogenic role in various cancers. Here, we observed the upregulation of CTHRC1 in LUAD, but its role in cisplatin resistance in LUAD remains unclear. Bioinformatics analysis was employed to detect CTHRC1 and SRY-related HMG-box 4 (SOX4) expression in LUAD. Gene Set Enrichment Analysis predicted the enriched pathways related to CTHRC1. JASPAR and MotifMap databases predicted upstream transcription factors of CTHRC1. Pearson analysis was conducted to analyze the correlation between genes of interest. The interaction and binding relationship between CTHRC1 and SOX4 were validated through dual-luciferase and chromatin immunoprecipitation assays. Quantitative real-time polymerase chain reaction determined the expression of CTHRC1 and SOX4 genes. CCK-8 was performed to assess cell viability and calculate IC50 value. Flow cytometry examined the cell cycle. Comet assay and western blot assessed DNA damage. CTHRC1 and SOX4 were upregulated in LUAD. CTHRC1 exhibited higher expression in cisplatin-resistant A549 cells compared to cisplatin-sensitive A549 cells. Knockdown of CTHRC1 enhanced DNA damage during cisplatin treatment and increased the sensitivity of LUAD cells to cisplatin. Additionally, SOX4 modulated DNA damage repair (DDR) by activating CTHRC1 transcriptional activity, promoting cisplatin resistance in LUAD cells. SOX4 regulated DDR by activating CTHRC1, thereby enhancing cisplatin resistance in LUAD cells. The finding provides a novel approach to address clinical cisplatin resistance in LUAD, with CTHRC1 possibly serving as a candidate for targeted therapies in addressing cisplatin resistance within LUAD.
Collapse
Affiliation(s)
- Cheng Ai
- Department of Cardiothoracic Surgery, Bishan Hospital of Chongqing, Medical University, Chongqing, P. R. China
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The affiliated Hospital of Nanjing University Medical School, Nanjing, P. R. China
| | - Zhenhao Huang
- Department of Cardiothoracic Surgery, Bishan Hospital of Chongqing, Medical University, Chongqing, P. R. China
| | - Tenghao Rong
- Department of Cardiothoracic Surgery, Bishan Hospital of Chongqing, Medical University, Chongqing, P. R. China
| | - Wang Shen
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Fuyu Yang
- Department of Cardiothoracic Surgery, Bishan Hospital of Chongqing, Medical University, Chongqing, P. R. China
| | - Qiang Li
- Department of Cardiothoracic Surgery, Bishan Hospital of Chongqing, Medical University, Chongqing, P. R. China
| | - Lei Bi
- Department of Cardiothoracic Surgery, Bishan Hospital of Chongqing, Medical University, Chongqing, P. R. China
| | - Wen Li
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, P. R. China
| |
Collapse
|
15
|
Ivancevic A, Simpson DM, Joyner OM, Bagby SM, Nguyen LL, Bitler BG, Pitts TM, Chuong EB. Endogenous retroviruses mediate transcriptional rewiring in response to oncogenic signaling in colorectal cancer. SCIENCE ADVANCES 2024; 10:eado1218. [PMID: 39018396 PMCID: PMC466953 DOI: 10.1126/sciadv.ado1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
Cancer cells exhibit rewired transcriptional regulatory networks that promote tumor growth and survival. However, the mechanisms underlying the formation of these pathological networks remain poorly understood. Through a pan-cancer epigenomic analysis, we found that primate-specific endogenous retroviruses (ERVs) are a rich source of enhancers displaying cancer-specific activity. In colorectal cancer and other epithelial tumors, oncogenic MAPK/AP1 signaling drives the activation of enhancers derived from the primate-specific ERV family LTR10. Functional studies in colorectal cancer cells revealed that LTR10 elements regulate tumor-specific expression of multiple genes associated with tumorigenesis, such as ATG12 and XRCC4. Within the human population, individual LTR10 elements exhibit germline and somatic structural variation resulting from a highly mutable internal tandem repeat region, which affects AP1 binding activity. Our findings reveal that ERV-derived enhancers contribute to transcriptional dysregulation in response to oncogenic signaling and shape the evolution of cancer-specific regulatory networks.
Collapse
Affiliation(s)
- Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - David M. Simpson
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Olivia M. Joyner
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Stacey M. Bagby
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lily L. Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ben G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Todd M. Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edward B. Chuong
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
16
|
Yuan W, Zhang R, Lyu H, Xiao S, Guo D, Zhang Q, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Dysregulation of tRNA methylation in cancer: Mechanisms and targeting therapeutic strategies. Cell Death Discov 2024; 10:327. [PMID: 39019857 PMCID: PMC11254935 DOI: 10.1038/s41420-024-02097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
tRNA is the RNA type that undergoes the most modifications among known RNA, and in recent years, tRNA methylation has emerged as a crucial process in regulating gene translation. Dysregulation of tRNA abundance occurs in cancer cells, along with increased expression and activity of tRNA methyltransferases to raise the level of tRNA modification and stability. This leads to hijacking of translation and synthesis of multiple proteins associated with tumor proliferation, metastasis, invasion, autophagy, chemotherapy resistance, and metabolic reprogramming. In this review, we provide an overview of current research on tRNA methylation in cancer to clarify its involvement in human malignancies and establish a theoretical framework for future therapeutic interventions targeting tRNA methylation processes.
Collapse
Affiliation(s)
- Wenbin Yuan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Qi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
17
|
Fujita H, Wakiya T, Tatara Y, Ishido K, Sakamoto Y, Kimura N, Morohashi H, Miura T, Muroya T, Akasaka H, Yokoyama H, Kanda T, Kubota S, Ichisawa A, Ogasawara K, Kuwata D, Takahashi Y, Nakamura A, Yamazaki K, Yamada T, Matsuyama R, Kanou M, Yamana K, Itoh K, Hakamada K. Novel insight into nicotinamide adenine dinucleotide and related metabolites in cancer patients undergoing surgery. Sci Rep 2024; 14:16557. [PMID: 39019993 PMCID: PMC11254928 DOI: 10.1038/s41598-024-66004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/26/2024] [Indexed: 07/19/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD +) plays a pivotal role in numerous cellular functions. Reduced NAD + levels are postulated to be associated with cancer. As interest in understanding NAD + dynamics in cancer patients with therapeutic applications in mind grows, there remains a shortage of comprehensive data. This study delves into NAD + dynamics in patients undergoing surgery for different digestive system cancers. This prospective study enrolled 99 patients with eight different cancers. Fasting blood samples were obtained during the perioperative period. The concentrations of NAD + , nicotinamide mononucleotide (NMN), and nicotinamide riboside were analyzed using tandem mass spectrometry. After erythrocyte volume adjustment, NAD + remained relatively stable after surgery. Meanwhile, NMN decreased the day after surgery and displayed a recovery trend. Interestingly, liver and pancreatic cancer patients exhibited poor postoperative NMN recovery, suggesting a potential cancer type-specific influence on NAD + metabolism. This study illuminated the behavior of NAD + in surgically treated cancer patients. We identified which cancer types have particularly low levels and at what point depletion occurs during the perioperative period. These insights suggest the need for personalized NAD + supplementation strategies, calibrated to individual patient needs and treatment timelines. Clinical trial registration jRCT1020210066.
Collapse
Affiliation(s)
- Hiroaki Fujita
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Taiichi Wakiya
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yota Tatara
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Keinosuke Ishido
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Yoshiyuki Sakamoto
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Norihisa Kimura
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Hajime Morohashi
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Takuya Miura
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Takahiro Muroya
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Harue Akasaka
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Hiroshi Yokoyama
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Taishu Kanda
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Shunsuke Kubota
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Aika Ichisawa
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Kenta Ogasawara
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Daisuke Kuwata
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Yoshiya Takahashi
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Akie Nakamura
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Keisuke Yamazaki
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Takahiro Yamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Ryo Matsuyama
- Nutraceutical Group, New Business Development Unit, Teijin Limited, Hino, Tokyo, Japan
- Discovery DMPK Research Group, Toxicology & DMPK Research Department, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Masanobu Kanou
- Nutraceutical Group, New Business Development Unit, Teijin Limited, Hino, Tokyo, Japan
- NOMON Co. Ltd., Kasumigaseki, Chiyoda-Ku, Tokyo, Japan
| | - Kei Yamana
- Nutraceutical Group, New Business Development Unit, Teijin Limited, Hino, Tokyo, Japan
- NOMON Co. Ltd., Kasumigaseki, Chiyoda-Ku, Tokyo, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan.
| |
Collapse
|
18
|
Palizkaran Yazdi M, Barjasteh A, Moghbeli M. MicroRNAs as the pivotal regulators of Temozolomide resistance in glioblastoma. Mol Brain 2024; 17:42. [PMID: 38956588 PMCID: PMC11218189 DOI: 10.1186/s13041-024-01113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive nervous system tumor with a poor prognosis. Although, surgery, radiation therapy, and chemotherapy are the current standard protocol for GBM patients, there is still a poor prognosis in these patients. Temozolomide (TMZ) as a first-line therapeutic agent in GBM can easily cross from the blood-brain barrier to inhibit tumor cell proliferation. However, there is a high rate of TMZ resistance in GBM patients. Since, there are limited therapeutic choices for GBM patients who develop TMZ resistance; it is required to clarify the molecular mechanisms of chemo resistance to introduce the novel therapeutic targets. MicroRNAs (miRNAs) regulate chemo resistance through regulation of drug metabolism, absorption, DNA repair, apoptosis, and cell cycle. In the present review we discussed the role of miRNAs in TMZ response of GBM cells. It has been reported that miRNAs mainly induced TMZ sensitivity by regulation of signaling pathways and autophagy in GBM cells. Therefore, miRNAs can be used as the reliable diagnostic/prognostic markers in GBM patients. They can also be used as the therapeutic targets to improve the TMZ response in GBM cells.
Collapse
Affiliation(s)
- Mahsa Palizkaran Yazdi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Barjasteh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Chen G, Ping J, Du J, Zhao L, Li Y, Liu H. Glutathione and acid dual-responsive bismuth-based nanosensitizer for chemo-mediated cancer sonodynamic therapy. Biomed Mater 2024; 19:045035. [PMID: 38857606 DOI: 10.1088/1748-605x/ad565c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Chemotherapeutic agents hold significant clinical potential in combating tumors. However, delivering these drugs to the tumor site for controlled release remains a crucial challenge. In this study, we synthesize and construct a glutathione (GSH) and acid dual-responsive bismuth-based nano-delivery platform (BOD), aiming for sonodynamic enhancement of docetaxel (DTX)-mediated tumor therapy. The bismuth nanomaterial can generate multiple reactive oxygen species under ultrasound stimulation. Furthermore, the loading of DTX to form BOD effectively reduces the toxicity of DTX in the bloodstream, ensuring its cytotoxic effect is predominantly exerted at the tumor site. DTX can be well released in high expression of GSH and acidic tumor microenvironment. Meanwhile, ultrasound can also promote the release of DTX. Results from bothin vitroandin vivoexperiments substantiate that the synergistic therapy involving chemotherapy and sonodynamic therapy significantly inhibits the growth and proliferation of tumor cells. This study provides a favorable paradigm for developing a synergistic tumor treatment platform for tumor microenvironment response and ultrasound-promoted drug release.
Collapse
Affiliation(s)
- Guobo Chen
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, People's Republic of China
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jing Ping
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jun Du
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Linghao Zhao
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, People's Republic of China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Hui Liu
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, People's Republic of China
| |
Collapse
|
20
|
Gilmer TM, Lai CH, Guo K, Deland K, Ashcraft KA, Stewart AE, Wang Y, Fu J, Wood KC, Kirsch DG, Kastan MB. A Novel Dual ATM/DNA-PK Inhibitor, XRD-0394, Potently Radiosensitizes and Potentiates PARP and Topoisomerase I Inhibitors. Mol Cancer Ther 2024; 23:751-765. [PMID: 38588408 DOI: 10.1158/1535-7163.mct-23-0890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
A majority of patients with cancer receive radiotherapy as part of their treatment regimens whether using external beam therapy or locally-delivered radioisotopes. While often effective, some tumors are inadequately controlled with radiation and radiotherapy has significant short-term and long-term toxicities for cancer survivors. Insights into molecular mechanisms involved in cellular responses to DNA breaks introduced by radiation or other cancer therapies have been gained in recent years and approaches to manipulate these responses to enhance tumor cell killing or reduce normal tissue toxicity are of great interest. Here, we report the identification and initial characterization of XRD-0394, a potent and specific dual inhibitor of two DNA damage response kinases, ATM and DNA-PKcs. This orally bioavailable molecule demonstrates significantly enhanced tumor cell kill in the setting of therapeutic ionizing irradiation in vitro and in vivo. XRD-0394 also potentiates the effectiveness of topoisomerase I inhibitors in vitro. In addition, in cells lacking BRCA1/2 XRD-0394 shows single-agent activity and synergy in combination with PARP inhibitors. A phase Ia clinical trial (NCT05002140) with XRD-0394 in combination with radiotherapy has completed. These results provide a rationale for future clinical trials with XRD-0394 in combination with radiotherapy, PARP inhibitors, and targeted delivery of topoisomerase I inhibitors.
Collapse
Affiliation(s)
| | - Chun-Hsiang Lai
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Kexiao Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Katherine Deland
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Kathleen A Ashcraft
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Amy E Stewart
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | | | | | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - David G Kirsch
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Michael B Kastan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
21
|
Zhou Y, Li K, Adelson DL. An unmet need for pharmacology: Treatments for radiation-induced gastrointestinal mucositis. Biomed Pharmacother 2024; 175:116767. [PMID: 38781863 DOI: 10.1016/j.biopha.2024.116767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Gastrointestinal mucositis (GIM) continues to be a significant issue in the management of abdominal cancer radiation treatments and chemotherapy, causing significant patient discomfort and therapy interruption or even cessation. This review will first focus on radiotherapy induced GIM, providing an understanding of its clinical landscape. Subsequently, the aetiology of GIM will be reviewed, highlighting diverse contributing factors. The cellular and tissue damage and associated molecular responses in GIM will be summarised in the context of the underlying complex biological processes. Finally, available drugs and pharmaceutical therapies will be evaluated, underscoring their insufficiency, and highlighting the need for further research and innovation. This review will emphasize the urgent need for improved pharmacologic therapeutics for GIM, which is a key research priority in oncology.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Zhendong Australia China Centre for Molecular Chinese Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Kun Li
- Beijing Zhendong Guangming Pharmaceutical Research Institute, Beijing 100120, China.
| | - David L Adelson
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Zhendong Australia China Centre for Molecular Chinese Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
22
|
Walker FM, Sobral LM, Danis E, Sanford B, Donthula S, Balakrishnan I, Wang D, Pierce A, Karam SD, Kargar S, Serkova NJ, Foreman NK, Venkataraman S, Dowell R, Vibhakar R, Dahl NA. Rapid P-TEFb-dependent transcriptional reorganization underpins the glioma adaptive response to radiotherapy. Nat Commun 2024; 15:4616. [PMID: 38816355 PMCID: PMC11139976 DOI: 10.1038/s41467-024-48214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Dynamic regulation of gene expression is fundamental for cellular adaptation to exogenous stressors. P-TEFb-mediated pause-release of RNA polymerase II (Pol II) is a conserved regulatory mechanism for synchronous transcriptional induction in response to heat shock, but this pro-survival role has not been examined in the applied context of cancer therapy. Using model systems of pediatric high-grade glioma, we show that rapid genome-wide reorganization of active chromatin facilitates P-TEFb-mediated nascent transcriptional induction within hours of exposure to therapeutic ionizing radiation. Concurrent inhibition of P-TEFb disrupts this chromatin reorganization and blunts transcriptional induction, abrogating key adaptive programs such as DNA damage repair and cell cycle regulation. This combination demonstrates a potent, synergistic therapeutic potential agnostic of glioma subtype, leading to a marked induction of tumor cell apoptosis and prolongation of xenograft survival. These studies reveal a central role for P-TEFb underpinning the early adaptive response to radiotherapy, opening avenues for combinatorial treatment in these lethal malignancies.
Collapse
Affiliation(s)
- Faye M Walker
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lays Martin Sobral
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Etienne Danis
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Bridget Sanford
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sahiti Donthula
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ilango Balakrishnan
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Dong Wang
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Angela Pierce
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Soudabeh Kargar
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Natalie J Serkova
- Department of Radiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nicholas K Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sujatha Venkataraman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Robin Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nathan A Dahl
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA.
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
23
|
Li B, Jin K, Liu Z, Su X, Xu Z, Liu G, Xu J, Chang Y, Wang Y, Zhu Y, Xu L, Wang Z, Liu H, Zhang W. RAD51 Expression as a Biomarker to Predict Efficacy of Platinum-Based Chemotherapy and PD-L1 Blockade for Muscle-Invasive Bladder Cancer. J Immunother 2024:00002371-990000000-00105. [PMID: 38800996 DOI: 10.1097/cji.0000000000000525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 04/11/2024] [Indexed: 05/29/2024]
Abstract
RAD51, a key recombinase that catalyzes homologous recombination (HR), is commonly overexpressed in multiple cancers. It is curial for DNA damage repair (DDR) to maintain genomic integrity which could further determine the therapeutic response. Herein, we attempt to explore the clinical value of RAD51 in therapeutic guidance in muscle-invasive bladder cancer (MIBC). In this retrospective study, a total of 823 patients with MIBC were included. Zhongshan hospital (ZSHS) cohort (n=134) and The Cancer Genome Atlas-Bladder Cancer (TCGA-BLCA) cohort (n=391) were included for the investigation of chemotherapeutic response. The IMvigor210 cohort (n=298) was utilized to interrogate the predictive efficacy of RAD51 status to programmed cell death ligand-1 (PD-L1) blockade. In addition, the association of RAD51 with genomic instability and tumor immune contexture was investigated. Patients with RAD51 overexpression were more likely to benefit from both platinum-based chemotherapy and immunotherapy rather than RAD51-low patients. The TMB high PD-L1 high RAD51 high subgroup possessed the best clinical benefits from PD-L1 blockade. RAD51-high tumors featured by genomic instability were correlated to highly inflamed and immunogenic contexture with activated immunotherapeutic pathway in MIBC. RAD51 could serve as a prognosticator for treatment response to platinum-based chemotherapy and PD-L1 inhibitor in MIBC patients. Besides, it could also improve the predictive efficacy of TMB and PD-L1.
Collapse
Affiliation(s)
- Bingyu Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaifeng Jin
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaopei Liu
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaohe Su
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ziyue Xu
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ge Liu
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingtong Xu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hailong Liu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Chen XY, Wu ZX, Wang JQ, Teng QX, Tang H, Liu Q, Chen ZS, Chen W. Multidrug resistance transporters P-gp and BCRP limit the efficacy of ATR inhibitor ceralasertib in cancer cells. Front Pharmacol 2024; 15:1400699. [PMID: 38756373 PMCID: PMC11096521 DOI: 10.3389/fphar.2024.1400699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
The therapeutic effect of chemotherapy and targeted therapy are known to be limited by drug resistance. Substantial evidence has shown that ATP-binding cassette (ABC) transporters P-gp and BCRP are significant contributors to multidrug resistance (MDR) in cancer cells. In this study, we demonstrated that a clinical-staged ATR inhibitor ceralasertib is susceptible to P-gp and BCRP-mediated MDR. The drug resistant cancer cells were less sensitive to ceralasertib compared to the parental cells. Moreover, ceralasertib resistance can be reversed by inhibiting the drug efflux activity of P-gp and BCRP. Interestingly, ceralasertib was able to downregulate the level of P-gp but not BCRP, suggesting a potential regulation between ATR signaling and P-gp expression. Furthermore, computational docking analysis predicted high affinities between ceralasertib and the drug-binding sites of P-gp and BCRP. In summary, overexpression of P-gp and BCRP are sufficient to confer cancer cells resistance to ceralasertib, underscoring their role as biomarkers for therapeutic efficacy.
Collapse
Affiliation(s)
- Xuan-Yu Chen
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Zhuo-Xun Wu
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
| | - Jing-Quan Wang
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
| | - Qiu-Xu Teng
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qianwen Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Wenkuan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
25
|
Gao D, Jiang T, Liu Y. Gelsolin knockdown confers radiosensitivity to glioblastoma cells. Cancer Med 2024; 13:e7286. [PMID: 38803199 PMCID: PMC11130581 DOI: 10.1002/cam4.7286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE Radiotherapy (RT) is a cornerstone of the glioblastoma (GBM) treatment. However, the resistance of tumour cells to radiation results in early recurrence. The mechanisms underlying GBM radioresistance remain unclear. Screening for differentially expressed genes (DEGs) related to radiation might be a potential solution to this problem. METHOD RT-associated DEGs were screened based on the RNA sequencing of 15 paired primary and recurrent GBMs. The mRNA and protein expression of candidate genes were validated in RNA sequencing of The Chinese Genome Atlas (CGGA) dataset and 18 cases of GBM samples. The relationship between the candidate gene and radiation was confirmed in irradiated GBM cells. The association of candidate gene with clinical characteristics and survival was investigated in the CGGA and TCGA dataset. Biological function and pathway analysis were explored by gene ontology analysis. The association of the candidate gene with radiosensitivity was verified using cell counting Kit-8, comet, and colony formation assays in vitro and subcutaneous tumour xenograft experiments in vivo. RESULTS Gelsolin (GSN) was selected for further study. GSN expression was significant elevated in recurrent GBM and up-regulated in irradiated GBM cell lines. High expression of GSN was enriched in malignant phenotype of glioma. Moreover, high expression of GSN was associated with poor prognosis. Further investigation demonstrated that GSN-knockdown (GSN-KD) combined with RT significantly inhibited cell proliferation and enhanced radiosensitivity in vivo and in vitro. Mechanistically, GSN-KD could lead to more serious DNA damage and promotes apoptosis after RT. CONCLUSION Radiation induced up-regulated of GSN. GSN-KD could enhance the radiosensitivity of GBM.
Collapse
Affiliation(s)
- Dezhi Gao
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Gamma‐Knife Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Tao Jiang
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yanwei Liu
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Radiation Oncology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
26
|
Nguyen DT, Mahajan U, Angappulige DH, Doshi A, Mahajan NP, Mahajan K. Amino Terminal Acetylation of HOXB13 Regulates the DNA Damage Response in Prostate Cancer. Cancers (Basel) 2024; 16:1622. [PMID: 38730575 PMCID: PMC11083449 DOI: 10.3390/cancers16091622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Advanced localized prostate cancers (PC) recur despite chemotherapy, radiotherapy and/or androgen deprivation therapy. We recently reported HOXB13 lysine (K)13 acetylation as a gain-of-function modification that regulates interaction with the SWI/SNF chromatin remodeling complex and is critical for anti-androgen resistance. However, whether acetylated HOXB13 promotes PC cell survival following treatment with genotoxic agents is not known. Herein, we show that K13-acetylated HOXB13 is induced rapidly in PC cells in response to DNA damage induced by irradiation (IR). It colocalizes with the histone variant γH2AX at sites of double strand breaks (DSBs). Treatment of PCs with the Androgen Receptor (AR) antagonist Enzalutamide (ENZ) did not suppress DNA-damage-induced HOXB13 acetylation. In contrast, HOXB13 depletion or loss of acetylation overcame resistance of PC cells to ENZ and synergized with IR. HOXB13K13A mutants show diminished replication fork progression, impaired G2/M arrest with significant cell death following DNA damage. Mechanistically, we found that amino terminus regulates HOXB13 nuclear puncta formation that is essential for proper DNA damage response. Therefore, targeting HOXB13 acetylation with CBP/p300 inhibitors in combination with DNA damaging therapy may be an effective strategy to overcome anti-androgen resistance of PCs.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Urvashi Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- A.T. Still University of Health Sciences, Kirksville, MO 63501, USA
| | - Duminduni Hewa Angappulige
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Aashna Doshi
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nupam P. Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
27
|
Wei X, Yi J, Zhang C, Wang M, Wang R, Xu W, Zhao M, Zhao M, Yang T, Wei W, Jin S, Gao H. Enhancement of the Tumor Suppression Effect of High-dose Radiation by Low-dose Pre-radiation Through Inhibition of DNA Damage Repair and Increased Pyroptosis. Dose Response 2024; 22:15593258241245804. [PMID: 38617388 PMCID: PMC11010768 DOI: 10.1177/15593258241245804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
Radiation therapy has been a critical and effective treatment for cancer. However, not all cells are destroyed by radiation due to the presence of tumor cell radioresistance. In the current study, we investigated the effect of low-dose radiation (LDR) on the tumor suppressive effect of high-dose radiation (HDR) and its mechanism from the perspective of tumor cell death mode and DNA damage repair, aiming to provide a foundation for improving the efficacy of clinical tumor radiotherapy. We found that LDR pre-irradiation strengthened the HDR-inhibited A549 cell proliferation, HDR-induced apoptosis, and G2 phase cell cycle arrest under co-culture conditions. RNA-sequencing showed that differentially expressed genes after irradiation contained pyroptosis-related genes and DNA damage repair related genes. By detecting pyroptosis-related proteins, we found that LDR could enhance HDR-induced pyroptosis. Furthermore, under co-culture conditions, LDR pre-irradiation enhances the HDR-induced DNA damage and further suppresses the DNA damage-repairing process, which eventually leads to cell death. Lastly, we established a tumor-bearing mouse model and further demonstrated that LDR local pre-irradiation could enhance the cancer suppressive effect of HDR. To summarize, our study proved that LDR pre-irradiation enhances the tumor-killing function of HDR when cancer cells and immune cells were coexisting.
Collapse
Affiliation(s)
- Xinfeng Wei
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Junxuan Yi
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Citong Zhang
- Department of Oral Comprehensive Therapy, School of Stomatology, Jilin University, Changchun, China
| | - Mingwei Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Rui Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Weiqiang Xu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Mingqi Zhao
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Mengdie Zhao
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Teng Yang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Wei Wei
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| | - Shunzi Jin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Hui Gao
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
He H, Liang L, Jiang S, Liu Y, Huang J, Sun X, Li Y, Jiang Y, Cong L. GINS2 regulates temozolomide chemosensitivity via the EGR1/ECT2 axis in gliomas. Cell Death Dis 2024; 15:205. [PMID: 38467631 PMCID: PMC10928080 DOI: 10.1038/s41419-024-06586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Temozolomide (TMZ), a DNA alkylating agent, has become the primary treatment for glioma, the most common malignancy of the central nervous system. Although TMZ-containing regimens produce significant clinical response rates, some patients inevitably suffer from inferior treatment outcomes or disease relapse, likely because of poor chemosensitivity of glioma cells due to a robust DNA damage response (DDR). GINS2, a subunit of DNA helicase, contributes to maintaining genomic stability and is highly expressed in various cancers, promoting their development. Here, we report that GINS2 was upregulated in TMZ-treated glioma cells and co-localized with γH2AX, indicating its participation in TMZ-induced DDR. Furthermore, GINS2 regulated the malignant phenotype and TMZ sensitivity of glioma cells, mostly by promoting DNA damage repair by affecting the mRNA stability of early growth response factor 1 (EGR1), which in turn regulates the transcription of epithelial cell-transforming sequence 2 (ECT2). We constructed a GINS2-EGR1-ECT2 prognostic model, which accurately predicted patient survival. Further, we screened Palbociclib/BIX-02189 which dampens GINS2 expression and synergistically inhibits glioma cell proliferation with TMZ. These findings delineate a novel mechanism by which GINS2 regulates the TMZ sensitivity of glioma cells and propose a promising combination therapy to treat glioma.
Collapse
Affiliation(s)
- Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Lu Liang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Shiyao Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yueying Liu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Xiaoyan Sun
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yi Li
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| |
Collapse
|
29
|
Andre M, Caobi A, Miles JS, Vashist A, Ruiz MA, Raymond AD. Diagnostic potential of exosomal extracellular vesicles in oncology. BMC Cancer 2024; 24:322. [PMID: 38454346 PMCID: PMC10921614 DOI: 10.1186/s12885-024-11819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024] Open
Abstract
Liquid biopsy can detect circulating cancer cells or tumor cell-derived DNA at various stages of cancer. The fluid from these biopsies contains extracellular vesicles (EVs), such as apoptotic bodies, microvesicles, exomeres, and exosomes. Exosomes contain proteins and nucleic acids (DNA/RNA) that can modify the microenvironment and promote cancer progression, playing significant roles in cancer pathology. Clinically, the proteins and nucleic acids within the exosomes from liquid biopsies can be biomarkers for the detection and prognosis of cancer. We review EVs protein and miRNA biomarkers identified for select cancers, specifically melanoma, glioma, breast, pancreatic, hepatic, cervical, prostate colon, and some hematological malignancies. Overall, this review demonstrates that EV biomolecules have great potential to expand the diagnostic and prognostic biomarkers used in Oncology; ultimately, EVs could lead to earlier detection and novel therapeutic targets. Clinical implicationsEVs represent a new paradigm in cancer diagnostics and therapeutics. The potential use of exosomal contents as biomarkers for diagnostic and prognostic indicators may facilitate cancer management. Non-invasive liquid biopsy is helpful, especially when the tumor is difficult to reach, such as in pancreatic adenocarcinoma. Moreover, another advantage of using minimally invasive liquid biopsy is that monitoring becomes more manageable. Identifying tumor-derived exosomal proteins and microRNAs would allow a more personalized approach to detecting cancer and improving treatment.
Collapse
Affiliation(s)
- Mickensone Andre
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Allen Caobi
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Jana S Miles
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Arti Vashist
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Marco A Ruiz
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
- Medical Oncology, Baptist Health Miami Cancer Institute, Miami, 33176, FL, USA
| | - Andrea D Raymond
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA.
| |
Collapse
|
30
|
Yang X, Hu X, Yin J, Li W, Fu Y, Yang B, Fan J, Lu F, Qin T, Kang X, Zhuang X, Li F, Xiao R, Shi T, Song K, Li J, Chen G, Sun C. Comprehensive multi-omics analysis reveals WEE1 as a synergistic lethal target with hyperthermia through CDK1 super-activation. Nat Commun 2024; 15:2089. [PMID: 38453961 PMCID: PMC10920785 DOI: 10.1038/s41467-024-46358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Hyperthermic intraperitoneal chemotherapy's role in ovarian cancer remains controversial, hindered by limited understanding of hyperthermia-induced tumor cellular changes. This limits developing potent combinatory strategies anchored in hyperthermic intraperitoneal therapy (HIPET). Here, we perform a comprehensive multi-omics study on ovarian cancer cells under hyperthermia, unveiling a distinct molecular panorama, primarily characterized by rapid protein phosphorylation changes. Based on the phospho-signature, we pinpoint CDK1 kinase is hyperactivated during hyperthermia, influencing the global signaling landscape. We observe dynamic, reversible CDK1 activity, causing replication arrest and early mitotic entry post-hyperthermia. Subsequent drug screening shows WEE1 inhibition synergistically destroys cancer cells with hyperthermia. An in-house developed miniaturized device confirms hyperthermia and WEE1 inhibitor combination significantly reduces tumors in vivo. These findings offer additional insights into HIPET, detailing molecular mechanisms of hyperthermia and identifying precise drug combinations for targeted treatment. This research propels the concept of precise hyperthermic intraperitoneal therapy, highlighting its potential against ovarian cancer.
Collapse
Affiliation(s)
- Xiaohang Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, PR China
| | - Xingyuan Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Jingjing Yin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Wenting Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shihezi University Shihezi, Xinjiang, 832000, PR China
| | - Yu Fu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Bin Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Junpeng Fan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Funian Lu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Tianyu Qin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Xiaoyan Kang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Xucui Zhuang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Fuxia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shihezi University Shihezi, Xinjiang, 832000, PR China
| | - Rourou Xiao
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China
| | - Tingyan Shi
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, PR China
| | - Jing Li
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, 33 Yingfeng Road, Guangzhou, 510000, PR China.
| | - Gang Chen
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China.
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China.
| | - Chaoyang Sun
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China.
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China.
| |
Collapse
|
31
|
Chen Q, Fang C, Xia F, Wang Q, Li F, Ling D. Metal nanoparticles for cancer therapy: Precision targeting of DNA damage. Acta Pharm Sin B 2024; 14:1132-1149. [PMID: 38486992 PMCID: PMC10934341 DOI: 10.1016/j.apsb.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/30/2023] [Accepted: 08/15/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer, a complex and heterogeneous disease, arises from genomic instability. Currently, DNA damage-based cancer treatments, including radiotherapy and chemotherapy, are employed in clinical practice. However, the efficacy and safety of these therapies are constrained by various factors, limiting their ability to meet current clinical demands. Metal nanoparticles present promising avenues for enhancing each critical aspect of DNA damage-based cancer therapy. Their customizable physicochemical properties enable the development of targeted and personalized treatment platforms. In this review, we delve into the design principles and optimization strategies of metal nanoparticles. We shed light on the limitations of DNA damage-based therapy while highlighting the diverse strategies made possible by metal nanoparticles. These encompass targeted drug delivery, inhibition of DNA repair mechanisms, induction of cell death, and the cascading immune response. Moreover, we explore the pivotal role of physicochemical factors such as nanoparticle size, stimuli-responsiveness, and surface modification in shaping metal nanoparticle platforms. Finally, we present insights into the challenges and future directions of metal nanoparticles in advancing DNA damage-based cancer therapy, paving the way for novel treatment paradigms.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunyan Fang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Xia
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| |
Collapse
|
32
|
Nagai H. Immunoradiation Therapy for End-Stage Undifferentiated Cervical Cancer That Restored Sensitivity to Chemotherapy and Resulted in the Disappearance of the Cancer. Cureus 2024; 16:e57144. [PMID: 38559531 PMCID: PMC10978461 DOI: 10.7759/cureus.57144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Among cervical cancers, small cell undifferentiated carcinoma is rare. Because of its rapid progression, the prognosis is extremely poor. During the course of cisplatin-based chemotherapy for stage Ⅳ small cell undifferentiated carcinoma of the cervix, the patient developed drug resistance, and standard treatment was no longer feasible. Therefore, immunoradiotherapy was administered to activate anticancer immunity. Surprisingly, the cancer drug sensitivity was restored, and cisplatin was again successful, and the cancer disappeared. In addition, the activation of cancer-specific immunity maintained the disappearance of the cancer. It should be noted that immunoradiotherapy not only increases anti-cancer immunity but may also contribute to overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Hisashi Nagai
- Human and Environmental Studies, Tokai University, Kanagawa, JPN
- Oncology, Ginza Phoenix Clinic, Tokyo, JPN
| |
Collapse
|
33
|
Miao YR, Rankin EB, Giaccia AJ. Therapeutic targeting of the functionally elusive TAM receptor family. Nat Rev Drug Discov 2024; 23:201-217. [PMID: 38092952 PMCID: PMC11335090 DOI: 10.1038/s41573-023-00846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 03/07/2024]
Abstract
The TAM receptor family of TYRO3, AXL and MERTK regulates tissue and immune homeostasis. Aberrant TAM receptor signalling has been linked to a range of diseases, including cancer, fibrosis and viral infections. Specifically, the dysregulation of TAM receptors can enhance tumour growth and metastasis due to their involvement in multiple oncogenic pathways. For example, TAM receptors have been implicated in the epithelial-mesenchymal transition, maintaining the stem cell phenotype, immune modulation, proliferation, angiogenesis and resistance to conventional and targeted therapies. Therapeutically, multiple TAM receptor inhibitors are in preclinical and clinical development for cancers and other indications, with those targeting AXL being the most clinically advanced. Although there has been notable clinical advancement in recent years, challenges persist. This Review aims to provide both biological and clinical insights into the current therapeutic landscape of TAM receptor inhibitors, and evaluates their potential for the treatment of cancer and non-malignant diseases.
Collapse
Affiliation(s)
- Yu Rebecca Miao
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
34
|
Sun S, Wang K, Guo D, Zheng H, Liu Y, Shen H, Du J. Identification of the key DNA damage response genes for predicting immunotherapy and chemotherapy efficacy in lung adenocarcinoma based on bulk, single-cell RNA sequencing, and spatial transcriptomics. Comput Biol Med 2024; 171:108078. [PMID: 38340438 DOI: 10.1016/j.compbiomed.2024.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/24/2023] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) plus chemotherapy is the preferred first-line treatment for advanced driver-negative lung adenocarcinoma (LUAD). The DNA damage response (DDR) is the main mechanism underlying chemotherapy resistance, and EGLN3 is a key DDR component. METHOD We conducted an analysis utilizing TCGA and GEO databases employing multiple labels-WGCNA, DEGs, and prognostic assessments. Using bulk RNA-seq and scRNA-seq data, we isolated EGLN3 as the single crucial DDR gene. Spatial transcriptome analysis revealed the spatial differential distribution of EGLN3. TIDE/IPS scores and pRRophetic/oncoPredict R packages were used to predict resistance to ICI and chemotherapy drugs, respectively. RESULTS EGLN3 was overexpressed in LUAD tissues (p < 0.001), with the high EGLN3 expression group exhibiting a poor prognosis (p = 0.00086, HR: 1.126 [1.039-1.22]). Spatial transcriptome analysis revealed EGLN3 overexpression in cancerous and hypoxic regions, positively correlating with DDR-related and TGF-β pathways. Drug response predictions indicated EGLN3's resistance to the common chemotherapy drugs, including cisplatin (p = 6.1e-14), docetaxel (p = 1.1e-07), and paclitaxel (p = 4.2e-07). Furthermore, on analyzing the resistance mechanism, we found that EGLN3 regulated DDR-related pathways and induced chemotherapy resistance. Additionally, EGLN3 influenced TGF-β signaling, Treg cells, and cancer-associated fibroblast cells, culminating in immunotherapy resistance. Moreover, validation using real-world data, such as GSE126044, GSE135222, and, IMvigor210, substantiated the response trends to immunotherapy and chemotherapy. CONCLUSIONS EGLN3 emerges as a potential biomarker predicting lower response to both immunotherapy and chemotherapy, suggesting its promise as a therapeutic target in advanced LUAD.
Collapse
Affiliation(s)
- Shijie Sun
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Kai Wang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Healthcare Respiratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Deyu Guo
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Haotian Zheng
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yong Liu
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Hongchang Shen
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
35
|
Guney Eskiler G, Halis H, Hamarat KF, Derlioglu RR, Ugurlu BT, Haciefendi A. The ATR inhibition by Elimusertib enhances the radiosensitivity of MDA-MB-231 triple negative breast cancer in vitro. Int J Radiat Biol 2024; 100:715-723. [PMID: 38421209 DOI: 10.1080/09553002.2024.2316606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE DNA damage response (DDR) is the principal mechanism regulating genomic stability and cell cycle checkpoint activation by coordinating DNA repair and apoptotic pathways. Ataxia telangiectasia and Rad3-related protein (ATR) play a significant role in the DDR due to its capability to detect a wide spectrum of DNA damage. Therefore, targeting DDR, specifically ATR, is a promising therapeutic strategy in cancer treatment. Furthermore, the inhibition of ATR sensitizes cancer cells to radiotherapy (RT). Herein, we, for the first time, investigated the synergistic effects of Elimusertib (BAY-1895344) as a highly potent selective ATR inhibitor with RT combination in triple-negative breast cancer (TNBC), in vitro. METHODS MDA-MB-231 TNBC cells were firstly treated with different concentrations of Elimusertib for 24 h and then exposed to 4 and 8 Gy of X-ray irradiation. After post-irradiation for 72 h, WST-1, Annexin V, cell cycle, acridine orange/propidium iodide, mitochondria staining and western blot analysis were conducted. RESULTS Our findings showed that 4 Gy irradiation and lower doses (especially 2 and 4 nM) of Elimusertib combination exerted a considerable anticancer activity at 72 h post-irradiation through apoptotic cell death, marked nuclear and mitochondrial damages and the suppression of ATR-Chk1 based DDR mechanism. CONCLUSION ATR inhibition by Elimusertib in combination with RT may be a promising new treatment strategy in the treatment of TNBC. However, further experiments should be performed to elucidate the underlying molecular mechanisms of the therapeutic efficacy of this combination treatment and its association with DNS repair mechanisms in TNBC, in vitro and in vivo.
Collapse
Affiliation(s)
| | - Hatice Halis
- Department of Radiation Oncology, Sakarya Training and Research Hospital, Sakarya, Turkey
| | | | - Rabia Rana Derlioglu
- Department of Medical Biology, Institute of Health Sciences, Sakarya University, Sakarya, Turkey
| | | | - Ayten Haciefendi
- Department of Medical Biology, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
36
|
Rossini E, Tamburello M, Abate A, Zini S, Ribaudo G, Gianoncelli A, Calza S, Valcamonico F, Suardi NR, Mirabella G, Berruti A, Sigala S. The CDK Inhibitor Dinaciclib Improves Cisplatin Response in Nonseminomatous Testicular Cancer: A Preclinical Study. Cells 2024; 13:368. [PMID: 38474332 DOI: 10.3390/cells13050368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Most patients with testicular germ cell tumors (GCTs) are treated with cisplatin (CP)-based chemotherapy. However, some of them may develop CP resistance and therefore represent a clinical challenge. Cyclin-dependent kinase 5 (CDK5) is involved in chemotherapy resistance in different types of cancer. Here, we investigated the possible role of CDK5 and other CDKs targeted by dinaciclib in nonseminoma cell models (both CP-sensitive and CP-resistant), evaluating the potential of the CDK inhibitor dinaciclib as a single/combined agent for the treatment of advanced/metastatic testicular cancer (TC). METHODS The effects of dinaciclib and CP on sensitive and resistant NT2/D1 and NCCIT cell viability and proliferation were evaluated using MTT assays and direct count methods. Flow cytometry cell-cycle analysis was performed. The protein expression was assessed via Western blotting. The in vivo experiments were conducted in zebrafish embryos xenografted with TC cells. RESULTS Among all the CDKs analyzed, CDK5 protein expression was significantly higher in CP-resistant models. Dinaciclib reduced the cell viability and proliferation in each cell model, inducing changes in cell-cycle distribution. In drug combination experiments, dinaciclib enhances the CP effect both in vitro and in the zebrafish model. CONCLUSIONS Dinaciclib, when combined with CP, could be useful for improving nonseminoma TC response to CP.
Collapse
Affiliation(s)
- Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Silvia Zini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Giovanni Ribaudo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alessandra Gianoncelli
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Stefano Calza
- Unit of Biostatistics and Bioinformatics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Francesca Valcamonico
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Nazareno R Suardi
- Urology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Giuseppe Mirabella
- Urology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Alfredo Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
37
|
Alemi F, Poornajaf Y, Hosseini F, Vahedian V, Gharekhani M, Shoorei H, Taheri M. Interaction between lncRNAs and RNA-binding proteins (RBPs) influences DNA damage response in cancer chemoresistance. Mol Biol Rep 2024; 51:308. [PMID: 38366290 DOI: 10.1007/s11033-024-09288-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
The DNA damage response (DDR) is a crucial cellular signaling pathway activated in response to DNA damage, including damage caused by chemotherapy. Chemoresistance, which refers to the resistance of cancer cells to the effects of chemotherapy, poses a significant challenge in cancer treatment. Understanding the relationship between DDR and chemoresistance is vital for devising strategies to overcome this resistance and improve treatment outcomes. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not code for proteins but play important roles in various biological processes, including cancer development and chemoresistance. RNA-binding proteins (RBPs) are a group of proteins that bind to RNA molecules and regulate their functions. The interaction between lncRNAs and RBPs has been found to regulate gene expression at the post-transcriptional level, thereby influencing various cellular processes, including DDR signaling pathways. Multiple studies have demonstrated that lncRNAs can interact with RBPs to modulate the expression of genes involved in cancer chemoresistance by impacting DDR signaling pathways. Conversely, RBPs can regulate the expression and function of lncRNAs involved in DDR. Exploring these interactions can provide valuable insights for the development of innovative therapeutic approaches to overcome chemoresistance in cancer patients. This review article aims to summarize recent research on the interaction between lncRNAs and RBPs during cancer chemotherapy, with a specific focus on DDR pathways.
Collapse
Affiliation(s)
- Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Foroogh Hosseini
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Vahid Vahedian
- Department of Medical Clinic, Division of Hematology/Oncology and Cellular Therapy, Faculty of Medicine, University of Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Mahdi Gharekhani
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
- Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand, Iran.
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Liu N, Chen M. Crosstalk between ferroptosis and cuproptosis: From mechanism to potential clinical application. Biomed Pharmacother 2024; 171:116115. [PMID: 38181713 DOI: 10.1016/j.biopha.2023.116115] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Ferroptosis and cuproptosis, regulated forms of cell death resulting from metal ion accumulation, are closely related in terms of occurrence, cell metabolism, signaling pathways, and drug resistance. Notably, it is now understood that these processes play crucial roles in regulating physiological and pathological processes, especially in tumor development. Consequently, ferroptosis and cuproptosis have gained increasing significance as potential targets for anti-cancer drug development. This article systematically outlines the molecular mechanisms and cross-talk components of both ferroptosis and cuproptosis, elucidating their impacts on cancer. Furthermore, it investigates the clinical perspective of targeted ferroptosis and cuproptosis in cancer chemotherapy, immunotherapy, and radiotherapy. Our discussion extends to a comparative analysis of nanoparticles developed based on the mechanisms of ferroptosis and cuproptosis in cancer, contrasting them with current conventional therapies. Opportunities and challenges in cancer treatment are explored, emphasizing the potential therapeutic direction of co-targeting ferroptosis and cuproptosis. The article also attempts to analyze the clinical applications of this co-targeting approach for cancer treatment while summarizing the existing barriers that require overcoming.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| |
Collapse
|
39
|
Qian H, Margaretha Plat A, Jonker A, Hoebe RA, Krawczyk P. Super-resolution GSDIM microscopy unveils distinct nanoscale characteristics of DNA repair foci under diverse genotoxic stress. DNA Repair (Amst) 2024; 134:103626. [PMID: 38232606 DOI: 10.1016/j.dnarep.2024.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
DNA double-strand breaks initiate the DNA damage response (DDR), leading to the accumulation of repair proteins at break sites and the formation of the-so-called foci. Various microscopy methods, such as wide-field, confocal, electron, and super-resolution microscopy, have been used to study these structures. However, the impact of different DNA-damaging agents on their (nano)structure remains unclear. Utilising GSDIM super-resolution microscopy, here we investigated the distribution of fluorescently tagged DDR proteins (53BP1, RNF168, MDC1) and γH2AX in U2OS cells treated with γ-irradiation, etoposide, cisplatin, or hydroxyurea. Our results revealed that both foci structure and their nanoscale ultrastructure, including foci size, nanocluster characteristics, fluorophore density and localisation, can be significantly altered by different inducing agents, even ones with similar mechanisms. Furthermore, distinct behaviours of DDR proteins were observed under the same treatment. These findings have implications for cancer treatment strategies involving these agents and provide insights into the nanoscale organisation of the DDR.
Collapse
Affiliation(s)
- Haibin Qian
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Audrey Margaretha Plat
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Ard Jonker
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Ron A Hoebe
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Przemek Krawczyk
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
40
|
Zhang Y, Hao M, Yang X, Zhang S, Han J, Wang Z, Chen HN. Reactive oxygen species in colorectal cancer adjuvant therapies. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166922. [PMID: 37898425 DOI: 10.1016/j.bbadis.2023.166922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Colorectal cancer (CRC), a prevalent global malignancy, often necessitates adjuvant therapies such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy to mitigate tumor burden in advanced stages. The efficacy of these therapies is significantly influenced by reactive oxygen species (ROS). Previous research underscores the pivotal role of ROS in gut pathology, targeted therapy, and drug resistance. ROS-mediated CRC adjuvant therapies encompass a myriad of mechanisms, including cell death and proliferation, survival and cell cycle, DNA damage, metabolic reprogramming, and angiogenesis. Preliminary clinical trials have begun to unveil the potential of ROS-manipulating therapy in enhancing CRC adjuvant therapies. This review aims to provide a comprehensive synthesis of studies exploring the role of ROS in CRC adjuvant therapies.
Collapse
Affiliation(s)
- Yang Zhang
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengqiu Hao
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuyang Yang
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Zhang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziqiang Wang
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hai-Ning Chen
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
41
|
Feng H, Li W, Zhang Y, Chang C, Hua L, Feng Y, Lai Y, Geng L. Mechanistic modelling of relative biological effectiveness of carbon ion beams and comparison with experiments. Phys Med Biol 2024; 69:035020. [PMID: 38157549 DOI: 10.1088/1361-6560/ad1998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Objective.Relative biological effectiveness (RBE) plays a vital role in carbon ion radiotherapy, which is a promising treatment method for reducing toxic effects on normal tissues and improving treatment efficacy. It is important to have an effective and precise way of obtaining RBE values to support clinical decisions. A method of calculating RBE from a mechanistic perspective is reported.Approach.Ratio of dose to obtain the same number of double strand breaks (DSBs) between different radiation types was used to evaluate RBE. Package gMicroMC was used to simulate DSB yields. The DSB inductions were then analyzed to calculate RBE. The RBE values were compared with experimental results.Main results.Furusawa's experiment yielded RBE values of 1.27, 2.22, 3.00 and 3.37 for carbon ion beam with dose-averaged LET of 30.3 keVμm-1, 54.5 keVμm-1, 88 keVμm-1and 137 keVμm-1, respectively. RBE values computed from gMicroMC simulations were 1.75, 2.22, 2.87 and 2.97. When it came to a more sophisticated carbon ion beam with 6 cm spread-out Bragg peak, RBE values were 1.61, 1.63, 2.19 and 2.36 for proximal, middle, distal and distal end part, respectively. Values simulated by gMicroMC were 1.50, 1.87, 2.19 and 2.34. The simulated results were in reasonable agreement with the experimental data.Significance.As a mechanistic way for the evaluation of RBE for carbon ion radiotherapy by combining the macroscopic simulation of energy spectrum and microscopic simulation of DNA damages, this work provides a promising tool for RBE calculation supporting clinical applications such as treatment planning.
Collapse
Affiliation(s)
- Haonan Feng
- School of Physics, Beihang University, Beijing 102206, People's Republic of China
- Department of Medical Management, Chinese Academy of Science Heavy Ion Medicine (CASHIM) Co. Ltd, Beijing 100083, People's Republic of China
| | - Weiguang Li
- School of Physics, Beihang University, Beijing 102206, People's Republic of China
- Department of Medical Management, Chinese Academy of Science Heavy Ion Medicine (CASHIM) Co. Ltd, Beijing 100083, People's Republic of China
| | - Yibao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Cheng Chang
- Department of Medical Management, Chinese Academy of Science Heavy Ion Medicine (CASHIM) Co. Ltd, Beijing 100083, People's Republic of China
| | - Ling Hua
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Yiwen Feng
- Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Youfang Lai
- Department of Medical Management, Chinese Academy of Science Heavy Ion Medicine (CASHIM) Co. Ltd, Beijing 100083, People's Republic of China
| | - LiSheng Geng
- School of Physics, Beihang University, Beijing 102206, People's Republic of China
- Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, People's Republic of China
- Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 102206, People's Republic of China
- Southern Center for Nuclear-Science Theory (SCNT), Institute of Modern Physics, Chinese Academy of Sciences, Huizhou 516000, Guangdong Province, People's Republic of China
| |
Collapse
|
42
|
Chen Y, Zhou Y, Feng X, Wu Z, Yang Y, Rao X, Zhou R, Meng R, Dong X, Xu S, Zhang S, Wu G, Jie X. Targeting FBXO22 enhances radiosensitivity in non-small cell lung cancer by inhibiting the FOXM1/Rad51 axis. Cell Death Dis 2024; 15:104. [PMID: 38296976 PMCID: PMC10830569 DOI: 10.1038/s41419-024-06484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Radioresistance is a major constraint on the efficacy of lung cancer radiotherapy, but its mechanism has not been fully elucidated. Here, we found that FBXO22 was aberrantly highly expressed in lung cancer and that FBXO22 knockdown increased the radiosensitivity of lung cancer cells. Mechanistically, FBXO22 promoted Rad51 gene transcription by increasing the level of FOXM1 at the Rad51 promoter, thereby inducing the formation of lung cancer radioresistance. Furthermore, we found that deguelin, a potential inhibitor of FBXO22, enhanced radiosensitivity in an FBXO22/Rad51-dependent manner and was safely tolerated in vivo. Collectively, our results illustrate that FBXO22 induces lung cancer radioresistance by activating the FOXM1/Rad51 axis and provide preclinical evidence for the clinical translation of this critical target.
Collapse
Affiliation(s)
- Yunshang Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yun Zhou
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xue Feng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zilong Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yongqiang Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Xiaohua Jie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| |
Collapse
|
43
|
Cheng KW, Su PR, Feller KJA, Chien MP, Hsu CC. Investigating the Metabolic Heterogeneity of Cancer Cells Using Functional Single-Cell Selection and nLC Combined with Multinozzle Emitter Mass Spectrometry. Anal Chem 2024; 96:624-629. [PMID: 38157203 DOI: 10.1021/acs.analchem.3c03688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Tumor metastasis and cancer recurrence are often a result of cell heterogeneity, where specific subpopulations of tumor cells may be resistant to radio- or chemotherapy. To investigate this physiological and phenotypic diversity, single-cell metabolomics provides a powerful approach at the chemical level, where distinct lipid profiles can be found in different tumor cells. Here, we established a highly sensitive platform using nanoflow liquid chromatography (nLC) combined with multinozzle emitter electrospray ionization mass spectrometry for more in-depth metabolomics profiling. Our platform identified 15 and 17 lipids from individual osteosarcoma (U2OS) and glioblastoma (GBM) cells when analyzing single-cell samples. Additionally, we used the functional single-cell selection (fSCS) pipeline to analyze the subpopulations of cells with a DNA damage response (DDR) in U2OS cells and fast migration in GBM cells. Specifically, we observed a down-regulation of polyunsaturated fatty acids (PUFAs) in U2OS cells undergoing DDR, such as fatty acids FA 20:3; O2 and FA 17:4; O3. Furthermore, ceramides (Cer 38:0; O3) and triglycerides (TG 36:0) were found to be down-regulated in fast-migrating GBM cells compared to the slow-migrating subpopulation. These findings suggest the potential roles of these metabolites and/or lipids in the cellular behavior of the subpopulations.
Collapse
Affiliation(s)
- Kai-Wen Cheng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Pin-Rui Su
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Kate Jo-Ann Feller
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Miao-Ping Chien
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
44
|
Skrodzki D, Molinaro M, Brown R, Moitra P, Pan D. Synthesis and Bioapplication of Emerging Nanomaterials of Hafnium. ACS NANO 2024; 18:1289-1324. [PMID: 38166377 DOI: 10.1021/acsnano.3c08917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
A significant amount of progress in nanotechnology has been made due to the development of engineered nanoparticles. The use of metallic nanoparticles for various biomedical applications has been extensively investigated. Biomedical research is highly focused on them because of their inert nature, nanoscale structure, and similar size to many biological molecules. The intrinsic characteristics of these particles, including electronic, optical, physicochemical, and surface plasmon resonance, that can be altered by altering their size, shape, environment, aspect ratio, ease of synthesis, and functionalization properties, have led to numerous biomedical applications. Targeted drug delivery, sensing, photothermal and photodynamic therapy, and imaging are some of these. The promising clinical results of NBTXR3, a high-Z radiosensitizing nanomaterial derived from hafnium, have demonstrated translational potential of this metal. This radiosensitization approach leverages the dependence of energy attenuation on atomic number to enhance energy-matter interactions conducive to radiation therapy. High-Z nanoparticle localization in tumor issue differentially increases the effect of ionizing radiation on cancer cells versus nearby healthy ones and mitigates adverse effects by reducing the overall radiation burden. This principle enables material multifunctionality as contrast agents in X-ray-based imaging. The physiochemical properties of hafnium (Z = 72) are particularly advantageous for these applications. A well-placed K-edge absorption energy and high mass attenuation coefficient compared to elements in human tissue across clinical energy ranges leads to significant attenuation. Chemical reactivity allows for variety in nanoparticle synthesis, composition, and functionalization. Nanoparticles such as hafnium oxide exhibit excellent biocompatibility due to physiochemical inertness prior to incidence with ionizing radiation. Additionally, the optical and electronic properties are applicable in biosensing, optical component coatings, and semiconductors. The wide interest has prompted extensive research in design and synthesis to facilitate property fine-tuning. This review summarizes synthetic methods for hafnium-based nanomaterials and applications in therapy, imaging, and biosensing with a mechanistic focus. A discussion and future perspective section highlights clinical progress and elaborates on current challenges. By focusing on factors impacting applicational effectiveness and examining limitations this review aims to support researchers and expedite clinical translation of future hafnium-based nanomedicine.
Collapse
Affiliation(s)
- David Skrodzki
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Matthew Molinaro
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Richard Brown
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Parikshit Moitra
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dipanjan Pan
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, 101 Huck Life Sciences Building, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
45
|
Liu H, Fu H, Yu C, Zhang N, Huang C, Lv L, Hu C, Chen F, Xiao Z, Zhang Z, Lu H, Yuan K. Transcriptional pausing induced by ionizing radiation enables the acquisition of radioresistance in nasopharyngeal carcinoma. J Mol Cell Biol 2024; 15:mjad044. [PMID: 37407287 PMCID: PMC10960568 DOI: 10.1093/jmcb/mjad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/24/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023] Open
Abstract
Lesions on the DNA template can impact transcription via distinct regulatory pathways. Ionizing radiation (IR) as the mainstay modality for many malignancies elicits most of the cytotoxicity by inducing a variety of DNA damages in the genome. How the IR treatment alters the transcription cycle and whether it contributes to the development of radioresistance remain poorly understood. Here, we report an increase in the paused RNA polymerase II (RNAPII), as indicated by the phosphorylation at serine 5 residue of its C-terminal domain, in recurrent nasopharyngeal carcinoma (NPC) patient samples after IR treatment and cultured NPC cells developing IR resistance. Reducing the pool of paused RNAPII by either inhibiting TFIIH-associated CDK7 or stimulating the positive transcription elongation factor b, a CDK9-CycT1 heterodimer, attenuates IR resistance of NPC cells. Interestingly, the poly(ADP-ribosyl)ation of CycT1, which disrupts its phase separation, is elevated in the IR-resistant cells. Mutation of the major poly(ADP-ribosyl)ation sites of CycT1 decreases RNAPII pausing and restores IR sensitivity. Genome-wide chromatin immunoprecipitation followed by sequencing analyses reveal that several genes involved in radiation response and cell cycle control are subject to the regulation imposed by the paused RNAPII. Particularly, we identify the NIMA-related kinase NEK7 under such regulation as a new radioresistance factor, whose downregulation results in the increased chromosome instability, enabling the development of IR resistance. Overall, our results highlight a novel link between the alteration in the transcription cycle and the acquisition of IR resistance, opening up new opportunities to increase the efficacy of radiotherapy and thwart radioresistance in NPC.
Collapse
Affiliation(s)
- Honglu Liu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huanyi Fu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Chunhong Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Na Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Canhua Huang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Zhiqiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhuohua Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huasong Lu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- The Biobank of Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
46
|
Rismanbaf A. Improving targeted small molecule drugs to overcome chemotherapy resistance. Cancer Rep (Hoboken) 2024; 7:e1945. [PMID: 37994401 PMCID: PMC10809209 DOI: 10.1002/cnr2.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Conventional cancer treatments face the challenge of therapeutic resistance, which causes poor treatment outcomes. The use of combination therapies can improve treatment results in patients and is one of the solutions to overcome this challenge. Chemotherapy is one of the conventional treatments that, due to the non-targeted and lack of specificity in targeting cancer cells, can cause serious complications in the short and long-term for patients by damaging healthy cells. Also, the employment of a wide range of strategies for chemotherapy resistance by cancer cells, metastasis, and cancer recurrence create serious problems to achieve the desired results of chemotherapy. Accordingly, targeted therapies can be used as a combination treatment with chemotherapy to both cause less damage to healthy cells, which as a result, they reduce the side effects of chemotherapy, and by targeting the factors that cause therapeutic challenges, can improve the results of chemotherapy in patients. RECENT FINDINGS Small molecules are one of the main targeted therapies that can be used for diverse targets in cancer treatment due to their penetration ability and characteristics. However, small molecules in cancer treatment are facing obstacles that a better understanding of cancer biology, as well as the mechanisms and factors involved in chemotherapy resistance, can lead to the improvement of this type of major targeted therapy. CONCLUSION In this review article, at first, the challenges that lead to not achieving the desired results in chemotherapy and how cancer cells can be resistant to chemotherapy are examined, and at the end, research areas are suggested that more focusing on them, can lead to the improvement of the results of using targeted small molecules as an adjunctive treatment for chemotherapy in the conditions of chemotherapy resistance and metastasis of cancer cells.
Collapse
Affiliation(s)
- Amirhossein Rismanbaf
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
47
|
Tang W, Zhou LJ, Zhang WQ, Jia YJ, Ge MW, Hu FH, Chen HL. Association of radiotherapy for prostate cancer and second primary colorectal cancer: a US population-based analysis. Tech Coloproctol 2023; 28:14. [PMID: 38095784 DOI: 10.1007/s10151-023-02883-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Radiotherapy (RT) is a common treatment for prostate cancer, yet the risk of second primary colorectal cancer (SPCRC) in patients with prostate cancer undergoing RT has not been adequately studied. METHODS This study employed a population-based cohort design using the US Surveillance, Epidemiology, and End Results (SEER) database to identify individuals diagnosed between January 1975 and December 2015. The cumulative incidence of SPCRC was estimated using Fine-Gray competing risk regression. Poisson regression analysis was used to estimate the risk associated with RT. Survival outcomes of patients with SPCRC were evaluated using the Kaplan-Meier method. RESULTS A total of 287,607 patients diagnosed with prostate cancer were identified. The cumulative incidences were higher in patients who did not receive RT (2.00%) compared to those who underwent RT (2.47%) after 25 years. After adjustment for multiple variables, RT was associated with an increased risk of developing combined SPCRC (adjusted HR 1.590). Additionally, the overall survival was significantly lower in patients who developed colorectal cancer after receiving RT as compared to those who did not receive RT. CONCLUSION These findings underscore the need for diligent long-term monitoring and effective management strategies to detect SPCRC in patients treated with RT for prostate cancer.
Collapse
Affiliation(s)
- W Tang
- Medical School, Nantong University, Nantong, China
| | - L-J Zhou
- Nursing Department, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - W-Q Zhang
- Medical School, Nantong University, Nantong, China
| | - Y-J Jia
- Medical School, Nantong University, Nantong, China
| | - M-W Ge
- Medical School, Nantong University, Nantong, China
| | - F-H Hu
- Medical School, Nantong University, Nantong, China
| | - H-L Chen
- School of Public Health, Nantong University, 9#Seyuan Road, Nantong, 226000, Jiangsu, China.
| |
Collapse
|
48
|
Xia Y, Xiang L, Yao M, Ai Z, Yang W, Guo J, Fan S, Liu N, Yang X. Proteomics, Transcriptomics, and Phosphoproteomics Reveal the Mechanism of Talaroconvolutin-A Suppressing Bladder Cancer via Blocking Cell Cycle and Triggering Ferroptosis. Mol Cell Proteomics 2023; 22:100672. [PMID: 37866481 PMCID: PMC10696259 DOI: 10.1016/j.mcpro.2023.100672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/18/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Talaroconvolutin-A (TalaA) is a compound from the endophytic fungus T. convolutispora of the Chinese herbal medicine Panax notoginseng. Whether TalaA exerts anticancer activity in bladder cancer remains unknown. Using CCK8 assay, EdU staining, crystal violet staining, flow cytometry, living/dead cell staining, and Western blotting, we studied the anticancer activity of TalaA in vitro. Moreover, we performed xenograft tumor implantation. The antitumor effects were evaluated through H&E and immunohistochemistry staining. Proteomics was conducted to detect changes in the protein profile; transcriptomics was performed to detect changes in mRNA abundance; phosphoproteomics was used to detect changes in protein phosphorylation. TalaA inhibited tumor cell proliferation, DNA replication, and colony formation in a dose-dependent manner in bladder cancer cells. The IC50 values of TalaA on SW780 and UM-UC-3 cells were 5.7 and 8.2 μM, respectively. TalaA (6.0 mg/kg) significantly repressed the growth of xenografted tumors and did not affect the body weight nor cause obvious hepatorenal toxicity. TalaA arrested the cell cycle by downregulating cyclinA2, cyclinB1, and AURKB and upregulating p21/CIP. TalaA also elevated intracellular reactive oxygen species and upregulated transferrin and heme oxygenase 1 to induce ferroptosis. Moreover, TalaA was able to bind to MAPKs (MAPK1, MAPK8, and MAPK14) to inhibit the phosphorylation of ∗SP∗ motif of transcription regulators. This study revealed that TalaA inhibited bladder cancer by arresting cell cycle to suppress proliferation and triggering ferroptosis to cause cell death. Conclusively, TalaA would be a potential candidate for treating bladder cancer by targeting MAPKs, suppressing the cell cycle, and inducing ferroptosis.
Collapse
Affiliation(s)
- Yong Xia
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, China.
| | - Longquan Xiang
- Department of Pathology, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Ming Yao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhiying Ai
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, China
| | - Wei Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Jianhua Guo
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, China
| | - Shuhao Fan
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, China
| | - Ning Liu
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Xiaolong Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
49
|
Qin C, Li A, Xiao Y, Liu W, Zhai E, Li Q, Jing H, Zhang Y, Zhang H, Ma X, Tang H, Rong D. Expression of ZNF281 in colorectal cancer correlates with response to radiotherapy and survival. Ann Med 2023; 55:2278619. [PMID: 37939252 PMCID: PMC10653697 DOI: 10.1080/07853890.2023.2278619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND The treatment of Colorectal cancer (CRC) is extremely complex and survival rates vary depending on the stage of the disease at the time of diagnosis. Neoadjuvant chemoradiotherapy (NACRT), is the conventional treatment for locally advanced rectal cancer (LARC); however, the resistance to chemoradiotherapy in LARC is difficult to predict. MATERIALS AND METHODS In this study, clinical data of 126 LARC patients were collected and analyzed, and relevant validation was performed using GEO database and in vitro and in vivo experiments, including Western blotting and Real-time quantitative PCR, immunohistochemistry, immunofluorescence, clonogenic cell survival assays, and nude-mouse xenograft models. RESULTS In patients with LARC who were treated with neoadjuvant radiotherapy (NART), higher ZNF281 expression in malignant tissue was associated with a poorer prognosis and lesser degree of tumor regression. Cell and mouse experiments have shown that ZNF281 reduces the damage caused by X-rays to CRC cells and tumors grown in mice. CONCLUSION We found that the expression of ZNF281 predicted the radiation response of CRC cells and suggested the prognosis of patients with LARC who received neoadjuvant radiation therapy.
Collapse
Affiliation(s)
- Changjiang Qin
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Ang Li
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yafei Xiao
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Wenjing Liu
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Ertao Zhai
- Department of Gastrointestinal and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Quanying Li
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Hong Jing
- Department of Pathology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yijie Zhang
- Department of Pathology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Hui Zhang
- Department of Pathology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Xuhui Ma
- Department of Pathology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Hongna Tang
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Dan Rong
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
50
|
Wang R, Sun Y, Li C, Xue Y, Ba X. Targeting the DNA Damage Response for Cancer Therapy. Int J Mol Sci 2023; 24:15907. [PMID: 37958890 PMCID: PMC10648182 DOI: 10.3390/ijms242115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Over the course of long-term evolution, cells have developed intricate defense mechanisms in response to DNA damage; these mechanisms play a pivotal role in maintaining genomic stability. Defects in the DNA damage response pathways can give rise to various diseases, including cancer. The DNA damage response (DDR) system is instrumental in safeguarding genomic stability. The accumulation of DNA damage and the weakening of DDR function both promote the initiation and progression of tumors. Simultaneously, they offer opportunities and targets for cancer therapeutics. This article primarily elucidates the DNA damage repair pathways and the progress made in targeting key proteins within these pathways for cancer treatment. Among them, poly (ADP-ribose) polymerase 1 (PARP1) plays a crucial role in DDR, and inhibitors targeting PARP1 have garnered extensive attention in anticancer research. By delving into the realms of DNA damage and repair, we aspire to explore more precise and effective strategies for cancer therapy and to seek novel avenues for intervention.
Collapse
Affiliation(s)
- Ruoxi Wang
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (R.W.); (Y.S.)
| | - Yating Sun
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (R.W.); (Y.S.)
| | - Chunshuang Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China; (C.L.); (Y.X.)
| | - Yaoyao Xue
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China; (C.L.); (Y.X.)
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China; (C.L.); (Y.X.)
| |
Collapse
|