1
|
Zhang C, Zhou T, Li C, Wang D, Tao J, Zhu X, Lu J, Ni J, Yao YF. Deciphering novel enzymatic and non-enzymatic lysine lactylation in Salmonella. Emerg Microbes Infect 2025; 14:2475838. [PMID: 40035788 PMCID: PMC11924271 DOI: 10.1080/22221751.2025.2475838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/01/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Lysine lactylation, a novel post-translational modification, is involved in multiple cellular processes. The role of lactylation remains largely unknown, especially in bacteria. Here, we identified 1090 lactylation sites on 469 proteins by mass spectrometry in Salmonella Typhimurium. Many proteins involved in metabolic processes, protein translation, and other biological functions are lactylated, with lactylation levels varying according to the growth phase or lactate supplementation. Lactylation is regulated by glycolysis, and inhibition of L-lactate utilization can enhance lactylation levels. In addition to the known lactylase in E. coli, the acetyltransferase YfiQ can also catalyse lactylation. More importantly, L-lactyl coenzyme A (L-La-CoA) and S,D-lactoylglutathione (LGSH) can directly donate lactyl groups to target proteins for chemical lactylation. Lactylation is involved in Salmonella invasion of eukaryotic cells, suggesting that lactylation is crucial for bacterial virulence. Collectively, we have comprehensively investigated protein lactylome and the regulatory mechanisms of lactylation in Salmonella, providing valuable insights into studying lactylation function across diverse bacterial species.
Collapse
Affiliation(s)
- Chuanzhen Zhang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Tao Zhou
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chengxi Li
- Anhui Key Laboratory of Infection and Immunity, Department of Microbiology, Bengbu Medical College, Bengbu, People's Republic of China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jing Tao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaocen Zhu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Zheng L, Du Y, Steinchen W, Girbig M, Abendroth F, Jalomo-Khayrova E, Bedrunka P, Bekeredjian-Ding I, Mais CN, Hochberg GKA, Freitag J, Bange G. Regulation of acetyl-CoA biosynthesis via an intertwined acetyl-CoA synthetase/acetyltransferase complex. Nat Commun 2025; 16:2557. [PMID: 40089509 PMCID: PMC11910552 DOI: 10.1038/s41467-025-57842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Acetyl-CoA synthetase (Acs) generates acetyl-coenzyme A (Ac-CoA) but its excessive activity can deplete ATP and lead to a growth arrest. To prevent this, Acs is regulated through Ac-CoA-dependent feedback inhibition executed by Ac-CoA-dependent acetyltransferases such as AcuA in Bacillus subtilis. AcuA acetylates the catalytic lysine of AcsA turning the synthetase inactive. Here, we report that AcuA and AcsA form a tightly intertwined complex - the C-terminal domain binds to acetyltransferase domain of AcuA, while the C-terminus of AcuA occupies the CoA-binding site in the N-terminal domain of AcsA. Formation of the complex reduces AcsA activity in addition to the well-established acetylation of the catalytic lysine 549 in AcsA which we show can disrupt the complex. Thus, different modes of regulation accomplished through AcuA adjust AcsA activity to the concentrations of the different substrates of the reaction. In summary, our study provides detailed mechanistic insights into the regulatory framework underlying acetyl-CoA biosynthesis from acetate.
Collapse
Affiliation(s)
- Liujuan Zheng
- Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- University of Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Departments of Chemistry and Biology, Marburg, Germany.
| | - Yifei Du
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Wieland Steinchen
- University of Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Departments of Chemistry and Biology, Marburg, Germany
| | - Mathias Girbig
- Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Frank Abendroth
- University of Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Departments of Chemistry and Biology, Marburg, Germany
| | - Ekaterina Jalomo-Khayrova
- University of Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Departments of Chemistry and Biology, Marburg, Germany
| | - Patricia Bedrunka
- University of Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Departments of Chemistry and Biology, Marburg, Germany
| | | | - Christopher-Nils Mais
- University of Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Departments of Chemistry and Biology, Marburg, Germany
| | - Georg K A Hochberg
- Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
- University of Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Departments of Chemistry and Biology, Marburg, Germany
| | - Johannes Freitag
- University of Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Departments of Chemistry and Biology, Marburg, Germany
| | - Gert Bange
- Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- University of Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Departments of Chemistry and Biology, Marburg, Germany.
| |
Collapse
|
3
|
Wang Y, Wang G, Zhang L, Cai Q, Lin M, Huang D, Xie Y, Lin W, Lin X. Aeromonas hydrophila CobQ is a new type of NAD +- and Zn 2+-independent protein lysine deacetylase. eLife 2025; 13:RP97511. [PMID: 39998869 PMCID: PMC11856932 DOI: 10.7554/elife.97511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Protein NƐ-lysine acetylation (Kac) modifications play crucial roles in diverse physiological and pathological functions in cells. In prokaryotic cells, there are only two types of lysine deacetylases (KDACs) that are Zn2+- or NAD+-dependent. In this study, we reported a protein, AhCobQ, in Aeromonas hydrophila ATCC 7966 that presents NAD+- and Zn2+-independent KDAC activity. Furthermore, its KDAC activity is located in an unidentified domain (from 195 to 245 aa). Interestingly, AhCobQ has no homology with current known KDACs, and no homologous protein was found in eukaryotic cells. A protein substrate analysis showed that AhCobQ has specific protein substrates in common with other known KDACs, indicating that these KDACs can dynamically co-regulate the states of Kac proteins. Microbiological methods employed in this study affirmed AhCobQ's positive regulation of isocitrate dehydrogenase (ICD) enzymatic activity at the K388 site, implicating AhCobQ in the modulation of bacterial enzymatic activities. In summary, our findings present compelling evidence that AhCobQ represents a distinctive type of KDAC with significant roles in bacterial biological functions.
Collapse
Affiliation(s)
- Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Agricultural College, Anhui Science and Technology UniversityChuzhouChina
| | - Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingChina
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Qilan Cai
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Meizhen Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Dongping Huang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuyue Xie
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
4
|
Weber KR, Novillo B, Maupin-Furlow JA. Revisiting synthetic lethality of Gcn5-related N-acetyltransferase (GNAT) family mutations in Haloferax volcanii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638158. [PMID: 40027707 PMCID: PMC11870405 DOI: 10.1101/2025.02.13.638158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Lysine acetylation is a post-translational modification that occurs in all domains of life, highlighting its evolutionary significance. Previous genome comparison identified three Gcn5-related N-acetyltransferase (GNAT) family members as lysine acetyltransferase homologs (Pat1, Pat2, and Elp3) and two deacetylase homologs (Sir2 and HdaI) in the halophilic archaeon Haloferax volcanii , with elp3 and pat2 proposed as a synthetic lethal gene pair. Here we advance these findings by performing single and double mutagenesis of elp3 with the pat1 and pat2 lysine acetyltransferase gene homologs. Genome sequencing and PCR screens of these strains reveal successful generation of Δelp3, Δpat1Δelp3 , and Δpat2Δelp3 mutant strains. Although these mutant strains exhibited a reduced growth rate compared to the parent, they remained viable. Overall, this study provides genetic evidence that elp3 and pat2 , while impacting cell growth, are not a synthetic lethal gene pair as previously reported. IMPORTANCE Here we reveal by whole genome sequencing that the GNAT family gene homologs elp3 and pat2 can be deleted in the same H. volcanii strain. Beyond the targeted deletions, minimal differences between the parent and Δelp3 Δpat2 mutant were observed suggesting that suppressor mutations are not responsible for our ability to generate this double mutant strain. Elp3 and Pat2, thus, may not share as close a functional relationship as implied by earlier study. Our finding is significant as Elp3 is thought to function in acetylation in tRNA modification, while Pat2 likely functions in the lysine acetylation of proteins.
Collapse
|
5
|
Li X, Fatema N, Gan Q, Fan C. Functional consequences of lysine acetylation of phosphofructokinase isozymes. FEBS J 2025. [PMID: 39940094 DOI: 10.1111/febs.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
Phosphofructokinase (Pfk) catalyzes the phosphorylation of fructose 6-phosphate and is a key regulatory point in the glycolysis pathway. Multiple lysine residues in both Pfk isozymes, PfkA and PfkB, have been identified to be acetylated in Escherichia coli by proteomic studies, but no studies have been implemented to further characterize these acetylation events. To investigate the role of Pfk acetylation, the genetic code expansion strategy was used to generate homogeneously acetylated Pfk variants at target lysine sites that have been reported to be acetylated in nature. We found that acetylation of K309 of PfkA and K27 of PfkB decreased PfK enzyme activities significantly. We further investigated the deacetylation and acetylation processes of Pfk isozymes biochemically and genetically. Acetyl phosphate-mediated non-enzymatic acetylation could be the major mechanism of Pfk isozyme acetylation in E. coli, whereas NAD-dependent protein deacylase CobB can remove most of the acetylated lysine residues but not K309 of PfkA and K27 of PfkB, which affect enzyme activities. Because of the important role of Pfk in cellular metabolism, the results of the present study are expected to facilitate studies in the fields of metabolic engineering and research.
Collapse
Affiliation(s)
- Xinyu Li
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Nour Fatema
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
6
|
Kumar RKR, Haddad I, Ndiaye MM, Marbouty M, Vinh J, Verdier Y. A single microfluidic device for multi-omics analysis sample preparation. LAB ON A CHIP 2025; 25:590-599. [PMID: 39820672 DOI: 10.1039/d4lc00919c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Combining different "omics" approaches, such as genomics and proteomics, is necessary to generate a detailed and complete insight into microbiome comprehension. Proper sample collection and processing and accurate analytical methods are crucial in generating reliable data. We previously developed the ChipFilter device for proteomic analysis of microbial samples. We have shown that this device coupled to LC-MS/MS can successfully be used to identify microbial proteins. In the present work, we have developed our workflow to analyze concomitantly proteins and nucleic acids from the same sample. We performed lysis and proteolysis in the device using cultures of E. coli, B. subtilis, and S. cerevisiae. After peptide recovery for LC-MS/MS analysis, DNA from the same samples was recovered and successfully amplified by PCR for the 3 species. This workflow was further extended to a complex microbial mixture of known compositions. Protein analysis was carried out, enabling the identification of more than 5000 proteins. The recovered DNA was sequenced, performing comparable to DNA extracted with a commercial kit without proteolysis. Our results show that the ChipFilter device is suited to prepare samples for parallel proteomic and genomic analyses, which is particularly relevant in the case of low-abundant samples and drastically reduces sampling bias.
Collapse
Affiliation(s)
- Ranjith Kumar Ravi Kumar
- Spectrométrie de Masse Biologique et Protéomique SMBP, ESPCI Paris, LPC CNRS UMR 8249, PSL University, 10 Rue Vauquelin, F-75005 Paris, France.
| | - Iman Haddad
- Spectrométrie de Masse Biologique et Protéomique SMBP, ESPCI Paris, LPC CNRS UMR 8249, PSL University, 10 Rue Vauquelin, F-75005 Paris, France.
| | - Massamba Mbacké Ndiaye
- Spectrométrie de Masse Biologique et Protéomique SMBP, ESPCI Paris, LPC CNRS UMR 8249, PSL University, 10 Rue Vauquelin, F-75005 Paris, France.
| | - Martial Marbouty
- Institut Pasteur, Spacial Regulation of Genome Group, Université Paris Cité, CNRS 3525 - 25-28 Rue du Dr Roux, F-75015 Paris, France
| | - Joëlle Vinh
- Spectrométrie de Masse Biologique et Protéomique SMBP, ESPCI Paris, LPC CNRS UMR 8249, PSL University, 10 Rue Vauquelin, F-75005 Paris, France.
| | - Yann Verdier
- Spectrométrie de Masse Biologique et Protéomique SMBP, ESPCI Paris, LPC CNRS UMR 8249, PSL University, 10 Rue Vauquelin, F-75005 Paris, France.
| |
Collapse
|
7
|
Lin TH, Wang CY, Wu CC, Lin CT. Impacts of Pta-AckA pathway on CPS biosynthesis and type 3 fimbriae expression in Klebsiella pneumoniae. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:48-55. [PMID: 39472242 DOI: 10.1016/j.jmii.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/18/2024] [Accepted: 10/20/2024] [Indexed: 02/08/2025]
Abstract
BACKGROUND Klebsiella pneumoniae is a Gram-negative bacterium that can cause infections, especially in individuals with diabetes. Recently, more hypervirulent strains have emerged, posing a threat even to healthy individuals. Understanding how K. pneumoniae regulates its virulence factors is crucial. Acetyl-phosphate (AcP) is essential for bacterial metabolism and can affect virulence factor expression. However, the role of the Pta-AckA pathway, which regulates AcP levels, in K. pneumoniae pathogenesis remains unclear. METHODS Deletion mutants lacking the pta and ackA, involved in AcP production and hydrolysis, were generated in K. pneumoniae CG43S3. Their effects on AcP levels, the patterns of global acetylated protein, capsular polysaccharide (CPS) amount, serum resistance, type 3 fimbriae expression, biofilm formation, and virulence in G. mellonella larva were assessed. RESULTS Deletion of ackA in K. pneumoniae CG43S3 led to AcP accumulation, while pta deletion abolished AcP synthesis when grown in TB7+1 % glucose. This pathway influenced global protein acetylation, with pta deletion decreasing acetylation and ackA deletion increasing it. Additionally, pta deletion decreased the CPS amount, serum resistance, and type 3 fimbriae expression, while ackA deletion increased these factors. Furthermore, deleting pta and ackA attenuated the infected larva's virulence and death rate. CONCLUSION Our findings highlight the critical role of the Pta-AckA pathway in K. pneumoniae pathogenesis. This pathway regulates AcP levels, global protein acetylation, CPS production, serum resistance, and type 3 fimbriae expression, ultimately impacting virulence. The information provides insights into potential therapeutic targets for combating K. pneumoniae infection.
Collapse
Affiliation(s)
- Tien-Huang Lin
- Department of Urology, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Chen-Yu Wang
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, China Medical University Hsinchu Hospital, Hsinchu, Taiwan.
| | - Chien-Chen Wu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ching-Ting Lin
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
Xue Y, Kang X. Time-resolved compositional and dynamics analysis of biofilm maturation and dispersal via solid-state NMR spectroscopy. NPJ Biofilms Microbiomes 2025; 11:21. [PMID: 39880834 PMCID: PMC11779841 DOI: 10.1038/s41522-025-00655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Dispersal plays a crucial role in the development and ecology of biofilms. While extensive studies focused on elucidating the molecular mechanisms governing this process, few have characterized the associated temporal changes in composition and structure. Here, we employed solid-state nuclear magnetic resonance (NMR) techniques to achieve time-resolved characterization of Bacillus subtilis biofilms over a 5-day period. The mature biofilm, established within 48 h, undergoes significant degradation in following 72 h. The steepest decline of proteins precedes that of exopolysaccharides, likely reflecting their distinct spatial distribution. Exopolysaccharide sugar units display clustered temporal patterns, suggesting the presence of distinct polysaccharide types. A sharp rise in aliphatic carbon signals on day 4 probably corresponds to a surge in biosurfactant production. Different dynamic regimes respond differently to dispersal: the mobile domain exhibits increased rigidity, while the rigid domain remains stable. These findings provide novel insights and perspectives on the complex process of biofilm dispersal.
Collapse
Affiliation(s)
- Yi Xue
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
9
|
Zhou J, Ma Q, Liang J, Pan Y, Chen Y, Yu S, Liu Y, Zhang Q, Li Y, Zou J. smu_1558c-mediated regulation of growth and biofilm formation in Streptococcus mutans. Front Microbiol 2025; 15:1507928. [PMID: 39895941 PMCID: PMC11782273 DOI: 10.3389/fmicb.2024.1507928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Streptococcus mutans is a key etiological agent in dental caries, owing to its strong ability to form biofilms through carbohydrate fermentation. Protein acetylation, facilitated by GNAT family acetyltransferases, plays a critical regulatory role in bacterial physiology, but its impact on S. mutans remains largely unexplored. In this study, we investigated the role of the GNAT family acetyltransferase encoded by smu_1558c in regulating the growth and biofilm formation of S. mutans. The deletion of smu_1558c resulted in impaired growth, reduced biofilm formation, and diminished synthesis of water-insoluble extracellular polysaccharides (EPS). Proteomic analysis revealed 166 differentially expressed proteins in the deletion mutant, with significant enrichment in pathways related to carbohydrate transport and metabolism, and translation. Notably, glucosyltransferases GtfB and GtfC, key enzymes in biofilm formation, were significantly downregulated in the deletion mutant, while ClpL, a Clp-like ATP-dependent protease involved in protein homeostasis under stress conditions, was highly upregulated. These findings highlight that acetyltransferase smu_1558c plays a crucial role in the growth, biofilm formation, and EPS synthesis of S. mutans through its regulation of carbohydrate transport and metabolism pathways, as well as stress response mechanisms. This study provides novel insights into the molecular mechanisms governing S. mutans pathogenicity and suggests potential therapeutic targets for caries prevention.
Collapse
Affiliation(s)
- Jing Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingou Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yangyang Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yang Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shuxing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiong Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Li X, Dai S, Sun S, Zhao D, Li H, Zhang J, Ma J, Du B, Ding Y. Global Insights into the Lysine Acetylome Reveal the Role of Lysine Acetylation in the Adaptation of Bacillus altitudinis to Salt Stress. J Proteome Res 2025; 24:210-223. [PMID: 39625841 DOI: 10.1021/acs.jproteome.4c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Bacillus altitudinis is a well-known beneficial microorganism in plant rhizosphere, capable of enhancing plant growth and salt tolerance in saline soils. However, the mechanistic changes underlying salt tolerance in B. altitudinis at the level of post-translational modifications remain unclear. Here, diverse lysine modifications including acetylation, succinylation, crotonylation, and malonylation were determined in the B. altitudinis response to salt stress by immunodetection, and the acetylation level greatly increased under salt stress. The in-depth acetylome landscape showed that 1032 proteins in B. altitudinis were differentially acetylated under salt stress. These proteins were involved in many physiological aspects closely related to salt tolerance like energy generation and conversion, amino acid synthesis and transport, cell motility, signal transduction, secretion system, and repair system. Moreover, we also identified the differential acetylation of key enzymes involved in the major osmolyte biosynthesis and conversion and antioxidant defenses. Thiol peroxidase (TPX), a key protective antioxidant enzyme, had 3 upregulated acetylation sites (K7/139/157) under salt stress. Site-specific mutations demonstrated that K7/139/157 acetylation strongly regulated TPX function in scavenging intracellular ROS, thereby impacting bacterial growth under salt stress. To our knowledge, this is the first study showing that bacteria adaptation to salt stress occurs at the level of PTMs.
Collapse
Affiliation(s)
- Xujian Li
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Shanshan Dai
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Shanshan Sun
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Dongying Zhao
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Hui Li
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Junyi Zhang
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Jie Ma
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Binghai Du
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Yanqin Ding
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
11
|
Patolsky RG, Laiolo J, Díaz-Pérez L, Luna Pizarro G, Mayol GF, Touz MC, Feliziani C, Rópolo AS. Analysis of the role of acetylation in Giardia lamblia and the giardicidal potential of garcinol. Front Microbiol 2025; 15:1513053. [PMID: 39831116 PMCID: PMC11738946 DOI: 10.3389/fmicb.2024.1513053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Post-translational modifications of proteins provide cellular physiology with a broad range of adaptability to the external environment flexibly and rapidly. In the case of the protozoan parasite Giardia lamblia, the study of these modifications has gained relevance in recent years, mainly focusing on methylation and deacetylation of proteins. This study investigates the significance of acetylation in this protozoan parasite. Methods This study explores the role of acetylation in G. lamblia through a combination of immunofluorescence assays, manipulation of acetyltransferase enzymes, and the use of garcinol, an acetylation inhibitor, during the growth phase. Results The acetylation of histone marks H3K9 and H3K27 occurs during growth and is followed by deacetylation during encystation. Transfections modifying acetyltransferase activity induced a latent cellular state, underscoring the importance of protein acetylation for parasite survival. Garcinol treatment during growth caused significant morphological changes, including plasma membrane blebbing and apoptotic-like bodies. Immunofluorescence revealed these bodies contained α-tubulin/acetylated α-tubulin and reactive oxygen species. Flow cytometry and Annexin V staining indicated early apoptosis within 24 hours of treatment. Additionally, garcinol led to the deacetylation of H3K9 and H3K27, with redistribution of tubulin and acetylated tubulin from microtubules to the cytosol. Significantly, garcinol prevented parasite recrudescence after treatment withdrawal. Discussion These results demonstrate that acetylation is essential for trophozoite survival and highlight the natural histone acetyltransferase inhibitor garcinol as a potential candidate for drug development against giardiasis, considering its giardicidal activity.
Collapse
Affiliation(s)
- Rocío G. Patolsky
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jerónimo Laiolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Universidad Católica de Córdoba, Córdoba, Argentina
| | - Luciano Díaz-Pérez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gabriel Luna Pizarro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gonzalo F. Mayol
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C. Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea S. Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
12
|
Miao C, Huang Y, Zhang C, Wang X, Wang B, Zhou X, Song Y, Wu P, Chen ZS, Feng Y. Post-translational modifications in drug resistance. Drug Resist Updat 2025; 78:101173. [PMID: 39612546 DOI: 10.1016/j.drup.2024.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/24/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
Resistance to antitumor drugs, antimicrobial drugs, and antiviral drugs severely limits treatment effectiveness and cure rate of diseases. Protein post-translational modifications (PTMs) represented by glycosylation, ubiquitination, SUMOylation, acetylation, phosphorylation, palmitoylation, and lactylation are closely related to drug resistance. PTMs are typically achieved by adding sugar chains (glycosylation), small proteins (ubiquitination), lipids (palmitoylation), or functional groups (lactylation) to amino acid residues. These covalent additions are usually the results of signaling cascades and could be reversible, with the triggering mechanisms depending on the type of modifications. PTMs are involved in antitumor drug resistance, not only as inducers of drug resistance but also as targets for reversing drug resistance. Bacteria exhibit multiple PTMs-mediated antimicrobial drug resistance. PTMs allow viral proteins and host cell proteins to form complex interaction networks, inducing complex antiviral drug resistance. This review summarizes the important roles of PTMs in drug resistance, providing new ideas for exploring drug resistance mechanisms, developing new drug targets, and guiding treatment plans.
Collapse
Affiliation(s)
- Chenggui Miao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yurong Huang
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital, Jilin University, Changchun 130021, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Bing Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xinyue Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yingqiu Song
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peng Wu
- Department of Anatomy, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhe-Sheng Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| |
Collapse
|
13
|
Xu Y, Lin Z, Hou J, Ye K, Han S, Liang Y, Liang H, Wu S, Tao Y, Gao H. A bacterial transcription activator dedicated to the expression of the enzyme catalyzing the first committed step in fatty acid biosynthesis. Nucleic Acids Res 2024; 52:12930-12944. [PMID: 39475184 PMCID: PMC11602165 DOI: 10.1093/nar/gkae960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
Acetyl-CoA carboxylase (ACCase) catalyzes the first committed and rate-limiting step of de novo fatty acid synthesis (FAS). Although this step is tightly regulated, regulators that specifically control transcription of the ACCase genes remain elusive. In this study, we identified LysR-type transcriptional regulator AccR as a dedicated activator for the transcription of accS, a gene encoding a multiple-domain ACCase in Shewanella oneidensis. We showed that AccR interacts with the accS promoter in vivo in response to changes in acetyl-CoA levels and in vitro. Analysis of the crystal structure of the effector-binding domain (EBD) of AccR identified two potential ligand-binding pockets, one of which is likely to bind acetyl-CoA as a ligand based on results from molecular docking, direct binding assay and mutational analysis of the residues predicted to interact with acetyl-CoA. Despite this, the interaction between AccR and acetyl-CoA alone appears unstable, implying that an additional yet unknown ligand is required for activation of AccR. Furthermore, we showed that AccR is acetylated, but the modification may not be critical for sensing acetyl-CoA. Overall, our data substantiate the existence of a dedicated transcriptional regulator for ACCases, expanding our current understanding of the regulation of FAS.
Collapse
Affiliation(s)
- Yuanyou Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zihan Lin
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Jiyuan Hou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Kai Ye
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Sirui Han
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yuxuan Liang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Huihui Liang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Shihua Wu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yizhi J Tao
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
14
|
Burckhardt RM, Escalante-Semerena JC. Sirtuin-dependent reversible lysine acetylation of the o-succinylbenzoyl-coenzyme A synthetase of Bacillus subtilis. Microbiol Spectr 2024; 12:e0201124. [PMID: 39422507 PMCID: PMC11619455 DOI: 10.1128/spectrum.02011-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Reversible lysine acylation (RLA) is a conserved posttranslational modification that cells of all domains of life use to regulate the biological function of proteins, some of which have enzymatic activity. Many AMP-forming organic acid:CoA ligases are regulated via acylation in prokaryotes and eukaryotes. Here, we report the acetylation of the o-succinylbenzoyl-CoA synthetase (EC 6.2.1.26) of Bacillus subtilis (BsMenE) by the GCN5-related acetyltransferase (GNAT) AcuA enzyme of this bacterium. BsMenE is part of the metabolic pathway that assembles menaquinone (MK), an essential component of the electron transport chain in B. subtilis. We demonstrate that the active-site lysine 471 (K471) of BsMenE is acetylated specifically by BsAcuA, and that acetylated BsMenE (BsMenEAc) is deacetylated by the NAD+-dependent sirtuin (BsSrtN) of this bacterium. The in vivo analyses performed in this study were done in an Escherichia coli ΔmenE strain because the enzymatic activity of MenE is essential in B. subtilis, but not in E. coli. The use of a heterologous system allowed us to assess the effect of acetylation on BsMenE function under MK-dependent growth conditions. Based on our in vivo data, we suggest that regulation of BsMenE by RLA reduces MK production, negatively affecting the growth rate and yield of the culture.IMPORTANCEReversible lysine acylation (RLA) is a posttranslational modification used by all cells to rapidly control the biological function of proteins. Herein, we identify an acetyltransferase and deacetylase in the soil bacterium Bacillus subtilis that can modify/demodify an enzyme required for the synthesis of menaquinone (MK), an essential electron carrier involved in respiration in cells of all domains of life. Based on our data, we suggest that under some as-yet-undefined physiological conditions, B. subtilis modulates MK biosynthesis, which changes the flux of electrons through the electron transport chain of this bacterium. To our knowledge, this is the first example of control of respiration by RLA.
Collapse
|
15
|
Ma Q, Li J, Yu S, Liu Y, Zhou J, Wang X, Wang L, Zou J, Li Y. ActA-mediated PykF acetylation negatively regulates oxidative stress adaptability of Streptococcus mutans. mBio 2024; 15:e0183924. [PMID: 39248567 PMCID: PMC11481489 DOI: 10.1128/mbio.01839-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Dental caries is associated with microbial dysbiosis caused by the excessive proliferation of Streptococcus mutans in dental biofilms, where oxidative stress serves as the major stressor to microbial communities. The adaptability of S. mutans to oxidative stress is a prerequisite for its proliferation and even for exerting its virulence. Protein acetylation is a reversible and conserved regulatory mechanism enabling bacteria to rapidly respond to external environmental stressors. However, the functions of protein acetylation in regulating oxidative stress adaptability of S. mutans are still unknown. Here, we unveil the impact of acetyltransferase ActA-mediated acetylation on regulating the oxidative stress response of S. mutans. actA overexpression increased the sensitivity of S. mutans to hydrogen peroxide and diminished its competitive ability against Streptococcus sanguinis. In contrast, actA deletion enhanced oxidative stress tolerance and competitiveness of S. mutans. The mass spectrometric analysis identified pyruvate kinase (PykF) as a substrate of ActA, with its acetylation impairing its enzymatic activity and reducing pyruvate production. Supplementation with exogenous pyruvate mitigated oxidative stress sensitivity and restored competitiveness in multi-species biofilms. In vitro acetylation analysis further confirmed that ActA directly acetylates PykF, negatively affecting its enzymatic activity. Moreover, 18 potential lysine-acetylated sites on PykF were identified in vitro, which account for 75% of lysine-acetylated sites detected in vivo. Taken together, our study elucidates a novel regulatory mechanism of ActA-mediated acetylation of PykF in modulating oxidative stress adaptability of S. mutans by influencing pyruvate production, providing insights into the importance of protein acetylation in microbial environmental adaptability and interspecies interactions within dental biofilms. IMPORTANCE Dental caries poses a significant challenge to global oral health, driven by microbial dysbiosis within dental biofilms. The pathogenicity of Streptococcus mutans, a major cariogenic bacterium, is closely linked to its ability to adapt to changing environments and cellular stresses. Our investigation into the protein acetylation mechanisms, particularly through the acetyltransferase ActA, reveals a critical pathway by which S. mutans modulates its adaptability to oxidative stress, the dominant stressor within dental biofilms. By elucidating how ActA affects the oxidative stress adaptability and competitiveness of S. mutans through the regulatory axis of ActA-PykF-pyruvate, our findings provide insights into the dynamic interplay between cariogenic and commensal bacteria within dental biofilms. This work emphasizes the significance of protein acetylation in bacterial stress response and competitiveness, opening avenues for the development of novel strategies to maintain oral microbial balance within dental biofilms.
Collapse
Affiliation(s)
- Qizhao Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuxing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingyun Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Center for Archaeological Science, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Li P, Xue Y. Dysregulation of lysine acetylation in the pathogenesis of digestive tract cancers and its clinical applications. Front Cell Dev Biol 2024; 12:1447939. [PMID: 39391349 PMCID: PMC11464462 DOI: 10.3389/fcell.2024.1447939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Recent advances in high-resolution mass spectrometry-based proteomics have improved our understanding of lysine acetylation in proteins, including histones and non-histone proteins. Lysine acetylation, a reversible post-translational modification, is catalyzed by lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Proteins comprising evolutionarily conserved bromodomains (BRDs) recognize these acetylated lysine residues and consequently activate transcription. Lysine acetylation regulates almost all cellular processes, including transcription, cell cycle progression, and metabolic functions. Studies have reported the aberrant expression, translocation, and mutation of genes encoding lysine acetylation regulators in various cancers, including digestive tract cancers. These dysregulated lysine acetylation regulators contribute to the pathogenesis of digestive system cancers by modulating the expression and activity of cancer-related genes or pathways. Several inhibitors targeting KATs, KDACs, and BRDs are currently in preclinical trials and have demonstrated anti-cancer effects. Digestive tract cancers, including encompass esophageal, gastric, colorectal, liver, and pancreatic cancers, represent a group of heterogeneous malignancies. However, these cancers are typically diagnosed at an advanced stage owing to the lack of early symptoms and are consequently associated with poor 5-year survival rates. Thus, there is an urgent need to identify novel biomarkers for early detection, as well as to accurately predict the clinical outcomes and identify effective therapeutic targets for these malignancies. Although the role of lysine acetylation in digestive tract cancers remains unclear, further analysis could improve our understanding of its role in the pathogenesis of digestive tract cancers. This review aims to summarize the implications and pathogenic mechanisms of lysine acetylation dysregulation in digestive tract cancers, as well as its potential clinical applications.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuan Xue
- Department of thyroid surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
17
|
Fu Y, Zhao LC, Shen JL, Zhou SY, Yin BC, Ye BC, You D. A network of acetyl phosphate-dependent modification modulates c-di-AMP homeostasis in Actinobacteria. mBio 2024; 15:e0141124. [PMID: 38980040 PMCID: PMC11323494 DOI: 10.1128/mbio.01411-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Cyclic purine nucleotides are important signal transduction molecules across all domains of life. 3',5'-cyclic di-adenosine monophosphate (c-di-AMP) has roles in both prokaryotes and eukaryotes, while the signals that adjust intracellular c-di-AMP and the molecular machinery enabling a network-wide homeostatic response remain largely unknown. Here, we present evidence for an acetyl phosphate (AcP)-governed network responsible for c-di-AMP homeostasis through two distinct substrates, the diadenylate cyclase DNA integrity scanning protein (DisA) and its newly identified transcriptional repressor, DasR. Correspondingly, we found that AcP-induced acetylation exerts these regulatory actions by disrupting protein multimerization, thus impairing c-di-AMP synthesis via K66 acetylation of DisA. Conversely, the transcriptional inhibition of disA was relieved during DasR acetylation at K78. These findings establish a pivotal physiological role for AcP as a mediator to balance c-di-AMP homeostasis. Further studies revealed that acetylated DisA and DasR undergo conformational changes that play crucial roles in differentiation. Considering the broad distribution of AcP-induced acetylation in response to environmental stress, as well as the high conservation of the identified key sites, we propose that this unique regulation of c-di-AMP homeostasis may constitute a fundamental property of central circuits in Actinobacteria and thus the global control of cellular physiology.IMPORTANCESince the identification of c-di-AMP is required for bacterial growth and cellular physiology, a major challenge is the cell signals and stimuli that feed into the decision-making process of c-di-AMP concentration and how that information is integrated into the regulatory pathways. Using the bacterium Saccharopolyspora erythraea as a model, we established that AcP-dependent acetylation of the diadenylate cyclase DisA and its newly identified transcriptional repressor DasR is involved in coordinating environmental and intracellular signals, which are crucial for c-di-AMP homeostasis. Specifically, DisA acetylated at K66 directly inactivates its diadenylate cyclase activity, hence the production of c-di-AMP, whereas DasR acetylation at K78 leads to increased disA expression and c-di-AMP levels. Thus, AcP represents an essential molecular switch in c-di-AMP maintenance, responding to environmental changes and possibly hampering efficient development. Therefore, AcP-mediated posttranslational processes constitute a network beyond the usual and well-characterized synthetase/hydrolase governing c-di-AMP homeostasis.
Collapse
Affiliation(s)
- Yu Fu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liu-Chang Zhao
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jin-Long Shen
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shi-Yu Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bin-Cheng Yin
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Di You
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
18
|
Popova L, Carr RA, Carabetta VJ. Recent Contributions of Proteomics to Our Understanding of Reversible N ε-Lysine Acylation in Bacteria. J Proteome Res 2024; 23:2733-2749. [PMID: 38442041 PMCID: PMC11296938 DOI: 10.1021/acs.jproteome.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Post-translational modifications (PTMs) have been extensively studied in both eukaryotes and prokaryotes. Lysine acetylation, originally thought to be a rare occurrence in bacteria, is now recognized as a prevalent and important PTM in more than 50 species. This expansion in interest in bacterial PTMs became possible with the advancement of mass spectrometry technology and improved reagents such as acyl-modification specific antibodies. In this Review, we discuss how mass spectrometry-based proteomic studies of lysine acetylation and other acyl modifications have contributed to our understanding of bacterial physiology, focusing on recently published studies from 2018 to 2023. We begin with a discussion of approaches used to study bacterial PTMs. Next, we discuss newly characterized acylomes, including acetylomes, succinylomes, and malonylomes, in different bacterial species. In addition, we examine proteomic contributions to our understanding of bacterial virulence and biofilm formation. Finally, we discuss the contributions of mass spectrometry to our understanding of the mechanisms of acetylation, both enzymatic and nonenzymatic. We end with a discussion of the current state of the field and possible future research avenues to explore.
Collapse
Affiliation(s)
- Liya Popova
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| | - Rachel A Carr
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| | - Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| |
Collapse
|
19
|
Peng LT, Tian SQ, Guo WX, Chen XW, Wu JH, Liu YL, Peng B. α-Ketoglutarate downregulates thiosulphate metabolism to enhance antibiotic killing. Int J Antimicrob Agents 2024; 64:107214. [PMID: 38795933 DOI: 10.1016/j.ijantimicag.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Potentiation of the effects of currently available antibiotics is urgently required to tackle the rising antibiotics resistance. The pyruvate (P) cycle has been shown to play a critical role in mediating aminoglycoside antibiotic killing, but the mechanism remains unexplored. In this study, we investigated the effects of intermediate metabolites of the P cycle regarding the potentiation of gentamicin. We found that α-ketoglutarate (α-KG) has the best synergy with gentamicin compared to the other metabolites. This synergistic killing effect was more effective with aminoglycosides than other types of antibiotics, and it was effective against various types of bacterial pathogens. Using fish and mouse infection models, we confirmed that the synergistic killing effect occurred in vivo. Furthermore, functional proteomics showed that α-KG downregulated thiosulphate metabolism. Upregulation of thiosulphate metabolism by exogenous thiosulphate counteracted the killing effect of gentamicin. The role of thiosulphate metabolism in antibiotic resistance was further confirmed using thiosulphate reductase knockout mutants. These mutants were more sensitive to gentamicin killing, and less tolerant to antibiotics compared to their parental strain. Thus, our study highlights a strategy for potentiating antibiotic killing by using a metabolite that reduces antibiotic resistance.
Collapse
Affiliation(s)
- Liao-Tian Peng
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Si-Qi Tian
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Wei-Xu Guo
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan-Wei Chen
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Jia-Han Wu
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ying-Li Liu
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Bo Peng
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
20
|
Sokolov P, Evsegneeva I, Karaulov A, Sukhanova A, Nabiev I. Allergen Microarrays and New Physical Approaches to More Sensitive and Specific Detection of Allergen-Specific Antibodies. BIOSENSORS 2024; 14:353. [PMID: 39056629 PMCID: PMC11275078 DOI: 10.3390/bios14070353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The prevalence of allergic diseases has increased tremendously in recent decades, which can be attributed to growing exposure to environmental triggers, changes in dietary habits, comorbidity, and the increased use of medications. In this context, the multiplexed diagnosis of sensitization to various allergens and the monitoring of the effectiveness of treatments for allergic diseases become particularly urgent issues. The detection of allergen-specific antibodies, in particular, sIgE and sIgG, is a modern alternative to skin tests due to the safety and efficiency of this method. The use of allergen microarrays to detect tens to hundreds of allergen-specific antibodies in less than 0.1 mL of blood serum enables the transition to a deeply personalized approach in the diagnosis of these diseases while reducing the invasiveness and increasing the informativeness of analysis. This review discusses the technological approaches underlying the development of allergen microarrays and other protein microarrays, including the methods of selection of the microarray substrates and matrices for protein molecule immobilization, the obtainment of allergens, and the use of different types of optical labels for increasing the sensitivity and specificity of the detection of allergen-specific antibodies.
Collapse
Affiliation(s)
- Pavel Sokolov
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Irina Evsegneeva
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (I.E.); (A.K.)
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (I.E.); (A.K.)
| | - Alyona Sukhanova
- Laboratoire BioSpecT, Université de Reims Champagne-Ardenne, 51100 Reims, France;
| | - Igor Nabiev
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (I.E.); (A.K.)
- Laboratoire BioSpecT, Université de Reims Champagne-Ardenne, 51100 Reims, France;
| |
Collapse
|
21
|
Qin C, Graf LG, Striska K, Janetzky M, Geist N, Specht R, Schulze S, Palm GJ, Girbardt B, Dörre B, Berndt L, Kemnitz S, Doerr M, Bornscheuer UT, Delcea M, Lammers M. Acetyl-CoA synthetase activity is enzymatically regulated by lysine acetylation using acetyl-CoA or acetyl-phosphate as donor molecule. Nat Commun 2024; 15:6002. [PMID: 39019872 PMCID: PMC11255334 DOI: 10.1038/s41467-024-49952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
The AMP-forming acetyl-CoA synthetase is regulated by lysine acetylation both in bacteria and eukaryotes. However, the underlying mechanism is poorly understood. The Bacillus subtilis acetyltransferase AcuA and the AMP-forming acetyl-CoA synthetase AcsA form an AcuA•AcsA complex, dissociating upon lysine acetylation of AcsA by AcuA. Crystal structures of AcsA from Chloroflexota bacterium in the apo form and in complex with acetyl-adenosine-5'-monophosphate (acetyl-AMP) support the flexible C-terminal domain adopting different conformations. AlphaFold2 predictions suggest binding of AcuA stabilizes AcsA in an undescribed conformation. We show the AcuA•AcsA complex dissociates upon acetyl-coenzyme A (acetyl-CoA) dependent acetylation of AcsA by AcuA. We discover an intrinsic phosphotransacetylase activity enabling AcuA•AcsA generating acetyl-CoA from acetyl-phosphate (AcP) and coenzyme A (CoA) used by AcuA to acetylate and inactivate AcsA. Here, we provide mechanistic insights into the regulation of AMP-forming acetyl-CoA synthetases by lysine acetylation and discover an intrinsic phosphotransacetylase allowing modulation of its activity based on AcP and CoA levels.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Leonie G Graf
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Kilian Striska
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Markus Janetzky
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Norman Geist
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Robin Specht
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Sabrina Schulze
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Gottfried J Palm
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Britta Girbardt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Babett Dörre
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Leona Berndt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Stefan Kemnitz
- Department for High Performance Computing, University Computing Center, University of Greifswald, 17489, Greifswald, Germany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
22
|
Salih E, Mgbeahuruike EE, Prévost-Monteiro S, Sipari N, Väre H, Novak B, Julkunen-Tiitto R, Fyhrqvist P. Polyphenols and Phenolic Glucosides in Antibacterial Twig Extracts of Naturally Occurring Salix myrsinifolia (Salisb.), S. phylicifolia (L.) and S. starkeana (Willd.) and the Cultivated Hybrid S. x pendulina (Wender.). Pharmaceutics 2024; 16:916. [PMID: 39065613 PMCID: PMC11280161 DOI: 10.3390/pharmaceutics16070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Salix species occurring in Finland have not been well studied for their antimicrobial potential, despite their frequent use for lung and stomach problems in traditional medicine. Thus, twig extracts of three species of Salix that are found naturally in Finland and one cultivated species were screened for their antimicrobial properties against human pathogenic bacteria. S. starkeana and S. x pendulina were screened for antibacterial effects for the first time. (2) Methods: An agar diffusion and a microplate method were used for the screenings. Time-kill effects were measured using a plate-count and a microplate method. A DPPH-method using a qualitative TLC-analysis was used to detect antioxidant compounds in antimicrobial extracts. Metabolites from a S. myrsinifolia extract showing good antibacterial effects were identified using UPLC/QTOF-MS. (3) Results: A methanol extract of S. starkeana was particularly active against B. cereus (MIC 625 µg/mL), and a methanol extract of S. myrsinifolia showed good activity against S. aureus and B. cereus (MIC 1250 µg/mL) and showed bactericidal effects during a 24 h incubation of B. cereus. Moreover, a decoction of S. myrsinifolia resulted in good growth inhibition against P. aeruginosa. Our UPLC/QTOF-MS results indicated that proanthocyanidins (PAs), and especially the dimer procyanidin B1 (m/z 577) and other procyanidin derivatives, including highly polymerized proanthocyanidins, were abundant in S. myrsinifolia methanol extracts. Procyanidin B1 and its monomer catechin, as well as taxifolin and p-hydroxycinnamic acid, all present in S. myrsinifolia twigs, effectively inhibited B. cereus (MIC 250 µg/mL). (4) Conclusions: This study indicates that Finnish Salix species contain an abundance of antibacterial condensed tannins, phenolic acids and other polyphenols that deserve further research for the antibacterial mechanisms of action.
Collapse
Affiliation(s)
- Enass Salih
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland; (E.E.M.); (P.F.)
| | - Eunice Ego Mgbeahuruike
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland; (E.E.M.); (P.F.)
| | | | - Nina Sipari
- Viikki Metabolomics Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00100 Helsinki, Finland;
| | - Henry Väre
- Botanical Museum, Finnish Museum of Natural History, University of Helsinki, 00100 Helsinki, Finland;
| | - Brigita Novak
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia;
| | - Riitta Julkunen-Tiitto
- Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, 80100 Joensuu, Finland;
| | - Pia Fyhrqvist
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland; (E.E.M.); (P.F.)
| |
Collapse
|
23
|
Duława-Kobeluszczyk J, Strzałka A, Tracz M, Bartyńska M, Pawlikiewicz K, Łebkowski T, Wróbel S, Szymczak J, Zarek A, Małecki T, Jakimowicz D, Szafran M. The activity of CobB1 protein deacetylase contributes to nucleoid compaction in Streptomyces venezuelae spores by increasing HupS affinity for DNA. Nucleic Acids Res 2024; 52:7112-7128. [PMID: 38783097 PMCID: PMC11229371 DOI: 10.1093/nar/gkae418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Streptomyces are soil bacteria with complex life cycle. During sporulation Streptomyces linear chromosomes become highly compacted so that the genetic material fits within limited spore volume. The key players in this process are nucleoid-associated proteins (NAPs). Among them, HU (heat unstable) proteins are the most abundant NAPs in the cell and the most conserved in bacteria. HupS, one of the two HU homologues encoded by the Streptomyces genome, is the best-studied spore-associated NAP. In contrast to other HU homologues, HupS contains a long, C-terminal domain that is extremely rich in lysine repeats (LR domain) similar to eukaryotic histone H2B and mycobacterial HupB protein. Here, we have investigated, whether lysine residues in HupS are posttranslationally modified by reversible lysine acetylation. We have confirmed that Streptomyces venezuelae HupS is acetylated in vivo. We showed that HupS binding to DNA in vitro is controlled by the acetylation. Moreover, we identified that CobB1, one of two Sir2 homologues in Streptomyces, controls HupS acetylation levels in vivo. We demonstrate that the elimination of CobB1 increases HupS mobility, reduces chromosome compaction in spores, and affects spores maturation. Thus, our studies indicate that HupS acetylation affects its function by diminishing DNA binding and disturbing chromosome organization.
Collapse
Affiliation(s)
| | | | - Michał Tracz
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | | | | | - Tomasz Łebkowski
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Sara Wróbel
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Justyna Szymczak
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Anna Zarek
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Tomasz Małecki
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | | | - Marcin J Szafran
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| |
Collapse
|
24
|
Rizo J, Encarnación-Guevara S. Bacterial protein acetylation: mechanisms, functions, and methods for study. Front Cell Infect Microbiol 2024; 14:1408947. [PMID: 39027134 PMCID: PMC11254643 DOI: 10.3389/fcimb.2024.1408947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Lysine acetylation is an evolutionarily conserved protein modification that changes protein functions and plays an essential role in many cellular processes, such as central metabolism, transcriptional regulation, chemotaxis, and pathogen virulence. It can alter DNA binding, enzymatic activity, protein-protein interactions, protein stability, or protein localization. In prokaryotes, lysine acetylation occurs non-enzymatically and by the action of lysine acetyltransferases (KAT). In enzymatic acetylation, KAT transfers the acetyl group from acetyl-CoA (AcCoA) to the lysine side chain. In contrast, acetyl phosphate (AcP) is the acetyl donor of chemical acetylation. Regardless of the acetylation type, the removal of acetyl groups from acetyl lysines occurs only enzymatically by lysine deacetylases (KDAC). KATs are grouped into three main superfamilies based on their catalytic domain sequences and biochemical characteristics of catalysis. Specifically, members of the GNAT are found in eukaryotes and prokaryotes and have a core structural domain architecture. These enzymes can acetylate small molecules, metabolites, peptides, and proteins. This review presents current knowledge of acetylation mechanisms and functional implications in bacterial metabolism, pathogenicity, stress response, translation, and the emerging topic of protein acetylation in the gut microbiome. Additionally, the methods used to elucidate the biological significance of acetylation in bacteria, such as relative quantification and stoichiometry quantification, and the genetic code expansion tool (CGE), are reviewed.
Collapse
Affiliation(s)
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
25
|
Cronan JE. Lipoic acid attachment to proteins: stimulating new developments. Microbiol Mol Biol Rev 2024; 88:e0000524. [PMID: 38624243 PMCID: PMC11332335 DOI: 10.1128/mmbr.00005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
SUMMARYLipoic acid-modified proteins are essential for central metabolism and pathogenesis. In recent years, the Escherichia coli and Bacillus subtilis lipoyl assembly pathways have been modified and extended to archaea and diverse eukaryotes including humans. These extensions include a new pathway to insert the key sulfur atoms of lipoate, several new pathways of lipoate salvage, and a novel use of lipoic acid in sulfur-oxidizing bacteria. Other advances are the modification of E. coli LplA for studies of protein localization and protein-protein interactions in cell biology and in enzymatic removal of lipoate from lipoyl proteins. Finally, scenarios have been put forth for the evolution of lipoate assembly in archaea.
Collapse
Affiliation(s)
- John E. Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
26
|
Shinmori A, Guo Z, Maeda T, Fukiya S, Wada M, Yokota A. Contributions of the anaplerotic reaction enzymes pyruvate carboxylase and phosphoenolpyruvate carboxylase to l-lysine production in Corynebacterium glutamicum. J Biosci Bioeng 2024:S1389-1723(24)00163-4. [PMID: 38937154 DOI: 10.1016/j.jbiosc.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024]
Abstract
Anaplerotic reactions catalyzed by pyruvate carboxylase (PC) and phosphoenolpyruvate carboxylase (PEPC) have important roles in the production of l-lysine to replenish oxaloacetic acid (OAA) in Corynebacterium glutamicum. However, the relative contributions of these enzymes to l-lysine production in C. glutamicum are not fully understood. In this study, using a parent strain (P) carrying a feedback inhibition-resistant aspartokinase with the T311I mutation, we constructed a PC gene-deleted mutant strain (PΔPC) and a PEPC gene-deleted mutant strain (PΔPEPC). Although the growth of both mutant strains was comparable to the growth of strain P, the maximum l-lysine production in strains PΔPC and PΔPEPC decreased by 14% and 49%, respectively, indicating that PEPC strongly contributed to OAA supply. l-Lysine production in strain PΔPC slightly decreased during the logarithmic phase, while production during the early stationary phase was comparable to production in strain P. By contrast, strain PΔPEPC produced l-lysine in an amount comparable to the production of strain P during the logarithmic phase; l-lysine production after the early stationary phase was completely stopped in strain PΔPEPC. These results indicate that OAA is supplied by both PC and PEPC during the logarithmic phase, while only PEPC can continuously supply OAA after the logarithmic phase.
Collapse
Affiliation(s)
- Akinobu Shinmori
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Zhen Guo
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Tomoya Maeda
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Masaru Wada
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan; Faculty of Agriculture, Setsunan University, 45-1 Nagaotouge-cho, Hirakata, Osaka 573-0101, Japan
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan.
| |
Collapse
|
27
|
Thompson C, Waldron C, George S, Ouyang Z. Assessment of the hypothetical protein BB0616 in the murine infection of Borrelia burgdorferi. Infect Immun 2024; 92:e0009024. [PMID: 38700336 PMCID: PMC11237664 DOI: 10.1128/iai.00090-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
bb0616 of Borrelia burgdorferi, the Lyme disease pathogen, encodes a hypothetical protein of unknown function. In this study, we showed that BB0616 was not surface-exposed or associated with the membrane through localization analyses using proteinase K digestion and cell partitioning assays. The expression of bb0616 was influenced by a reduced pH but not by growth phases, elevated temperatures, or carbon sources during in vitro cultivation. A transcriptional start site for bb0616 was identified by using 5' rapid amplification of cDNA ends, which led to the identification of a functional promoter in the 5' regulatory region upstream of bb0616. By analyzing a bb0616-deficient mutant and its isogenic complemented counterparts, we found that the infectivity potential of the mutant was significantly attenuated. The inactivation of bb0616 displayed no effect on borrelial growth in the medium or resistance to oxidative stress, but the mutant was significantly more susceptible to osmotic stress. In addition, the production of global virulence regulators such as BosR and RpoS as well as virulence-associated outer surface lipoproteins OspC and DbpA was reduced in the mutant. These phenotypes were fully restored when gene mutation was complemented with a wild-type copy of bb0616. Based on these findings, we concluded that the hypothetical protein BB0616 is required for the optimal infectivity of B. burgdorferi, potentially by impacting B. burgdorferi virulence gene expression as well as survival of the spirochete under stressful conditions.
Collapse
Affiliation(s)
- Christina Thompson
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Connor Waldron
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Sierra George
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
28
|
Carr RA, Tucker T, Newman PM, Jadalla L, Jaludi K, Reid BE, Alpheaus DN, Korrapati A, Pivonka AE, Carabetta VJ. N ε-lysine acetylation of the histone-like protein HBsu influences antibiotic survival and persistence in Bacillus subtilis. Front Microbiol 2024; 15:1356733. [PMID: 38835483 PMCID: PMC11148388 DOI: 10.3389/fmicb.2024.1356733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
Nε-lysine acetylation is recognized as a prevalent post-translational modification (PTM) that regulates proteins across all three domains of life. In Bacillus subtilis, the histone-like protein HBsu is acetylated at seven sites, which regulates DNA compaction and the process of sporulation. In Mycobacteria, DNA compaction is a survival strategy in response antibiotic exposure. Acetylation of the HBsu ortholog HupB decondenses the chromosome to escape this drug-induced, non-growing state, and in addition, regulates the formation of drug-tolerant subpopulations by altering gene expression. We hypothesized that the acetylation of HBsu plays similar regulatory roles. First, we measured nucleoid area by fluorescence microscopy and in agreement, we found that wild-type cells compacted their nucleoids upon kanamycin exposure, but not exposure to tetracycline. We analyzed a collection of HBsu mutants that contain lysine substitutions that mimic the acetylated (glutamine) or unacetylated (arginine) forms of the protein. Our findings indicate that some level of acetylation is required at K3 for a proper response and K75 must be deacetylated. Next, we performed time-kill assays of wild-type and mutant strains in the presence of different antibiotics and found that interfering with HBsu acetylation led to faster killing rates. Finally, we examined the persistent subpopulation and found that altering the acetylation status of HBsu led to an increase in persister cell formation. In addition, we found that most of the deacetylation-mimic mutants, which have compacted nucleoids, were delayed in resuming growth following removal of the antibiotic, suggesting that acetylation is required to escape the persistent state. Together, this data adds an additional regulatory role for HBsu acetylation and further supports the existence of a histone-like code in bacteria.
Collapse
Affiliation(s)
- Rachel A. Carr
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Trichina Tucker
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Precious M. Newman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Lama Jadalla
- Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, United States
| | - Kamayel Jaludi
- Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, United States
| | - Briana E. Reid
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Damian N. Alpheaus
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Anish Korrapati
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - April E. Pivonka
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
29
|
Mistretta M, Cimino M, Campagne P, Volant S, Kornobis E, Hebert O, Rochais C, Dallemagne P, Lecoutey C, Tisnerat C, Lepailleur A, Ayotte Y, LaPlante SR, Gangneux N, Záhorszká M, Korduláková J, Vichier-Guerre S, Bonhomme F, Pokorny L, Albert M, Tinevez JY, Manina G. Dynamic microfluidic single-cell screening identifies pheno-tuning compounds to potentiate tuberculosis therapy. Nat Commun 2024; 15:4175. [PMID: 38755132 PMCID: PMC11099131 DOI: 10.1038/s41467-024-48269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Drug-recalcitrant infections are a leading global-health concern. Bacterial cells benefit from phenotypic variation, which can suggest effective antimicrobial strategies. However, probing phenotypic variation entails spatiotemporal analysis of individual cells that is technically challenging, and hard to integrate into drug discovery. In this work, we develop a multi-condition microfluidic platform suitable for imaging two-dimensional growth of bacterial cells during transitions between separate environmental conditions. With this platform, we implement a dynamic single-cell screening for pheno-tuning compounds, which induce a phenotypic change and decrease cell-to-cell variation, aiming to undermine the entire bacterial population and make it more vulnerable to other drugs. We apply this strategy to mycobacteria, as tuberculosis poses a major public-health threat. Our lead compound impairs Mycobacterium tuberculosis via a peculiar mode of action and enhances other anti-tubercular drugs. This work proves that harnessing phenotypic variation represents a successful approach to tackle pathogens that are increasingly difficult to treat.
Collapse
Affiliation(s)
- Maxime Mistretta
- Institut Pasteur, Université Paris Cité, Microbial Individuality and Infection Laboratory, 75015, Paris, France
| | - Mena Cimino
- Institut Pasteur, Université Paris Cité, Microbial Individuality and Infection Laboratory, 75015, Paris, France
| | - Pascal Campagne
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015, Paris, France
| | - Stevenn Volant
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015, Paris, France
| | - Etienne Kornobis
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Biomics Platform, 75015, Paris, France
| | | | | | | | | | | | | | - Yann Ayotte
- Institut National de la Recherche Scientifique-Armand-Frappier Santé Biotechnologie Research Centre, Laval, Quebec, H7V 1B7, Canada
| | - Steven R LaPlante
- Institut National de la Recherche Scientifique-Armand-Frappier Santé Biotechnologie Research Centre, Laval, Quebec, H7V 1B7, Canada
| | - Nicolas Gangneux
- Institut Pasteur, Université Paris Cité, Microbial Individuality and Infection Laboratory, 75015, Paris, France
| | - Monika Záhorszká
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - Sophie Vichier-Guerre
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Epigenetic Chemical Biology Unit, 75015, Paris, France
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Epigenetic Chemical Biology Unit, 75015, Paris, France
| | - Laura Pokorny
- Institut Pasteur, Université Paris Cité, Microbial Individuality and Infection Laboratory, 75015, Paris, France
| | - Marvin Albert
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, 75015, Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, 75015, Paris, France
| | - Giulia Manina
- Institut Pasteur, Université Paris Cité, Microbial Individuality and Infection Laboratory, 75015, Paris, France.
| |
Collapse
|
30
|
Adeleye SA, Yadavalli SS. Queuosine biosynthetic enzyme, QueE moonlights as a cell division regulator. PLoS Genet 2024; 20:e1011287. [PMID: 38768229 PMCID: PMC11142719 DOI: 10.1371/journal.pgen.1011287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/31/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
In many organisms, stress responses to adverse environments can trigger secondary functions of certain proteins by altering protein levels, localization, activity, or interaction partners. Escherichia coli cells respond to the presence of specific cationic antimicrobial peptides by strongly activating the PhoQ/PhoP two-component signaling system, which regulates genes important for growth under this stress. As part of this pathway, a biosynthetic enzyme called QueE, which catalyzes a step in the formation of queuosine (Q) tRNA modification is upregulated. When cellular QueE levels are high, it co-localizes with the central cell division protein FtsZ at the septal site, blocking division and resulting in filamentous growth. Here we show that QueE affects cell size in a dose-dependent manner. Using alanine scanning mutagenesis of amino acids in the catalytic active site, we pinpoint residues in QueE that contribute distinctly to each of its functions-Q biosynthesis or regulation of cell division, establishing QueE as a moonlighting protein. We further show that QueE orthologs from enterobacteria like Salmonella typhimurium and Klebsiella pneumoniae also cause filamentation in these organisms, but the more distant counterparts from Pseudomonas aeruginosa and Bacillus subtilis lack this ability. By comparative analysis of E. coli QueE with distant orthologs, we elucidate a unique region in this protein that is responsible for QueE's secondary function as a cell division regulator. A dual-function protein like QueE is an exception to the conventional model of "one gene, one enzyme, one function", which has divergent roles across a range of fundamental cellular processes including RNA modification and translation to cell division and stress response.
Collapse
Affiliation(s)
- Samuel A. Adeleye
- Waksman Institute of Microbiology and Department of Genetics, Rutgers University, Piscataway New Jersey, United States of America
| | - Srujana S. Yadavalli
- Waksman Institute of Microbiology and Department of Genetics, Rutgers University, Piscataway New Jersey, United States of America
| |
Collapse
|
31
|
Girardo B, Schopfer LM, Yue Y, Lockridge O, Larson MA. Polyaminated, acetylated and stop codon readthrough of recombinant Francisella tularensis universal stress protein in Escherichia coli. PLoS One 2024; 19:e0299701. [PMID: 38683788 PMCID: PMC11057771 DOI: 10.1371/journal.pone.0299701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/14/2024] [Indexed: 05/02/2024] Open
Abstract
Recombinant Francisella tularensis universal stress protein with a C-terminal histidine-tag (rUsp/His6) was expressed in Escherichia coli. Endogenous F. tularensis Usp has a predicted molecular mass of 30 kDa, but rUsp/His6 had an apparent molecular weight of 33 kDa based on Western blot analyses. To determine the source of the higher molecular weight for rUsp/His6, post translational modifications were examined. Tryptic peptides of purified rUsp/His6 were subjected to liquid chromatography tandem mass spectrometry (LC-MS/MS) and fragmentation spectra were searched for acetylated lysines and polyaminated glutamines. Of the 24 lysines in rUsp/His6, 10 were acetylated (K63, K68, K72, K129, K175, K201, K208, K212, K233, and K238) and three of the four glutamines had putrescine, spermidine and spermine adducts (Q55, Q60 and Q267). The level of post-translational modification was substoichiometric, eliminating the possibility that these modifications were the sole contributor to the 3 kDa extra mass of rUsp/His6. LC-MS/MS revealed that stop codon readthrough had occurred resulting in the unexpected addition of 20 extra amino acids at the C-terminus of rUsp/His6, after the histidine tag. Further, the finding of polyaminated glutamines in rUsp/His6 indicated that E. coli is capable of transglutaminase activity.
Collapse
Affiliation(s)
- Benjamin Girardo
- Pathology and Microbiology Department, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Lawrence M. Schopfer
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Yinshi Yue
- Pathology and Microbiology Department, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Marilynn A. Larson
- Pathology and Microbiology Department, University of Nebraska Medical Center, Omaha, NE, United States of America
| |
Collapse
|
32
|
Li J, Ma Q, Huang J, Liu Y, Zhou J, Yu S, Zhang Q, Lin Y, Wang L, Zou J, Li Y. Small RNA SmsR1 modulates acidogenicity and cariogenic virulence by affecting protein acetylation in Streptococcus mutans. PLoS Pathog 2024; 20:e1012147. [PMID: 38620039 PMCID: PMC11045139 DOI: 10.1371/journal.ppat.1012147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/25/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Post-transcriptional regulation by small RNAs and post-translational modifications (PTM) such as lysine acetylation play fundamental roles in physiological circuits, offering rapid responses to environmental signals with low energy consumption. Yet, the interplay between these regulatory systems remains underexplored. Here, we unveil the cross-talk between sRNAs and lysine acetylation in Streptococcus mutans, a primary cariogenic pathogen known for its potent acidogenic virulence. Through systematic overexpression of sRNAs in S. mutans, we identified sRNA SmsR1 as a critical player in modulating acidogenicity, a key cariogenic virulence feature in S. mutans. Furthermore, combined with the analysis of predicted target mRNA and transcriptome results, potential target genes were identified and experimentally verified. A direct interaction between SmsR1 and 5'-UTR region of pdhC gene was determined by in vitro binding assays. Importantly, we found that overexpression of SmsR1 reduced the expression of pdhC mRNA and increased the intracellular concentration of acetyl-CoA, resulting in global changes in protein acetylation levels. This was verified by acetyl-proteomics in S. mutans, along with an increase in acetylation level and decreased activity of LDH. Our study unravels a novel regulatory paradigm where sRNA bridges post-transcriptional regulation with post-translational modification, underscoring bacterial adeptness in fine-tuning responses to environmental stress.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuxing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiong Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yongwang Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingyun Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Gan Q, Fan C. Orthogonal Translation for Site-Specific Installation of Post-translational Modifications. Chem Rev 2024; 124:2805-2838. [PMID: 38373737 PMCID: PMC11230630 DOI: 10.1021/acs.chemrev.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Post-translational modifications (PTMs) endow proteins with new properties to respond to environmental changes or growth needs. With the development of advanced proteomics techniques, hundreds of distinct types of PTMs have been observed in a wide range of proteins from bacteria, archaea, and eukarya. To identify the roles of these PTMs, scientists have applied various approaches. However, high dynamics, low stoichiometry, and crosstalk between PTMs make it almost impossible to obtain homogeneously modified proteins for characterization of the site-specific effect of individual PTM on target proteins. To solve this problem, the genetic code expansion (GCE) strategy has been introduced into the field of PTM studies. Instead of modifying proteins after translation, GCE incorporates modified amino acids into proteins during translation, thus generating site-specifically modified proteins at target positions. In this review, we summarize the development of GCE systems for orthogonal translation for site-specific installation of PTMs.
Collapse
Affiliation(s)
- Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
34
|
Kremer M, Schulze S, Eisenbruch N, Nagel F, Vogt R, Berndt L, Dörre B, Palm GJ, Hoppen J, Girbardt B, Albrecht D, Sievers S, Delcea M, Baumann U, Schnetz K, Lammers M. Bacteria employ lysine acetylation of transcriptional regulators to adapt gene expression to cellular metabolism. Nat Commun 2024; 15:1674. [PMID: 38395951 PMCID: PMC10891134 DOI: 10.1038/s41467-024-46039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The Escherichia coli TetR-related transcriptional regulator RutR is involved in the coordination of pyrimidine and purine metabolism. Here we report that lysine acetylation modulates RutR function. Applying the genetic code expansion concept, we produced site-specifically lysine-acetylated RutR proteins. The crystal structure of lysine-acetylated RutR reveals how acetylation switches off RutR-DNA-binding. We apply the genetic code expansion concept in E. coli in vivo revealing the consequences of RutR acetylation on the transcriptional level. We propose a model in which RutR acetylation follows different kinetic profiles either reacting non-enzymatically with acetyl-phosphate or enzymatically catalysed by the lysine acetyltransferases PatZ/YfiQ and YiaC. The NAD+-dependent sirtuin deacetylase CobB reverses enzymatic and non-enzymatic acetylation of RutR playing a dual regulatory and detoxifying role. By detecting cellular acetyl-CoA, NAD+ and acetyl-phosphate, bacteria apply lysine acetylation of transcriptional regulators to sense the cellular metabolic state directly adjusting gene expression to changing environmental conditions.
Collapse
Affiliation(s)
- Magdalena Kremer
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Sabrina Schulze
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Nadja Eisenbruch
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Felix Nagel
- Institute of Biochemistry, Department of Biophysical Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Robert Vogt
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Leona Berndt
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Babett Dörre
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Gottfried J Palm
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Jens Hoppen
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Britta Girbardt
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Dirk Albrecht
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Susanne Sievers
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Institute of Biochemistry, Department of Biophysical Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Karin Schnetz
- Institute for Genetics, University of Cologne Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Michael Lammers
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany.
| |
Collapse
|
35
|
Haberl Meglič S, Slokar D, Miklavčič D. Inactivation of antibiotic-resistant bacteria Escherichia coli by electroporation. Front Microbiol 2024; 15:1347000. [PMID: 38333581 PMCID: PMC10850576 DOI: 10.3389/fmicb.2024.1347000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction In modern times, bacterial infections have become a growing problem in the medical community due to the emergence of antibiotic-resistant bacteria. In fact, the overuse and improper disposal of antibiotics have led to bacterial resistance and the presence of such bacteria in wastewater. Therefore, it is critical to develop effective strategies for dealing with antibiotic-resistant bacteria in wastewater. Electroporation has been found to be one of the most promising complementary techniques for bacterial inactivation because it is effective against a wide range of bacteria, is non-chemical and is highly optimizable. Many studies have demonstrated electroporation-assisted inactivation of bacteria, but rarely have clinical antibiotics or bacteria resistant to these antibiotics been used in the study. Therefore, the motivation for our study was to use a treatment regimen that combines antibiotics and electroporation to inactivate antibiotic-resistant bacteria. Methods We separately combined two antibiotics (tetracycline and chloramphenicol) to which the bacteria are resistant (with a different resistance mode) and electric pulses. We used three different concentrations of antibiotics (40, 80 and 150 µg/ml for tetracycline and 100, 500 and 2000 µg/ml for chloramphenicol, respectively) and four different electric field strengths (5, 10, 15 and 20 kV/cm) for electroporation. Results and discussion Our results show that electroporation effectively enhances the effect of antibiotics and inactivates antibiotic-resistant bacteria. The inactivation rate for tetracycline or chloramphenicol was found to be different and to increase with the strength of the pulsed electric field and/or the concentration of the antibiotic. In addition, we show that electroporation has a longer lasting effect (up to 24 hours), making bacteria vulnerable for a considerable time. The present work provides new insights into the use of electroporation to inactivate antibiotic-resistant bacteria in the aquatic environment.
Collapse
Affiliation(s)
- Saša Haberl Meglič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Dejan Slokar
- Centre of Excellence for Biosensors, Instrumentation and Process Control, Ajdovščina, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
36
|
Wang Y, Ji Y, Sun L, Huang Z, Ye S, Xuan W. A Sirtuin-Dependent T7 RNA Polymerase Variant. ACS Synth Biol 2024; 13:54-60. [PMID: 38117980 DOI: 10.1021/acssynbio.3c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Transcriptional regulation is of great significance for cells to maintain homeostasis and, meanwhile, represents an innovative but less explored means to control biological processes in synthetic biology and bioengineering. Herein we devised a T7 RNA polymerase (T7RNAP) variant through replacing an essential lysine located in the catalytic core (K631) with Nε-acetyl-l-lysine (AcK) via genetic code expansion. This T7RNAP variant requires the deacetylase activity of NAD-dependent sirtuins to recover its enzymatic activities and thereby sustains sirtuin-dependent transcription of the gene of interest in live cells including bacteria and mammalian cells as well as in in vitro systems. This T7RNAP variant could link gene transcription to sirtuin expression and NAD availability, thus holding promise to support some relevant research.
Collapse
Affiliation(s)
- Yongan Wang
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yanli Ji
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lin Sun
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Zhifen Huang
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Weimin Xuan
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
37
|
Fatema N, Li X, Gan Q, Fan C. Characterizing lysine acetylation of glucokinase. Protein Sci 2024; 33:e4845. [PMID: 37996965 PMCID: PMC10731539 DOI: 10.1002/pro.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Glucokinase (GK) catalyzes the phosphorylation of glucose to form glucose-6-phosphate as the substrate of glycolysis for energy production. Acetylation of lysine residues in Escherichia coli GK has been identified at multiple sites by a series of proteomic studies, but the impact of acetylation on GK functions remains largely unknown. In this study, we applied the genetic code expansion strategy to produce site-specifically acetylated GK variants which naturally exist in cells. Enzyme assays and kinetic analyses showed that lysine acetylation decreases the GK activity, mostly resulting from acetylation of K214 and K216 at the entrance of the active site, which impairs the binding of substrates. We also compared results obtained from the glutamine substitution method and the genetic acetyllysine incorporation approach, showing that glutamine substitution is not always effective for mimicking acetylated lysine. Further genetic studies as well as in vitro acetylation and deacetylation assays were performed to determine acetylation and deacetylation mechanisms, which showed that E. coli GK could be acetylated by acetyl-phosphate without enzymes and deacetylated by CobB deacetylase.
Collapse
Affiliation(s)
- Nour Fatema
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| | - Xinyu Li
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| | - Qinglei Gan
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleArkansasUSA
| | - Chenguang Fan
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
38
|
Lee SH, Kim JM, López-Álvarez M, Wang C, Sorlin AM, Bobba KN, Pichardo-González PA, Blecha J, Seo Y, Flavell RR, Engel J, Ohliger MA, Wilson DM. Imaging the Bacterial Cell Wall Using N-Acetyl Muramic Acid-Derived Positron Emission Tomography Radiotracers. ACS Sens 2023; 8:4554-4565. [PMID: 37992233 PMCID: PMC10749472 DOI: 10.1021/acssensors.3c01477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Imaging infections in patients is challenging using conventional methods, motivating the development of positron emission tomography (PET) radiotracers targeting bacteria-specific metabolic pathways. Numerous techniques have focused on the bacterial cell wall, although peptidoglycan-targeted PET tracers have been generally limited to the short-lived carbon-11 radioisotope (t1/2 = 20.4 min). In this article, we developed and tested new tools for infection imaging using an amino sugar component of peptidoglycan, namely, derivatives of N-acetyl muramic acid (NAM) labeled with the longer-lived fluorine-18 (t1/2 = 109.6 min) radioisotope. Muramic acid was reacted directly with 4-nitrophenyl 2-[18F]fluoropropionate ([18F]NFP) to afford the enantiomeric NAM derivatives (S)-[18F]FMA and (R)-[18F]FMA. Both diastereomers were easily isolated and showed robust accumulation by human pathogens in vitro and in vivo, including Staphylococcus aureus. These results form the basis for future clinical studies using fluorine-18-labeled NAM-derived PET radiotracers.
Collapse
Affiliation(s)
- Sang Hee Lee
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Jung Min Kim
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Marina López-Álvarez
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Chao Wang
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Alexandre M. Sorlin
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Kondapa Naidu Bobba
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Priamo A. Pichardo-González
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Joseph Blecha
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Youngho Seo
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Robert R. Flavell
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
- UCSF
Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Joanne Engel
- Department
of Medicine, University of California, San
Francisco, San Francisco, California 94158, United States
- Department
of Microbiology and Immunology, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Michael A. Ohliger
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
- Department
of Radiology, Zuckerberg San Francisco General
Hospital, San Francisco, California 94110, United States
| | - David M. Wilson
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| |
Collapse
|
39
|
Genth J, Schäfer K, Cassidy L, Graspeuntner S, Rupp J, Tholey A. Identification of proteoforms of short open reading frame-encoded peptides in Blautia producta under different cultivation conditions. Microbiol Spectr 2023; 11:e0252823. [PMID: 37782090 PMCID: PMC10715070 DOI: 10.1128/spectrum.02528-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
IMPORTANCE The identification of short open reading frame-encoded peptides (SEP) and different proteoforms in single cultures of gut microbes offers new insights into a largely neglected part of the microbial proteome landscape. This is of particular importance as SEP provide various predicted functions, such as acting as antimicrobial peptides, maintaining cell homeostasis under stress conditions, or even contributing to the virulence pattern. They are, thus, taking a poorly understood role in structure and function of microbial networks in the human body. A better understanding of SEP in the context of human health requires a precise understanding of the abundance of SEP both in commensal microbes as well as pathogens. For the gut beneficial B. producta, we demonstrate the importance of specific environmental conditions for biosynthesis of SEP expanding previous findings about their role in microbial interactions.
Collapse
Affiliation(s)
- Jerome Genth
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Kathrin Schäfer
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
40
|
Luo X, Zhang A, Tai CH, Chen J, Majdalani N, Storz G, Gottesman S. An acetyltranferase moonlights as a regulator of the RNA binding repertoire of the RNA chaperone Hfq in Escherichia coli. Proc Natl Acad Sci U S A 2023; 120:e2311509120. [PMID: 38011569 PMCID: PMC10710024 DOI: 10.1073/pnas.2311509120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023] Open
Abstract
Bacterial small RNAs (sRNAs) regulate gene expression by base-pairing with their target mRNAs. In Escherichia coli and many other bacteria, this process is dependent on the RNA chaperone Hfq, a mediator for sRNA-mRNA annealing. YhbS (renamed here as HqbA), a putative Gcn5-related N-acetyltransferase (GNAT), was previously identified as a silencer of sRNA signaling in a genomic library screen. Here, we studied how HqbA regulates sRNA signaling and investigated its physiological roles in modulating Hfq activity. Using fluorescent reporter assays, we found that HqbA overproduction suppressed all tested Hfq-dependent sRNA signaling. Direct interaction between HqbA and Hfq was demonstrated both in vivo and in vitro, and mutants that blocked the interaction interfered with HqbA suppression of Hfq. However, an acetylation-deficient HqbA mutant still disrupted sRNA signaling, and HqbA interacted with Hfq at a site far from the active site. This suggests that HqbA may be bifunctional, with separate roles for regulating via Hfq interaction and for acetylation of undefined substrates. Gel shift assays revealed that HqbA strongly reduced the interaction between the Hfq distal face and low-affinity RNAs but not high-affinity RNAs. Comparative RNA immunoprecipitation of Hfq and sequencing showed enrichment of two tRNA precursors, metZWV and proM, by Hfq in mutants that lost the HqbA-Hfq interaction. Our results suggest that HqbA provides a level of quality control for Hfq by competing with low-affinity RNA binders.
Collapse
Affiliation(s)
- Xing Luo
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD20892
| | - Aixia Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD20892-4417
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD20892
| | - Jiandong Chen
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD20892
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD20892
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD20892-4417
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD20892
| |
Collapse
|
41
|
Dale AL, Man L, Cordwell SJ. Global Acetylomics of Campylobacter jejuni Shows Lysine Acetylation Regulates CadF Adhesin Processing and Human Fibronectin Binding. J Proteome Res 2023; 22:3519-3533. [PMID: 37830485 DOI: 10.1021/acs.jproteome.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Lysine acetylation (KAc) is a reversible post-translational modification (PTM) that can alter protein structure and function; however, specific roles for KAc are largely undefined in bacteria. Acetyl-lysine immunoprecipitation and LC-MS/MS identified 5567 acetylated lysines on 1026 proteins from the gastrointestinal pathogen Campylobacter jejuni (∼63% of the predicted proteome). KAc was identified on proteins from all subcellular locations, including the outer membrane (OM) and extracellular proteins. Label-based LC-MS/MS identified proteins and KAc sites during growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts). 3410 acetylated peptides were quantified, and 784 (from 409 proteins) were differentially abundant in DOC growth. Changes in KAc involved multiple pathways, suggesting a dynamic role for this PTM in bile resistance. As observed elsewhere, we show KAc is primarily nonenzymatically mediated via acetyl-phosphate; however, the deacetylase CobB also contributes to a global elevation of this modification in DOC. We observed several multiply acetylated OM proteins and altered DOC abundance of acetylated peptides in the fibronectin (Fn)-binding adhesin CadF. We show KAc reduces CadF Fn binding and prevalence of lower mass variants. This study provides the first system-wide lysine acetylome of C. jejuni and contributes to our understanding of KAc as an emerging PTM in bacteria.
Collapse
Affiliation(s)
- Ashleigh L Dale
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Lok Man
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
- Sydney Mass Spectrometry, The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
42
|
Ni J, Li S, Lai Y, Wang Z, Wang D, Tan Y, Fan Y, Lu J, Yao YF. Global profiling of ribosomal protein acetylation reveals essentiality of acetylation homeostasis in maintaining ribosome assembly and function. Nucleic Acids Res 2023; 51:10411-10427. [PMID: 37742082 PMCID: PMC10602876 DOI: 10.1093/nar/gkad768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Acetylation is a global post-translational modification that regulates various cellular processes. Bacterial acetylomic studies have revealed extensive acetylation of ribosomal proteins. However, the role of acetylation in regulating ribosome function remains poorly understood. In this study, we systematically profiled ribosomal protein acetylation and identified a total of 289 acetylated lysine residues in 52 ribosomal proteins (r-proteins) from Salmonella Typhimurium. The majority of acetylated lysine residues of r-proteins were found to be regulated by both acetyltransferase Pat and metabolic intermediate acetyl phosphate. Our results show that acetylation plays a critical role in the assembly of the mature 70S ribosome complex by modulating r-proteins binding to rRNA. Moreover, appropriate acetylation is important for the interactions between elongation factors and polysomes, as well as regulating ribosome translation efficiency and fidelity. Dysregulation of acetylation could alter bacterial sensitivity to ribosome-targeting antibiotics. Collectively, our data suggest that the acetylation homeostasis of ribosomes is crucial for their assembly and function. Furthermore, this mechanism may represent a universal response to environmental signals across different cell types.
Collapse
Affiliation(s)
- Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuxian Li
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanan Lai
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zuoqiang Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongcong Tan
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongqiang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai 200025, China
| |
Collapse
|
43
|
Watson PR, Christianson DW. Structure and Function of Kdac1, a Class II Deacetylase from the Multidrug-Resistant Pathogen Acinetobacter baumannii. Biochemistry 2023; 62:2689-2699. [PMID: 37624144 PMCID: PMC10528293 DOI: 10.1021/acs.biochem.3c00288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Proteomics studies indicate that 10% of proteins in the opportunistic pathogen Acinetobacter baumannii are acetylated, suggesting that lysine acetyltransferases and deacetylases function to maintain and regulate a robust bacterial acetylome. As the first step in exploring these fascinating prokaryotic enzymes, we now report the preparation and characterization of the lysine deacetylase Kdac1. We show that Kdac1 catalyzes the deacetylation of free acetyllysine and acetyllysine tetrapeptide assay substrates, and we also report the X-ray crystal structures of unliganded Kdac1 as well as its complex with the hydroxamate inhibitor Citarinostat. Kdac1 is a tetramer in solution and in the crystal; the crystal structure reveals that the L1 loop functions to stabilize quaternary structure, forming inter-subunit hydrogen bonds and salt bridges around a central arginine residue (R30). Surprisingly, the L1 loop partially blocks entry to the active site, but it is sufficiently flexible to allow for the binding of two Citarinostat molecules in the active site. The L12 loop is also important for maintaining quaternary structure; here, a conserved arginine (R278) accepts hydrogen bonds from the backbone carbonyl groups of residues in an adjacent monomer. Structural comparisons with two other prokaryotic lysine deacetylases reveal conserved residues in the L1 and L12 loops that similarly support tetramer assembly. These studies provide a structural foundation for understanding enzymes that regulate protein function in bacteria through reversible lysine acetylation, serving as a first step in the exploration of these enzymes as possible targets for the development of new antibiotics.
Collapse
Affiliation(s)
- Paris R. Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| |
Collapse
|
44
|
Li Z, Gong T, Wu Q, Zhang Y, Zheng X, Li Y, Ren B, Peng X, Zhou X. Lysine lactylation regulates metabolic pathways and biofilm formation in Streptococcus mutans. Sci Signal 2023; 16:eadg1849. [PMID: 37669396 DOI: 10.1126/scisignal.adg1849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/11/2023] [Indexed: 09/07/2023]
Abstract
In eukaryotes, lactate produced during glycolysis is involved in regulating multiple metabolic processes through lysine lactylation (Kla). To explore the potential link between metabolism and Kla in prokaryotes, we investigated the distribution of Kla in the cariogenic bacterium Streptococcus mutans during planktonic growth in low-sugar conditions and in biofilm-promoting, high-sugar conditions. We identified 1869 Kla sites in 469 proteins under these two conditions, with the biofilm growth state showing a greater number of lactylated sites and proteins. Although high sugar increased Kla globally, it reduced lactylation of RNA polymerase subunit α (RpoA) at Lys173. Lactylation at this residue inhibited the synthesis of extracellular polysaccharides, a major constituent of the cariogenic biofilm. The Gcn5-related N-acetyltransferase (GNAT) superfamily enzyme GNAT13 exhibited lysine lactyltransferase activity in cells and lactylated Lys173 in RpoA in vitro. Either GNAT13 overexpression or lactylation of Lys173 in RpoA inhibited biofilm formation. These results provide an overview of the distribution and potential functions of Kla and improve our understanding of the role of lactate in the metabolic regulation of prokaryotes.
Collapse
Affiliation(s)
- Zhengyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qinrui Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Gong Z, Qu Z, Yu Z, Li J, Liu B, Ma X, Cai J. Label-free quantitative detection and comparative analysis of lysine acetylation during the different life stages of Eimeria tenella. J Proteome Res 2023; 22:2785-2802. [PMID: 37562054 DOI: 10.1021/acs.jproteome.2c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Proteome-wide lysine acetylation has been documented in apicomplexan parasite Toxoplasma gondii and Plasmodium falciparum. Here, we conducted the first lysine acetylome in unsporulated oocysts (USO), sporulated 7 h oocysts (SO 7h), sporulated oocysts (SO), sporozoites (S), and the second generation merozoites (SMG) of Eimeria tenella through a 4D label-free quantitative technique. Altogether, 8532 lysine acetylation sites on 2325 proteins were identified in E. tenella, among which 5445 sites on 1493 proteins were quantified. In addition, 557, 339, 478, 248, 241, and 424 differentially expressed proteins were identified in the comparisons SO7h vs USO, SO vs SO7h, SO vs USO, S vs SO, SMG vs S, and USO vs SMG, respectively. The bioinformatics analysis of the acetylome showed that the lysine acetylation is widespread on proteins of diverse functions. Moreover, the dynamic changes of lysine acetylome among E. tenella different life stages revealed significant regulation during the whole process of E. tenella growth and stage conversion. This study provides a beginning for the investigation of the regulate role of lysine acetylation in E. tenella and may provide new strategies for anticoccidiosis drug and vaccine development. Raw data are publicly available at iProX with the data set identifier PXD040368.
Collapse
Affiliation(s)
| | - Zigang Qu
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Innovation of Research Program of Gastrointestinal Infection and Mucosal Immunity of Poultry and Pig; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China
| | - Zhengqing Yu
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia Province 750021, People's Republic of China
| | - Jidong Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia Province 750021, People's Republic of China
| | - Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Innovation of Research Program of Gastrointestinal Infection and Mucosal Immunity of Poultry and Pig; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China
| | - Xueting Ma
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Innovation of Research Program of Gastrointestinal Infection and Mucosal Immunity of Poultry and Pig; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Innovation of Research Program of Gastrointestinal Infection and Mucosal Immunity of Poultry and Pig; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China
| |
Collapse
|
46
|
Tan Y, Liu W, Chen Y, Zhou Y, Song K, Cao S, Zhang Y, Song Y, Deng H, Yang R, Du Z. Comparative Lysine Acetylome Analysis of Y. pestis YfiQ/CobB Mutants Reveals that Acetylation of SlyA Lys73 Significantly Promotes Biofilm Formation of Y. pestis. Microbiol Spectr 2023; 11:e0046023. [PMID: 37458592 PMCID: PMC10433856 DOI: 10.1128/spectrum.00460-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/10/2023] [Indexed: 08/19/2023] Open
Abstract
Increasing evidence shows that protein lysine acetylation is involved in almost every aspect of cellular physiology in bacteria. Yersinia pestis is a flea-borne pathogen responsible for millions of human deaths in three global pandemics. However, the functional role of lysine acetylation in this pathogen remains unclear. Here, we found more acetylated proteins and a higher degree of acetylation in Y. pestis grown under mammalian host (Mh) conditions than under flea vector (Fv) conditions, suggesting that protein acetylation could significantly change during fleabite transmission. Comparative acetylome analysis of mutants of YfiQ and CobB, the major acetyltransferase and deacetylase of Y. pestis, respectively, identified 23 YfiQ-dependent and 315 CobB-dependent acetylated proteins. Further results demonstrated that acetylation of Lys73 of the SlyA protein, a MarR-family transcriptional regulator, inhibits its binding to the promoter of target genes, including hmsT that encodes diguanylate cyclase responsible for the synthesis of c-di-GMP, and significantly enhances biofilm formation of Y. pestis. Our study presents the first extensive acetylome data of Y. pestis and a critical resource for the functional study of lysine acetylation in this pathogen. IMPORTANCE Yersinia pestis is the etiological agent of plague, historically responsible for three global pandemics. The 2017 plague epidemic in Madagascar was a reminder that Y. pestis remains a real threat in many parts of the world. Plague is a zoonotic disease that primarily infects rodents via fleabite, and transmission of Y. pestis from infected fleas to mammals requires rapid adaptive responses to adverse host environments to establish infection. Our study provides the first global profiling of lysine acetylation derived from mass spectrometry analysis in Y. pestis. Our data set can serve as a critical resource for the functional study of lysine acetylation in Y. pestis and provides new molecular insight into the physiological role of lysine acetylation in proteins. More importantly, we found that acetylation of Lys73 of SlyA significantly promotes biofilm formation of Y. pestis, indicating that bacteria can use lysine acetylation to fine-tune the expression of genes to improve adaptation.
Collapse
Affiliation(s)
- Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wanbing Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Kai Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shiyang Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
47
|
Meng Y, Ingram-Smith C, Ahmed O, Smith K. The Roles of Coenzyme A Binding Pocket Residues in Short and Medium Chain Acyl-CoA Synthetases. Life (Basel) 2023; 13:1643. [PMID: 37629500 PMCID: PMC10455477 DOI: 10.3390/life13081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Short- and medium-chain acyl-CoA synthetases catalyze similar two-step reactions in which acyl substrate and ATP bind to form an enzyme-bound acyl-adenylate, then CoA binds for formation of the acyl-CoA product. We investigated the roles of active site residues in CoA binding in acetyl-CoA synthetase (Acs) and a medium-chain acyl-CoA synthetase (Macs) that uses 2-methylbutyryl-CoA. Three highly conserved residues, Arg193, Arg528, and Arg586 of Methanothermobacter thermautotrophicus Acs (AcsMt), are predicted to form important interactions with the 5'- and 3'-phosphate groups of CoA. Kinetic characterization of AcsMt variants altered at each of these positions indicates these Arg residues play a critical role in CoA binding and catalysis. The predicted CoA binding site of Methanosarcina acetivorans Macs (MacsMa) is structurally more closely related to that of 4-chlorobenzoate:coenzyme A ligase (CBAL) than Acs. Alteration of MacsMa residues Tyr460, Arg490, Tyr525, and Tyr527, which correspond to CoA binding pocket residues in CBAL, strongly affected CoA binding and catalysis without substantially affecting acyl-adenylate formation. Both enzymes discriminate between 3'-dephospho-CoA and CoA, indicating interaction between the enzyme and the 3'-phosphate group is important. Alteration of MacsMa residues Lys461 and Lys519, located at positions equivalent to AcsMt Arg528 and Arg586, respectively, had only a moderate effect on CoA binding and catalysis. Overall, our results indicate the active site architecture in AcsMt and MacsMa differs even though these enzymes catalyze mechanistically similar reactions. The significance of this study is that we have delineated the active site architecture with respect to CoA binding and catalysis in this important enzyme superfamily.
Collapse
Affiliation(s)
- Yu Meng
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (Y.M.); (O.A.)
- College of Science and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | - Cheryl Ingram-Smith
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (Y.M.); (O.A.)
| | - Oly Ahmed
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (Y.M.); (O.A.)
| | - Kerry Smith
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (Y.M.); (O.A.)
| |
Collapse
|
48
|
Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J, Zhang H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e292. [PMID: 37220590 PMCID: PMC10200003 DOI: 10.1002/mco2.292] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Histones are DNA-binding basic proteins found in chromosomes. After the histone translation, its amino tail undergoes various modifications, such as methylation, acetylation, phosphorylation, ubiquitination, malonylation, propionylation, butyrylation, crotonylation, and lactylation, which together constitute the "histone code." The relationship between their combination and biological function can be used as an important epigenetic marker. Methylation and demethylation of the same histone residue, acetylation and deacetylation, phosphorylation and dephosphorylation, and even methylation and acetylation between different histone residues cooperate or antagonize with each other, forming a complex network. Histone-modifying enzymes, which cause numerous histone codes, have become a hot topic in the research on cancer therapeutic targets. Therefore, a thorough understanding of the role of histone post-translational modifications (PTMs) in cell life activities is very important for preventing and treating human diseases. In this review, several most thoroughly studied and newly discovered histone PTMs are introduced. Furthermore, we focus on the histone-modifying enzymes with carcinogenic potential, their abnormal modification sites in various tumors, and multiple essential molecular regulation mechanism. Finally, we summarize the missing areas of the current research and point out the direction of future research. We hope to provide a comprehensive understanding and promote further research in this field.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jiajun Wu
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haiwei Guo
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Weiping Yao
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Shuang Li
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yanwei Lu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yongshi Jia
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaodong Liang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jianming Tang
- Department of Radiation OncologyThe First Hospital of Lanzhou UniversityLanzhou UniversityLanzhouGansuChina
| | - Haibo Zhang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
49
|
Fatema N, Fan C. Studying lysine acetylation of citric acid cycle enzymes by genetic code expansion. Mol Microbiol 2023; 119:551-559. [PMID: 36890576 PMCID: PMC10636775 DOI: 10.1111/mmi.15052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023]
Abstract
Lysine acetylation is one of the most abundant post-translational modifications in nature, affecting many key biological pathways in both prokaryotes and eukaryotes. It has not been long since technological advances led to understanding of the roles of acetylation in biological processes. Most of those studies were based on proteomic analyses, which have identified thousands of acetylation sites in a wide range of proteins. However, the specific role of individual acetylation event remains largely unclear, mostly due to the existence of multiple acetylation and dynamic changes of acetylation levels. To solve these problems, the genetic code expansion technique has been applied in protein acetylation studies, facilitating the incorporation of acetyllysine into a specific lysine position to generate a site-specifically acetylated protein. By this method, the effects of acetylation at a specific lysine residue can be characterized with minimal interferences. Here, we summarized the development of the genetic code expansion technique for lysine acetylation and recent studies on lysine acetylation of citrate acid cycle enzymes in bacteria by this approach, providing a practical application of the genetic code expansion technique in protein acetylation studies.
Collapse
Affiliation(s)
- Nour Fatema
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
50
|
Zhou JP, Tan YQ, Chen ZH, Zhao W, Liu T. Adenosine triphosphate can act as a determinant of lysine acetylation of non-native and native substrates. Microbiol Res 2023; 268:127296. [PMID: 36580869 DOI: 10.1016/j.micres.2022.127296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
The protein lysine acetylation includes acetyl-CoA (AcCoA) or acetyl phosphate (AcP)-mediated nonenzymatic acetylation, and enzymatic acetylation. It is widespread in the proteomes but the acetylation levels of most sites are very low. A thorough understanding of the determinants of low acetylation levels is highly important for elucidating the physiological relevance of lysine acetylation. In this study, we constructed a non-native substrate library containing 24 synthesized polypeptides, and we showed that ATP could inhibit the AcCoA-mediated nonenzymatic acetylation of these polypeptides through LC-MS/MS analysis. The acetyltransferase PatZ could acetylated these non-native substrates, and the PatZ-catalyzed acetylation of the polypeptides was also inhibited by ATP. Furthermore, the Western blot showed that ATP also inhibited the nonenzymatic (AcCoA or AcP-mediated) and enzymatic (PatZ-catalyzed) acetylation of acetyl-CoA synthetase Acs, which is a native substrate for acetylation. ATP can also inhibit the autoacetylation of acetyltransferase PatZ. Besides, both ADP and AMP could enhance the AcP-mediated acetylation of Acs, but ADP slightly inhibited the AcCoA-mediated acetylation of Acs. However, both ADP and AMP had no evident inhibition on the PatZ-catalyzed acetylation of Acs. Based on these results, we proposed that ATP can act as an inhibitor of acetylation, and it may regulate the function of PatZ by inhibiting its autoacetylation and compensate for the function of deacetylase CobB.
Collapse
Affiliation(s)
- Jia-Peng Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yu-Qing Tan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Zi-Hao Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Wei Zhao
- Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Tong Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China.
| |
Collapse
|