1
|
Wang J, Yin B, Lian J, Wang X. Extracellular Vesicles as Drug Delivery System for Cancer Therapy. Pharmaceutics 2024; 16:1029. [PMID: 39204374 PMCID: PMC11359799 DOI: 10.3390/pharmaceutics16081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
In recent decades, the pursuit of drug delivery systems has led to the development of numerous synthetic options aimed at enhancing drug efficacy while minimizing side effects. However, the practical application of these systems is often hindered by challenges such as inefficiency, cytotoxicity, and immunogenicity. Extracellular vesicles, natural carriers for drugs, emerge as promising alternatives with distinct advantages over synthetic carriers. Notably, EVs exhibit biocompatibility, low immunogenicity, and inherent tissue-targeting capabilities, thus opening new avenues for drug delivery strategies. This review provides an overview of EVs, including their biogenesis and absorption mechanisms. Additionally, we explore the current research efforts focusing on harnessing their potential as drug carriers, encompassing aspects such as purification techniques, drug loading, and bioengineering for targeted delivery. Finally, we discuss the existing challenges and future prospects of EVs as therapeutic agents in clinical settings. This comprehensive analysis aims to shed light on the potential of EVs as versatile and effective tools for drug delivery, particularly in the realm of cancer therapy.
Collapse
Affiliation(s)
- Jin Wang
- School of Life Sciences, Liaoning University, Shenyang 110036, China; (J.W.); (J.L.)
| | - Bohang Yin
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Jiabing Lian
- School of Life Sciences, Liaoning University, Shenyang 110036, China; (J.W.); (J.L.)
| | - Xia Wang
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenyang 110122, China
| |
Collapse
|
2
|
Brar HK, Dey S, Singh P, Pande D, Ghosh-Roy A. Functional Recovery Associated with Dendrite Regeneration in PVD Neuron of Caenorhabditis elegans. eNeuro 2024; 11:ENEURO.0292-23.2024. [PMID: 38548333 PMCID: PMC7615967 DOI: 10.1523/eneuro.0292-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/18/2024] [Accepted: 03/03/2024] [Indexed: 05/02/2024] Open
Abstract
PVD neuron of Caenorhabditis elegans is a highly polarized cell with well-defined axonal, and dendritic compartments. PVD neuron operates in multiple sensory modalities including the control of both nociceptive touch sensation and body posture. Although both the axon and dendrites of this neuron show a regeneration response following laser-assisted injury, it is rather unclear how the behavior associated with this neuron is affected by the loss of these structures. It is also unclear whether neurite regrowth would lead to functional restoration in these neurons. Upon axotomy, using a femtosecond laser, we saw that harsh touch response was specifically affected leaving the body posture unperturbed. Subsequently, recovery in the touch response is highly correlated to the axon regrowth, which was dependent on DLK-1/MLK-1 MAP Kinase. Dendrotomy of both major and minor primary dendrites affected the wavelength and amplitude of sinusoidal movement without any apparent effect on harsh touch response. We further correlated the recovery in posture behavior to the type of dendrite regeneration events. We found that dendrite regeneration through the fusion and reconnection between the proximal and distal branches of the injured dendrite corresponded to improved recovery in posture. Our data revealed that the axons and dendrites of PVD neurons regulate the nociception and proprioception in worms, respectively. It also revealed that dendrite and axon regeneration lead to the restoration of these differential sensory modalities.
Collapse
Affiliation(s)
- Harjot Kaur Brar
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Swagata Dey
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Pallavi Singh
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Devashish Pande
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Anindya Ghosh-Roy
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| |
Collapse
|
3
|
von Mikecz A. Elegant Nematodes Improve Our Understanding of Human Neuronal Diseases, the Role of Pollutants and Strategies of Resilience. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16755-16763. [PMID: 37874738 PMCID: PMC10634345 DOI: 10.1021/acs.est.3c04580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
The prevalence of neurodegenerative disorders such as Alzheimer's and Parkinson's disease are rising globally. The role of environmental pollution in neurodegeneration is largely unknown. Thus, this perspective advocates exposome research in C. elegans models of human diseases. The models express amyloid proteins such as Aβ, recapitulate the degeneration of specifically vulnerable neurons and allow for correlated neurobehavioral phenotyping throughout the entire life span of the nematode. Neurobehavioral traits like locomotion gaits, rigidity, or cognitive decline are quantifiable and carefully mimic key aspects of the human diseases. Underlying molecular pathways of neurodegeneration are elucidated in pollutant-exposed C. elegans Alzheimer's or Parkinson's models by transcriptomics (RNA-seq), mass spectrometry-based proteomics and omics addressing other biochemical traits. Validation of the identified disease pathways can be achieved by genome-wide association studies in matching human cohorts. A consistent One Health approach includes isolation of nematodes from contaminated sites and their comparative investigation by imaging, neurobehavioral profiling and single worm proteomics. C. elegans models of neurodegenerative diseases are likewise well-suited for high throughput methods that provide a promising strategy to identify resilience pathways of neurosafety and keep up with the number of pollutants, nonchemical exposome factors, and their interactions.
Collapse
Affiliation(s)
- Anna von Mikecz
- IUF − Leibniz Research Institute
of Environmental Medicine GmbH, Auf’m Hennekamp 50, 40225 Duesseldorf, Germany
| |
Collapse
|
4
|
Martínez E, Marcellini S, Henríquez JP. Beyond vertebrates: the amphioxus as a relevant model system to explore the formation, organization, and regeneration of neuromuscular synapses. Neural Regen Res 2022; 17:2425-2426. [PMID: 35535884 PMCID: PMC9120703 DOI: 10.4103/1673-5374.338994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Esperanza Martínez
- Neuromuscular Studies Lab (NeSt Lab); Group for the Study of Developmental Processes (GDeP), Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Sylvain Marcellini
- Laboratory of Development and Evolution (LADE); Group for the Study of Developmental Processes (GDeP), Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Juan Pablo Henríquez
- Neuromuscular Studies Lab (NeSt Lab); Group for the Study of Developmental Processes (GDeP), Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
5
|
Identification, molecular characterization, and in silico structural analysis of larval salivary glands Netrin-A as a potent biomarker from Lucilia sericata (Diptera: Calliphoridae). Genetica 2022; 150:379-394. [PMID: 36136258 DOI: 10.1007/s10709-022-00164-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/29/2022] [Indexed: 11/04/2022]
Abstract
The greenbottle blowfly Lucilia sericata (L. sericata) is increasingly used in larval therapy of chronic wounds. Netrins as bifunctional proteins are in the superfamily of Laminins secreted from larval salivary glands. The Netrin protein has a significant instructive role in axon guidance, causing neuronal outgrowth, angiogenesis, and cell migration. It seems to be crucial in wound healing and acts as a potential biomarker in diagnosing some clinical diseases. This survey aimed to identify molecular features and analyze in silico structural configuration of Netrin-A in L. sericata larvae. The larvae were reared under standard maggotarium conditions. The nucleic acid sequence of L. sericata Netrin-A (LSN-A) was then identified using rapid amplification of circular DNA ends (RACE) and rapid amplification of genomic ends (RAGE). Parts of the Netrin-A gene, including the middle, 3'-, and 5'-ends, were identified, TA cloned in pTG19 plasmid, and transferred into DH5ɑ Escherichia coli. Each part was sequenced and assembled using SeqMan software. This gene structure was further subjected to in silico analysis. The DNA of LSN-A was identified to be 2407 bp, while its mRNA sequence was recognized as 2115 bp by Oligo0.7 software. It translated the Netrin-A protein with 704 amino acid residues. Its estimated molecular weight was 78.6 kDa. Sequencing of this fragment and its BLAST analysis revealed laminin-based high (95%) similarity with the mRNA sequence of Lucilia cuprina Netrin-A. The 3-D structure of Netrin-A drawn by SWISS-MODEL exhibited its partial resemblance to the reference molecule Netrin-1 of Homo sapiens. This study supports the molecular and structural analyses of LSN-A protein, which could lead to wound treatment. Ultimately, it can be an effective candidate to ameliorate injury. Our next attempt is to produce LSN-A recombinant protein for use in biomedical sciences.
Collapse
|
6
|
Godini R, Fallahi H, Pocock R. The regulatory landscape of neurite development in Caenorhabditis elegans. Front Mol Neurosci 2022; 15:974208. [PMID: 36090252 PMCID: PMC9453034 DOI: 10.3389/fnmol.2022.974208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Neuronal communication requires precise connectivity of neurite projections (axons and dendrites). Developing neurites express cell-surface receptors that interpret extracellular cues to enable correct guidance toward, and connection with, target cells. Spatiotemporal regulation of neurite guidance molecule expression by transcription factors (TFs) is critical for nervous system development and function. Here, we review how neurite development is regulated by TFs in the Caenorhabditis elegans nervous system. By collecting publicly available transcriptome and ChIP-sequencing data, we reveal gene expression dynamics during neurite development, providing insight into transcriptional mechanisms governing construction of the nervous system architecture.
Collapse
Affiliation(s)
- Rasoul Godini
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- *Correspondence: Rasoul Godini,
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Roger Pocock
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Roger Pocock,
| |
Collapse
|
7
|
von Mikecz A. Exposome, Molecular Pathways and One Health: The Invertebrate Caenorhabditis elegans. Int J Mol Sci 2022; 23:9084. [PMID: 36012346 PMCID: PMC9409025 DOI: 10.3390/ijms23169084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/04/2022] Open
Abstract
Due to its preferred habitats in the environment, the free-living nematode Caenorhabditis elegans has become a realistic target organism for pollutants, including manufactured nanoparticles. In the laboratory, the invertebrate animal model represents a cost-effective tool to investigate the molecular mechanisms of the biological response to nanomaterials. With an estimated number of 22,000 coding genes and short life span of 2-3 weeks, the small worm is a giant when it comes to characterization of molecular pathways, long-term low dose pollutant effects and vulnerable age-groups. Here, we review (i) flows of manufactured nanomaterials and exposition of C. elegans in the environment, (ii) the track record of C. elegans in biomedical research, and (iii) its potential to contribute to the investigation of the exposome and bridge nanotoxicology between higher organisms, including humans. The role of C. elegans in the one health concept is taken one step further by proposing methods to sample wild nematodes and their molecular characterization by single worm proteomics.
Collapse
Affiliation(s)
- Anna von Mikecz
- IUF-Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| |
Collapse
|
8
|
Malerba F. Why Are We Scientists? Drawing Inspiration From Rita Levi-Montalcini. Front Cell Neurosci 2022; 15:741984. [PMID: 35126056 PMCID: PMC8814914 DOI: 10.3389/fncel.2021.741984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/02/2021] [Indexed: 11/15/2022] Open
Abstract
In 2007, drawing inspiration from her previous experiments on chick embryos, Rita Levi-Montalcini, at the age of 98, proposed a new project, and a research group, in which I was included, was formed at the European Brain Research Institute (EBRI). Looking back on this experience, I can say that Professor Levi-Montalcini’s approach and the relationships she formed with my colleagues and me, contributed to my growth as a researcher. With her welcoming and warm-hearted disposition, she taught me how to consider other people’s ideas without prejudice, to reason and not to exclude any hypothesis. I also learned from her how to overcome those difficulties that are so frequent in the research field, always keeping in mind the starting point and looking toward the objective, with a factual optimism. I was just a young researcher and deeply flattered that a Nobel Laureate, with an incredible career and extraordinary life, treated me as her equal. My experience with Professor Levi-Montalcini has also provided me with a reliable path to follow, and when I encounter difficulties and challenges, I ask myself what would she have done. This approach has always helped me to move forward. Indeed, I believe the best way to celebrate Rita Levi-Montalcini as a woman in neuroscience is to recount how her exceptional example is a constant reminder as to why I have chosen to be a scientist. I hope she will always continue to be a source of inspiration for scientists in the future.
Collapse
|
9
|
Swimming Exercise Promotes Post-injury Axon Regeneration and Functional Restoration through AMPK. eNeuro 2021; 8:ENEURO.0414-20.2021. [PMID: 34031101 PMCID: PMC8211466 DOI: 10.1523/eneuro.0414-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022] Open
Abstract
Restoration of lost function following a nervous system injury is limited in adulthood as the regenerative capacity of nervous system declines with age. Pharmacological approaches have not been very successful in alleviating the consequences of nervous system injury. On the contrary, physical activity and rehabilitation interventions are often beneficial to improve the health conditions in the patients with neuronal injuries. Using touch neuron circuit of Caenorhabditis elegans, we investigated the role of physical exercise in the improvement of functional restoration after axotomy. We found that a swimming session of 90 min following the axotomy of posterior lateral microtubule (PLM) neuron can improve functional recovery in larval and adult stage animals. In older age, multiple exercise sessions were required to enhance the functional recovery. Genetic analysis of axon regeneration mutants showed that exercise-mediated enhancement of functional recovery depends on the ability of axon to regenerate. Exercise promotes early initiation of regrowth, self-fusion of proximal and distal ends, as well as postregrowth enhancement of function. We further found that the swimming exercise promotes axon regeneration through the activity of cellular energy sensor AAK-2/AMPK in both muscle and neuron. Our study established a paradigm where systemic effects of exercise on functional regeneration could be addressed at the single neuron level.
Collapse
|
10
|
Basu A, Behera S, Bhardwaj S, Dey S, Ghosh-Roy A. Regulation of UNC-40/DCC and UNC-6/Netrin by DAF-16 promotes functional rewiring of the injured axon. Development 2021; 148:268990. [PMID: 34109380 DOI: 10.1242/dev.198044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/04/2021] [Indexed: 01/02/2023]
Abstract
The adult nervous system has a limited capacity to regenerate after accidental damage. Post-injury functional restoration requires proper targeting of the injured axon to its postsynaptic cell. Although the initial response to axonal injury has been studied in great detail, it is rather unclear what controls the re-establishment of a functional connection. Using the posterior lateral microtubule neuron in Caenorhabditis elegans, we found that after axotomy, the regrowth from the proximal stump towards the ventral side and accumulation of presynaptic machinery along the ventral nerve cord correlated to the functional recovery. We found that the loss of insulin receptor DAF-2 promoted 'ventral targeting' in a DAF-16-dependent manner. We further showed that coordinated activities of DAF-16 in neuron and muscle promoted 'ventral targeting'. In response to axotomy, expression of the Netrin receptor UNC-40 was upregulated in the injured neuron in a DAF-16-dependent manner. In contrast, the DAF-2-DAF-16 axis contributed to the age-related decline in Netrin expression in muscle. Therefore, our study revealed an important role for insulin signaling in regulating the axon guidance molecules during the functional rewiring process.
Collapse
Affiliation(s)
- Atrayee Basu
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | - Sibaram Behera
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | - Smriti Bhardwaj
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | - Shirshendu Dey
- Fluorescence Microscopy Division, Bruker India Scientific PvT Ltd, International Trade Tower, Nehru Place, New Delhi 110019, India
| | - Anindya Ghosh-Roy
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| |
Collapse
|
11
|
Yin C, Peterman E, Rasmussen JP, Parrish JZ. Transparent Touch: Insights From Model Systems on Epidermal Control of Somatosensory Innervation. Front Cell Neurosci 2021; 15:680345. [PMID: 34135734 PMCID: PMC8200473 DOI: 10.3389/fncel.2021.680345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
Somatosensory neurons (SSNs) densely innervate our largest organ, the skin, and shape our experience of the world, mediating responses to sensory stimuli including touch, pressure, and temperature. Historically, epidermal contributions to somatosensation, including roles in shaping innervation patterns and responses to sensory stimuli, have been understudied. However, recent work demonstrates that epidermal signals dictate patterns of SSN skin innervation through a variety of mechanisms including targeting afferents to the epidermis, providing instructive cues for branching morphogenesis, growth control and structural stability of neurites, and facilitating neurite-neurite interactions. Here, we focus onstudies conducted in worms (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), and zebrafish (Danio rerio): prominent model systems in which anatomical and genetic analyses have defined fundamental principles by which epidermal cells govern SSN development.
Collapse
Affiliation(s)
| | | | | | - Jay Z. Parrish
- Department of Biology, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Wang X, Jiang W, Luo S, Yang X, Wang C, Wang B, Dang Y, Shen Y, Ma DK. The C. elegans homolog of human panic-disorder risk gene TMEM132D orchestrates neuronal morphogenesis through the WAVE-regulatory complex. Mol Brain 2021; 14:54. [PMID: 33726789 PMCID: PMC7962252 DOI: 10.1186/s13041-021-00767-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/03/2021] [Indexed: 01/11/2023] Open
Abstract
TMEM132D is a human gene identified with multiple risk alleles for panic disorders, anxiety and major depressive disorders. Defining a conserved family of transmembrane proteins, TMEM132D and its homologs are still of unknown molecular functions. By generating loss-of-function mutants of the sole TMEM132 ortholog in C. elegans, we identify abnormal morphologic phenotypes in the dopaminergic PDE neurons. Using a yeast two-hybrid screen, we find that NAP1 directly interacts with the cytoplasmic domain of human TMEM132D, and mutations in C. elegans tmem-132 that disrupt interaction with NAP1 cause similar morphologic defects in the PDE neurons. NAP1 is a component of the WAVE regulatory complex (WRC) that controls F-actin cytoskeletal dynamics. Decreasing activity of WRC rescues the PDE defects in tmem-132 mutants, whereas gain-of-function of TMEM132D in mammalian cells inhibits WRC, leading to decreased abundance of select WRC components, impaired actin nucleation and cell motility. We propose that metazoan TMEM132 family proteins play evolutionarily conserved roles in regulating NAP1 protein homologs to restrict inappropriate WRC activity, cytoskeletal and morphologic changes in the cell.
Collapse
Affiliation(s)
- Xin Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Fudan University, Shanghai, 200032, China
| | - Shuo Luo
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Xiaoyu Yang
- Institute for Human Genetics, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Changnan Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Fudan University, Shanghai, 200032, China
| | - Yin Shen
- Institute for Human Genetics, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Dengke K Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
13
|
Lin TY, Chen PJ, Yu HH, Hsu CP, Lee CH. Extrinsic Factors Regulating Dendritic Patterning. Front Cell Neurosci 2021; 14:622808. [PMID: 33519386 PMCID: PMC7838386 DOI: 10.3389/fncel.2020.622808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Stereotypic dendrite arborizations are key morphological features of neuronal identity, as the size, shape and location of dendritic trees determine the synaptic input fields and how information is integrated within developed neural circuits. In this review, we focus on the actions of extrinsic intercellular communication factors and their effects on intrinsic developmental processes that lead to dendrite patterning. Surrounding neurons or supporting cells express adhesion receptors and secreted proteins that respectively, act via direct contact or over short distances to shape, size, and localize dendrites during specific developmental stages. The different ligand-receptor interactions and downstream signaling events appear to direct dendrite morphogenesis by converging on two categorical mechanisms: local cytoskeletal and adhesion modulation and global transcriptional regulation of key dendritic growth components, such as lipid synthesis enzymes. Recent work has begun to uncover how the coordinated signaling of multiple extrinsic factors promotes complexity in dendritic trees and ensures robust dendritic patterning.
Collapse
Affiliation(s)
- Tzu-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Ju Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Hsiang Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Hon Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
14
|
Furusawa K, Emoto K. Scrap and Build for Functional Neural Circuits: Spatiotemporal Regulation of Dendrite Degeneration and Regeneration in Neural Development and Disease. Front Cell Neurosci 2021; 14:613320. [PMID: 33505249 PMCID: PMC7829185 DOI: 10.3389/fncel.2020.613320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023] Open
Abstract
Dendrites are cellular structures essential for the integration of neuronal information. These elegant but complex structures are highly patterned across the nervous system but vary tremendously in their size and fine architecture, each designed to best serve specific computations within their networks. Recent in vivo imaging studies reveal that the development of mature dendrite arbors in many cases involves extensive remodeling achieved through a precisely orchestrated interplay of growth, degeneration, and regeneration of dendritic branches. Both degeneration and regeneration of dendritic branches involve precise spatiotemporal regulation for the proper wiring of functional networks. In particular, dendrite degeneration must be targeted in a compartmentalized manner to avoid neuronal death. Dysregulation of these developmental processes, in particular dendrite degeneration, is associated with certain types of pathology, injury, and aging. In this article, we review recent progress in our understanding of dendrite degeneration and regeneration, focusing on molecular and cellular mechanisms underlying spatiotemporal control of dendrite remodeling in neural development. We further discuss how developmental dendrite degeneration and regeneration are molecularly and functionally related to dendrite remodeling in pathology, disease, and aging.
Collapse
Affiliation(s)
- Kotaro Furusawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Ferreira Castro A, Baltruschat L, Stürner T, Bahrami A, Jedlicka P, Tavosanis G, Cuntz H. Achieving functional neuronal dendrite structure through sequential stochastic growth and retraction. eLife 2020; 9:e60920. [PMID: 33241995 PMCID: PMC7837678 DOI: 10.7554/elife.60920] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
Class I ventral posterior dendritic arborisation (c1vpda) proprioceptive sensory neurons respond to contractions in the Drosophila larval body wall during crawling. Their dendritic branches run along the direction of contraction, possibly a functional requirement to maximise membrane curvature during crawling contractions. Although the molecular machinery of dendritic patterning in c1vpda has been extensively studied, the process leading to the precise elaboration of their comb-like shapes remains elusive. Here, to link dendrite shape with its proprioceptive role, we performed long-term, non-invasive, in vivo time-lapse imaging of c1vpda embryonic and larval morphogenesis to reveal a sequence of differentiation stages. We combined computer models and dendritic branch dynamics tracking to propose that distinct sequential phases of stochastic growth and retraction achieve efficient dendritic trees both in terms of wire and function. Our study shows how dendrite growth balances structure-function requirements, shedding new light on general principles of self-organisation in functionally specialised dendrites.
Collapse
Affiliation(s)
- André Ferreira Castro
- Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with Max Planck SocietyFrankfurt am MainGermany
- Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Tomke Stürner
- Center for Neurodegenerative Diseases (DZNE)BonnGermany
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | | | - Peter Jedlicka
- Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
- Faculty of Medicine, ICAR3R – Interdisciplinary Centre for 3Rs in Animal Research, Justus Liebig University GiessenGiessenGermany
- Neuroscience Center, Institute of Clinical Neuroanatomy, Goethe UniversityFrankfurt am MainGermany
| | - Gaia Tavosanis
- Center for Neurodegenerative Diseases (DZNE)BonnGermany
- LIMES Institute, University of BonnBonnGermany
| | - Hermann Cuntz
- Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with Max Planck SocietyFrankfurt am MainGermany
| |
Collapse
|
16
|
Liu HH, Jan YN. Mechanisms of neurite repair. Curr Opin Neurobiol 2020; 63:53-58. [PMID: 32278210 DOI: 10.1016/j.conb.2020.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
Upon receiving injury signals, neurons can activate various pathways to reduce harm, initiate neuroprotection, and repair damaged neurite without cell death. Here, we review recent progresses in the study of neurite repair focusing on neuronal cell-autonomous mechanisms, including new findings on ion channels that serve as key regulators to initiate neurite repair and intrinsic signaling pathways and transcriptional and post-transcriptional factors that facilitate neurite repair. We also touch upon reports on how dendrites may be affected upon axotomy and how the regeneration potential in injured neurites might be maximized.
Collapse
Affiliation(s)
- Han-Hsuan Liu
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, CA 94158, USA
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
17
|
Hodgkin J. Nematode Autotomy Requires Molting and Entails Tissue Healing without Obvious Regeneration. J Dev Biol 2019; 7:jdb7040021. [PMID: 31771156 PMCID: PMC6955759 DOI: 10.3390/jdb7040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022] Open
Abstract
Autotomy in C. elegans, which results in the severing of the body into two fragments, has been observed as a response to late larval worm-star formation after exposure to a bacterial surface pathogen. It was found that autotomy can occur in both hermaphroditic and gonochoristic nematode species, and during either the L3 or the L4 molt. Severing was hypothesized to be driven by a ‘balloon-twisting’ mechanism during molting but was found to be independent of lethargus-associated flipping. Extensive healing and apparent tissue fusion were seen at the site of scission. No obvious regeneration of lost body parts was seen in either L4 or adult truncated worms. A variety of mutants defective in processes of cell death, healing, regeneration, responses to damage, stress or pathogens were found to be competent to autotomize. Mutants specifically defective in autotomy have yet to be found. Autotomy may represent a modification of the essential normal process of molting.
Collapse
Affiliation(s)
- Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
18
|
Zhong LY, Fan XR, Shi ZJ, Fan ZC, Luo J, Lin N, Liu YC, Wu L, Zeng XR, Cao JM, Wei Y. Hyperpolarization-Activated Cyclic Nucleotide-Gated Ion (HCN) Channels Regulate PC12 Cell Differentiation Toward Sympathetic Neuron. Front Cell Neurosci 2019; 13:415. [PMID: 31616252 PMCID: PMC6763607 DOI: 10.3389/fncel.2019.00415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated ion channels (HCN channels) are widely expressed in the central and peripheral nervous systems and organs, while their functions are not well elucidated especially in the sympathetic nerve. The present study aimed to investigate the roles of HCN channel isoforms in the differentiation of sympathetic neurons using PC12 cell as a model. PC12 cells derived from rat pheochromocytoma were cultured and induced by nerve growth factor (NGF) (25 ng/ml) to differentiate to sympathetic neuron-like cells. Sympathetic directional differentiation of PC12 cells were evaluated by expressions of growth-associated protein 43 (GAP-43) (a growth cone marker), tyrosine hydroxylase (TH) (a sympathetic neuron marker) and neurite outgrowth. Results show that the HCN channel isoforms (HCN1-4) were all expressed in PC12 cells; blocking HCN channels with ivabradine suppressed NGF-induced GAP-43 expression and neurite outgrowth; silencing the expression of HCN2 and HCN4 using silenced using small interfering RNAs (siRNA), rather than HCN1 and HCN3, restrained GAP-43 expression and neurite outgrowth, while overexpression of HCN2 and HCN4 channels with gene transfer promoted GAP-43 expression and neurite outgrowth. Patch clamp experiments show that PC12 cells exhibited resting potentials (RP) of about −65 to −70 mV, and also presented inward HCN channel currents and outward (K+) currents, but no inward voltage-gated Na+ current was induced; NGF did not significantly affect the RP but promoted the establishment of excitability as indicated by the increased ability to depolarize and repolarize in the evoked suspicious action potentials (AP). We conclude that HCN2 and HCN4 channel isoforms, but not HCN1 and HCN3, promote the differentiation of PC12 cells toward sympathetic neurons. NGF potentiates the establishment of excitability during PC12 cell differentiation.
Collapse
Affiliation(s)
- Li-Ying Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xin-Rong Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhang-Jing Shi
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Zhong-Cai Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Na Lin
- Department of Respiratory Medicine, Rongcheng People's Hospital, Rongcheng, China
| | - Ying-Cai Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Xiao-Rong Zeng
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology of Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yan Wei
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|