1
|
Korkian Y, Nakhla N, Pack CC. Feature selectivity of corticocortical feedback along the primate dorsal visual pathway. J Neurophysiol 2025; 133:799-814. [PMID: 39813398 DOI: 10.1152/jn.00278.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025] Open
Abstract
Anatomical studies have revealed a prominent role for feedback projections in the primate visual cortex. Theoretical models suggest that these projections support important brain functions such as attention, prediction, and learning. However, these models make different predictions about the relationship between feedback connectivity and neuronal stimulus selectivity. We have therefore performed simultaneous recordings in different regions of the primate dorsal visual pathway. Specifically, we recorded neural activity from the medial superior temporal (MST) area, and one of its main feedback targets, the middle temporal (MT) area. We estimated functional connectivity from correlations in the single-neuron spike trains and performed electrical microstimulation in MST to determine its causal influence on MT. Both methods revealed that inhibitory feedback occurred more commonly when the source and target neurons had very different stimulus preferences. At the same time, the strength of feedback suppression was greater for neurons with similar preferences. Excitatory feedback projections, in contrast, showed no consistent relationship with stimulus preferences. These results suggest that corticocortical feedback could play a role in shaping sensory responses according to behavioral or environmental context.NEW & NOTEWORTHY Here, we show that corticocortical feedback influences are often determined by the selectivity of the individual neurons. A common motif is the occurrence of inhibitory feedback among neurons with very different stimulus preferences. This results in strong suppression of responses in area MT when MST is electrically stimulated. Interestingly, this feedback shows a complex interaction with ongoing visual stimulation, being powerfully suppressive when visual inputs are strong, yet excitatory when visual inputs are weak.
Collapse
Affiliation(s)
- Yavar Korkian
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Quantitative Life Sciences PhD Program, McGill University, Montreal, Quebec, Canada
| | - Nardin Nakhla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christopher C Pack
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Harnett NG, Fleming LL, Clancy KJ, Ressler KJ, Rosso IM. Affective Visual Circuit Dysfunction in Trauma and Stress-Related Disorders. Biol Psychiatry 2025; 97:405-416. [PMID: 38996901 PMCID: PMC11717988 DOI: 10.1016/j.biopsych.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Posttraumatic stress disorder (PTSD) is widely recognized as involving disruption of core neurocircuitry that underlies processing, regulation, and response to threat. In particular, the prefrontal cortex-hippocampal-amygdala circuit is a major contributor to posttraumatic dysfunction. However, the functioning of core threat neurocircuitry is partially dependent on sensorial inputs, and previous research has demonstrated that dense, reciprocal connections exist between threat circuits and the ventral visual stream. Furthermore, emergent evidence suggests that trauma exposure and resultant PTSD symptoms are associated with altered structure and function of the ventral visual stream. In the current review, we discuss evidence that both threat and visual circuitry together are an integral part of PTSD pathogenesis. An overview of the relevance of visual processing to PTSD is discussed in the context of both basic and translational research, highlighting the impact of stress on affective visual circuitry. This review further synthesizes emergent literature to suggest potential timing-dependent effects of traumatic stress on threat and visual circuits that may contribute to PTSD development. We conclude with recommendations for future research to move the field toward a more complete understanding of PTSD neurobiology.
Collapse
Affiliation(s)
- Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Leland L Fleming
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Kevin J Clancy
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Kerry J Ressler
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Isabelle M Rosso
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Soumiya H, Mori S, Kageyama K, Kawakami M, Nara A, Furukawa S, Fukumitsu H. Distinct contributions of BDNF/MEK/ERK1/2 signaling pathway components to whisker-dependent tactile learning and memory. Brain Res 2025; 1848:149404. [PMID: 39694169 DOI: 10.1016/j.brainres.2024.149404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/24/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Whisker-mediated tactile perception is essential for rodent navigation, food acquisition, and social interactions. However, the molecular mechanisms underlying tactile information processing, learning, and memory have not been studied to the same extent as for other modalities. Using immunohistochemical staining, we investigated changes in regional c-Fos expression as an index of neuronal activity and phosphorylated (p)ERK1/2 as an index of ERK1/2 activity in mice trained on a tactile-cued 8-arm radial maze task. Over 12 trials, mice learned to selectively explore four baited arms covered with wire as the tactile cue while avoiding un-baited uncovered arms. The density of c-Fos+ cells was significantly higher in somatosensory cortex but not frontal cortex or amygdala of mice exposed to tactile cue - bait pairing compared to mice exposed to the same maze with all arms baited with or without tactile cues (unpaired conditions). The density of pERK1/2+ cells was also increased after paired trials 7 and 12 but not after paired trials 1 and 3 in frontal cortex, amygdala, and somatosensory cortex compared to mice exposed to the unpaired condition. The MEK1/2 inhibitor SL327 reduced c-Fos expression in frontal cortex and amygdala when applied during early trials, but impaired working memory when applied before later trials without affecting c-Fos expression. Heterozygous BDNF knockout mice exhibited impaired task learning and reduced pERK1/2 expression in frontal cortex and amygdala but not somatosensory cortex. These findings suggest that the BDNF/MEK/ERK1/2 pathway selectively promotes memory trace formation in frontal cortex and amygdala but not encoding in somatosensory cortex.
Collapse
Affiliation(s)
- Hitomi Soumiya
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi 1-25-4, Gifu 501-1196, Japan
| | - Shingo Mori
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi 1-25-4, Gifu 501-1196, Japan
| | - Kohta Kageyama
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi 1-25-4, Gifu 501-1196, Japan
| | - Masateru Kawakami
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi 1-25-4, Gifu 501-1196, Japan
| | - Aoi Nara
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi 1-25-4, Gifu 501-1196, Japan
| | - Shoei Furukawa
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi 1-25-4, Gifu 501-1196, Japan
| | - Hidefumi Fukumitsu
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi 1-25-4, Gifu 501-1196, Japan.
| |
Collapse
|
4
|
Corbo J, Erkat OB, McClure J, Khdour H, Polack PO. Discretized representations in V1 predict suboptimal orientation discrimination. Nat Commun 2025; 16:41. [PMID: 39746991 PMCID: PMC11696038 DOI: 10.1038/s41467-024-55409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Neuronal population activity in sensory cortices is the substrate for perceptual decisions. Yet, we still do not understand how neuronal information content in sensory cortices relates to behavioral reports. To reconcile neurometric and psychometric performance, we recorded the activity of V1 neurons in mice performing a Go/NoGo orientation discrimination task. We found that, around the discrimination threshold, V1 does not represent the orientation of the stimuli as canonically expected. Instead, it forms categorical representations characterized by a relocation of activity at task-relevant domains of the orientation representational space. The relative neuronal activity at those discrete domains accurately predicted the probabilities of the animals' decisions. Our results thus suggest that the categorical integration of discretized feature representations from sensory cortices explains perceptual decisions.
Collapse
Affiliation(s)
- Julien Corbo
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - O Batuhan Erkat
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
- Graduate Program in Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - John McClure
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
- Graduate Program in Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - Hussein Khdour
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
- Graduate Program in Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - Pierre-Olivier Polack
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA.
| |
Collapse
|
5
|
Dai W, Wang T, Li Y, Yang Y, Zhang Y, Wu Y, Zhou T, Yu H, Li L, Wang Y, Wang G, Xing D. Cortical direction selectivity increases from the input to the output layers of visual cortex. PLoS Biol 2025; 23:e3002947. [PMID: 39777916 PMCID: PMC11709279 DOI: 10.1371/journal.pbio.3002947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Sensitivity to motion direction is a feature of visual neurons that is essential for motion perception. Recent studies have suggested that direction selectivity is re-established at multiple stages throughout the visual hierarchy, which contradicts the traditional assumption that direction selectivity in later stages largely derives from that in earlier stages. By recording laminar responses in areas 17 and 18 of anesthetized cats of both sexes, we aimed to understand how direction selectivity is processed and relayed across 2 successive stages: the input layers and the output layers within the early visual cortices. We found a strong relationship between the strength of direction selectivity in the output layers and the input layers, as well as the preservation of preferred directions across the input and output layers. Moreover, direction selectivity was enhanced in the output layers compared to the input layers, with the response strength maintained in the preferred direction but reduced in other directions and under blank stimuli. We identified a direction-tuned gain mechanism for interlaminar signal transmission, which likely originated from both feedforward connections across the input and output layers and recurrent connections within the output layers. This direction-tuned gain, coupled with nonlinearity, contributed to the enhanced direction selectivity in the output layers. Our findings suggest that direction selectivity in later cortical stages partially inherits characteristics from earlier cortical stages and is further refined by intracortical connections.
Collapse
Affiliation(s)
- Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yange Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tingting Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Hongbo Yu
- School of Life Sciences, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Liang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yizheng Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Gang Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
6
|
Dyballa L, Field GD, Stryker MP, Zucker SW. Functional organization and natural scene responses across mouse visual cortical areas revealed with encoding manifolds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620089. [PMID: 39484529 PMCID: PMC11527117 DOI: 10.1101/2024.10.24.620089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
A challenge in sensory neuroscience is understanding how populations of neurons operate in concert to represent diverse stimuli. To meet this challenge, we have created "encoding manifolds" that reveal the overall responses of brain areas to diverse stimuli with the resolution of individual neurons and their response dynamics. Here we use encoding manifold to compare the population-level encoding of primary visual cortex (VISp) with five higher visual areas (VISam, VISal, VISpm, VISlm, and VISrl). We used data from the Allen Institute Visual Coding-Neuropixels dataset from the mouse. We show that the encoding manifold topology computed only from responses to grating stimuli is continuous, for V1 and for higher visual areas, with smooth coordinates spanning it that include orientation selectivity and firing-rate magnitude. Surprisingly, the manifolds for each visual area revealed novel relationships between how natural scenes are encoded relative to static gratings-a relationship that was conserved across visual areas. Namely, neurons preferring natural scenes preferred either low or high spatial frequency gratings, but not intermediate ones. Analyzing responses by cortical layer reveals a preference for gratings concentrated in layer 6, whereas preferences for natural scenes tended to be higher in layers 2/3 and 4. The results reveal how machine learning approaches can be used to organize and visualize the structure of sensory coding, thereby revealing novel relationships within and across brain areas and sensory stimuli.
Collapse
Affiliation(s)
- Luciano Dyballa
- School of Science and Technology, IE University, Madrid, Spain
- Department of Computer Science, Yale University, New Haven, USA
| | - Greg D Field
- Jules Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michael P Stryker
- Department of Physiology, University of California, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA
| | - Steven W Zucker
- Department of Computer Science, Yale University, New Haven, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Zhu M, Mosso MB, Ma X, Park E, Barth AL. Long-lasting, subtype-specific regulation of somatostatin interneurons during sensory learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.624383. [PMID: 39605654 PMCID: PMC11601575 DOI: 10.1101/2024.11.19.624383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Somatostatin (SST)-expressing inhibitory neurons are a major class of neocortical γ-amino butyric acid (GABA) neurons, where morphological, electrophysiological, and transcriptomic analyses indicate more than a dozen different subtypes. However, whether this diversity is related to specific roles in cortical computations and plasticity remains unclear. Here we identify learning-dependent, subtype-specific plasticity in layer 2/3 SST neurons of the mouse somatosensory cortex. Martinotti-type, SST neurons expressing calbindin-2 show a selective decrease in excitatory synaptic input and stimulus-evoked calcium responses as mice learn a stimulus-reward association. Using these insights, we develop a label-free classifier using basal activity from in vivo imaging that accurately predicts learning-associated response plasticity. Our data indicate that molecularly-defined SST neuron subtypes play specific and highly-regulated roles in sensory information processing and learning.
Collapse
Affiliation(s)
- Mo Zhu
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh 15213 U.S.A
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh 15213 U.S.A
| | - Matthew B. Mosso
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh 15213 U.S.A
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh 15213 U.S.A
| | - Xiaoyang Ma
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh 15213 U.S.A
| | - Eunsol Park
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh 15213 U.S.A
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh 15213 U.S.A
| | - Alison L. Barth
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh 15213 U.S.A
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh 15213 U.S.A
| |
Collapse
|
8
|
Liska JP, Rowley DP, Nguyen TTK, Muthmann JO, Butts DA, Yates J, Huk AC. Running modulates primate and rodent visual cortex differently. eLife 2024; 12:RP87736. [PMID: 39560660 PMCID: PMC11575896 DOI: 10.7554/elife.87736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
When mice run, activity in their primary visual cortex (V1) is strongly modulated. This observation has altered conceptions of a brain region assumed to be a passive image processor. Extensive work has followed to dissect the circuits and functions of running-correlated modulation. However, it remains unclear whether visual processing in primates might similarly change during locomotion. We therefore measured V1 activity in marmosets while they viewed stimuli on a treadmill. In contrast to mouse, running-correlated modulations of marmoset V1 were small and tended to be slightly suppressive. Population-level analyses revealed trial-to-trial fluctuations of shared gain across V1 in both species, but while strongly correlated with running in mice, gain modulations were smaller and more often negatively correlated with running in marmosets. Thus, population-wide fluctuations of V1 may reflect a common feature of mammalian visual cortical function, but important quantitative differences point to distinct consequences for the relation between vision and action in primates versus rodents.
Collapse
Affiliation(s)
- John P Liska
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
| | - Declan P Rowley
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
- Departments of Ophthalmology and Psychiatry & Biobehavioral Sciences, Fuster Laboratory for Cognitive Neuroscience, UCLA, Los Angeles, United States
| | - Trevor Thai Kim Nguyen
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
| | - Jens-Oliver Muthmann
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
| | - Daniel A Butts
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, United States
| | - Jacob Yates
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, United States
| | - Alexander C Huk
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
- Departments of Ophthalmology and Psychiatry & Biobehavioral Sciences, Fuster Laboratory for Cognitive Neuroscience, UCLA, Los Angeles, United States
| |
Collapse
|
9
|
Luna R, Li J, Bauer R, van Leeuwen C. Retinal waves in adaptive rewiring networks orchestrate convergence and divergence in the visual system. Netw Neurosci 2024; 8:653-672. [PMID: 39355440 PMCID: PMC11340993 DOI: 10.1162/netn_a_00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/26/2024] [Indexed: 10/03/2024] Open
Abstract
Spontaneous retinal wave activity shaping the visual system is a complex neurodevelopmental phenomenon. Retinal ganglion cells are the hubs through which activity diverges throughout the visual system. We consider how these divergent hubs emerge, using an adaptively rewiring neural network model. Adaptive rewiring models show in a principled way how brains could achieve their complex topologies. Modular small-world structures with rich-club effects and circuits of convergent-divergent units emerge as networks evolve, driven by their own spontaneous activity. Arbitrary nodes of an initially random model network were designated as retinal ganglion cells. They were intermittently exposed to the retinal waveform, as the network evolved through adaptive rewiring. A significant proportion of these nodes developed into divergent hubs within the characteristic complex network architecture. The proportion depends parametrically on the wave incidence rate. Higher rates increase the likelihood of hub formation, while increasing the potential of ganglion cell death. In addition, direct neighbors of designated ganglion cells differentiate like amacrine cells. The divergence observed in ganglion cells resulted in enhanced convergence downstream, suggesting that retinal waves control the formation of convergence in the lateral geniculate nuclei. We conclude that retinal waves stochastically control the distribution of converging and diverging activity in evolving complex networks.
Collapse
Affiliation(s)
- Raúl Luna
- Department of Psychobiology and Methodology in Behavioural Sciences, Faculty of Psychology, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Optics, Spanish National Research Council (CSIC), Madrid, Spain
- KU Leuven, Brain and Cognition, Leuven, Belgium
| | - Jia Li
- KU Leuven, Brain and Cognition, Leuven, Belgium
| | - Roman Bauer
- NICE Research Group, Computer Science Research Centre, University of Surrey, Guildford, UK
| | - Cees van Leeuwen
- KU Leuven, Brain and Cognition, Leuven, Belgium
- RPTU Kaiserslautern, Cognitive Science, Kaiserslautern, Germany
| |
Collapse
|
10
|
Nakata S, Iwasaki K, Funato H, Yanagisawa M, Ozaki H. Neuronal subtype-specific transcriptomic changes in the cerebral neocortex associated with sleep pressure. Neurosci Res 2024; 207:13-25. [PMID: 38537682 DOI: 10.1016/j.neures.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Sleep is homeostatically regulated by sleep pressure, which increases during wakefulness and dissipates during sleep. Recent studies have suggested that the cerebral neocortex, a six-layered structure composed of various layer- and projection-specific neuronal subtypes, is involved in the representation of sleep pressure governed by transcriptional regulation. Here, we examined the transcriptomic changes in neuronal subtypes in the neocortex upon increased sleep pressure using single-nucleus RNA sequencing datasets and predicted the putative intracellular and intercellular molecules involved in transcriptome alterations. We revealed that sleep deprivation (SD) had the greatest effect on the transcriptome of layer 2 and 3 intratelencephalic (L2/3 IT) neurons among the neocortical glutamatergic neuronal subtypes. The expression of mutant SIK3 (SLP), which is known to increase sleep pressure, also induced profound changes in the transcriptome of L2/3 IT neurons. We identified Junb as a candidate transcription factor involved in the alteration of the L2/3 IT neuronal transcriptome by SD and SIK3 (SLP) expression. Finally, we inferred putative intercellular ligands, including BDNF, LSAMP, and PRNP, which may be involved in SD-induced alteration of the transcriptome of L2/3 IT neurons. We suggest that the transcriptome of L2/3 IT neurons is most impacted by increased sleep pressure among neocortical glutamatergic neuronal subtypes and identify putative molecules involved in such transcriptional alterations.
Collapse
Affiliation(s)
- Shinya Nakata
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kanako Iwasaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan; Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Haruka Ozaki
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Artificial Intelligence Research, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
11
|
Riyahi P, Phillips MA, Boley N, Colonnese MT. Experience Dependence of Alpha Rhythms and Neural Dynamics in the Mouse Visual Cortex. J Neurosci 2024; 44:e2011222024. [PMID: 39151954 PMCID: PMC11411595 DOI: 10.1523/jneurosci.2011-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
The role of experience in the development and maintenance of emergent network properties such as cortical oscillations and states is poorly understood. To define how early-life experience affects cortical dynamics in the visual cortex of adult, head-fixed mice, we examined the effects of two forms of blindness initiated before eye opening and continuing through recording: (1) bilateral loss of retinal input (enucleation) and (2) degradation of visual input (eyelid suture). Neither form of deprivation fundamentally altered the state-dependent regulation of firing rates or local field potentials. However, each deprivation caused unique changes in network behavior. Laminar analysis revealed two different generative mechanisms for low-frequency synchronization: one prevalent during movement and the other during quiet wakefulness. The former was absent in enucleated mice, suggesting a mouse homolog of human alpha oscillations. In addition, neurons in enucleated animals were less correlated and fired more regularly, but no change in mean firing rate. Eyelid suture decreased firing rates during quiet wakefulness, but not during movement, with no effect on neural correlations or regularity. Sutured animals showed a broadband increase in depth EEG power and an increased occurrence, but reduced central frequency, of narrowband gamma oscillations. The complementary-rather than additive-effects of lid suture and enucleation suggest that the development of emergent network properties does not require vision but is plastic to modified input. Our results suggest a complex interaction of internal set points and experience determines mature cortical activity, with low-frequency synchronization being particularly susceptible to early deprivation.
Collapse
Affiliation(s)
- Pouria Riyahi
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
- Department of Biomedical Engineering, The George Washington University School of Medicine, Washington, District of Columbia 20052
| | - Marnie A Phillips
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
| | - Nathaniel Boley
- Institute for Biomedical Sciences, The George Washington University School of Medicine, Washington, District of Columbia 20052
| | - Matthew T Colonnese
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
| |
Collapse
|
12
|
Miyashita Y. Cortical Layer-Dependent Signaling in Cognition: Three Computational Modes of the Canonical Circuit. Annu Rev Neurosci 2024; 47:211-234. [PMID: 39115926 DOI: 10.1146/annurev-neuro-081623-091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The cerebral cortex performs computations via numerous six-layer modules. The operational dynamics of these modules were studied primarily in early sensory cortices using bottom-up computation for response selectivity as a model, which has been recently revolutionized by genetic approaches in mice. However, cognitive processes such as recall and imagery require top-down generative computation. The question of whether the layered module operates similarly in top-down generative processing as in bottom-up sensory processing has become testable by advances in the layer identification of recorded neurons in behaving monkeys. This review examines recent advances in laminar signaling in these two computations, using predictive coding computation as a common reference, and shows that each of these computations recruits distinct laminar circuits, particularly in layer 5, depending on the cognitive demands. These findings highlight many open questions, including how different interareal feedback pathways, originating from and terminating at different layers, convey distinct functional signals.
Collapse
Affiliation(s)
- Yasushi Miyashita
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan;
- Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Shashidhara S, Assem M, Glasser MF, Duncan J. Task and stimulus coding in the multiple-demand network. Cereb Cortex 2024; 34:bhae278. [PMID: 39004756 PMCID: PMC11246790 DOI: 10.1093/cercor/bhae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
In the human brain, a multiple-demand (MD) network plays a key role in cognitive control, with core components in lateral frontal, dorsomedial frontal and lateral parietal cortex, and multivariate activity patterns that discriminate the contents of many cognitive activities. In prefrontal cortex of the behaving monkey, different cognitive operations are associated with very different patterns of neural activity, while details of a particular stimulus are encoded as small variations on these basic patterns (Sigala et al, 2008). Here, using the advanced fMRI methods of the Human Connectome Project and their 360-region cortical parcellation, we searched for a similar result in MD activation patterns. In each parcel, we compared multivertex patterns for every combination of three tasks (working memory, task-switching, and stop-signal) and two stimulus classes (faces and buildings). Though both task and stimulus category were discriminated in every cortical parcel, the strength of discrimination varied strongly across parcels. The different cognitive operations of the three tasks were strongly discriminated in MD regions. Stimulus categories, in contrast, were most strongly discriminated in a large region of primary and higher visual cortex, and intriguingly, in both parietal and frontal lobe regions adjacent to core MD regions. In the monkey, frontal neurons show a strong pattern of nonlinear mixed selectivity, with activity reflecting specific conjunctions of task events. In our data, however, there was limited evidence for mixed selectivity; throughout the brain, discriminations of task and stimulus combined largely linearly, with a small nonlinear component. In MD regions, human fMRI data recapitulate some but not all aspects of electrophysiological data from nonhuman primates.
Collapse
Affiliation(s)
- Sneha Shashidhara
- Center for Social and Behaviour Change, Ashoka University, Sonipat, 131029, India
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB27EF, United Kingdom
| | - Moataz Assem
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB27EF, United Kingdom
| | - Matthew F Glasser
- Departments of Radiology and Neuroscience, Washington University in St. Louis, Saint Louis, MO 63110, United States
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB27EF, United Kingdom
| |
Collapse
|
14
|
Skyberg RJ, Niell CM. Natural visual behavior and active sensing in the mouse. Curr Opin Neurobiol 2024; 86:102882. [PMID: 38704868 PMCID: PMC11254345 DOI: 10.1016/j.conb.2024.102882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
In the natural world, animals use vision for a wide variety of behaviors not reflected in most laboratory paradigms. Although mice have low-acuity vision, they use their vision for many natural behaviors, including predator avoidance, prey capture, and navigation. They also perform active sensing, moving their head and eyes to achieve behavioral goals and acquire visual information. These aspects of natural vision result in visual inputs and corresponding behavioral outputs that are outside the range of conventional vision studies but are essential aspects of visual function. Here, we review recent studies in mice that have tapped into natural behavior and active sensing to reveal the computational logic of neural circuits for vision.
Collapse
Affiliation(s)
- Rolf J Skyberg
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene OR 97403, USA. https://twitter.com/SkybergRolf
| | - Cristopher M Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene OR 97403, USA.
| |
Collapse
|
15
|
Sarkar S, Martinez Reyes C, Jensen CM, Gavornik JP. M2 receptors are required for spatiotemporal sequence learning in mouse primary visual cortex. J Neurophysiol 2024; 131:1213-1225. [PMID: 38629848 PMCID: PMC11381118 DOI: 10.1152/jn.00016.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/08/2024] [Accepted: 04/16/2024] [Indexed: 06/09/2024] Open
Abstract
Acetylcholine is a neurotransmitter that plays a variety of roles in the central nervous system. It was previously shown that blocking muscarinic receptors with a nonselective antagonist prevents a form of experience-dependent plasticity termed "spatiotemporal sequence learning" in the mouse primary visual cortex (V1). Muscarinic signaling is a complex process involving the combined activities of five different G protein-coupled receptors, M1-M5, all of which are expressed in the murine brain but differ from each other functionally and in anatomical localization. Here we present electrophysiological evidence that M2, but not M1, receptors are required for spatiotemporal sequence learning in mouse V1. We show in male mice that M2 is highly expressed in the neuropil in V1, especially in thalamorecipient layer 4, and colocalizes with the soma in a subset of somatostatin-expressing neurons in deep layers. We also show that expression of M2 receptors is higher in the monocular region of V1 than it is in the binocular region but that the amount of experience-dependent sequence potentiation is similar in both regions and that blocking muscarinic signaling after visual stimulation does not prevent plasticity. This work establishes a new functional role for M2-type receptors in processing temporal information and demonstrates that monocular circuits are modified by experience in a manner similar to binocular circuits.NEW & NOTEWORTHY Muscarinic acetylcholine receptors are required for multiple forms of plasticity in the brain and support perceptual functions, but the precise role of the five subtypes (M1-M5) are unclear. Here we show that the M2 receptor is specifically required to encode experience-dependent representations of spatiotemporal relationships in both monocular and binocular regions of mouse V1. This work identifies a novel functional role for M2 receptors in coding temporal information into cortical circuits.
Collapse
Affiliation(s)
- Susrita Sarkar
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| | - Catalina Martinez Reyes
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| | - Cambria M Jensen
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| | - Jeffrey P Gavornik
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
16
|
Clayton KK, McGill M, Awwad B, Stecyk KS, Kremer C, Skerleva D, Narayanan DP, Zhu J, Hancock KE, Kujawa SG, Kozin ED, Polley DB. Cortical determinants of loudness perception and auditory hypersensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596691. [PMID: 38853938 PMCID: PMC11160727 DOI: 10.1101/2024.05.30.596691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Parvalbumin-expressing inhibitory neurons (PVNs) stabilize cortical network activity, generate gamma rhythms, and regulate experience-dependent plasticity. Here, we observed that activation or inactivation of PVNs functioned like a volume knob in the mouse auditory cortex (ACtx), turning neural and behavioral classification of sound level up or down over a 20dB range. PVN loudness adjustments were "sticky", such that a single bout of 40Hz PVN stimulation sustainably suppressed ACtx sound responsiveness, potentiated feedforward inhibition, and behaviorally desensitized mice to loudness. Sensory sensitivity is a cardinal feature of autism, aging, and peripheral neuropathy, prompting us to ask whether PVN stimulation can persistently desensitize mice with ACtx hyperactivity, PVN hypofunction, and loudness hypersensitivity triggered by cochlear sensorineural damage. We found that a single 16-minute bout of 40Hz PVN stimulation session restored normal loudness perception for one week, showing that perceptual deficits triggered by irreversible peripheral injuries can be reversed through targeted cortical circuit interventions.
Collapse
Affiliation(s)
- Kameron K Clayton
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Matthew McGill
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Bshara Awwad
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Kamryn S Stecyk
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Caroline Kremer
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | | | - Divya P Narayanan
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Jennifer Zhu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Sharon G Kujawa
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Elliott D Kozin
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| |
Collapse
|
17
|
Liu Y, Zhang J, Jiang Z, Qin M, Xu M, Zhang S, Ma G. Organization of corticocortical and thalamocortical top-down inputs in the primary visual cortex. Nat Commun 2024; 15:4495. [PMID: 38802410 PMCID: PMC11130321 DOI: 10.1038/s41467-024-48924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Unified visual perception requires integration of bottom-up and top-down inputs in the primary visual cortex (V1), yet the organization of top-down inputs in V1 remains unclear. Here, we used optogenetics-assisted circuit mapping to identify how multiple top-down inputs from higher-order cortical and thalamic areas engage V1 excitatory and inhibitory neurons. Top-down inputs overlap in superficial layers yet segregate in deep layers. Inputs from the medial secondary visual cortex (V2M) and anterior cingulate cortex (ACA) converge on L6 Pyrs, whereas ventrolateral orbitofrontal cortex (ORBvl) and lateral posterior thalamic nucleus (LP) inputs are processed in parallel in Pyr-type-specific subnetworks (Pyr←ORBvl and Pyr←LP) and drive mutual inhibition between them via local interneurons. Our study deepens understanding of the top-down modulation mechanisms of visual processing and establishes that V2M and ACA inputs in L6 employ integrated processing distinct from the parallel processing of LP and ORBvl inputs in L5.
Collapse
Affiliation(s)
- Yanmei Liu
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiahe Zhang
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhishan Jiang
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Meiling Qin
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Siyu Zhang
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Guofen Ma
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
18
|
Magrou L, Joyce MKP, Froudist-Walsh S, Datta D, Wang XJ, Martinez-Trujillo J, Arnsten AFT. The meso-connectomes of mouse, marmoset, and macaque: network organization and the emergence of higher cognition. Cereb Cortex 2024; 34:bhae174. [PMID: 38771244 PMCID: PMC11107384 DOI: 10.1093/cercor/bhae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.
Collapse
Affiliation(s)
- Loïc Magrou
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Sean Froudist-Walsh
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, BS8 1QU, United Kingdom
| | - Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Xiao-Jing Wang
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Julio Martinez-Trujillo
- Departments of Physiology and Pharmacology, and Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
19
|
Bolaños F, Orlandi JG, Aoki R, Jagadeesh AV, Gardner JL, Benucci A. Efficient coding of natural images in the mouse visual cortex. Nat Commun 2024; 15:2466. [PMID: 38503746 PMCID: PMC10951403 DOI: 10.1038/s41467-024-45919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/06/2024] [Indexed: 03/21/2024] Open
Abstract
How the activity of neurons gives rise to natural vision remains a matter of intense investigation. The mid-level visual areas along the ventral stream are selective to a common class of natural images-textures-but a circuit-level understanding of this selectivity and its link to perception remains unclear. We addressed these questions in mice, first showing that they can perceptually discriminate between textures and statistically simpler spectrally matched stimuli, and between texture types. Then, at the neural level, we found that the secondary visual area (LM) exhibited a higher degree of selectivity for textures compared to the primary visual area (V1). Furthermore, textures were represented in distinct neural activity subspaces whose relative distances were found to correlate with the statistical similarity of the images and the mice's ability to discriminate between them. Notably, these dependencies were more pronounced in LM, where the texture-related subspaces were smaller than in V1, resulting in superior stimulus decoding capabilities. Together, our results demonstrate texture vision in mice, finding a linking framework between stimulus statistics, neural representations, and perceptual sensitivity-a distinct hallmark of efficient coding computations.
Collapse
Affiliation(s)
- Federico Bolaños
- University of British Columbia, Neuroimaging and NeuroComputation Centre, Vancouver, BC, V6T, Canada
| | - Javier G Orlandi
- University of Calgary, Department of Physics and Astronomy, Calgary, AB, T2N 1N4, Canada.
| | - Ryo Aoki
- RIKEN Center for Brain Science, Laboratory for Neural Circuits and Behavior, Wakoshi, Japan
| | | | - Justin L Gardner
- Stanford University, Wu Tsai Neurosciences Institute, Stanford, CA, USA
| | - Andrea Benucci
- RIKEN Center for Brain Science, Laboratory for Neural Circuits and Behavior, Wakoshi, Japan.
- Queen Mary, University of London, School of Biological and Behavioral Science, London, E1 4NS, UK.
| |
Collapse
|
20
|
Meneghetti N, Vannini E, Mazzoni A. Rodents' visual gamma as a biomarker of pathological neural conditions. J Physiol 2024; 602:1017-1048. [PMID: 38372352 DOI: 10.1113/jp283858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Neural gamma oscillations (indicatively 30-100 Hz) are ubiquitous: they are associated with a broad range of functions in multiple cortical areas and across many animal species. Experimental and computational works established gamma rhythms as a global emergent property of neuronal networks generated by the balanced and coordinated interaction of excitation and inhibition. Coherently, gamma activity is strongly influenced by the alterations of synaptic dynamics which are often associated with pathological neural dysfunctions. We argue therefore that these oscillations are an optimal biomarker for probing the mechanism of cortical dysfunctions. Gamma oscillations are also highly sensitive to external stimuli in sensory cortices, especially the primary visual cortex (V1), where the stimulus dependence of gamma oscillations has been thoroughly investigated. Gamma manipulation by visual stimuli tuning is particularly easy in rodents, which have become a standard animal model for investigating the effects of network alterations on gamma oscillations. Overall, gamma in the rodents' visual cortex offers an accessible probe on dysfunctional information processing in pathological conditions. Beyond vision-related dysfunctions, alterations of gamma oscillations in rodents were indeed also reported in neural deficits such as migraine, epilepsy and neurodegenerative or neuropsychiatric conditions such as Alzheimer's, schizophrenia and autism spectrum disorders. Altogether, the connections between visual cortical gamma activity and physio-pathological conditions in rodent models underscore the potential of gamma oscillations as markers of neuronal (dys)functioning.
Collapse
Affiliation(s)
- Nicolò Meneghetti
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
21
|
Sibille J, Gehr C, Kremkow J. Efficient mapping of the thalamocortical monosynaptic connectivity in vivo by tangential insertions of high-density electrodes in the cortex. Proc Natl Acad Sci U S A 2024; 121:e2313048121. [PMID: 38241439 PMCID: PMC10823237 DOI: 10.1073/pnas.2313048121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/13/2023] [Indexed: 01/21/2024] Open
Abstract
The thalamus provides the principal input to the cortex and therefore understanding the mechanisms underlying cortical integration of sensory inputs requires to characterize the thalamocortical connectivity in behaving animals. Here, we propose tangential insertions of high-density electrodes into mouse cortical layer 4 as a method to capture the activity of thalamocortical axons simultaneously with their synaptically connected cortical neurons. This technique can reliably monitor multiple parallel thalamic synaptic inputs to cortical neurons, providing an efficient approach to map thalamocortical connectivity in both awake and anesthetized mice.
Collapse
Affiliation(s)
- Jérémie Sibille
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin10117, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin10115, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin10115, Germany
- Einstein Center for Neurosciences Berlin, Berlin10117, Germany
| | - Carolin Gehr
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin10117, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin10115, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin10115, Germany
- Einstein Center for Neurosciences Berlin, Berlin10117, Germany
| | - Jens Kremkow
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin10117, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin10115, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin10115, Germany
- Einstein Center for Neurosciences Berlin, Berlin10117, Germany
| |
Collapse
|
22
|
Oldenburg IA, Hendricks WD, Handy G, Shamardani K, Bounds HA, Doiron B, Adesnik H. The logic of recurrent circuits in the primary visual cortex. Nat Neurosci 2024; 27:137-147. [PMID: 38172437 PMCID: PMC10774145 DOI: 10.1038/s41593-023-01510-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/27/2023] [Indexed: 01/05/2024]
Abstract
Recurrent cortical activity sculpts visual perception by refining, amplifying or suppressing visual input. However, the rules that govern the influence of recurrent activity remain enigmatic. We used ensemble-specific two-photon optogenetics in the mouse visual cortex to isolate the impact of recurrent activity from external visual input. We found that the spatial arrangement and the visual feature preference of the stimulated ensemble and the neighboring neurons jointly determine the net effect of recurrent activity. Photoactivation of these ensembles drives suppression in all cells beyond 30 µm but uniformly drives activation in closer similarly tuned cells. In nonsimilarly tuned cells, compact, cotuned ensembles drive net suppression, while diffuse, cotuned ensembles drive activation. Computational modeling suggests that highly local recurrent excitatory connectivity and selective convergence onto inhibitory neurons explain these effects. Our findings reveal a straightforward logic in which space and feature preference of cortical ensembles determine their impact on local recurrent activity.
Collapse
Affiliation(s)
- Ian Antón Oldenburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, and Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA.
| | - William D Hendricks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Gregory Handy
- Department of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA.
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA.
- Department of Mathematics, University of Minnesota, Minneapolis, MN, USA.
| | - Kiarash Shamardani
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Hayley A Bounds
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Brent Doiron
- Department of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
23
|
Xu A, Hou Y, Niell CM, Beyeler M. Multimodal Deep Learning Model Unveils Behavioral Dynamics of V1 Activity in Freely Moving Mice. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 2023; 36:15341-15357. [PMID: 39005944 PMCID: PMC11242920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Despite their immense success as a model of macaque visual cortex, deep convolutional neural networks (CNNs) have struggled to predict activity in visual cortex of the mouse, which is thought to be strongly dependent on the animal's behavioral state. Furthermore, most computational models focus on predicting neural responses to static images presented under head fixation, which are dramatically different from the dynamic, continuous visual stimuli that arise during movement in the real world. Consequently, it is still unknown how natural visual input and different behavioral variables may integrate over time to generate responses in primary visual cortex (V1). To address this, we introduce a multimodal recurrent neural network that integrates gaze-contingent visual input with behavioral and temporal dynamics to explain V1 activity in freely moving mice. We show that the model achieves state-of-the-art predictions of V1 activity during free exploration and demonstrate the importance of each component in an extensive ablation study. Analyzing our model using maximally activating stimuli and saliency maps, we reveal new insights into cortical function, including the prevalence of mixed selectivity for behavioral variables in mouse V1. In summary, our model offers a comprehensive deep-learning framework for exploring the computational principles underlying V1 neurons in freely-moving animals engaged in natural behavior.
Collapse
Affiliation(s)
- Aiwen Xu
- Department of Computer Science University of California, Santa Barbara Santa Barbara, CA 93117
| | - Yuchen Hou
- Department of Computer Science University of California, Santa Barbara Santa Barbara, CA 93117
| | - Cristopher M Niell
- Department of Biology, Institute of Neuroscience University of Oregon Eugene, OR 97403
| | - Michael Beyeler
- Department of Computer Science Department of Psychological & Brain Sciences University of California, Santa Barbara Santa Barbara, CA 93117
| |
Collapse
|
24
|
Matteucci G, Bellacosa Marotti R, Zattera B, Zoccolan D. Truly pattern: Nonlinear integration of motion signals is required to account for the responses of pattern cells in rat visual cortex. SCIENCE ADVANCES 2023; 9:eadh4690. [PMID: 37939191 PMCID: PMC10631736 DOI: 10.1126/sciadv.adh4690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
A key feature of advanced motion processing in the primate dorsal stream is the existence of pattern cells-specialized cortical neurons that integrate local motion signals into pattern-invariant representations of global direction. Pattern cells have also been reported in rodent visual cortex, but it is unknown whether the tuning of these neurons results from truly integrative, nonlinear mechanisms or trivially arises from linear receptive fields (RFs) with a peculiar geometry. Here, we show that pattern cells in rat primary (V1) and lateromedial (LM) visual cortex process motion direction in a way that cannot be explained by the linear spatiotemporal structure of their RFs. Instead, their tuning properties are consistent with and well explained by those of units in a state-of-the-art neural network model of the dorsal stream. This suggests that similar cortical processes underlay motion representation in primates and rodents. The latter could thus serve as powerful model systems to unravel the underlying circuit-level mechanisms.
Collapse
|
25
|
Pungor JR, Niell CM. The neural basis of visual processing and behavior in cephalopods. Curr Biol 2023; 33:R1106-R1118. [PMID: 37875093 PMCID: PMC10664291 DOI: 10.1016/j.cub.2023.08.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Coleoid cephalopods (octopuses, squids and cuttlefishes) are the only branch of the animal kingdom outside of vertebrates to have evolved both a large brain and camera-type eyes. They are highly dependent on vision, with the majority of their brain devoted to visual processing. Their excellent vision supports a range of advanced visually guided behaviors, from navigation and prey capture, to the ability to camouflage based on their surroundings. However, their brain organization is radically different from that of vertebrates, as well as other invertebrates, providing a unique opportunity to explore how a novel neural architecture for vision is organized and functions. Relatively few studies have examined the cephalopod visual system using current neuroscience approaches, to the extent that there has not even been a measurement of single-cell receptive fields in their central visual system. Therefore, there remains a tremendous amount that is unknown about the neural basis of vision in these extraordinary animals. Here, we review the existing knowledge of the organization and function of the cephalopod visual system to provide a framework for examining the neural circuits and computational mechanisms mediating their remarkable visual capabilities.
Collapse
Affiliation(s)
- Judit R Pungor
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Cristopher M Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
26
|
Das A, Holden S, Borovicka J, Icardi J, O'Niel A, Chaklai A, Patel D, Patel R, Kaech Petrie S, Raber J, Dana H. Large-scale recording of neuronal activity in freely-moving mice at cellular resolution. Nat Commun 2023; 14:6399. [PMID: 37828016 PMCID: PMC10570384 DOI: 10.1038/s41467-023-42083-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Current methods for recording large-scale neuronal activity from behaving mice at single-cell resolution require either fixing the mouse head under a microscope or attachment of a recording device to the animal's skull. Both of these options significantly affect the animal behavior and hence also the recorded brain activity patterns. Here, we introduce a different method to acquire snapshots of single-cell cortical activity maps from freely-moving mice using a calcium sensor called CaMPARI. CaMPARI has a unique property of irreversibly changing its color from green to red inside active neurons when illuminated with 400 nm light. We capitalize on this property to demonstrate cortex-wide activity recording without any head fixation, tethering, or attachment of a miniaturized device to the mouse's head. Multiple cortical regions were recorded while the mouse was performing a battery of behavioral and cognitive tests. We identified task-dependent activity patterns across motor and somatosensory cortices, with significant differences across sub-regions of the motor cortex and correlations across several activity patterns and task parameters. This CaMPARI-based recording method expands the capabilities of recording neuronal activity from freely-moving and behaving mice under minimally-restrictive experimental conditions and provides large-scale volumetric data that are currently not accessible otherwise.
Collapse
Affiliation(s)
- Aniruddha Das
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Julie Borovicka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Jacob Icardi
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Abigail O'Niel
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Ariel Chaklai
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Davina Patel
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Rushik Patel
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
- Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR, USA
| | - Hod Dana
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
27
|
Gehr C, Sibille J, Kremkow J. Retinal input integration in excitatory and inhibitory neurons in the mouse superior colliculus in vivo. eLife 2023; 12:RP88289. [PMID: 37682267 PMCID: PMC10491433 DOI: 10.7554/elife.88289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
The superior colliculus (SC) is a midbrain structure that receives inputs from retinal ganglion cells (RGCs). The SC contains one of the highest densities of inhibitory neurons in the brain but whether excitatory and inhibitory SC neurons differentially integrate retinal activity in vivo is still largely unknown. We recently established a recording approach to measure the activity of RGCs simultaneously with their postsynaptic SC targets in vivo, to study how SC neurons integrate RGC activity. Here, we employ this method to investigate the functional properties that govern retinocollicular signaling in a cell type-specific manner by identifying GABAergic SC neurons using optotagging in VGAT-ChR2 mice. Our results demonstrate that both excitatory and inhibitory SC neurons receive comparably strong RGC inputs and similar wiring rules apply for RGCs innervation of both SC cell types, unlike the cell type-specific connectivity in the thalamocortical system. Moreover, retinal activity contributed more to the spiking activity of postsynaptic excitatory compared to inhibitory SC neurons. This study deepens our understanding of cell type-specific retinocollicular functional connectivity and emphasizes that the two major brain areas for visual processing, the visual cortex and the SC, differently integrate sensory afferent inputs.
Collapse
Affiliation(s)
- Carolin Gehr
- Neuroscience Research Center, Charité-Universitätsmedizin BerlinBerlinGermany
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
- Institute for Theoretical Biology, Humboldt-Universität zu BerlinBerlinGermany
- Einstein Center for Neurosciences BerlinBerlinGermany
| | - Jeremie Sibille
- Neuroscience Research Center, Charité-Universitätsmedizin BerlinBerlinGermany
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
- Institute for Theoretical Biology, Humboldt-Universität zu BerlinBerlinGermany
- Einstein Center for Neurosciences BerlinBerlinGermany
| | - Jens Kremkow
- Neuroscience Research Center, Charité-Universitätsmedizin BerlinBerlinGermany
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
- Institute for Theoretical Biology, Humboldt-Universität zu BerlinBerlinGermany
- Einstein Center for Neurosciences BerlinBerlinGermany
| |
Collapse
|
28
|
Li WR, Nakano T, Mizutani K, Matsubara T, Kawatani M, Mukai Y, Danjo T, Ito H, Aizawa H, Yamanaka A, Petersen CCH, Yoshimoto J, Yamashita T. Neural mechanisms underlying uninstructed orofacial movements during reward-based learning behaviors. Curr Biol 2023; 33:3436-3451.e7. [PMID: 37536343 DOI: 10.1016/j.cub.2023.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023]
Abstract
During reward-based learning tasks, animals make orofacial movements that globally influence brain activity at the timings of reward expectation and acquisition. These orofacial movements are not explicitly instructed and typically appear along with goal-directed behaviors. Here, we show that reinforcing optogenetic stimulation of dopamine neurons in the ventral tegmental area (oDAS) in mice is sufficient to induce orofacial movements in the whiskers and nose without accompanying goal-directed behaviors. Pavlovian conditioning with a sensory cue and oDAS elicited cue-locked and oDAS-aligned orofacial movements, which were distinguishable by a machine-learning model. Inhibition or knockout of dopamine D1 receptors in the nucleus accumbens inhibited oDAS-induced motion but spared cue-locked motion, suggesting differential regulation of these two types of orofacial motions. In contrast, inactivation of the whisker primary motor cortex (wM1) abolished both types of orofacial movements. We found specific neuronal populations in wM1 representing either oDAS-aligned or cue-locked whisker movements. Notably, optogenetic stimulation of wM1 neurons successfully replicated these two types of movements. Our results thus suggest that accumbal D1-receptor-dependent and -independent neuronal signals converge in the wM1 for facilitating distinct uninstructed orofacial movements during a reward-based learning task.
Collapse
Affiliation(s)
- Wan-Ru Li
- Department of Physiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Functional Anatomy & Neuroscience, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takashi Nakano
- Department of Computational Biology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan; International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Kohta Mizutani
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Takanori Matsubara
- Department of Physiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masahiro Kawatani
- Department of Physiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Functional Anatomy & Neuroscience, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Teruko Danjo
- Department of Physiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Hikaru Ito
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; Research Facility Center for Science and Technology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Hidenori Aizawa
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Junichiro Yoshimoto
- Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan; International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; Department of Biomedical Data Science, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan.
| | - Takayuki Yamashita
- Department of Physiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan.
| |
Collapse
|
29
|
Li J, Rentzeperis I, van Leeuwen C. Functional and spatial rewiring principles jointly regulate context-sensitive computation. PLoS Comput Biol 2023; 19:e1011325. [PMID: 37566628 PMCID: PMC10446201 DOI: 10.1371/journal.pcbi.1011325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 08/23/2023] [Accepted: 07/03/2023] [Indexed: 08/13/2023] Open
Abstract
Adaptive rewiring provides a basic principle of self-organizing connectivity in evolving neural network topology. By selectively adding connections to regions with intense signal flow and deleting underutilized connections, adaptive rewiring generates optimized brain-like, i.e. modular, small-world, and rich club connectivity structures. Besides topology, neural self-organization also follows spatial optimization principles, such as minimizing the neural wiring distance and topographic alignment of neural pathways. We simulated the interplay of these spatial principles and adaptive rewiring in evolving neural networks with weighted and directed connections. The neural traffic flow within the network is represented by the equivalent of diffusion dynamics for directed edges: consensus and advection. We observe a constructive synergy between adaptive and spatial rewiring, which contributes to network connectedness. In particular, wiring distance minimization facilitates adaptive rewiring in creating convergent-divergent units. These units support the flow of neural information and enable context-sensitive information processing in the sensory cortex and elsewhere. Convergent-divergent units consist of convergent hub nodes, which collect inputs from pools of nodes and project these signals via a densely interconnected set of intermediate nodes onto divergent hub nodes, which broadcast their output back to the network. Convergent-divergent units vary in the degree to which their intermediate nodes are isolated from the rest of the network. This degree, and hence the context-sensitivity of the network's processing style, is parametrically determined in the evolving network model by the relative prominence of spatial versus adaptive rewiring.
Collapse
Affiliation(s)
- Jia Li
- Brain and Cognition unit, Faculty of psychology and educational sciences, KU Leuven, Leuven, Belgium
| | - Ilias Rentzeperis
- Brain and Cognition unit, Faculty of psychology and educational sciences, KU Leuven, Leuven, Belgium
| | - Cees van Leeuwen
- Brain and Cognition unit, Faculty of psychology and educational sciences, KU Leuven, Leuven, Belgium
- Cognitive and developmental psychology unit, Faculty of social science, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
30
|
Yates JL, Coop SH, Sarch GH, Wu RJ, Butts DA, Rucci M, Mitchell JF. Detailed characterization of neural selectivity in free viewing primates. Nat Commun 2023; 14:3656. [PMID: 37339973 PMCID: PMC10282080 DOI: 10.1038/s41467-023-38564-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/08/2023] [Indexed: 06/22/2023] Open
Abstract
Fixation constraints in visual tasks are ubiquitous in visual and cognitive neuroscience. Despite its widespread use, fixation requires trained subjects, is limited by the accuracy of fixational eye movements, and ignores the role of eye movements in shaping visual input. To overcome these limitations, we developed a suite of hardware and software tools to study vision during natural behavior in untrained subjects. We measured visual receptive fields and tuning properties from multiple cortical areas of marmoset monkeys who freely viewed full-field noise stimuli. The resulting receptive fields and tuning curves from primary visual cortex (V1) and area MT match reported selectivity from the literature which was measured using conventional approaches. We then combined free viewing with high-resolution eye tracking to make the first detailed 2D spatiotemporal measurements of foveal receptive fields in V1. These findings demonstrate the power of free viewing to characterize neural responses in untrained animals while simultaneously studying the dynamics of natural behavior.
Collapse
Affiliation(s)
- Jacob L Yates
- Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA.
- Center for Visual Science, University of Rochester, Rochester, NY, USA.
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA.
- Herbert Wertheim School of Optometry and Vision Science, UC Berkeley, Berkeley, CA, USA.
| | - Shanna H Coop
- Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
- Center for Visual Science, University of Rochester, Rochester, NY, USA
- Neurobiology, Stanford University, Stanford, CA, USA
| | - Gabriel H Sarch
- Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ruei-Jr Wu
- Center for Visual Science, University of Rochester, Rochester, NY, USA
- Institute of Optics, University of Rochester, Rochester, NY, USA
| | - Daniel A Butts
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Michele Rucci
- Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Jude F Mitchell
- Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| |
Collapse
|
31
|
Akitake B, Douglas HM, LaFosse PK, Beiran M, Deveau CE, O'Rawe J, Li AJ, Ryan LN, Duffy SP, Zhou Z, Deng Y, Rajan K, Histed MH. Amplified cortical neural responses as animals learn to use novel activity patterns. Curr Biol 2023; 33:2163-2174.e4. [PMID: 37148876 DOI: 10.1016/j.cub.2023.04.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 02/09/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Cerebral cortex supports representations of the world in patterns of neural activity, used by the brain to make decisions and guide behavior. Past work has found diverse, or limited, changes in the primary sensory cortex in response to learning, suggesting that the key computations might occur in downstream regions. Alternatively, sensory cortical changes may be central to learning. We studied cortical learning by using controlled inputs we insert: we trained mice to recognize entirely novel, non-sensory patterns of cortical activity in the primary visual cortex (V1) created by optogenetic stimulation. As animals learned to use these novel patterns, we found that their detection abilities improved by an order of magnitude or more. The behavioral change was accompanied by large increases in V1 neural responses to fixed optogenetic input. Neural response amplification to novel optogenetic inputs had little effect on existing visual sensory responses. A recurrent cortical model shows that this amplification can be achieved by a small mean shift in recurrent network synaptic strength. Amplification would seem to be desirable to improve decision-making in a detection task; therefore, these results suggest that adult recurrent cortical plasticity plays a significant role in improving behavioral performance during learning.
Collapse
Affiliation(s)
- Bradley Akitake
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hannah M Douglas
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul K LaFosse
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manuel Beiran
- Nash Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Ciana E Deveau
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan O'Rawe
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna J Li
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren N Ryan
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel P Duffy
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhishang Zhou
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanting Deng
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kanaka Rajan
- Nash Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark H Histed
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Tikidji-Hamburyan RA, Govindaiah G, Guido W, Colonnese MT. Synaptic and circuit mechanisms prevent detrimentally precise correlation in the developing mammalian visual system. eLife 2023; 12:e84333. [PMID: 37211984 PMCID: PMC10202458 DOI: 10.7554/elife.84333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/25/2023] [Indexed: 05/23/2023] Open
Abstract
The developing visual thalamus and cortex extract positional information encoded in the correlated activity of retinal ganglion cells by synaptic plasticity, allowing for the refinement of connectivity. Here, we use a biophysical model of the visual thalamus during the initial visual circuit refinement period to explore the role of synaptic and circuit properties in the regulation of such neural correlations. We find that the NMDA receptor dominance, combined with weak recurrent excitation and inhibition characteristic of this age, prevents the emergence of spike-correlations between thalamocortical neurons on the millisecond timescale. Such precise correlations, which would emerge due to the broad, unrefined connections from the retina to the thalamus, reduce the spatial information contained by thalamic spikes, and therefore we term them 'parasitic' correlations. Our results suggest that developing synapses and circuits evolved mechanisms to compensate for such detrimental parasitic correlations arising from the unrefined and immature circuit.
Collapse
Affiliation(s)
| | - Gubbi Govindaiah
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
| | - Matthew T Colonnese
- Department of Pharmacology and Physiology, The George Washington UniversityWashingtonUnited States
| |
Collapse
|
33
|
Hughes C, Kozai T. Dynamic amplitude modulation of microstimulation evokes biomimetic onset and offset transients and reduces depression of evoked calcium responses in sensory cortices. Brain Stimul 2023; 16:939-965. [PMID: 37244370 PMCID: PMC10330928 DOI: 10.1016/j.brs.2023.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Intracortical microstimulation (ICMS) is an emerging approach to restore sensation to people with neurological injury or disease. Biomimetic microstimulation, or stimulus trains that mimic neural activity in the brain through encoding of onset and offset transients, could improve the utility of ICMS for brain-computer interface (BCI) applications, but how biomimetic microstimulation affects neural activation is not understood. Current "biomimetic" ICMS trains aim to reproduce the strong onset and offset transients evoked in the brain by sensory input through dynamic modulation of stimulus parameters. Stimulus induced depression of neural activity (decreases in evoked intensity over time) is also a potential barrier to clinical implementation of sensory feedback, and dynamic microstimulation may reduce this effect. OBJECTIVE We evaluated how bio-inspired ICMS trains with dynamic modulation of amplitude and/or frequency change the calcium response, spatial distribution, and depression of neurons in the somatosensory and visual cortices. METHODS Calcium responses of neurons were measured in Layer 2/3 of visual and somatosensory cortices of anesthetized GCaMP6s mice in response to ICMS trains with fixed amplitude and frequency (Fixed) and three dynamic ICMS trains that increased the stimulation intensity during the onset and offset of stimulation by modulating the amplitude (DynAmp), frequency (DynFreq), or amplitude and frequency (DynBoth). ICMS was provided for either 1-s with 4-s breaks (Short) or for 30-s with 15-s breaks (Long). RESULTS DynAmp and DynBoth trains evoked distinct onset and offset transients in recruited neural populations, while DynFreq trains evoked population activity similar to Fixed trains. Individual neurons had heterogeneous responses primarily based on how quickly they depressed to ICMS, where neurons farther from the electrode depressed faster and a small subpopulation (1-5%) were modulated by DynFreq trains. Neurons that depressed to Short trains were also more likely to depress to Long trains, but Long trains induced more depression overall due to the increased stimulation length. Increasing the amplitude during the hold phase resulted in an increase in recruitment and intensity which resulted in more depression and reduced offset responses. Dynamic amplitude modulation reduced stimulation induced depression by 14.6 ± 0.3% for Short and 36.1 ± 0.6% for Long trains. Ideal observers were 0.031 ± 0.009 s faster for onset detection and 1.33 ± 0.21 s faster for offset detection with dynamic amplitude encoding. CONCLUSIONS Dynamic amplitude modulation evokes distinct onset and offset transients, reduces depression of neural calcium activity, and decreases total charge injection for sensory feedback in BCIs by lowering recruitment of neurons during long maintained periods of ICMS. In contrast, dynamic frequency modulation evokes distinct onset and offset transients in a small subpopulation of neurons but also reduces depression in recruited neurons by reducing the rate of activation.
Collapse
Affiliation(s)
- Christopher Hughes
- Department of Bioengineering, University of Pittsburgh, USA; Center for the Neural Basis of Cognition, USA
| | - Takashi Kozai
- Department of Bioengineering, University of Pittsburgh, USA; Center for the Neural Basis of Cognition, USA; Department of Neuroscience, University of Pittsburgh, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
34
|
Weinrich JA, Liu CD, Jewell ME, Andolina CR, Bernstein MX, Benitez J, Rodriguez-Rosado S, Braz JM, Maze M, Nemenov MI, Basbaum AI. Paradoxical increases in anterior cingulate cortex activity during nitrous oxide-induced analgesia reveal a signature of pain affect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.534475. [PMID: 37066151 PMCID: PMC10104003 DOI: 10.1101/2023.04.03.534475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The general consensus is that increases in neuronal activity in the anterior cingulate cortex (ACC) contribute to pain's negative affect. Here, using in vivo imaging of neuronal calcium dynamics in mice, we report that nitrous oxide, a general anesthetic that reduces pain affect, paradoxically, increases ACC spontaneous activity. As expected, a noxious stimulus also increased ACC activity. However, as nitrous oxide increases baseline activity, the relative change in activity from pre-stimulus baseline was significantly less than the change in the absence of the general anesthetic. We suggest that this relative change in activity represents a neural signature of the affective pain experience. Furthermore, this signature of pain persists under general anesthesia induced by isoflurane, at concentrations in which the mouse is unresponsive. We suggest that this signature underlies the phenomenon of connected consciousness, in which use of the isolated forelimb technique revealed that pain percepts can persist in anesthetized patients.
Collapse
Affiliation(s)
- Jarret Ap Weinrich
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Cindy D Liu
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Madison E Jewell
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Christopher R Andolina
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mollie X Bernstein
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jorge Benitez
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sian Rodriguez-Rosado
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Joao M Braz
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mervyn Maze
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mikhail I Nemenov
- Lasmed, Mountain View, CA 94043, USA
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
35
|
Ribeiro FM, Castelo-Branco M, Gonçalves J, Martins J. Visual Cortical Plasticity: Molecular Mechanisms as Revealed by Induction Paradigms in Rodents. Int J Mol Sci 2023; 24:ijms24054701. [PMID: 36902131 PMCID: PMC10003432 DOI: 10.3390/ijms24054701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Assessing the molecular mechanism of synaptic plasticity in the cortex is vital for identifying potential targets in conditions marked by defective plasticity. In plasticity research, the visual cortex represents a target model for intense investigation, partly due to the availability of different in vivo plasticity-induction protocols. Here, we review two major protocols: ocular-dominance (OD) and cross-modal (CM) plasticity in rodents, highlighting the molecular signaling pathways involved. Each plasticity paradigm has also revealed the contribution of different populations of inhibitory and excitatory neurons at different time points. Since defective synaptic plasticity is common to various neurodevelopmental disorders, the potentially disrupted molecular and circuit alterations are discussed. Finally, new plasticity paradigms are presented, based on recent evidence. Stimulus-selective response potentiation (SRP) is one of the paradigms addressed. These options may provide answers to unsolved neurodevelopmental questions and offer tools to repair plasticity defects.
Collapse
Affiliation(s)
- Francisco M. Ribeiro
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Gonçalves
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| | - João Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
36
|
Orlandi JG, Abdolrahmani M, Aoki R, Lyamzin DR, Benucci A. Distributed context-dependent choice information in mouse posterior cortex. Nat Commun 2023; 14:192. [PMID: 36635318 PMCID: PMC9837177 DOI: 10.1038/s41467-023-35824-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Choice information appears in multi-area brain networks mixed with sensory, motor, and cognitive variables. In the posterior cortex-traditionally implicated in decision computations-the presence, strength, and area specificity of choice signals are highly variable, limiting a cohesive understanding of their computational significance. Examining the mesoscale activity in the mouse posterior cortex during a visual task, we found that choice signals defined a decision variable in a low-dimensional embedding space with a prominent contribution along the ventral visual stream. Their subspace was near-orthogonal to concurrently represented sensory and motor-related activations, with modulations by task difficulty and by the animals' attention state. A recurrent neural network trained with animals' choices revealed an equivalent decision variable whose context-dependent dynamics agreed with that of the neural data. Our results demonstrated an independent, multi-area decision variable in the posterior cortex, controlled by task features and cognitive demands, possibly linked to contextual inference computations in dynamic animal-environment interactions.
Collapse
Affiliation(s)
- Javier G Orlandi
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | | | - Ryo Aoki
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Dmitry R Lyamzin
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Andrea Benucci
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan. .,University of Tokyo, Graduate School of Information Science and Technology, Department of Mathematical Informatics, 1-1-1 Yayoi, Bunkyo City, Tokyo, 113-0032, Japan.
| |
Collapse
|
37
|
Haploinsufficiency of Shank3 increases the orientation selectivity of V1 neurons. Sci Rep 2022; 12:22230. [PMID: 36564435 PMCID: PMC9789112 DOI: 10.1038/s41598-022-26402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose hallmarks are social deficits, language impairment, repetitive behaviors, and sensory alterations. It has been reported that patients with ASD show differential activity in cortical regions, for instance, increased neuronal activity in visual processing brain areas and atypical visual perception compared with healthy subjects. The causes of these alterations remain unclear, although many studies demonstrate that ASD has a strong genetic correlation. An example is Phelan-McDermid syndrome, caused by a deletion of the Shank3 gene in one allele of chromosome 22. However, the neuronal consequences relating to the haploinsufficiency of Shank3 in the brain remain unknown. Given that sensory abnormalities are often present along with the core symptoms of ASD, our goal was to study the tuning properties of the primary visual cortex to orientation and direction in awake, head-fixed Shank3+/- mice. We recorded neural activity in vivo in response to visual gratings in the primary visual cortex from a mouse model of ASD (Shank3+/- mice) using the genetically encoded calcium indicator GCaMP6f, imaged with a two-photon microscope through a cranial window. We found that Shank3+/- mice showed a higher proportion of neurons responsive to drifting gratings stimuli than wild-type mice. Shank3+/- mice also show increased responses to some specific stimuli. Furthermore, analyzing the distributions of neurons for the tuning width, we found that Shank3+/- mice have narrower tuning widths, which was corroborated by analyzing the orientation selectivity. Regarding this, Shank3+/- mice have a higher proportion of selective neurons, specifically neurons showing increased selectivity to orientation but not direction. Thus, the haploinsufficiency of Shank3 modified the neuronal response of the primary visual cortex.
Collapse
|
38
|
Parker PRL, Abe ETT, Leonard ESP, Martins DM, Niell CM. Joint coding of visual input and eye/head position in V1 of freely moving mice. Neuron 2022; 110:3897-3906.e5. [PMID: 36137549 PMCID: PMC9742335 DOI: 10.1016/j.neuron.2022.08.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/16/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022]
Abstract
Visual input during natural behavior is highly dependent on movements of the eyes and head, but how information about eye and head position is integrated with visual processing during free movement is unknown, as visual physiology is generally performed under head fixation. To address this, we performed single-unit electrophysiology in V1 of freely moving mice while simultaneously measuring the mouse's eye position, head orientation, and the visual scene from the mouse's perspective. From these measures, we mapped spatiotemporal receptive fields during free movement based on the gaze-corrected visual input. Furthermore, we found a significant fraction of neurons tuned for eye and head position, and these signals were integrated with visual responses through a multiplicative mechanism in the majority of modulated neurons. These results provide new insight into coding in the mouse V1 and, more generally, provide a paradigm for investigating visual physiology under natural conditions, including active sensing and ethological behavior.
Collapse
Affiliation(s)
- Philip R L Parker
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
| | - Elliott T T Abe
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
| | - Emmalyn S P Leonard
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
| | - Dylan M Martins
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
| | - Cristopher M Niell
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
39
|
Distinguishing externally from saccade-induced motion in visual cortex. Nature 2022; 610:135-142. [PMID: 36104560 PMCID: PMC9534749 DOI: 10.1038/s41586-022-05196-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/04/2022] [Indexed: 12/03/2022]
Abstract
Distinguishing sensory stimuli caused by changes in the environment from those caused by an animal’s own actions is a hallmark of sensory processing1. Saccades are rapid eye movements that shift the image on the retina. How visual systems differentiate motion of the image induced by saccades from actual motion in the environment is not fully understood2. Here we discovered that in mouse primary visual cortex (V1) the two types of motion evoke distinct activity patterns. This is because, during saccades, V1 combines the visual input with a strong non-visual input arriving from the thalamic pulvinar nucleus. The non-visual input triggers responses that are specific to the direction of the saccade and the visual input triggers responses that are specific to the direction of the shift of the stimulus on the retina, yet the preferred directions of these two responses are uncorrelated. Thus, the pulvinar input ensures differential V1 responses to external and self-generated motion. Integration of external sensory information with information about body movement may be a general mechanism for sensory cortices to distinguish between self-generated and external stimuli. Distinct activity patterns in the primary visual cortex distinguish movement in the environment from motion caused by eye movements.
Collapse
|
40
|
Sibille J, Gehr C, Benichov JI, Balasubramanian H, Teh KL, Lupashina T, Vallentin D, Kremkow J. High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons. Nat Commun 2022; 13:5218. [PMID: 36064789 PMCID: PMC9445019 DOI: 10.1038/s41467-022-32775-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
The superior colliculus is a midbrain structure that plays important roles in visually guided behaviors in mammals. Neurons in the superior colliculus receive inputs from retinal ganglion cells but how these inputs are integrated in vivo is unknown. Here, we discovered that high-density electrodes simultaneously capture the activity of retinal axons and their postsynaptic target neurons in the superior colliculus, in vivo. We show that retinal ganglion cell axons in the mouse provide a single cell precise representation of the retina as input to superior colliculus. This isomorphic mapping builds the scaffold for precise retinotopic wiring and functionally specific connection strength. Our methods are broadly applicable, which we demonstrate by recording retinal inputs in the optic tectum in zebra finches. We find common wiring rules in mice and zebra finches that provide a precise representation of the visual world encoded in retinal ganglion cells connections to neurons in retinorecipient areas.
Collapse
Affiliation(s)
- Jérémie Sibille
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, 10115, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Carolin Gehr
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, 10115, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jonathan I Benichov
- Max Planck Institute for Ornithology, Eberhard-Gwinner Straße, 82319, Seewiesen, Germany
- Max Planck Institute for Biological Intelligence (in foundation), Eberhard-Gwinner Straße, 82319, Seewiesen, Germany
| | - Hymavathy Balasubramanian
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, 10115, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Kai Lun Teh
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, 10115, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Tatiana Lupashina
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, 10115, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Daniela Vallentin
- Max Planck Institute for Ornithology, Eberhard-Gwinner Straße, 82319, Seewiesen, Germany
- Max Planck Institute for Biological Intelligence (in foundation), Eberhard-Gwinner Straße, 82319, Seewiesen, Germany
| | - Jens Kremkow
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, 10115, Berlin, Germany.
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
41
|
Zeng H, de Vries SEJ. A gene-expression axis defines neuron behaviour. Nature 2022; 607:243-244. [DOI: 10.1038/d41586-022-01640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Weiler S, Guggiana Nilo D, Bonhoeffer T, Hübener M, Rose T, Scheuss V. Orientation and direction tuning align with dendritic morphology and spatial connectivity in mouse visual cortex. Curr Biol 2022; 32:1743-1753.e7. [PMID: 35276098 DOI: 10.1016/j.cub.2022.02.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 01/21/2023]
Abstract
The functional properties of neocortical pyramidal cells (PCs), such as direction and orientation selectivity in visual cortex, predominantly derive from their excitatory and inhibitory inputs. For layer 2/3 (L2/3) PCs, the detailed relationship between their functional properties and how they sample and integrate information across cortical space is not fully understood. Here, we study this relationship by combining functional in vivo two-photon calcium imaging, in vitro functional circuit mapping, and dendritic reconstruction of the same L2/3 PCs in mouse visual cortex. Our work reveals direct correlations between dendritic morphology and functional input connectivity and the orientation as well as direction tuning of L2/3 PCs. First, the apical dendritic tree is elongated along the postsynaptic preferred orientation, considering the representation of visual space in the cortex as determined by its retinotopic organization. Additionally, sharply orientation-tuned cells show a less complex apical tree compared with broadly tuned cells. Second, in direction-selective L2/3 PCs, the spatial distribution of presynaptic partners is offset from the soma opposite to the preferred direction. Importantly, although the presynaptic excitatory and inhibitory input distributions spatially overlap on average, the excitatory input distribution is spatially skewed along the preferred direction, in contrast to the inhibitory distribution. Finally, the degree of asymmetry is positively correlated with the direction selectivity of the postsynaptic L2/3 PC. These results show that the dendritic architecture and the spatial arrangement of excitatory and inhibitory presynaptic cells of L2/3 PCs play important roles in shaping their orientation and direction tuning.
Collapse
Affiliation(s)
- Simon Weiler
- Max Planck Institute of Neurobiology, Martinsried, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg, Germany
| | | | | | - Mark Hübener
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Tobias Rose
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Volker Scheuss
- Max Planck Institute of Neurobiology, Martinsried, Germany; Department of Psychiatry, Ludwig-Maximilians-Universität München, Nussbaumstr. 7, 80336 München, Germany.
| |
Collapse
|
43
|
Optimizing intact skull intrinsic signal imaging for subsequent targeted electrophysiology across mouse visual cortex. Sci Rep 2022; 12:2063. [PMID: 35136111 PMCID: PMC8826313 DOI: 10.1038/s41598-022-05932-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Understanding brain function requires repeatable measurements of neural activity across multiple scales and multiple brain areas. In mice, large scale cortical neural activity evokes hemodynamic changes readily observable with intrinsic signal imaging (ISI). Pairing ISI with visual stimulation allows identification of primary visual cortex (V1) and higher visual areas (HVAs), typically through cranial windows that thin or remove the skull. These procedures can diminish long-term mechanical and physiological stability required for delicate electrophysiological measurements made weeks to months after imaging (e.g., in subjects undergoing behavioral training). Here, we optimized and directly validated an intact skull ISI system in mice. We first assessed how imaging quality and duration affect reliability of retinotopic maps in V1 and HVAs. We then verified ISI map retinotopy in V1 and HVAs with targeted, multi-site electrophysiology several weeks after imaging. Reliable ISI maps of V1 and multiple HVAs emerged with ~ 60 trials of imaging (65 ± 6 min), and these showed strong correlation to local field potential (LFP) retinotopy in superficial cortical layers (r2 = 0.74–0.82). This system is thus well-suited for targeted, multi-area electrophysiology weeks to months after imaging. We provide detailed instructions and code for other researchers to implement this system.
Collapse
|
44
|
Montgomery DP, Hayden DJ, Chaloner FA, Cooke SF, Bear MF. Stimulus-Selective Response Plasticity in Primary Visual Cortex: Progress and Puzzles. Front Neural Circuits 2022; 15:815554. [PMID: 35173586 PMCID: PMC8841555 DOI: 10.3389/fncir.2021.815554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
Stimulus-selective response plasticity (SRP) is a robust and lasting modification of primary visual cortex (V1) that occurs in response to exposure to novel visual stimuli. It is readily observed as a pronounced increase in the magnitude of visual evoked potentials (VEPs) recorded in response to phase-reversing grating stimuli in neocortical layer 4. The expression of SRP at the individual neuron level is equally robust, but the qualities vary depending on the neuronal type and how activity is measured. This form of plasticity is highly selective for stimulus features such as stimulus orientation, spatial frequency, and contrast. Several key insights into the significance and underlying mechanisms of SRP have recently been made. First, it occurs concomitantly and shares core mechanisms with behavioral habituation, indicating that SRP reflects the formation of long-term familiarity that can support recognition of innocuous stimuli. Second, SRP does not manifest within a recording session but only emerges after an off-line period of several hours that includes sleep. Third, SRP requires not only canonical molecular mechanisms of Hebbian synaptic plasticity within V1, but also the opposing engagement of two key subclasses of cortical inhibitory neuron: the parvalbumin- and somatostatin-expressing GABAergic interneurons. Fourth, pronounced shifts in the power of cortical oscillations from high frequency (gamma) to low frequency (alpha/beta) oscillations provide respective readouts of the engagement of these inhibitory neuronal subtypes following familiarization. In this article we will discuss the implications of these findings and the outstanding questions that remain to gain a deeper understanding of this striking form of experience-dependent plasticity.
Collapse
Affiliation(s)
- Daniel P. Montgomery
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Dustin J. Hayden
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Francesca A. Chaloner
- MRC Centre for Neurodevelopmental Disorders (CNDD), King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Samuel F. Cooke
- MRC Centre for Neurodevelopmental Disorders (CNDD), King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Mark F. Bear
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
45
|
Resulaj A. Projections of the Mouse Primary Visual Cortex. Front Neural Circuits 2021; 15:751331. [PMID: 34867213 PMCID: PMC8641241 DOI: 10.3389/fncir.2021.751331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Lesion or damage to the primary visual cortex (V1) results in a profound loss of visual perception in humans. Similarly, in mice, optogenetic silencing of V1 profoundly impairs discrimination of orientated gratings. V1 is thought to have such a critical role in perception in part due to its position in the visual processing hierarchy. It is the first brain area in the neocortex to receive visual input, and it distributes this information to more than 18 brain areas. Here I review recent advances in our understanding of the organization and function of the V1 projections in the mouse. This progress is in part due to new anatomical and viral techniques that allow for efficient labeling of projection neurons. In the final part of the review, I conclude by highlighting challenges and opportunities for future research.
Collapse
Affiliation(s)
- Arbora Resulaj
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
46
|
Caramellino R, Piasini E, Buccellato A, Carboncino A, Balasubramanian V, Zoccolan D. Rat sensitivity to multipoint statistics is predicted by efficient coding of natural scenes. eLife 2021; 10:e72081. [PMID: 34872633 PMCID: PMC8651284 DOI: 10.7554/elife.72081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/18/2021] [Indexed: 01/23/2023] Open
Abstract
Efficient processing of sensory data requires adapting the neuronal encoding strategy to the statistics of natural stimuli. Previously, in Hermundstad et al., 2014, we showed that local multipoint correlation patterns that are most variable in natural images are also the most perceptually salient for human observers, in a way that is compatible with the efficient coding principle. Understanding the neuronal mechanisms underlying such adaptation to image statistics will require performing invasive experiments that are impossible in humans. Therefore, it is important to understand whether a similar phenomenon can be detected in animal species that allow for powerful experimental manipulations, such as rodents. Here we selected four image statistics (from single- to four-point correlations) and trained four groups of rats to discriminate between white noise patterns and binary textures containing variable intensity levels of one of such statistics. We interpreted the resulting psychometric data with an ideal observer model, finding a sharp decrease in sensitivity from two- to four-point correlations and a further decrease from four- to three-point. This ranking fully reproduces the trend we previously observed in humans, thus extending a direct demonstration of efficient coding to a species where neuronal and developmental processes can be interrogated and causally manipulated.
Collapse
Affiliation(s)
| | - Eugenio Piasini
- Computational Neuroscience Initiative, University of PennsylvaniaPhiladelphiaUnited States
| | - Andrea Buccellato
- Visual Neuroscience Lab, International School for Advanced StudiesTriesteItaly
| | - Anna Carboncino
- Visual Neuroscience Lab, International School for Advanced StudiesTriesteItaly
| | - Vijay Balasubramanian
- Computational Neuroscience Initiative, University of PennsylvaniaPhiladelphiaUnited States
| | - Davide Zoccolan
- Visual Neuroscience Lab, International School for Advanced StudiesTriesteItaly
| |
Collapse
|
47
|
Xiao ZC, Lin KK, Young LS. A data-informed mean-field approach to mapping of cortical parameter landscapes. PLoS Comput Biol 2021; 17:e1009718. [PMID: 34941863 PMCID: PMC8741023 DOI: 10.1371/journal.pcbi.1009718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/07/2022] [Accepted: 12/02/2021] [Indexed: 11/19/2022] Open
Abstract
Constraining the many biological parameters that govern cortical dynamics is computationally and conceptually difficult because of the curse of dimensionality. This paper addresses these challenges by proposing (1) a novel data-informed mean-field (MF) approach to efficiently map the parameter space of network models; and (2) an organizing principle for studying parameter space that enables the extraction biologically meaningful relations from this high-dimensional data. We illustrate these ideas using a large-scale network model of the Macaque primary visual cortex. Of the 10-20 model parameters, we identify 7 that are especially poorly constrained, and use the MF algorithm in (1) to discover the firing rate contours in this 7D parameter cube. Defining a "biologically plausible" region to consist of parameters that exhibit spontaneous Excitatory and Inhibitory firing rates compatible with experimental values, we find that this region is a slightly thickened codimension-1 submanifold. An implication of this finding is that while plausible regimes depend sensitively on parameters, they are also robust and flexible provided one compensates appropriately when parameters are varied. Our organizing principle for conceptualizing parameter dependence is to focus on certain 2D parameter planes that govern lateral inhibition: Intersecting these planes with the biologically plausible region leads to very simple geometric structures which, when suitably scaled, have a universal character independent of where the intersections are taken. In addition to elucidating the geometry of the plausible region, this invariance suggests useful approximate scaling relations. Our study offers, for the first time, a complete characterization of the set of all biologically plausible parameters for a detailed cortical model, which has been out of reach due to the high dimensionality of parameter space.
Collapse
Affiliation(s)
- Zhuo-Cheng Xiao
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
| | - Kevin K. Lin
- Department of Mathematics, University of Arizona, Tucson, Arizona, United States of America
| | - Lai-Sang Young
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
- Institute for Advanced Study, Princeton, New Jersey, United States of America
| |
Collapse
|
48
|
Schmidt KE, Wolf F. Punctuated evolution of visual cortical circuits? Evidence from the large rodent Dasyprocta leporina, and the tiny primate Microcebus murinus. Curr Opin Neurobiol 2021; 71:110-118. [PMID: 34823047 DOI: 10.1016/j.conb.2021.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022]
Abstract
Recent reports of the lack of periodic orientation columns in a very large rodent species, the red-rumped agouti, and the existence of incompressible hypercolumns in the lineage of primates, as demonstrated in one of the smallest primates, the mouse lemur, strengthen the interpretation that salt-and-pepper and columns-and-pinwheel mosaics are two distinct functional layouts. These layouts do neither depend on lifestyle nor scale with body size, brain size, absolute neuron numbers, binocular overlap, or visual acuity, but are primarily distinguishable by phylogenetic traits. The predictive value of other biological signatures such as V1 neuronal surface density and the central-peripheral density ratio of retinal ganglion cells are reconsidered, and experiments elucidating the intracortical connectivity in rodents are proposed.
Collapse
Affiliation(s)
- Kerstin E Schmidt
- Neurobiology of Vision Lab, Brain Institute, Federal University of Rio Grande do Norte, 59078 970, Av. Sen. Salgado Filho, 3000, Lagoa Nova, Natal, RN, Brazil.
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks, Germany; Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany; Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany; Max Planck Institute of Experimental Medicine, Herrmann-Rein-Strasse, 37075 Göttingen, Germany
| |
Collapse
|
49
|
Thomson AM. Circuits and Synapses: Hypothesis, Observation, Controversy and Serendipity - An Opinion Piece. Front Neural Circuits 2021; 15:732315. [PMID: 34602985 PMCID: PMC8482872 DOI: 10.3389/fncir.2021.732315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022] Open
Abstract
More than a century of dedicated research has resulted in what we now know, and what we think we know, about synapses and neural circuits. This piece asks to what extent some of the major advances - both theoretical and practical - have resulted from carefully considered theory, or experimental design: endeavors that aim to address a question, or to refute an existing hypothesis. It also, however, addresses the important part that serendipity and chance have played. There are cases where hypothesis driven research has resulted in important progress. There are also examples where a hypothesis, a model, or even an experimental approach - particularly one that seems to provide welcome simplification - has become so popular that it becomes dogma and stifles advance in other directions. The nervous system rejoices in complexity, which should neither be ignored, nor run from. The emergence of testable "rules" that can simplify our understanding of neuronal circuits has required the collection of large amounts of data that were difficult to obtain. And although those collecting these data have been criticized for not advancing hypotheses while they were "collecting butterflies," the beauty of the butterflies always enticed us toward further exploration.
Collapse
Affiliation(s)
- Alex M. Thomson
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| |
Collapse
|