1
|
Iriarte-Gahete M, Tarancon-Diez L, Garrido-Rodríguez V, Leal M, Pacheco YM. Absolute and functional iron deficiency: Biomarkers, impact on immune system, and therapy. Blood Rev 2024:101227. [PMID: 39142965 DOI: 10.1016/j.blre.2024.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Iron is essential for numerous physiological processes and its deficiency often leads to anemia. Iron deficiency (ID) is a global problem, primarily affecting reproductive-age women and children, especially in developing countries. Diagnosis uses classical biomarkers like ferritin or transferrin saturation. Recent advancements include using soluble transferrin receptor (sTfR) or hepcidin for improved detection and classification of absolute and functional iron deficiencies, though mostly used in research. ID without anemia may present symptoms like asthenia and fatigue, even without relevant clinical consequences. ID impacts not only red-blood cells but also immune system cells, highlighting its importance in global health and immune-related comorbidities. Managing ID, requires addressing its cause and selecting appropriate iron supplementation. Various improved oral and intravenous products are available, but further research is needed to refine treatment strategies. This review updates on absolute and functional iron deficiencies, their relationships with the immune system and advancements in diagnosis and therapies.
Collapse
Affiliation(s)
- Marianela Iriarte-Gahete
- Immunology Service, Unit of Clinical Laboratories, Institute of Biomedicine of Seville, IBiS / Virgen del Rocío University Hospital / CSIC / University of Seville, Seville, Spain
| | - Laura Tarancon-Diez
- Group of Infections in the Pediatric Population, Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Vanesa Garrido-Rodríguez
- Immunology Service, Unit of Clinical Laboratories, Institute of Biomedicine of Seville, IBiS / Virgen del Rocío University Hospital / CSIC / University of Seville, Seville, Spain
| | - Manuel Leal
- Internal Medicine Service, Viamed Santa Ángela de la Cruz Hospital, Seville, Spain
| | - Yolanda María Pacheco
- Immunology Service, Unit of Clinical Laboratories, Institute of Biomedicine of Seville, IBiS / Virgen del Rocío University Hospital / CSIC / University of Seville, Seville, Spain; Universidad Loyola Andalucía, Facultad de Ciencias de la Salud, Campus Sevilla, 41704, Dos Hermanas, Sevilla, Spain.
| |
Collapse
|
2
|
Dugan C, Peeling P, Burden R, Richards T. Efficacy of iron supplementation on physical capacity in non-anaemic iron-deficient individuals: protocol for an individual patient data meta-analysis. Syst Rev 2024; 13:182. [PMID: 39010146 PMCID: PMC11247796 DOI: 10.1186/s13643-024-02559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 05/13/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND A deficiency in iron stores is associated with various adverse health complications, which, if left untreated, can progress to states of anaemia, whereby there is significant detriment to an individual's work capacity and quality of life due to compromised erythropoiesis. The most common methods employed to treat an iron deficiency include oral iron supplementation and, in persistent and/or unresponsive cases, intravenous iron therapy. The efficacy of these treatments, particularly in states of iron deficiency without anaemia, is equivocal. Indeed, both randomised control trials and aggregate data meta-analyses have produced conflicting evidence. Therefore, this study aims to assess the efficacy of both oral and intravenous iron supplementation on physical capacity, quality of life, and fatigue scores in iron-deficient non-anaemic individuals using individual patient data (IPD) meta-analysis techniques. METHODS All potential studies, irrespective of design, will be sourced through systematic searches on the following databases: Cochrane Central Register of Controlled Trials, MEDLINE Ovid, Embase Ovid, Web of Science: Science Citation Index Expanded, Web of Science: Conference Proceedings Citation Index-Science, ClinicalTrials.gov, and World Health Organization (WHO) International Clinical Trials Registry Platform. Individual patient data from all available trials will be included and subsequently analysed in a two-stage approach. Predetermined subgroup and sensitivity analyses will be employed to further explain results. DISCUSSION The significance of this IPD meta-analysis is one of consolidating a clear consensus to better inform iron-deficient individuals of the physiological response associated with iron supplementation. The IPD approach, to the best of our knowledge, is novel for this research topic. As such, the findings will significantly contribute to the current body of evidence. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020191739.
Collapse
Affiliation(s)
- Cory Dugan
- School of Human Sciences, University of Western Australia, Perth, Australia.
| | - Peter Peeling
- School of Human Sciences, University of Western Australia, Perth, Australia
| | - Richard Burden
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Toby Richards
- Division of Surgery, University of Western Australia, Perth, Australia
| |
Collapse
|
3
|
Chu J, Wang K, Lu L, Zhao H, Hu J, Xiao W, Wu Q. Advances of Iron and Ferroptosis in Diabetic Kidney Disease. Kidney Int Rep 2024; 9:1972-1985. [PMID: 39081773 PMCID: PMC11284386 DOI: 10.1016/j.ekir.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/02/2024] Open
Abstract
Diabetes mellitus presents a significant threat to human health because it disrupts energy metabolism and gives rise to various complications, including diabetic kidney disease (DKD). Metabolic adaptations occurring in the kidney in response to diabetes contribute to the pathogenesis of DKD. Iron metabolism and ferroptosis, a recently defined form of cell death resulting from iron-dependent excessive accumulation of lipid peroxides, have emerged as crucial players in the progression of DKD. In this comprehensive review, we highlight the profound impact of adaptive and maladaptive responses regulating iron metabolism on the progression of kidney damage in diabetes. We summarize the current understanding of iron homeostasis and ferroptosis in DKD. Finally, we propose that precise manipulation of iron metabolism and ferroptosis may serve as potential strategies for kidney management in diabetes.
Collapse
Affiliation(s)
- Jiayi Chu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Kewu Wang
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Lulu Lu
- Department of Nutrition and Toxicology, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Hui Zhao
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Jibo Hu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Wenbo Xiao
- Department of Radiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Qian Wu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
4
|
Gugo K, Tandara L, Juricic G, Pavicic Ivelja M, Rumora L. Effects of Hypoxia and Inflammation on Hepcidin Concentration in Non-Anaemic COVID-19 Patients. J Clin Med 2024; 13:3201. [PMID: 38892911 PMCID: PMC11173117 DOI: 10.3390/jcm13113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Background/Objectives: This study aimed to explore the influence of hypoxia, inflammation, and erythropoiesis on hepcidin and other iron status parameters in non-anaemic COVID-19 patients admitted to the emergency unit before the introduction of therapeutic interventions. Methods: Ninety-six COVID-19 patients and 47 healthy subjects were recruited. Patients were subdivided into hypoxic or normoxic groups and, after follow-up, into mild and moderate, severe or critical disease severity groups. Iron, unsaturated iron-binding capacity (UIBC), ferritin, C-reactive protein (CRP), and interleukin 6 (IL-6) were measured on automatic analysers. ELISA kits were used for hepcidin and erythropoietin (EPO) determination. We calculated total iron-binding capacity (TIBC) and ratios of hepcidin with parameters of iron metabolism (ferritin/hepcidin, hepcidin/iron), inflammation (hepcidin/CRP, hepcidin/IL-6), and erythropoietic activity (hepcidin/EPO). Results: Hepcidin, ferritin, EPO, CRP, IL-6, ferritin/hepcidin, and hepcidin/iron were increased, while UIBC, TIBC, hepcidin/CRP, and hepcidin/IL-6 were decreased in hypoxic compared to normoxic patients as well as in patients with severe or critical disease compared to those with mild and moderate COVID-19. Regarding predictive parameters of critical COVID-19 occurrence, in multivariable logistic regression analysis, a combination of EPO and ferritin/hepcidin showed very good diagnostic performances and correctly classified 88% of cases, with an AUC of 0.838 (0.749-0.906). Conclusions: The hypoxic signal in our group of patients was not strong enough to overcome the stimulating effect of inflammation on hepcidin expression. EPO and ferritin/hepcidin might help to identify on-admission COVID-19 patients at risk of developing a critical form of the disease.
Collapse
Affiliation(s)
- Katarina Gugo
- Medical Laboratory Diagnostic Division, University Hospital of Split, Soltanska 1, 21000 Split, Croatia;
- Department of Health Studies, University of Split, Rudera Boskovica 35, 21000 Split, Croatia;
| | - Leida Tandara
- Medical Laboratory Diagnostic Division, University Hospital of Split, Soltanska 1, 21000 Split, Croatia;
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
| | - Gordana Juricic
- Department of Laboratory Diagnostics, General Hospital Pula, Santoriova 24a, 52100 Pula, Croatia;
| | - Mirela Pavicic Ivelja
- Department of Health Studies, University of Split, Rudera Boskovica 35, 21000 Split, Croatia;
- Department of Infectious Diseases, University Hospital of Split, Soltanska 1, 21000 Split, Croatia
| | - Lada Rumora
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovacica 1, 10000 Zagreb, Croatia;
| |
Collapse
|
5
|
Tang Y, Ge S, Zheng X, Zheng J. High Hepcidin expression predicts poor prognosis in patients with clear cell renal cell carcinoma. Diagn Pathol 2022; 17:100. [PMID: 36585741 PMCID: PMC9805116 DOI: 10.1186/s13000-022-01274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a growing public health challenge worldwide. Hepcidin antimicrobial peptide (HAMP) is differentially expressed in various tumors. However, the roles and functions of HAMP in ccRCC remain unclear. In the present study, we integrated systematic bioinformatics approaches to investigate the roles and functions of HAMP and its association with immune cell infiltration in ccRCC. Compared with paracancerous tissue, HAMP expression was significantly upregulated in ccRCC patients. Meanwhile, we found good diagnostic performance of HAMP for ccRCC patients and its close associations with the clinicopathological features of ccRCC patients. In addition, we found that HAMP is closely related to multiple immune pathways and positively correlated with various immune cells. HAMP was a significant independent predictor for ccRCC. High expression of HAMP was associated with worse clinical prognosis and more immune cell infiltration in ccRCC patients. HAMP may offer potential as a biomarker to predict prognosis and the clinical treatment outcome of ccRCC patients.
Collapse
Affiliation(s)
- Yuting Tang
- grid.412540.60000 0001 2372 7462Department of Rehabilitation, Municipal Hospital of Traditional Chinese Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200071 People’s Republic of China
| | - Shengdong Ge
- grid.284723.80000 0000 8877 7471Department of Urology, The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Southern Medical University, Guangzhou, China
| | - Xiao Zheng
- grid.412540.60000 0001 2372 7462Department of Rehabilitation, Municipal Hospital of Traditional Chinese Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200071 People’s Republic of China
| | - Jiejiao Zheng
- grid.413597.d0000 0004 1757 8802Department of Rehabilitation, HuaDong Hospital, FuDan University, Shanghai, 200040 People’s Republic of China
| |
Collapse
|
6
|
Dugan C, Cabolis K, Miles LF, Richards T. Systematic review and meta-analysis of intravenous iron therapy for adults with non-anaemic iron deficiency: An abridged Cochrane review. J Cachexia Sarcopenia Muscle 2022; 13:2637-2649. [PMID: 36321348 PMCID: PMC9745472 DOI: 10.1002/jcsm.13114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/04/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
Iron is an essential nutrient for oxygen supply and aerobic metabolism. Iron deficiency impacts cellular respiration and mitochondrial energy metabolism, which can lead to reduced skeletal muscle function and muscle mass, causing sarcopenia. Intravenous iron offers the ability to rapidly correct iron deficiency, but the functional impact on patient mental and physical health is unclear. We assessed the effects of intravenous iron therapy on physical function and quality of life in the treatment of adults with non-anaemic iron deficiency. An update and reanalysis of a previously published Cochrane systematic review was performed to assess randomized controlled trials that compared any intravenous iron preparation with placebo in adults. The primary functional outcome measure was physical performance as defined by the trial authors. Secondary outcome measures included fatigue and quality-of-life scores, and adverse effects at the end of follow-up. Biochemical efficacy was assessed by change in serum ferritin and haemoglobin concentration levels. Twenty-one randomized controlled trials, comprising 3514 participants, were included. Intravenous iron compared with placebo resulted in significantly increased physical function measured by mean peak oxygen consumption (mean difference [MD] 1.77 mL/kg/min, 95% confidence interval [CI] 0.57 to 2.97). An overall improvement in fatigue was seen (standardized MD 0.30, 95% CI -0.52 to -0.09) but no overall difference in quality of life (MD 0.15, 95% CI -0.01 to 0.31). Biochemically, intravenous iron resulted in improved serum ferritin (MD 245.52 μg/L, 95% CI 152.1 to 338.9) and haemoglobin levels (MD 4.65 g/L, 95% CI 2.53 to 6.78). There was a higher risk of developing mild adverse events in the intravenous iron group compared with the placebo group (risk ratio 1.77, 95% CI 1.10 to 2.83); however, no differences were seen in serious adverse events (risk difference 0, 95% CI -0.01 to 0.01). The quality of evidence was rated 'low' and 'very low' for all outcome variables, except for fatigue, mainly due to most studies being judged as having a high risk of bias. In non-anaemic iron-deficient adults, the use of intravenous iron compared with placebo improved physical function and reduced fatigue scores. However, we remain uncertain about the efficacy in this population due to low-quality evidence, and there is a need for further studies to address potential impact on overall quality of life.
Collapse
Affiliation(s)
- Cory Dugan
- Division of Surgery, Faculty of Health and Medical ScienceThe University of Western AustraliaPerthAustralia
| | - Katerina Cabolis
- Department of Neuroinflammation, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Lachlan F. Miles
- Department of Critical Care, Faculty of Medicine, Dentistry and Health SciencesThe University of MelbourneMelbourneAustralia
| | - Toby Richards
- Division of Surgery, Faculty of Health and Medical ScienceThe University of Western AustraliaPerthAustralia
- Department of Neuroinflammation, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
7
|
Longo F, Piga A. Does Hepcidin Tuning Have a Role among Emerging Treatments for Thalassemia? J Clin Med 2022; 11:5119. [PMID: 36079046 PMCID: PMC9457499 DOI: 10.3390/jcm11175119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 01/19/2023] Open
Abstract
The treatments available for thalassemia are rapidly evolving, with major advances made in gene therapy and the modulation of erythropoiesis. The latter includes the therapeutic potential of hepcidin tuning. In thalassemia, hepcidin is significantly depressed, and any rise in hepcidin function has a positive effect on both iron metabolism and erythropoiesis. Synthetic hepcidin and hepcidin mimetics have been developed to the stage of clinical trials. However, they have failed to produce an acceptable efficacy/safety profile. It seems difficult to avoid iron over-restricted erythropoiesis when directly using hepcidin as a drug. Indirect approaches, each one with their advantages and disadvantages, are many and in full development. The ideal approach is to target erythroferrone, the main inhibitor of hepcidin expression, the plasma concentrations of which are greatly increased in iron-loading anemias. Potential means of improving hepcidin function in thalassemia also include acting on TMPRSS6, TfR1, TfR2 or ferroportin, the target of hepcidin. Only having a better understanding of the crosslinks between iron metabolism and erythropoiesis will elucidate the best single option. In the meantime, many potential combinations are currently being explored in preclinical studies. Any long-term clinical study on this approach should include the wide monitoring of functions, as the effects of hepcidin and its modulators are not limited to iron metabolism and erythropoiesis. It is likely that some of the aspects of hepcidin tuning described briefly in this review will play a role in the future treatment of thalassemia.
Collapse
Affiliation(s)
- Filomena Longo
- Thalassemia Reference Centre, 10043 Orbassano, Italy
- Regional HUB Centre for Thalassaemia and Haemoglobinopathies, Department of Medicine, Azienda Ospedaliero Universitaria S. Anna, 44124 Ferrara, Italy
| | - Antonio Piga
- Thalassemia Reference Centre, 10043 Orbassano, Italy
- University of Torino, 10043 Torino, Italy
| |
Collapse
|
8
|
Abstract
The liver is the major target organ of continued alcohol consumption at risk and resulting alcoholic liver disease (ALD) is the most common liver disease worldwide. The underlying molecular mechanisms are still poorly understood despite decades of scientific effort limiting our abilities to identify those individuals who are at risk to develop the disease, to develop appropriate screening strategies and, in addition, to develop targeted therapeutic approaches. ALD is predestined for the newly evolving translational medicine, as conventional clinical and health care structures seem to be constrained to fully appreciate this disease. This concept paper aims at summarizing the 15 years translational experience at the Center of Alcohol Research in Heidelberg, namely based on the long-term prospective and detailed characterization of heavy drinkers with mortality data. In addition, novel experimental findings will be presented. A special focus will be the long-known hepatic iron accumulation, the somewhat overlooked role of the hematopoietic system and novel insights into iron sensing and the role of hepcidin. Our preliminary work indicates that enhanced red blood cell (RBC) turnover is critical for survival in ALD patients. RBC turnover is not primarily due to vitamin deficiency but rather to ethanol toxicity directly targeted to erythrocytes but also to the bone marrow stem cell compartment. These novel insights also help to explain long-known aspects of ALD such as mean corpuscular volume of erythrocytes (MCV) and elevated aspartate transaminase (GOT/AST) levels. This work also aims at identifying future projects, naming unresolved observations, and presenting novel hypothetical concepts still requiring future validation.
Collapse
|
9
|
Rana S, Prabhakar N. Iron disorders and hepcidin. Clin Chim Acta 2021; 523:454-468. [PMID: 34755647 DOI: 10.1016/j.cca.2021.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Iron is an essential element due to its role in a wide variety of physiological processes. Iron homeostasis is crucial to prevent iron overload disorders as well as iron deficiency anemia. The liver synthesized peptide hormone hepcidin is a master regulator of systemic iron metabolism. Given its role in overall health, measurement of hepcidin can be used as a predictive marker in disease states. In addition, hepcidin-targeting drugs appear beneficial as therapeutic agents. This review emphasizes recent development on analytical techniques (immunochemical, mass spectrometry and biosensors) and therapeutic approaches (hepcidin agonists, stimulators and antagonists). These insights highlight hepcidin as a potential biomarker as well as an aid in the development of new drugs for iron disorders.
Collapse
Affiliation(s)
- Shilpa Rana
- Department of Biochemistry, Sector-25, Panjab University, Chandigarh 160014, India
| | - Nirmal Prabhakar
- Department of Biochemistry, Sector-25, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
10
|
Ruiz de Viñaspre-Hernández R, García-Erce JA, Rodríguez-Velasco FJ, Gea-Caballero V, Sufrate-Sorzano T, Garrote-Cámara ME, Urra-Martínez R, Juárez-Vela R, Czapla M, Santolalla-Arnedo I. Variability in Oral Iron Prescription and the Effect on Spanish Mothers' Health: A Prospective Longitudinal Study. J Clin Med 2021; 10:jcm10215212. [PMID: 34768732 PMCID: PMC8584634 DOI: 10.3390/jcm10215212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Background: No consensus exists regarding the hemoglobin (Hb) values that define postpartum anemia. Knowledge is currently lacking regarding prescription and consumption practices, which prevents evaluating the rational use of iron supplementation postpartum. Aim: In this study, our objective was to describe this practice and analyze its association with maternal health outcomes. Methods: A prospective observational study was conducted with 1010 women aged between 18 and 50. The hemoglobin value on the first postpartum day; the prescription schedule at hospital discharge; iron consumption; and data on hemoglobin, serum ferritin, maternal fatigue, type of breastfeeding, and perceived health six weeks after delivery were collected. Findings: Oral iron was prescribed to 98.1% of mothers with anemia and 75.8% without anemia. At the same Hb value, the maximum amount of total iron prescribed was between 8 and 10 times greater than the minimum amount. Iron intake was significantly lower than prescribed (p < 0.01). At six weeks, anemic mothers who took iron presented a 3.6-, 3-, and 2.4-times lower probability of iron deficiency, anemia, and abandoning breastfeeding, respectively. Discussion: Postpartum iron intake shows a protective effect on iron deficiency and anemia at six weeks, but not on fatigue or self-perceived health level. Conclusion: We conclude that there is wide variability in the prescription regimen. Oral iron supplementation can benefit mothers with anemia and harm those without. Subsequent studies should further explore the Hb figure that better discriminates the need for postpartum iron.
Collapse
Affiliation(s)
- Regina Ruiz de Viñaspre-Hernández
- Centro de Salud “Cascajos”, Servicio Riojano de Salud, Government of La Rioja, 26002 Logroño, Spain;
- GRUPAC, Biomedical Research Center of La Rioja (CIBIR), Research Unit on Health System Sustainability (GISSOS), Department of Nursing, University of La Rioja, 26004 Logroño, Spain; (T.S.-S.); (M.E.G.-C.); (I.S.-A.)
| | - José Antonio García-Erce
- Research Institute Idi-Paz, PBM Group, 28046 Madrid, Spain;
- Hematologist, Bank of Blood and Tissue, Government of Navarra, 31015 Pamplona, Spain
| | | | - Vicente Gea-Caballero
- Research Institute Idi-Paz, PBM Group, 28046 Madrid, Spain;
- Faculty of Health Sciences, International University of Valencia, 46010 Valencia, Spain
- Correspondence: (V.G.-C.); (R.J.-V.)
| | - Teresa Sufrate-Sorzano
- GRUPAC, Biomedical Research Center of La Rioja (CIBIR), Research Unit on Health System Sustainability (GISSOS), Department of Nursing, University of La Rioja, 26004 Logroño, Spain; (T.S.-S.); (M.E.G.-C.); (I.S.-A.)
| | - María Elena Garrote-Cámara
- GRUPAC, Biomedical Research Center of La Rioja (CIBIR), Research Unit on Health System Sustainability (GISSOS), Department of Nursing, University of La Rioja, 26004 Logroño, Spain; (T.S.-S.); (M.E.G.-C.); (I.S.-A.)
| | - Raquel Urra-Martínez
- Servicio Riojano de Salud, Hospital San Pedro, Government of La Rioja, 26006 Logroño, Spain;
| | - Raúl Juárez-Vela
- GRUPAC, Biomedical Research Center of La Rioja (CIBIR), Research Unit on Health System Sustainability (GISSOS), Department of Nursing, University of La Rioja, 26004 Logroño, Spain; (T.S.-S.); (M.E.G.-C.); (I.S.-A.)
- Research Institute Idi-Paz, PBM Group, 28046 Madrid, Spain;
- Correspondence: (V.G.-C.); (R.J.-V.)
| | - Michał Czapla
- Laboratory for Experimental Medicine and Innovative Technologies, Department of Emergency Medical Service, Wroclaw Medical University, 51-516 Wroclaw, Poland;
- Institute of Heart Diseases, University Hospital, 50-566 Wroclaw, Poland
| | - Iván Santolalla-Arnedo
- GRUPAC, Biomedical Research Center of La Rioja (CIBIR), Research Unit on Health System Sustainability (GISSOS), Department of Nursing, University of La Rioja, 26004 Logroño, Spain; (T.S.-S.); (M.E.G.-C.); (I.S.-A.)
| |
Collapse
|
11
|
Snook J, Bhala N, Beales ILP, Cannings D, Kightley C, Logan RP, Pritchard DM, Sidhu R, Surgenor S, Thomas W, Verma AM, Goddard AF. British Society of Gastroenterology guidelines for the management of iron deficiency anaemia in adults. Gut 2021; 70:2030-2051. [PMID: 34497146 PMCID: PMC8515119 DOI: 10.1136/gutjnl-2021-325210] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Iron deficiency anaemia (IDA) is a major cause of morbidity and burden of disease worldwide. It can generally be diagnosed by blood testing and remedied by iron replacement therapy (IRT) using the oral or intravenous route. The many causes of iron deficiency include poor dietary intake and malabsorption of dietary iron, as well as a number of significant gastrointestinal (GI) pathologies. Because blood is iron-rich it can result from chronic blood loss, and this is a common mechanism underlying the development of IDA-for example, as a consequence of menstrual or GI blood loss.Approximately a third of men and postmenopausal women presenting with IDA have an underlying pathological abnormality, most commonly in the GI tract. Therefore optimal management of IDA requires IRT in combination with appropriate investigation to establish the underlying cause. Unexplained IDA in all at-risk individuals is an accepted indication for fast-track secondary care referral in the UK because GI malignancies can present in this way, often in the absence of specific symptoms. Bidirectional GI endoscopy is the standard diagnostic approach to examination of the upper and lower GI tract, though radiological scanning is an alternative in some situations for assessing the large bowel. In recurrent or refractory IDA, wireless capsule endoscopy plays an important role in assessment of the small bowel.IDA may present in primary care or across a range of specialties in secondary care, and because of this and the insidious nature of the condition it has not always been optimally managed despite the considerable burden of disease- with investigation sometimes being inappropriate, incorrectly timed or incomplete, and the role of IRT for symptom relief neglected. It is therefore important that contemporary guidelines for the management of IDA are available to all clinicians. This document is a revision of previous British Society of Gastroenterology guidelines, updated in the light of subsequent evidence and developments.
Collapse
Affiliation(s)
- Jonathon Snook
- Gastroenterology, University Hospitals Dorset NHS Foundation Trust, Poole, UK
| | - Neeraj Bhala
- Gastroenterology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust and Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Ian L P Beales
- Gastroenterology, University of East Anglia, Norwich, UK
| | - David Cannings
- Gastroenterology, University Hospitals Dorset NHS Foundation Trust, Poole, UK
| | - Chris Kightley
- Digestive Diseases, Kettering General Hospital NHS Foundation Trust, Kettering, UK
| | | | - D Mark Pritchard
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool and Department of Gastroenterology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Reena Sidhu
- Gastroenterology, Royal Hallamshire Hospital, Sheffield, UK
| | - Sue Surgenor
- Gastroenterology, University Hospitals Dorset NHS Foundation Trust, Poole, UK
| | - Wayne Thomas
- Haematology, Plymouth Hospitals NHS Foundation Trust, Plymouth, Plymouth, UK
| | - Ajay M Verma
- Digestive Diseases, Kettering General Hospital NHS Foundation Trust, Kettering, UK
| | | |
Collapse
|
12
|
Yu LN, Wang SJ, Chen C, Rausch V, Elshaarawy O, Mueller S. Direct modulation of hepatocyte hepcidin signaling by iron. World J Hepatol 2021; 13:1378-1393. [PMID: 34786173 PMCID: PMC8568584 DOI: 10.4254/wjh.v13.i10.1378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/04/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver-secreted hepcidin is the systemic master switch of iron homeostasis and decreased levels of hepcidin are considered to cause iron overload not only in hereditary hemochromatosis but also in hemolytic anemia and chronic liver diseases. The regulation of hepcidin is complex and its response to iron is still not completely understood.
AIM To study the direct effect of iron on various established hepcidin signaling pathways in hepatoma cells or primary hepatocytes.
METHODS Hepcidin mRNA expression was studied by quantitative real-time (qRT)-PCR in the presence of various forms of iron including ferric ammonium citrate (FAC) in hepatoma cells (Huh7), murine primary hepatocytes and an established co-culture model of phorbol myristate acetate-differentiated THP-1 monocytes and Huh7 cells. To analyze hepcidin signaling, the response to bone morphogenetic protein 6 (BMP6), interleukin (IL)-6, IL-1β, hypoxia and lipopolysaccharide (LPS) were studied. Hepcidin and small mothers against decapentaplegic 6 (SMAD6) mRNA levels were assessed by qRT-PCR and the expression of phosphorylated signal transducer and activator of transcription 3 (phospho-STAT3), STAT3, phospho-SMAD1/5/8 and SMAD1 proteins were analyzed by western blot.
RESULTS All iron III forms including FAC efficiently blocked hepcidin mRNA expression at non-toxic dosages in Huh7 cells or primary hepatocytes in a time and dose-dependent manner (P < 0.001; P < 0.05). Hepcidin blockage could be efficiently blunted by iron chelators salicylaldehyde isonicotinoyl hydrazone (SIH) and Desferal (P < 0.001). FAC also inhibited BMP6, hypoxia, IL-1β and IL-6-mediated hepcidin induction (P < 0.001; P < 0.001; P < 0.05; P < 0.001), and FAC also inhibited LPS-mediated hepatic hepcidin induction in co-culture model (P < 0.001). Moreover, FAC reduced SMAD6 mRNA and p-SMAD1/5/8 protein expression at basal or upon stimulation by BMP6 (P < 0.05; P < 0.01), and FAC also reduced SMAD6 and p-SMAD1/5/8 expression under hypoxia (P < 0.01; P < 0.05). However, FAC has no significant effect on p-STAT3 protein expression at basal or upon stimulation by various stimuli. Notably, in the presence of the BMP/SMAD signaling pathway inhibitor LDN193189 Hydrochloride (LDN), FAC was unable to further decrease hepcidin, SMAD6 and p-SMAD1/5/8 expression compared with LDN alone.
CONCLUSION Iron directly blocks hepatocellular hepcidin signaling through the BMP/SMAD pathway but independent of STAT3. This mechanism may contribute to continued iron overload in many pathophysiological conditions ultimately causing a vicious cycle of continued hepcidin suppression.
Collapse
Affiliation(s)
- Lin-Na Yu
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg 69121, Germany
| | - Shi-Jin Wang
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg 69121, Germany
| | - Cheng Chen
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg 69121, Germany
| | - Vanessa Rausch
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg 69121, Germany
| | - Omar Elshaarawy
- Department of Hepatology, Gastroenterology and Liver Transplantation, National Liver Institute, Menoufia University, Shebine Elkom 35121, El Salvador
- Department of Gastroenterology, Royal Liverpool University Hospital, Liverpool L7 8XP, United Kingdom
| | - Sebastian Mueller
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg 69121, Germany
| |
Collapse
|
13
|
Duarte TL, Talbot NP, Drakesmith H. NRF2 and Hypoxia-Inducible Factors: Key Players in the Redox Control of Systemic Iron Homeostasis. Antioxid Redox Signal 2021; 35:433-452. [PMID: 32791852 DOI: 10.1089/ars.2020.8148] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Oxygen metabolism and iron homeostasis are closely linked. Iron facilitates the oxygen-carrying capacity of blood, and its deficiency causes anemia. Conversely, excess free iron is detrimental for stimulating the formation of reactive oxygen species, causing tissue damage. The amount and distribution of iron thus need to be tightly regulated by the liver-expressed hormone hepcidin. This review analyzes the roles of key oxygen-sensing pathways in cellular and systemic regulation of iron homeostasis; specifically, the prolyl hydroxylase domain (PHD)/hypoxia-inducible factor (HIF) and the Kelch-like ECH-associated protein 1/NF-E2 p45-related factor 2 (KEAP1/NRF2) pathways, which mediate tissue adaptation to low and high oxygen, respectively. Recent Advances: In macrophages, NRF2 regulates genes involved in hemoglobin catabolism, iron storage, and iron export. NRF2 was recently identified as the molecular sensor of iron-induced oxidative stress and is responsible for BMP6 expression by liver sinusoidal endothelial cells, which in turn activates hepcidin synthesis by hepatocytes to restore systemic iron levels. Moreover, NRF2 orchestrates the activation of antioxidant defenses that are crucial to protect against iron toxicity. On the contrary, low iron/hypoxia stabilizes renal HIF2a via inactivation of iron-dependent PHD dioxygenases, causing an erythropoietic stimulus that represses hepcidin via an inhibitory effect of erythroferrone on bone morphogenetic proteins. Intestinal HIF2a is also stabilized, increasing the expression of genes involved in dietary iron absorption. Critical Issues: An intimate crosstalk between oxygen-sensing pathways and iron regulatory mechanisms ensures that fluctuations in systemic iron levels are promptly detected and restored. Future Directions: The realization that redox-sensitive transcription factors regulate systemic iron levels suggests novel therapeutic approaches. Antioxid. Redox Signal. 35, 433-452.
Collapse
Affiliation(s)
- Tiago L Duarte
- Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Nick P Talbot
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Haematology Theme, Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
14
|
Jones AD, Shi Z, Lambrecht NJ, Jiang Y, Wang J, Burmeister M, Li M, Lozoff B. Maternal Overweight and Obesity during Pregnancy Are Associated with Neonatal, but Not Maternal, Hepcidin Concentrations. J Nutr 2021; 151:2296-2304. [PMID: 33979838 PMCID: PMC8349130 DOI: 10.1093/jn/nxab133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Overweight or obesity among pregnant women may compromise maternal and neonatal iron status by upregulating hepcidin. OBJECTIVES This study determined the association of 1) maternal and neonatal iron status with maternal and neonatal hepcidin concentrations, and 2) maternal prepregnancy weight status with maternal and neonatal hepcidin concentrations. METHODS We examined hematologic data from 405 pregnant women and their infants from the placebo treatment group of a pregnancy iron supplementation trial in rural China. We measured hepcidin, serum ferritin (SF), soluble transferrin receptor (sTfR), and high-sensitivity C-reactive protein in maternal blood samples at mid-pregnancy and in cord blood at delivery. We used regression analysis to examine the association of maternal prepregnancy overweight or obese status with maternal hepcidin concentration in mid-pregnancy and cord hepcidin concentrations. We also used path analysis to examine mediation of the association of maternal prepregnancy overweight or obese status with maternal iron status by maternal hepcidin, as well as with neonatal hepcidin by neonatal iron status. RESULTS Maternal iron status was positively correlated with maternal hepcidin at mid-pregnancy (SF: r = 0.63, P < 0.001; sTfR: r = -0.37, P < 0.001). Neonatal iron status was also positively correlated with cord hepcidin (SF: r = 0.61, P < 0.001; sTfR: r = -0.39, P < 0.001). In multiple linear regression models, maternal prepregnancy overweight or obese status was not associated with maternal hepcidin at mid-pregnancy but was associated with lower cord hepcidin (coefficient = -0.21, P = 0.004). Using path analysis, we observed a significant indirect effect of maternal prepregnancy overweight or obese status on cord hepcidin, mediated by neonatal iron status. CONCLUSIONS In both pregnant women and neonates, hepcidin was responsive to iron status. Maternal prepregnancy overweight status, with or without including obese women, was associated with lower cord blood hepcidin, likely driven by lower iron status among the neonates of these mothers.
Collapse
Affiliation(s)
- Andrew D Jones
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Shi
- Peking University First Hospital, Beijing, China
- Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Nathalie J Lambrecht
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yaping Jiang
- Peking University First Hospital, Beijing, China
| | - Jingmin Wang
- Peking University First Hospital, Beijing, China
| | - Margit Burmeister
- Department of Computational Medicine & Bioinformatics, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ming Li
- Peking University First Hospital, Beijing, China
| | - Betsy Lozoff
- Department of Pediatrics, Medical School, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Ndevahoma F, Nkambule BB, Dludla PV, Mukesi M, Natanael KN, Nyambuya TM. The effect of underlying inflammation on iron metabolism, cardiovascular risk and renal function in patients with type 2 diabetes. EJHAEM 2021; 2:357-365. [PMID: 35844722 PMCID: PMC9176139 DOI: 10.1002/jha2.257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 04/11/2023]
Abstract
Aim To investigate the impact of inflammation on iron metabolism, cardiovascular risk and renal function in type 2 diabetes (T2D). Methods A total of 50 patients with T2D were included in this study. The patients were stratified into two groups based on their levels of C-reactive protein (CRP), namely normal and high levels (n = 25/group). All laboratory tests were measured using standardised methods. Results Fasting plasma glucose levels were elevated in patients with high CRP when compared to those with normal levels (p = 0.0413). Total serum iron levels were lower in patients with high CRP levels (12.78 ± 3.50) when compared to those with normal levels (15.26 ± 4.64), p = 0.0381. However, ferritin and transferrin levels were comparable between the groups (p > 0.05). The mean cell volume (MCV) in the high CRP group was lower (87.66 ± 3.62) than the normal level group (90.79 ± 4.52), p = 0.0096, whilst the lipograms were similar (p > 0.05). The estimated glomerular filtration rate (eGFR) was lower in the high CRP group (98.06 ± 11.64) than the normal level group (104.7 ± 11.11), p = 0.046. Notably, CRP levels were negatively associated with serum iron levels (r = -0.38, p = 0.0061), MCV (r = -0.41, p = 0.0031), potassium (r = -0.37, p = 0.0086) and sodium levels (r = -0.28, p = 0.0471). Regression analyses showed that only CRP (β = -0.16, standard error [SE]: 0.06, p = 0.0125) and sodium (β = 0.51, SE: 0.25, p = 0.0434) levels contributed significantly to the prediction of serum iron levels. Conclusion Underlying inflammation in T2D is associated with increased incidence of hypertension and reduced levels of serum iron, MCV and renal function. Although there was no apparent clinical anaemia or renal dysfunction in these patients, mitigating inflammation may be effective in circumventing the ultimate development of iron deficiency anaemia and chronic kidney disease in T2D.
Collapse
Affiliation(s)
- Fransina Ndevahoma
- Department of Health SciencesFaculty of Health and Applied SciencesNamibia University of Science and TechnologyWindhoekNamibia
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Phiwayinkosi V. Dludla
- Biomedical Research and Innovation PlatformSouth African Medical Research CouncilCape TownSouth Africa
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Munyaradzi Mukesi
- Department of Health SciencesFaculty of Health and Applied SciencesNamibia University of Science and TechnologyWindhoekNamibia
| | - Kandiwapa N. Natanael
- Division of Primary Healthcare at Katutura Community Health CentreMinistry of Health and Social ServicesWindhoekNamibia
| | - Tawanda M. Nyambuya
- Department of Health SciencesFaculty of Health and Applied SciencesNamibia University of Science and TechnologyWindhoekNamibia
| |
Collapse
|
16
|
Iron-biofortified pearl millet consumption increases physical activity in Indian adolescent schoolchildren after a 6-month randomised feeding trial. Br J Nutr 2021; 127:1018-1025. [PMID: 34078482 PMCID: PMC8924488 DOI: 10.1017/s000711452100180x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fe deficiency has negative effects on voluntary physical activity (PA); however, the impact of consuming Fe-biofortified staple foods on voluntary PA remains unclear. This study compared the effects of consuming Fe-biofortified pearl millet or a conventional pearl millet on measures of voluntary PA in Indian schoolchildren (ages 12-16 years) during a 6-month randomised controlled feeding trial. PA data were collected from 130 children using Actigraph GT3X accelerometers for 6 d at baseline and endline. Minutes spent in light and in moderate-to-vigorous PA were calculated from accelerometer counts using Crouter's refined two-regression model for children. Mixed regression models adjusting for covariates were used to assess relationships between intervention treatment or change in Fe status and PA. Children who consumed Fe-biofortified pearl millet performed 22·3 (95 % CI 1·8, 42·8, P = 0·034) more minutes of light PA each day compared with conventional pearl millet. There was no effect of treatment on moderate-to-vigorous PA. The amount of Fe consumed from pearl millet was related to minutes spent in light PA (estimate 3·4 min/mg Fe (95 % CI 0·3, 6·5, P = 0·031)) and inversely related to daily sedentary minutes (estimate -5·4 min/mg Fe (95 % CI -9·9, -0·9, P = 0·020)). Consuming Fe-biofortified pearl millet increased light PA and decreased sedentary time in Indian schoolchildren in a dose-dependent manner.
Collapse
|
17
|
Effect of hepcidin antagonists on anemia during inflammatory disorders. Pharmacol Ther 2021; 226:107877. [PMID: 33895185 DOI: 10.1016/j.pharmthera.2021.107877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
Iron is an essential element for the mammalian body however, its homeostasis must be regulated accurately for appropriate physiological functioning. Alterations in physiological iron levels can lead to moderate to severe iron disorders like chronic and acute iron deficiency (anemia) or iron overload. Hepcidin plays an important role in regulating homeostasis between circulating iron and stored iron in the cells as well as the absorption of dietary iron in the intestine. Inflammatory disorders restrict iron absorption from food due to increased circulating levels of hepcidin. Increased production of hepcidin causes ubiquitination of ferroportin (FPN) leading to its degradation, thereby retaining iron in the spleen, duodenal enterocytes, macrophages, and hepatocytes. Hepcidin inhibitors and antagonists play a consequential role to ameliorate inflammation-associated anemia. Many natural and synthesized compounds, able to reduce hepcidin expression during inflammation have been identified in recent years. Few of which are currently at various phases of clinical trial. This article comprises a comprehensive review of therapeutic approaches for the efficient treatment of anemia associated with inflammation. Many strategies have been developed targeting the hepcidin-FPN axis to rectify iron disorders. Hepcidin modulation with siRNAs, antibodies, chemical compounds, and plant extracts provides new insights for developing advanced therapeutics for iron-related disorders. Hepcidin antagonist's treatment has a high potential to improve iron status in patients with iron disorders, but their clinical success needs further recognition along with the identification and application of new therapeutic approaches.
Collapse
|
18
|
A fully human anti-BMP6 antibody reduces the need for erythropoietin in rodent models of the anemia of chronic disease. Blood 2021; 136:1080-1090. [PMID: 32438400 DOI: 10.1182/blood.2019004653] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Recombinant erythropoietin (EPO) and iron substitution are a standard of care for treatment of anemias associated with chronic inflammation, including anemia of chronic kidney disease. A black box warning for EPO therapy and concerns about negative side effects related to high-dose iron supplementation as well as the significant proportion of patients becoming EPO resistant over time explains the medical need to define novel strategies to ameliorate anemia of chronic disease (ACD). As hepcidin is central to the iron-restrictive phenotype in ACD, therapeutic approaches targeting hepcidin were recently developed. We herein report the therapeutic effects of a fully human anti-BMP6 antibody (KY1070) either as monotherapy or in combination with Darbepoetin alfa on iron metabolism and anemia resolution in 2 different, well-established, and clinically relevant rodent models of ACD. In addition to counteracting hepcidin-driven iron limitation for erythropoiesis, we found that the combination of KY1070 and recombinant human EPO improved the erythroid response compared with either monotherapy in a qualitative and quantitative manner. Consequently, the combination of KY1070 and Darbepoetin alfa resulted in an EPO-sparing effect. Moreover, we found that suppression of hepcidin via KY1070 modulates ferroportin expression on erythroid precursor cells, thereby lowering potentially toxic-free intracellular iron levels and by accelerating erythroid output as reflected by increased maturation of erythrocyte progenitors. In summary, we conclude that treatment of ACD, as a highly complex disease, becomes more effective by a multifactorial therapeutic approach upon mobilization of endogenous iron deposits and stimulation of erythropoiesis.
Collapse
|
19
|
Ma S, Dubin AE, Zhang Y, Mousavi SAR, Wang Y, Coombs AM, Loud M, Andolfo I, Patapoutian A. A role of PIEZO1 in iron metabolism in mice and humans. Cell 2021; 184:969-982.e13. [PMID: 33571427 PMCID: PMC7927959 DOI: 10.1016/j.cell.2021.01.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/03/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022]
Abstract
Iron overload causes progressive organ damage and is associated with arthritis, liver damage, and heart failure. Elevated iron levels are present in 1%-5% of individuals; however, iron overload is undermonitored and underdiagnosed. Genetic factors affecting iron homeostasis are emerging. Individuals with hereditary xerocytosis, a rare disorder with gain-of-function (GOF) mutations in mechanosensitive PIEZO1 ion channel, develop age-onset iron overload. We show that constitutive or macrophage expression of a GOF Piezo1 allele in mice disrupts levels of the iron regulator hepcidin and causes iron overload. We further show that PIEZO1 is a key regulator of macrophage phagocytic activity and subsequent erythrocyte turnover. Strikingly, we find that E756del, a mild GOF PIEZO1 allele present in one-third of individuals of African descent, is strongly associated with increased plasma iron. Our study links macrophage mechanotransduction to iron metabolism and identifies a genetic risk factor for increased iron levels in African Americans.
Collapse
Affiliation(s)
- Shang Ma
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Adrienne E Dubin
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Yunxiao Zhang
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Seyed Ali Reza Mousavi
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Yu Wang
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Adam M Coombs
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Meaghan Loud
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, CEINGE - Biotecnologie Avanzate, Naples, Italy
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Development of insulin resistance preceded major changes in iron homeostasis in mice fed a high-fat diet. J Nutr Biochem 2020; 84:108441. [PMID: 32629238 PMCID: PMC7115812 DOI: 10.1016/j.jnutbio.2020.108441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 03/10/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) have been associated with dysregulation of iron metabolism. The basis for this association is not completely understood. To attempt to investigate this, we studied temporal associations between onset of insulin resistance (IR) and dysregulated iron homeostasis, in a mouse model of T2DM. Male C57Bl/6 mice (aged 8 weeks) were fed a high-fat diet (HFD; 60% energy from fat) or a control diet (CD; 10% energy from fat) for 4, 8, 12, 16, 20 and 24 weeks. Development of IR was documented, and various metabolic, inflammatory and iron-related parameters were studied in these mice. HFD-feeding induced weight gain, hepato-steatosis and IR in the mice. Onset of IR occurred from 12 weeks onwards. Hepatic iron stores progressively declined from 16 weeks onwards. Accompanying changes included a decrease in hepatic hepcidin (Hamp1) mRNA expression and serum hepcidin levels and an increase in iron content in the epididymal white adipose tissue (eWAT). Iron content in the liver negatively correlated with that in the eWAT. Factors known to regulate hepatic Hamp1 expression (such as serum iron levels, systemic inflammation, and bone marrow-derived erythroid regulators) were not affected by HFD-feeding. In conclusion, the results show that the onset of IR in HFD-fed mice preceded dysregulation of iron homeostasis, evidence of which were found both in the liver and visceral adipose tissue.
Collapse
|
21
|
Mehta KJ, Busbridge M, Patel VB, Farnaud SJ. Hepcidin secretion was not directly proportional to intracellular iron-loading in recombinant-TfR1 HepG2 cells: short communication. Mol Cell Biochem 2020; 468:121-128. [PMID: 32185675 PMCID: PMC7145775 DOI: 10.1007/s11010-020-03716-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/06/2020] [Indexed: 02/08/2023]
Abstract
Hepcidin is the master regulator of systemic iron homeostasis and its dysregulation is observed in several chronic liver diseases. Unlike the extracellular iron-sensing mechanisms, the intracellular iron-sensing mechanisms in the hepatocytes that lead to hepcidin induction and secretion are incompletely understood. Here, we aimed to understand the direct role of intracellular iron-loading on hepcidin mRNA and peptide secretion using our previously characterised recombinant HepG2 cells that over-express the cell-surface iron-importer protein transferrin receptor-1. Gene expression of hepcidin (HAMP) was determined by real-time PCR. Intracellular iron levels and secreted hepcidin peptide levels were measured by ferrozine assay and immunoassay, respectively. These measurements were compared in the recombinant and wild-type HepG2 cells under basal conditions at 30 min, 2 h, 4 h and 24 h. Data showed that in the recombinant cells, intracellular iron content was higher than wild-type cells at 30 min (3.1-fold, p < 0.01), 2 h (4.6-fold, p < 0.01), 4 h (4.6-fold, p < 0.01) and 24 h (1.9-fold, p < 0.01). Hepcidin (HAMP) mRNA expression was higher than wild-type cells at 30 min (5.9-fold; p = 0.05) and 24 h (6.1-fold; p < 0.03), but at 4 h, the expression was lower than that in wild-type cells (p < 0.05). However, hepcidin secretion levels in the recombinant cells were similar to those in wild-type cells at all time-points, except at 4 h, when the level was lower than wild-type cells (p < 0.01). High intracellular iron in recombinant HepG2 cells did not proportionally increase hepcidin peptide secretion. This suggests a limited role of elevated intracellular iron in hepcidin secretion.
Collapse
Affiliation(s)
- Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, UK.
- School of Life Sciences, University of Westminster, London, UK.
| | - Mark Busbridge
- Department of Clinical Biochemistry, Northwest London Pathology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Vinood B Patel
- School of Life Sciences, University of Westminster, London, UK
| | - Sebastien Je Farnaud
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
22
|
Bessman NJ, Mathieu JRR, Renassia C, Zhou L, Fung TC, Fernandez KC, Austin C, Moeller JB, Zumerle S, Louis S, Vaulont S, Ajami NJ, Sokol H, Putzel GG, Arvedson T, Sockolow RE, Lakhal-Littleton S, Cloonan SM, Arora M, Peyssonnaux C, Sonnenberg GF. Dendritic cell-derived hepcidin sequesters iron from the microbiota to promote mucosal healing. Science 2020; 368:186-189. [PMID: 32273468 PMCID: PMC7724573 DOI: 10.1126/science.aau6481] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/22/2019] [Accepted: 02/11/2020] [Indexed: 01/03/2023]
Abstract
Bleeding and altered iron distribution occur in multiple gastrointestinal diseases, but the importance and regulation of these changes remain unclear. We found that hepcidin, the master regulator of systemic iron homeostasis, is required for tissue repair in the mouse intestine after experimental damage. This effect was independent of hepatocyte-derived hepcidin or systemic iron levels. Rather, we identified conventional dendritic cells (cDCs) as a source of hepcidin that is induced by microbial stimulation in mice, prominent in the inflamed intestine of humans, and essential for tissue repair. cDC-derived hepcidin acted on ferroportin-expressing phagocytes to promote local iron sequestration, which regulated the microbiota and consequently facilitated intestinal repair. Collectively, these results identify a pathway whereby cDC-derived hepcidin promotes mucosal healing in the intestine through means of nutritional immunity.
Collapse
Affiliation(s)
- Nicholas J Bessman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, Cornell University, New York, NY, USA.,Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jacques R R Mathieu
- Université de Paris, INSERM U1016, Institut Cochin, CNRS UMR8104, 75014 Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Cyril Renassia
- Université de Paris, INSERM U1016, Institut Cochin, CNRS UMR8104, 75014 Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Lei Zhou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, Cornell University, New York, NY, USA.,Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Thomas C Fung
- Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, Cornell University, New York, NY, USA.,Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Keith C Fernandez
- Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, Cornell University, New York, NY, USA.,Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jesper B Moeller
- Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, Cornell University, New York, NY, USA.,Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sara Zumerle
- Université de Paris, INSERM U1016, Institut Cochin, CNRS UMR8104, 75014 Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Sabine Louis
- Université de Paris, INSERM U1016, Institut Cochin, CNRS UMR8104, 75014 Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Sophie Vaulont
- Université de Paris, INSERM U1016, Institut Cochin, CNRS UMR8104, 75014 Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | | | - Harry Sokol
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroenterologie, F-75012 Paris, France
| | - Gregory G Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Tara Arvedson
- Department of Oncology Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Robbyn E Sockolow
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.,Trinity College Dublin, Dublin, Ireland
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carole Peyssonnaux
- Université de Paris, INSERM U1016, Institut Cochin, CNRS UMR8104, 75014 Paris, France. .,Laboratory of Excellence GR-Ex, Paris, France
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, Cornell University, New York, NY, USA. .,Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
23
|
Varghese J, Varghese James J, Karthikeyan M, Rasalkar K, Raghavan R, Sukumaran A, Premkumar PS, Eapen CE, Jacob M. Iron homeostasis is dysregulated, but the iron-hepcidin axis is functional, in chronic liver disease. J Trace Elem Med Biol 2020; 58:126442. [PMID: 31835128 DOI: 10.1016/j.jtemb.2019.126442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Perturbations in iron homeostasis have been reported to be associated with irreversible liver injury in chronic liver disease (CLD). However, it is not clear whether liver dysfunction per se underlies such dysregulation or whether other factors also contribute to it. This study attempted to examine the issues involved. METHODS Patients diagnosed to have chronic liver disease (n = 63), who underwent a medically-indicated upper gastrointestinal endoscopy, were the subjects of this study. Patients with dyspepsia, who underwent such a procedure, and were found to have no endoscopic abnormalities, were used as control subjects (n = 49). Duodenal mucosal samples were obtained to study mRNA and protein levels of duodenal proteins involved in iron absorption. A blood sample was also obtained for estimation of hematological, iron-related, inflammatory and liver function-related parameters. RESULTS Patients with CLD had impaired liver function, anemia of inflammation and lower serum levels of hepcidin than control subjects. Gene (mRNA) expression levels of duodenal ferroportin and duodenal cytochrome b (proteins involved in iron absorption) were decreased, while that of divalent metal transporter-1 (DMT-1) was unchanged. Protein expression of DMT-1 was, however, decreased while that of ferroportin was unchanged. In the CLD group, serum hepcidin was predicted independently by serum ferritin and hemoglobin, but not by C-reactive protein (a marker of inflammation). CLD patients with serum ferritin greater than 300 μg/dL had significantly greater liver dysfunction (as indicated by significantly higher serum concentrations of bilirubin, AST and ALT, and MELD scores), higher serum concentrations of CRP and hepcidin, and higher ferroportin protein expression, than those with serum ferritin ≤ 300 μg/dL. CONCLUSIONS In patients with CLD, anemia of inflammation and low serum hepcidin levels were found to paradoxically co-exist. Expression of duodenal proteins involved in iron absorption were either decreased or unaltered in these patients. The hepcidin response to higher body iron levels and/or inflammation appeared to be functional in these patients, despite the presence of liver disease.
Collapse
Affiliation(s)
- Joe Varghese
- Department of Biochemistry, Christian Medical College, Vellore, 632002, India
| | | | | | - Kavita Rasalkar
- Department of Biochemistry, Christian Medical College, Vellore, 632002, India
| | - Ramya Raghavan
- Department of Biochemistry, Christian Medical College, Vellore, 632002, India
| | - Abitha Sukumaran
- Department of Biochemistry, Christian Medical College, Vellore, 632002, India
| | - Prasanna S Premkumar
- Department of Biostatistics, Christian Medical College, Vellore, 632002, India; Wellcome Trust Research Laboratory, Christian Medical College, Vellore, 632002, India
| | - C E Eapen
- Department of Gastroenterology and Hepatology, Christian Medical College, Vellore, 632002, India
| | - Molly Jacob
- Department of Biochemistry, Christian Medical College, Vellore, 632002, India.
| |
Collapse
|
24
|
Arezes J, Foy N, McHugh K, Quinkert D, Benard S, Sawant A, Frost JN, Armitage AE, Pasricha SR, Lim PJ, Tam MS, Lavallie E, Pittman DD, Cunningham O, Lambert M, Murphy JE, Draper SJ, Jasuja R, Drakesmith H. Antibodies against the erythroferrone N-terminal domain prevent hepcidin suppression and ameliorate murine thalassemia. Blood 2020; 135:547-557. [PMID: 31899794 PMCID: PMC7046598 DOI: 10.1182/blood.2019003140] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/12/2019] [Indexed: 01/19/2023] Open
Abstract
Erythroferrone (ERFE) is produced by erythroblasts in response to erythropoietin (EPO) and acts in the liver to prevent hepcidin stimulation by BMP6. Hepcidin suppression allows for the mobilization of iron to the bone marrow for the production of red blood cells. Aberrantly high circulating ERFE in conditions of stress erythropoiesis, such as in patients with β-thalassemia, promotes the tissue iron accumulation that substantially contributes to morbidity in these patients. Here we developed antibodies against ERFE to prevent hepcidin suppression and to correct the iron loading phenotype in a mouse model of β-thalassemia [Hbb(th3/+) mice] and used these antibodies as tools to further characterize ERFE's mechanism of action. We show that ERFE binds to BMP6 with nanomolar affinity and binds BMP2 and BMP4 with somewhat weaker affinities. We found that BMP6 binds the N-terminal domain of ERFE, and a polypeptide derived from the N terminus of ERFE was sufficient to cause hepcidin suppression in Huh7 hepatoma cells and in wild-type mice. Anti-ERFE antibodies targeting the N-terminal domain prevented hepcidin suppression in ERFE-treated Huh7 cells and in EPO-treated mice. Finally, we observed a decrease in splenomegaly and serum and liver iron in anti-ERFE-treated Hbb(th3/+) mice, accompanied by an increase in red blood cells and hemoglobin and a decrease in reticulocyte counts. In summary, we show that ERFE binds BMP6 directly and with high affinity, and that antibodies targeting the N-terminal domain of ERFE that prevent ERFE-BMP6 interactions constitute a potential therapeutic tool for iron loading anemias.
Collapse
Affiliation(s)
- João Arezes
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Niall Foy
- BioMedicine Design, Pfizer Biotherapeutics R&D, Dublin, Ireland
| | - Kirsty McHugh
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Doris Quinkert
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Susan Benard
- BioMedicine Design, Pfizer Biotherapeutics R&D, Cambridge, MA
| | - Anagha Sawant
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA
| | - Joe N Frost
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Andrew E Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Sant-Rayn Pasricha
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia; and
| | - Pei Jin Lim
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - May S Tam
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA
| | | | | | - Orla Cunningham
- BioMedicine Design, Pfizer Biotherapeutics R&D, Dublin, Ireland
| | - Matthew Lambert
- BioMedicine Design, Pfizer Biotherapeutics R&D, Dublin, Ireland
| | - John E Murphy
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Reema Jasuja
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Haematology Theme NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
25
|
Nguyen LM, Meaney CJ, Rao GG, Panesar M, Krzyzanski W. Application of Reticulocyte-Based Estimation of Red Blood Cell Lifespan in Anemia Management of End-Stage Renal Disease Patients. AAPS JOURNAL 2020; 22:40. [PMID: 32016602 DOI: 10.1208/s12248-020-0424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/14/2020] [Indexed: 11/30/2022]
Abstract
Shortened red blood cell (RBC) lifespan is one of the major factors contributing to anemia in end-stage renal disease (ESRD) patients and should be taken into account in anemia management protocols. In this study, we aimed to estimate RBC lifespan and the source of between-subject variability in ESRD patients. The resulting individual parameters (empirical Bayes estimates) were used to predict hemoglobin concentrations 2 weeks in advance. The reticulocyte-based estimation of RBC lifespan (REBEL) and the population modeling of RBC count data were used. A total of 120 blood samples collected biweekly over 10 weeks in 24 patients receiving maintenance doses of recombinant human erythropoietin (rHuEPO) subcutaneously were included in this analysis. Typical RBC lifespan was estimated to be 63.3 days. RBC lifespan was found to increase with erythroferrone, a recently identified hormone participating in iron metabolism. Approximately, a 10% increase in plasma erythroferrone was associated with a 5% increase in RBC lifespan. In addition, RBC lifespan was 18.7% shorter in females compared with males. Out of 24 subjects, 16 had hemoglobin concentrations predicted within 95% prediction intervals. The median absolute prediction error was 15.9% (interquartile range, 9.5 to 24.7%). We demonstrated that REBEL coupled with the population modeling technique can be used effectively to estimate RBC lifespan. Then, individual parameters can be used to predict future hemoglobin concentrations in ESRD patients.
Collapse
Affiliation(s)
- Ly Minh Nguyen
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, 370 Pharmacy Building, Buffalo, New York, 14214, USA
| | - Calvin J Meaney
- Department of Pharmacy Practice, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Gauri G Rao
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mandip Panesar
- Erie County Medical Center, Regional Center of Excellence for Transplantation and Kidney Care, Buffalo, New York, USA
| | - Wojciech Krzyzanski
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, 370 Pharmacy Building, Buffalo, New York, 14214, USA.
| |
Collapse
|
26
|
Zügel M, Treff G, Steinacker JM, Mayer B, Winkert K, Schumann U. Increased Hepcidin Levels During a Period of High Training Load Do Not Alter Iron Status in Male Elite Junior Rowers. Front Physiol 2020; 10:1577. [PMID: 32038278 PMCID: PMC6985289 DOI: 10.3389/fphys.2019.01577] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
The liver-derived hormone hepcidin plays a key role in iron metabolism by mediating the degradation of the iron export protein ferroportin 1 (FPN1). Circulating levels of hepcidin and the iron storage protein ferritin are elevated during the recovery period after acute endurance exercise, which can be interpreted as an acute phase reaction to intense exercise with far-reaching consequences for iron metabolism and homeostasis. Since absolute and functional iron deficiency (ID) potentially lead to a loss of performance and well-being, it is surprising that the cumulative effects of training stress on hepcidin levels and its interplay with cellular iron availability are not well described. Therefore, the aim of this study was to determine serum levels of hepcidin at six time points during a 4-week training camp of junior world elite rowers preparing for the world championships and to relate the alterations in training load to overall iron status determined by serum ferritin, transferrin, iron, and soluble transferrin receptor (sTfR). Serum hepcidin levels increased significantly (p = 0.02) during the initial increase in training load (23.24 ± 2.43 ng/ml) at day 7 compared to the start of training camp (11.47 ± 3.92 ng/ml) and turned back on day 13 (09.51 ± 3.59 ng/ml) already, meeting well the entrance level of hepcidin at day 0. Serum ferritin was significantly higher at day 7 compared to all other timepoints with exception of the subsequent time point at day 13 reflecting well the time course pattern of hepcidin. Non-significant changes between training phases were found for serum iron, transferrin, and sTfR levels as well as for transferrin saturation, and ferritin-index (sTfR/log ferritin). Our findings indicate that hepcidin as well as ferritin, both representing acute phase proteins, are sensitive to initial increases in training load. Erythropoiesis was unaffected by iron compartmentalization through hepcidin. We conclude that hepcidin is sensitive to rigorous changes in training load in junior world elite rowers without causing short-term alterations in functional iron homeostasis.
Collapse
Affiliation(s)
- Martina Zügel
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, Ulm University, Ulm, Germany
| | - Gunnar Treff
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, Ulm University, Ulm, Germany
| | - Jürgen M Steinacker
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, Ulm University, Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Kay Winkert
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, Ulm University, Ulm, Germany
| | - Uwe Schumann
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
27
|
El-Gamal RAER, Abdel-Messih IY, Habashy DM, Zaiema SEG, Pessar SA. Erythroferrone, the new iron regulator: evaluation of its levels in Egyptian patients with beta thalassemia. Ann Hematol 2020; 99:31-39. [DOI: https:/doi.org/10.1007/s00277-019-03882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 12/02/2019] [Indexed: 04/02/2024]
|
28
|
El-Gamal RAER, Abdel-Messih IY, Habashy DM, Zaiema SEG, Pessar SA. Erythroferrone, the new iron regulator: evaluation of its levels in Egyptian patients with beta thalassemia. Ann Hematol 2019; 99:31-39. [PMID: 31834456 DOI: 10.1007/s00277-019-03882-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 12/02/2019] [Indexed: 01/20/2023]
Abstract
Since iron overload is the commonest cause of morbidity and mortality in β thalassemia major (β-TM), it represents one major target in therapeutic management of the disease. The recently discovered erythroid regulator, erythroferrone (ERFE), governed by high levels of erythropoietin, was found to suppress hepcidin expression, thus increasing iron availability for developing erythroid progenitors. We aimed to investigate ERFE levels in Egyptian β-TM patients as an attempt to understand its role in the prediction of iron overload states. Our study included 70 β-TM patients, divided into two subgroups according to the degree of iron overload, and 30 sex and age-matched healthy subjects. ERFE gene expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), and serum hepcidin was measured using enzyme-linked immunosorbent assay (ELISA) technique. Both ERFE gene expression levels and transferrin saturation (TS%) values were able to discriminate among cases with different degrees of iron overload, in contrast to hepcidin. TS% was acknowledged as the best predictor of iron overload (AUC 0.893) in comparison with serum hepcidin and ERFE gene levels (AUC 0.807 and 0.677, respectively), and ERFE gene expression was an independent predictor for the estimated TS%. In conclusion, we suggest that using the ERFE gene expression, combined with serum hepcidin estimation, can substantiate the role of estimated TS% as a promising tool in screening for iron overload in β-TM patients.
Collapse
Affiliation(s)
| | | | - Deena Mohamed Habashy
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Abbasseya, Cairo, 11566, Egypt
| | - Shams Eldoha Galal Zaiema
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Abbasseya, Cairo, 11566, Egypt
| | - Shaimaa Abdelmalik Pessar
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Abbasseya, Cairo, 11566, Egypt.
| |
Collapse
|
29
|
Hawula ZJ, Wallace DF, Subramaniam VN, Rishi G. Therapeutic Advances in Regulating the Hepcidin/Ferroportin Axis. Pharmaceuticals (Basel) 2019; 12:ph12040170. [PMID: 31775259 PMCID: PMC6958404 DOI: 10.3390/ph12040170] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022] Open
Abstract
The interaction between hepcidin and ferroportin is the key mechanism involved in regulation of systemic iron homeostasis. This axis can be affected by multiple stimuli including plasma iron levels, inflammation and erythropoietic demand. Genetic defects or prolonged inflammatory stimuli results in dysregulation of this axis, which can lead to several disorders including hereditary hemochromatosis and anaemia of chronic disease. An imbalance in iron homeostasis is increasingly being associated with worse disease outcomes in many clinical conditions including multiple cancers and neurological disorders. Currently, there are limited treatment options for regulating iron levels in patients and thus significant efforts are being made to uncover approaches to regulate hepcidin and ferroportin expression. These approaches either target these molecules directly or regulatory steps which mediate hepcidin or ferroportin expression. This review examines the current status of hepcidin and ferroportin agonists and antagonists, as well as inducers and inhibitors of these proteins and their regulatory pathways.
Collapse
Affiliation(s)
- Zachary J. Hawula
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia; (Z.J.H.); (D.F.W.)
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - Daniel F. Wallace
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia; (Z.J.H.); (D.F.W.)
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - V. Nathan Subramaniam
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia; (Z.J.H.); (D.F.W.)
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
- Correspondence: (V.N.S.); (G.R.)
| | - Gautam Rishi
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia; (Z.J.H.); (D.F.W.)
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
- Correspondence: (V.N.S.); (G.R.)
| |
Collapse
|
30
|
Qian ZM, Ke Y. Hepcidin and its therapeutic potential in neurodegenerative disorders. Med Res Rev 2019; 40:633-653. [PMID: 31471929 DOI: 10.1002/med.21631] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
Abnormally high brain iron, resulting from the disrupted expression or function of proteins involved in iron metabolism in the brain, is an initial cause of neuronal death in neuroferritinopathy and aceruloplasminemia, and also plays a causative role in at least some of the other neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Friedreich's ataxia. As such, iron is believed to be a novel target for pharmacological intervention in these disorders. Reducing iron toward normal levels or hampering the increases in iron associated with age in the brain is a promising therapeutic strategy for all iron-related neurodegenerative disorders. Hepcidin is a crucial regulator of iron homeostasis in the brain. Recent studies have suggested that upregulating brain hepcidin levels can significantly reduce brain iron content through the regulation of iron transport protein expression in the blood-brain barrier and in neurons and astrocytes. In this review, we focus on the discussion of the therapeutic potential of hepcidin in iron-associated neurodegenerative diseases and also provide a systematic overview of recent research progress on how misregulated brain iron metabolism is involved in the development of multiple neurodegenerative disorders.
Collapse
Affiliation(s)
- Zhong-Ming Qian
- Institute of Translational & Precision Medicine, Nantong University, Nantong, Jiangsu, China.,Laboratory of Neuropharmacology, School of Pharmacy & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
31
|
Guo W, Schmidt PJ, Fleming MD, Bhasin S. Hepcidin is not essential for mediating testosterone's effects on erythropoiesis. Andrology 2019; 8:82-90. [DOI: 10.1111/andr.12622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Affiliation(s)
- W. Guo
- Research Program in Men's Health: Aging and Metabolism The Boston Claude D. Pepper Older Americans Independence Center Brigham and Women's Hospital, and Harvard Medical School Boston MA USA
| | - P. J. Schmidt
- Department of Pathology Boston Children's Hospital and Harvard Medical School Boston MA USA
| | - M. D. Fleming
- Department of Pathology Boston Children's Hospital and Harvard Medical School Boston MA USA
| | - S. Bhasin
- Research Program in Men's Health: Aging and Metabolism The Boston Claude D. Pepper Older Americans Independence Center Brigham and Women's Hospital, and Harvard Medical School Boston MA USA
| |
Collapse
|
32
|
Rivella S. Iron metabolism under conditions of ineffective erythropoiesis in β-thalassemia. Blood 2019; 133:51-58. [PMID: 30401707 PMCID: PMC6318430 DOI: 10.1182/blood-2018-07-815928] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
β-Thalassemia (BT) is an inherited genetic disorder that is characterized by ineffective erythropoiesis (IE), leading to anemia and abnormal iron metabolism. IE is an abnormal expansion of the number of erythroid progenitor cells with unproductive synthesis of enucleated erythrocytes, leading to anemia and hypoxia. Anemic patients affected by BT suffer from iron overload, even in the absence of chronic blood transfusion, suggesting the presence of ≥1 erythroid factor with the ability to modulate iron metabolism and dietary iron absorption. Recent studies suggest that decreased erythroid cell differentiation and survival also contribute to IE, aggravating the anemia in BT. Furthermore, hypoxia can also affect and increase iron absorption. Understanding the relationship between iron metabolism and IE could provide important insights into the BT condition and help to develop novel treatments. In fact, genetic or pharmacological manipulations of iron metabolism or erythroid cell differentiation and survival have been shown to improve IE, iron overload, and anemia in animal models of BT. Based on those findings, new therapeutic approaches and drugs have been proposed; clinical trials are underway that have the potential to improve erythrocyte production, as well as to reduce the iron overload and organ toxicity in BT and in other disorders characterized by IE.
Collapse
Affiliation(s)
- Stefano Rivella
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; and Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
33
|
Huang Y, Lei Y, Liu R, Liu J, Yang G, Xiang Z, Liang Y, Lai Y. Imbalance of erythropoiesis and iron metabolism in patients with thalassemia. Int J Med Sci 2019; 16:302-310. [PMID: 30745811 PMCID: PMC6367537 DOI: 10.7150/ijms.27829] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023] Open
Abstract
Aim: This study aimed to evaluate the imbalance of erythropoiesis and iron metabolism in patients with thalassemia. Methods: 192 patients with non-transfusion-dependent thalassemia (NTDT), 94 patients with transfusion-dependent thalassemia (TDT) and 101 healthy controls were recruited between June 2013 and December 2016 in the Hematology Department, the First Affiliated Hospital of Guangxi Medical University. The groups were compared in terms of levels of erythropoiesis biomarkers [growth differentiation factor 15 (GDF15), erythropoietin (EPO) and soluble transferrin receptor (sTfR)] and of iron overload biomarkers [serum ferritin (SF), liver iron concentration (LIC) and cardiac T2*] and hepcidin. Results: The levels of GDF15, EPO, sTfR, LIC and SF were significantly higher in patients with thalassemia. The levels of GDF15 and EPO were significantly higher in patients with TDT compared to NTDT. Those with iron overload had higher EPO, GDF15, SF and sTfR levels compared with non-iron overload patients. Hepcidin levels and ratios of hepcidin to erythropoietic activity and to iron biomarker levels were lower in patients with β-thalassemia intermedia or hemoglobin (Hb) E/β-thalassemia than in patients with HbH disease. The hepcidin levels were correlated negatively with the levels of EPO, GDF15 and sTfR in patients with NTDT and TDT, but correlated positively with SF and Hb levels only in patients with TDT. Conclusions: Patients with thalassemia showed iron overload, reduced hepcidin levels, and a greater extent of ineffective erythropoiesis. The hepcidin levels were more strongly related to ineffective erythropoiesis compared with iron overload. The imbalance between erythropoiesis and iron metabolism differed across different thalassemia types.
Collapse
Affiliation(s)
- Yumei Huang
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Lei
- Department of Hematology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi, China
| | - Rongrong Liu
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiaodi Liu
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Gaohui Yang
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhifu Xiang
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yuzhen Liang
- Department of endocrinology, the Second Affiliated Hospital of Guangxi Medical University, Nanning , Guangxi, China
| | - Yongrong Lai
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
34
|
Sukhbaatar N, Weichhart T. Iron Regulation: Macrophages in Control. Pharmaceuticals (Basel) 2018; 11:ph11040137. [PMID: 30558109 PMCID: PMC6316009 DOI: 10.3390/ph11040137] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022] Open
Abstract
Macrophages are sentinel cells of the innate immune system and have important functions in development, tissue homeostasis, and immunity. These phylogenetically ancient cells also developed a variety of mechanisms to control erythropoiesis and the handling of iron. Red pulp macrophages in the spleen, Kupffer cells in the liver, and central nurse macrophages in the bone marrow ensure a coordinated metabolism of iron to support erythropoiesis. Phagocytosis of senescent red blood cells by macrophages in the spleen and the liver provide a continuous delivery of recycled iron under steady-state conditions and during anemic stress. Central nurse macrophages in the bone marrow utilize this iron and provide a cellular scaffold and niche to promote differentiation of erythroblasts. This review focuses on the role of the distinct macrophage populations that contribute to efficient iron metabolism and highlight important cellular and systemic mechanisms involved in iron-regulating processes.
Collapse
Affiliation(s)
- Nyamdelger Sukhbaatar
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Vienna 1090, Austria.
| | - Thomas Weichhart
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Vienna 1090, Austria.
| |
Collapse
|
35
|
Byrd KA, Williams TN, Lin A, Pickering AJ, Arnold BF, Arnold CD, Kiprotich M, Dentz HN, Njenga SM, Rao G, Colford JM, Null C, Stewart CP. Sickle Cell and α+-Thalassemia Traits Influence the Association between Ferritin and Hepcidin in Rural Kenyan Children Aged 14-26 Months. J Nutr 2018; 148:1903-1910. [PMID: 30517728 PMCID: PMC6669948 DOI: 10.1093/jn/nxy229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/23/2018] [Accepted: 08/16/2018] [Indexed: 01/01/2023] Open
Abstract
Background The relation between subclinical hemoglobinopathies and concentrations of the iron-regulatory hormone hepcidin is not well characterized. Objective We investigated the relation of hepcidin concentration with hemoglobinopathies among young children in Kenya. Methods We quantified serum hepcidin and ferritin in 435 Kenyan children aged 14-20 mo in a subsample of the Water, Sanitation, and Handwashing (WASH) Benefits Trial. Blood samples were genotyped for α+-thalassemia and for sickle cell disorder. Hepcidin was compared across sickle cell and α+-thalassemia genotypes separately by using generalized linear models, and children who were normozygous for both conditions were also compared with those who had either of these conditions. In the association between hepcidin and ferritin, we assessed effect modification by genotype. Results In this population, we found that 16.2% had sickle cell trait and 0.2% had sickle cell disorder, whereas 40.0% were heterozygous for α+-thalassemia and 8.2% were homozygous. Hepcidin concentration did not differ by genotype, but effect modification was found by genotype in the association between hepcidin and ferritin (P < 0.1). Among normozygous sickle cell children (HbAA), there was an association between hepcidin and ferritin (β = 0.92; 95% CI: 0.72, 1.10). However, among those with sickle cell trait (HbAS), the association was no longer significant (β = 0.31; 95% CI: -0.04, 0.66). Similarly, among children who were normozygous (αα/αα) or heterozygous (-α/αα) for α+-thalassemia, hepcidin and ferritin were significantly associated [β = 0.94 (95% CI: 0.68, 1.20) and β = 0.77 (95% CI: 0.51, 1.03), respectively]; however, in children who were homozygous for α+-thalassemia (-α/-α), there was no longer a significant association (β = 0.45; 95% CI: -0.10, 1.00). Conclusion Hepcidin was not associated with hemoglobin genotype, but there may be a difference in the way hepcidin responds to iron status among those with either sickle cell trait or homozygous α+-thalassemia in young Kenyan children. This trial was registered at clinicaltrials.gov as NCT01704105.
Collapse
Affiliation(s)
- Kendra A Byrd
- Department of Nutrition, University of California, Davis, Davis, CA
| | - Thomas N Williams
- Imperial College, St. Mary's Hospital, London, United Kingdom
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Program, Kilifi, Kenya
| | - Audrie Lin
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Amy J Pickering
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA
| | - Benjamin F Arnold
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Charles D Arnold
- Department of Nutrition, University of California, Davis, Davis, CA
| | | | - Holly N Dentz
- Department of Nutrition, University of California, Davis, Davis, CA
- Innovations for Poverty Action, Nairobi, Kenya
| | | | | | - John M Colford
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Clair Null
- Mathematica Policy Research, Washington, DC
| | | |
Collapse
|
36
|
Abstract
Anemia is a frequent complication of many inflammatory disorders, including inflammatory bowel disease. Although the pathogenesis of this problem is multifactorial, a key component is the abnormal elevation of the hormone hepcidin, the central regulator of systemic iron homeostasis. Investigations over the last decade have resulted in important insights into the role of hepcidin in iron metabolism and the mechanisms that lead to hepcidin dysregulation in the context of inflammation. These insights provide the foundation for novel strategies to prevent and treat the anemia associated with inflammatory diseases.
Collapse
Affiliation(s)
- Smriti Verma
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Building 114, 16th Street, Charlestown, Boston, MA 02129, USA.
| | - Bobby J Cherayil
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Building 114, 16th Street, Charlestown, Boston, MA 02129, USA.
| |
Collapse
|
37
|
Hereditary Hemochromatosis Manifesting After Treatment of Paroxysmal Nocturnal Hemoglobinuria With Eculizumab. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2017; 18:e9-e12. [PMID: 29102415 DOI: 10.1016/j.clml.2017.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/25/2017] [Accepted: 09/27/2017] [Indexed: 11/23/2022]
|
38
|
Does Hypoxia Cause Carcinogenic Iron Accumulation in Alcoholic Liver Disease (ALD)? Cancers (Basel) 2017; 9:cancers9110145. [PMID: 29068390 PMCID: PMC5704163 DOI: 10.3390/cancers9110145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is a leading health risk worldwide. Hepatic iron overload is frequently observed in ALD patients and it is an important and independent factor for disease progression, survival, and the development of primary liver cancer (HCC). At a systemic level, iron homeostasis is controlled by the liver-secreted hormone hepcidin. Hepcidin regulation is complex and still not completely understood. It is modulated by many pathophysiological conditions associated with ALD, such as inflammation, anemia, oxidative stress/H2O2, or hypoxia. Namely, the data on hypoxia-signaling of hepcidin are conflicting, which seems to be mainly due to interpretational limitations of in vivo data and methodological challenges. Hence, it is often overlooked that hepcidin-secreting hepatocytes are physiologically exposed to 2–7% oxygen, and that key oxygen species such as H2O2 act as signaling messengers in such a hypoxic environment. Indeed, with the recently introduced glucose oxidase/catalase (GOX/CAT) system it has been possible to independently study hypoxia and H2O2 signaling. First preliminary data indicate that hypoxia enhances H2O2-mediated induction of hepcidin, pointing towards oxidases such as NADPH oxidase 4 (NOX4). We here review and discuss novel concepts of hypoxia signaling that could help to better understand hepcidin-associated iron overload in ALD.
Collapse
|
39
|
Abstract
Exposure to stress is known to cause hepatic iron dysregulation, but the relationship between prolonged stress and liver iron metabolism is not yet fully understood. Thirty 13-week-old female Sprague-Dawley rats were randomly divided into two groups, as follows: the control group (saline-injection) and the dexamethasone group (Dexamethasone (Dex)-injection 0.1 mg/kg/day). After the 21-day stress trial, the results showed that chronic Dex administration not only impaired serum corticosterone (p = 0.00) and interleukin-6 (IL-6) (p = 0.01) levels, but also decreased white blood cell counts (p = 0.00), and reduced blood lymphocyte counts (p = 0.00). The daily Dex-injection also significantly reduced body weight (p < 0.01) by inhibiting food intake. Consecutive Dex administration resulted in decreased iron intake (p = 0.00), enhanced serum iron levels (p = 0.01), and increased the serum souble transferrin receptor (sTfR) content (p = 0.00) in rats. Meanwhile, long-term Dex exposure down-regulated duodenal cytochrome b (DCYTB) (p = 0.00) and the divalent metal transporter 1 (DMT1) (p = 0.04) protein expression, but up-regulated ferroportin (FPN) protein expression (p = 0.04). Chronic Dex administration reduced liver iron concentration (p = 0.02) in rats. Hepatic transferrin receptor 1 (TFR1) expression was lowered at the protein level (p = 0.03), yet with uncoupled mRNA abundance in Dex-treated rats. Enhanced iron-regulatory protein (IRP)/iron-responsive element (IRE) binding activity was observed, but did not line up with lowered hepatic TFR1 protein expression. This study indicates that long-term Dex exposure reduces liver iron content, which is closely associated with down-regulated hepatic TFR1 protein expression.
Collapse
|
40
|
Calje E, Skinner J. The challenge of defining and treating anemia and iron deficiency in pregnancy: A study of New Zealand midwives' management of iron status in pregnancy and the postpartum period. Birth 2017; 44:181-190. [PMID: 28233929 DOI: 10.1111/birt.12282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Early recognition and management of low maternal iron status is associated with improved maternal, fetal, and neonatal outcomes. However, existing international guidelines for the testing and management of maternal iron-deficiency anemia are variable, with no national guideline for New Zealand midwives. Clinical management is complicated by normal physiological hemodilution, and complicated further by the effects of inflammation on iron metabolism, especially in populations with a high prevalence of obesity or infection. This study describes how midwives in one New Zealand area diagnose and treat anemia and iron deficiency, in the absence of established guidelines. METHODS Data on demographics, laboratory results, and documented clinical management were retrospectively collected from midwives (n=21) and women (n=189), from September to December 2013. Analysis was predominantly descriptive. A secondary analysis of iron status and body mass index (BMI) was undertaken. RESULTS A total of 46% of 186 women, with hemoglobin testing at booking, did not have ferritin tested; 86% (of 385) of ferritin tests were not concurrently tested with C-reactive protein. Despite midwives prescribing iron for 48.7% of second trimester women, 47.1% still had low iron status before birth. Only 22.8% of women had hemoglobin testing postpartum. There was a significant difference between third trimester median ferritin levels in women with BMI ≥25.00 (14 μg/L) and BMI <25.00 (18 μg/L) (P=.05). DISCUSSION There was a wide range in the midwives' practice. Maternal iron status was difficult to categorize, because of inconsistent testing. This study indicates the need for an evidence-based clinical guideline for New Zealand midwives and maternity care providers.
Collapse
Affiliation(s)
- Esther Calje
- Christchurch Women's Hospital, Christchurch, New Zealand.,Victoria University of Wellington, Wellington, New Zealand
| | - Joan Skinner
- Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
41
|
Gurieva I, Frýdlová J, Rychtarčíková Z, Vokurka M, Truksa J, Krijt J. Erythropoietin administration increases splenic erythroferrone protein content and liver TMPRSS6 protein content in rats. Blood Cells Mol Dis 2017; 64:1-7. [PMID: 28282554 DOI: 10.1016/j.bcmd.2017.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/25/2017] [Indexed: 02/09/2023]
Abstract
Erythroferrone (ERFE) and TMPRSS6 are important proteins in the regulation of iron metabolism. The objective of the study was to examine splenic ERFE and liver TMPRSS6 synthesis in rats treated with a combination of iron and erythropoietin (EPO). EPO was administered to female Wistar rats at 600U/day for four days, iron-pretreated rats received 150mg of iron before EPO treatment. Content of ERFE and TMPRSS6 proteins was determined by commercial antibodies. Iron pretreatment prevented the EPO-induced decrease in hepcidin expression. Content of phosphorylated SMAD 1,5,8 proteins was decreased in the liver by both EPO and iron plus EPO treatment. Fam132b expression in the spleen was increased both by EPO and iron plus EPO treatments; these treatments also significantly induced splenic Fam132a expression. ERFE protein content in the spleen was increased both by EPO and iron plus EPO to a similar extent. EPO administration increased TMPRSS6 content in the plasma membrane-enriched fraction of liver homogenate; in iron-pretreated rats, this increase was abolished. The results confirm that iron pretreatment prevents the EPO-induced decrease in liver Hamp expression. This effect probably occurs despite high circulating ERFE levels, since EPO-induced ERFE protein synthesis is not influenced by iron pretreatment.
Collapse
Affiliation(s)
- Iuliia Gurieva
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Frýdlová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zuzana Rychtarčíková
- Institute of Biotechnology, BIOCEV Research Center, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Truksa
- Institute of Biotechnology, BIOCEV Research Center, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Krijt
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
42
|
Abstract
Iron is required for many biological processes but is also toxic in excess; thus, body iron balance is maintained through sophisticated regulatory mechanisms. The lack of a regulated iron excretory mechanism means that body iron balance is controlled at the level of absorption from the diet. Iron absorption is regulated by the hepatic peptide hormone hepcidin. Hepcidin also controls iron release from cells that recycle or store iron, thus regulating plasma iron concentrations. Hepcidin exerts its effects through its receptor, the cellular iron exporter ferroportin. Important regulators of hepcidin, and therefore of systemic iron homeostasis, include plasma iron concentrations, body iron stores, infection and inflammation, and erythropoiesis. Disturbances in the regulation of hepcidin contribute to the pathogenesis of many iron disorders: hepcidin deficiency causes iron overload in hereditary hemochromatosis and nontransfused β-thalassemia, whereas overproduction of hepcidin is associated with iron-restricted anemias seen in patients with chronic kidney disease, chronic inflammatory diseases, some cancers, and inherited iron-refractory iron deficiency anemia. This review summarizes our current understanding of the molecular mechanisms and signaling pathways involved in the control of hepcidin synthesis in the liver, a principal determinant of plasma hepcidin concentrations.
Collapse
Affiliation(s)
- Veena Sangkhae
- Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Elizabeta Nemeth
- Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
43
|
Cusick SE, John CC. Iron, Inflammation, and Malaria in the Pregnant Woman and Her Child: Saving Lives, Saving Brains. Am J Trop Med Hyg 2016; 95:739-740. [PMID: 27481060 PMCID: PMC5062764 DOI: 10.4269/ajtmh.16-0533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022] Open
Affiliation(s)
- Sarah E Cusick
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Chandy C John
- Department of Pediatrics, Indiana University, Indianapolis, Indiana
| |
Collapse
|