1
|
Zhou L, Sun D, Bai H. Efficacy of fish oil supplementation on metabolic dysfunction-associated steatotic liver disease: a meta-analysis. Front Nutr 2025; 12:1524830. [PMID: 39927279 PMCID: PMC11804523 DOI: 10.3389/fnut.2025.1524830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
Objective Globally, the occurrence of Metabolic dysfunction-associated steatotic liver disease (MASLD) is on a steady rise. Fish oil has anti-inflammatory effects and can improve lipid metabolism. The article aims to assess the impact of fish oil supplementation on MASLD. Methods We conducted a systematic search of Cochrane, Embase, PubMed, and Web of Science up to September 31, 2024, for randomized control trials (RCTs). The risk of bias of the included RCTs was evaluated using the Cochrane Collaboration's tool. Outcomes measured were aspects of liver injury, lipid profile, insulin resistance, anthropometric measurements, and more. Results Seven randomized controlled trials (RCTs) involving 439 participants were incorporated into the analysis. In general, the risk of bias in these RCTs was either low or not clearly defined. Pooled analysis showed that triglycerides [TG, pooled standard mean difference (SMD): -0.40 (95% CI: -0.58 to -0.21)], aspartate transaminase [AST, SMD: -0.29 (95% CI: -0.48 to -0.10)], HOMA-IR [SMD: -2.06 (95% CI: -3.36 to -0.49)] and waist circumference [Waist-C, SMD: -0.31 (95% CI: -0.54 to -0.08)] were significantly improved. But showed no significant benefits on alanine transaminase [ALT, SMD: -0.15 (95% CI: -0.45 to 0.15)], gamma-glutamyl transpeptidase [GGT, SMD: -0.07 (95% CI: -0.26 to 0.12)], body mass index [BMI, SMD: 0.16 (95% CI: -0.34 to 0.02)], high-density lipoprotein cholesterol [HDL, SMD: 0.02 (95% CI: -0.18 to 0.22)], low-density lipoprotein cholesterol [LDL, SMD: -0.01 (95% CI: -0.20 to 0.18)], Total Cholesterol [TC, SMD: -0.34 (95% CI: -0.70 to 0.01)] and so on. Conclusion The current evidence supports the fish oil supplementation in improving MASLD. Fish oil supplementation may also regulate blood lipids and improve glucose metabolism disorders. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/#myprospero, identifier CRD42024513246.
Collapse
Affiliation(s)
- Like Zhou
- Department of Gastroenterology, Weihai Maternal and Child Health Hospital, Weihai, China
| | | | | |
Collapse
|
2
|
Mašek T, Roškarić P, Sertić S, Starčević K. Docosahexaenoic and Eicosapentaenoic Acid Supplementation Could Attenuate Negative Effects of Maternal Metabolic Syndrome on Liver Lipid Metabolism and Liver Betacellulin Expression in Male and Female Rat Offspring. Metabolites 2025; 15:32. [PMID: 39852375 PMCID: PMC11767017 DOI: 10.3390/metabo15010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: This study investigated the effects of maternal metabolic syndrome during pregnancy on hepatic fatty acid metabolism and betacellulin expression in rat offspring. A rat model of maternal metabolic syndrome was created with a high-fructose diet (15% fructose in drinking water for six months). Methods: The females with metabolic syndrome were divided into the CON group, the HF group, which received fructose in drinking water, and the HF-DHA group, which received fructose in water and increased amounts of DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) in the diet (2.5% fish oil in the diet). The male and female offspring were killed at birth and their liver tissue was analyzed for the fatty acid profile and expression of Δ-9-desaturase and betacellulin. Results: When the rat offspring were exposed in utero to maternal fatty acids altered by the high-fructose diet, this resulted in a similarly altered fatty acid profile in the liver, with the most significant changes being Δ-9 desaturation and a dramatic increase in monounsaturated fatty acids. The offspring also showed an overexpression of hepatic betacellulin. Supplementation with DHA and EPA increased the DHA content and normalized the fatty acid composition of oleic acid, saturated fatty acids, linoleic acid and n3-docosapentaenoic acid in the offspring of mothers on a high-fructose diet. In addition, the DHA/EPA supplementation of fructose-fed mothers normalized hepatic Δ-9-desaturase and betacellulin overexpression in the offspring, suggesting that DHA/EPA supplementation affects not only the fatty acid content but also the liver function. Conclusions: The changes observed in this study suggest that DHA/EPA supplementation may modulate the effects of maternal programming on disorders of the lipid metabolism in the offspring.
Collapse
Affiliation(s)
- Tomislav Mašek
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Petra Roškarić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (P.R.); (K.S.)
| | - Sunčica Sertić
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (P.R.); (K.S.)
| |
Collapse
|
3
|
Hu S, Wang Z, Zhu K, Shi H, Qin F, Zhang T, tian S, Ji Y, Zhang J, Qin J, She Z, Zhang X, Zhang P, Li H. USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination. Clin Mol Hepatol 2025; 31:147-165. [PMID: 39355870 PMCID: PMC11791544 DOI: 10.3350/cmh.2024.0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND/AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression. METHODS USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes. RESULTS USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5. CONCLUSION USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
Collapse
Affiliation(s)
- Sha Hu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Zhouxiang Wang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Kun Zhu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Hongjie Shi
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Fang Qin
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Tuo Zhang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Song tian
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Yanxiao Ji
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Jianqing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juanjuan Qin
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhigang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaojing Zhang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Peng Zhang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Hongliang Li
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Kong Y, Li F, Yue X, Xu Y, Bai J, Fu W. SNPS within the SLC27A6 gene are highly associated with Hu sheep fatty acid content. Gene 2024; 927:148716. [PMID: 38914245 DOI: 10.1016/j.gene.2024.148716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/15/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Fatty acids (FA) are an important factor affecting meat quality and human health, and the important role of the solute carrier family 27 member 6 (SLC27A6) in FA metabolism has been demonstrated in several species. However, the expression profile of the SLC27A6 in different tissues and the effect of its polymorphism on FA in sheep are currently unknown. This study aimed to explore the differences in FAs in the longissimus dorsi (LD) of 1,085 Hu sheep, the expression profile of SLC27A6, and confirm the effect of single nucleotide polymorphisms (SNPs) on FA phenotypes. We found that many FA phenotypes differ significantly across different seasons, and winter promoted the deposition of polyunsaturated fatty acids (PUFA). The mRNA expression level of SLC27A6 in the lung was significantly higher than that in the heart, testis, and LD. A total of 16 SNPs were detected in the SLC27A6, and 14 SNPs were successfully genotyped by improved multiplex ligase detection reaction (iMLDR) technology. Correlation analysis showed that 7 SNPs significantly affected at least one FA phenotype. Among them, SNP14 contributes to the selection of lamb with low saturated fatty acid content and high PUFA content. Combined genotypes also significantly affected a variety of beneficial FAs such as C18:3n3, C20:4n6, C22:6n3, and monounsaturated fatty acids. This study suggests that SLC27A6 plays an important role in FA metabolism and SNPs that are significantly associated with FA phenotype could be used as potential molecular markers for later targeted regulation of FA profiles in sheep.
Collapse
Affiliation(s)
- Yuanyuan Kong
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yanli Xu
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi 830057, China
| | - Jingjing Bai
- Animal Husbandry and Veterinary Extension Station of Wuwei City, Wuwei 733000, China
| | - Weiwei Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
5
|
Macášek J, Staňková B, Žák A, Růžičková M, Brůha R, Kutová S, Vecka M, Zeman M. Associations of plasma phospholipid cis-vaccenic acid with insulin resistance markers in non-diabetic men with hyperlipidemia. Nutr Diabetes 2024; 14:73. [PMID: 39261487 PMCID: PMC11390737 DOI: 10.1038/s41387-024-00332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND The role of fatty acids (FA) in the pathogenesis of insulin resistance and hyperlipidemia is a subject of intensive research. Several recent works have suggested cis-vaccenic acid (cVA) in plasma lipid compartments, especially in plasma phospholipids (PL) or erythrocyte membranes, could be associated with markers of insulin sensitivity and cardiovascular health. Nevertheless, not all the results of research work testify to these beneficial effects of cVA. Therefore, we decided to investigate the relations of proportion of cVA in plasma PL to markers of insulin resistance in hyperlipidemic men. SUBJECTS In 231 men (median age 50) with newly diagnosed hyperlipidemia, we analyzed basic clinical parameters together with FA composition of plasma PL and stratified them according to the content of cVA into upper quartile (Q4) and lower quartile (Q1) groups. We examined also small control group of 50 healthy men. RESULTS The individuals in Q4 differed from Q1 by lower plasma insulin (p < 0.05), HOMA-IR values (p < 0.01), and apolipoprotein B concentrations (p < 0.001), but by the higher total level of nonesterified FA (p < 0.01). Both groups had similar age, anthropometrical, and other lipid parameters. In plasma PL, the Q4 group had lower content of the sum of n-6 polyunsaturated FA, due to decrease of γ-linolenic and dihomo-γ-linolenic acids, whereas the content of monounsaturated FA (mainly oleic and palmitoleic) was in Q4 higher. CONCLUSIONS Our results support hypothesis that plasma PL cVA could be associated with insulin sensitivity in men with hyperlipidemia.
Collapse
Grants
- Charles University Research Program, Cooperatio-Gastroenterology Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- Charles University Research Program, Cooperatio-Gastroenterology Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- Charles University Research Program, Cooperatio-Gastroenterology Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- Charles University Research Program, Cooperatio-Gastroenterology Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- MH CZ DRO-VFN64165 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- MH CZ DRO-VFN64165 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- MH CZ DRO-VFN64165 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- NU23-01-00288 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- MH CZ DRO-VFN64165 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
Collapse
Affiliation(s)
- Jaroslav Macášek
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Barbora Staňková
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
- Institute of Clinical Chemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Na Bojišti 3, 121 08, Prague, Czech Republic
| | - Aleš Žák
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Markéta Růžičková
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Radan Brůha
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Simona Kutová
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Marek Vecka
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic.
- Institute of Clinical Chemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Na Bojišti 3, 121 08, Prague, Czech Republic.
| | - Miroslav Zeman
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| |
Collapse
|
6
|
Liput KP, Lepczyński A, Poławska E, Ogłuszka M, Starzyński R, Urbański P, Nawrocka A, Jończy A, Pierzchała D, Pareek CS, Gołyński M, Woźniakowski G, Czarnik U, Pierzchała M. Murine hepatic proteome adaptation to high-fat diets with different contents of saturated fatty acids and linoleic acid : α-linolenic acid polyunsaturated fatty acid ratios. J Vet Res 2024; 68:427-441. [PMID: 39318514 PMCID: PMC11418388 DOI: 10.2478/jvetres-2024-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/29/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Some health disorders, such as obesity and type 2 diabetes, are associated with a poor diet and low quality of the fat in it. The type and duration of the diet have an impact on the liver. This investigation uses the proteomic approach to identify changes in the mouse liver protein profile in adaptation to high-fat diets with different saturated fatty acid contents and linoleic acid (18:2n-6) to α-linolenic acid (18:3n-3) fatty acid ratios. Material and Methods Four groups of male mice were fed different diets: one standard diet and three high-fat diets were investigated. After six months on these diets, the animals were sacrificed for liver dissection. Two-dimensional electrophoresis was used to separate the complex liver protein mixture, which enabled the separation of proteins against a wide, 3-10 range of pH and molecular weights of 15-250 kDa. Protein profiles were analysed in the PDQuest Advanced 8.0.1 program. Differentially expressed spots were identified using matrix-assisted laser desorption/ionisation-time-of-flight tandem mass spectrometry and peptide mass fingerprinting. The levels of identified proteins were validated using Western blotting. Transcript levels were evaluated using a real-time quantitative PCR. Results The analysis of mouse liver protein profiles enabled the identification of 32 protein spots differing between nutritional groups. Conclusion A diet high in polyunsaturated fatty acids modulated the levels of liver proteins involved in critical metabolic pathways, including amino acid metabolism, carbohydrate metabolism and cellular response to oxidative stress.
Collapse
Affiliation(s)
- Kamila P. Liput
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 02-106Warsaw, Poland
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, 71-270Szczecin, Poland
| | - Ewa Poławska
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Magdalena Ogłuszka
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Rafał Starzyński
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Paweł Urbański
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Agata Nawrocka
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Aneta Jończy
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Dorota Pierzchała
- Maria Skłodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland
| | - Chandra S. Pareek
- Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100Toruń, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100Toruń, Poland
| | - Marcin Gołyński
- Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100Toruń, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100Toruń, Poland
| | - Grzegorz Woźniakowski
- Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100Toruń, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100Toruń, Poland
| | - Urszula Czarnik
- Department of Pig Breeding, Faculty of Animal Bio-Engineering, University of Warmia and Mazury in Olsztyn, 10-719Olsztyn, Poland
| | - Mariusz Pierzchała
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| |
Collapse
|
7
|
Stanca E, Spedicato F, Giudetti AM, Giannotti L, Di Chiara Stanca B, Damiano F, Siculella L. EPA and DHA Enhance CACT Promoter Activity by GABP/NRF2. Int J Mol Sci 2024; 25:9095. [PMID: 39201781 PMCID: PMC11354350 DOI: 10.3390/ijms25169095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Carnitine-acylcarnitine translocase (CACT) is a nuclear-encoded mitochondrial carrier that catalyzes the transfer of long-chain fatty acids across the inner mitochondrial membrane for β-oxidation. In this study, we conducted a structural and functional characterization of the CACT promoter to investigate the molecular mechanism underlying the transcriptional regulation of the CACT gene by n-3 PUFA, EPA and DHA. In hepatic BRL3A cells, EPA and DHA stimulate CACT mRNA and protein expression. Deletion promoter analysis using a luciferase reporter gene assay identified a n-3 PUFA response region extending from -202 to -29 bp. This region did not contain a response element for PPARα, a well-known PUFA-responsive nuclear receptor. Instead, bioinformatic analysis revealed two highly conserved GABP responsive elements within this region. Overexpression of GABPα and GABPβ subunits, but not PPARα, increased CACT promoter activity, more remarkably upon treatment with EPA and DHA. ChIP assays showed that n3-PUFA enhanced the binding of GABPα to the -202/-29 bp sequence. Furthermore, both EPA and DHA induced nuclear accumulation of GABPα. In conclusion, our findings indicate that the upregulation of CACT by n3-PUFA in hepatic cells is independent from PPARα and could be mediated by GABP activation.
Collapse
Affiliation(s)
- Eleonora Stanca
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| | - Francesco Spedicato
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy (A.M.G.)
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy (A.M.G.)
| | - Laura Giannotti
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| | | | - Fabrizio Damiano
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| | - Luisa Siculella
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| |
Collapse
|
8
|
Gerrard SD, Biase FH, Yonke JA, Yadav R, Shafron AJ, Sunny NE, Gerrard DE, El-Kadi SW. Non-Alcoholic Fatty Liver Disease Induced by Feeding Medium-Chain Fatty Acids Upregulates Cholesterol and Lipid Homeostatic Genes in Skeletal Muscle of Neonatal Pigs. Metabolites 2024; 14:384. [PMID: 39057707 PMCID: PMC11278539 DOI: 10.3390/metabo14070384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a range of disorders characterized by lipid accumulation in hepatocytes. Although this spectrum of disorders is associated with adult obesity, recent evidence suggests that this condition could also occur independently of obesity, even in children. Previously, we reported that pigs fed a formula containing medium-chain fatty acids (MCFAs) developed hepatic steatosis and weighed less than those fed an isocaloric formula containing long-chain fatty acids (LCFAs). Our objective was to determine the association between NAFLD and the skeletal muscle transcriptome in response to energy and lipid intake. Neonatal pigs were fed one of three formulas: a control formula (CONT, n = 6) or one of two isocaloric high-energy formulas containing either long (LCFA, n = 6) or medium (MCFA, n = 6) chain fatty acids. Pigs were fed for 22 d, and tissues were collected. Body weight at 20 and 22 d was greater for LCFA-fed pigs than their CONT or MCFA counterparts (p < 0.005). Longissimus dorsi weight was greater for LCFA compared with MCFA, while CONT was intermediate (p < 0.05). Lean gain and protein deposition were greater for LCFA than for CONT and MCFA groups (p < 0.01). Transcriptomic analysis revealed 36 differentially expressed genes (DEGs) between MCFA and LCFA, 53 DEGs between MCFA and CONT, and 52 DEGs between LCFA and CONT (FDR < 0.2). Feeding formula high in MCFAs resulted in lower body and muscle weights. Transcriptomics data suggest that the reduction in growth was associated with a disruption in cholesterol metabolism in skeletal muscles.
Collapse
Affiliation(s)
- Samuel D. Gerrard
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24601, USA; (S.D.G.); (F.H.B.); (J.A.Y.); (R.Y.); (A.J.S.); (D.E.G.)
| | - Fernando H. Biase
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24601, USA; (S.D.G.); (F.H.B.); (J.A.Y.); (R.Y.); (A.J.S.); (D.E.G.)
| | - Joseph A. Yonke
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24601, USA; (S.D.G.); (F.H.B.); (J.A.Y.); (R.Y.); (A.J.S.); (D.E.G.)
| | - Ravi Yadav
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24601, USA; (S.D.G.); (F.H.B.); (J.A.Y.); (R.Y.); (A.J.S.); (D.E.G.)
| | - Anthony J. Shafron
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24601, USA; (S.D.G.); (F.H.B.); (J.A.Y.); (R.Y.); (A.J.S.); (D.E.G.)
| | - Nishanth E. Sunny
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA;
| | - David E. Gerrard
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24601, USA; (S.D.G.); (F.H.B.); (J.A.Y.); (R.Y.); (A.J.S.); (D.E.G.)
| | - Samer W. El-Kadi
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24601, USA; (S.D.G.); (F.H.B.); (J.A.Y.); (R.Y.); (A.J.S.); (D.E.G.)
| |
Collapse
|
9
|
Ghooray DT, Xu M, Shi H, McClain CJ, Song M. Hepatocyte-Specific Fads1 Overexpression Attenuates Western Diet-Induced Metabolic Phenotypes in a Rat Model. Int J Mol Sci 2024; 25:4836. [PMID: 38732052 PMCID: PMC11084797 DOI: 10.3390/ijms25094836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Fatty acid desaturase 1 (FADS1) is a rate-limiting enzyme in long-chain polyunsaturated fatty acid (LCPUFA) synthesis. Reduced activity of FADS1 was observed in metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this study was to determine whether adeno-associated virus serotype 8 (AAV8) mediated hepatocyte-specific overexpression of Fads1 (AAV8-Fads1) attenuates western diet-induced metabolic phenotypes in a rat model. Male weanling Sprague-Dawley rats were fed with a chow diet, or low-fat high-fructose (LFHFr) or high-fat high-fructose diet (HFHFr) ad libitum for 8 weeks. Metabolic phenotypes were evaluated at the endpoint. AAV8-Fads1 injection restored hepatic FADS1 protein levels in both LFHFr and HFHFr-fed rats. While AAV8-Fads1 injection led to improved glucose tolerance and insulin signaling in LFHFr-fed rats, it significantly reduced plasma triglyceride (by ~50%) and hepatic cholesterol levels (by ~25%) in HFHFr-fed rats. Hepatic lipidomics analysis showed that FADS1 activity was rescued by AAV8-FADS1 in HFHFr-fed rats, as shown by the restored arachidonic acid (AA)/dihomo-γ-linolenic acid (DGLA) ratio, and that was associated with reduced monounsaturated fatty acid (MUFA). Our data suggest that the beneficial role of AAV8-Fads1 is likely mediated by the inhibition of fatty acid re-esterification. FADS1 is a promising therapeutic target for MASLD in a diet-dependent manner.
Collapse
Affiliation(s)
- Dushan T. Ghooray
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.T.G.); (M.X.); (C.J.M.)
| | - Manman Xu
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.T.G.); (M.X.); (C.J.M.)
| | - Hongxue Shi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Craig J. McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.T.G.); (M.X.); (C.J.M.)
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
| | - Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.T.G.); (M.X.); (C.J.M.)
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
10
|
Yuan L, Zhang W, Fang W, Zhuang X, Gong W, Xu X, Li Y, Wang X. Sea Buckthorn Polyphenols Alleviate High-Fat-Diet-Induced Metabolic Disorders in Mice via Reprograming Hepatic Lipid Homeostasis Owing to Directly Targeting Fatty Acid Synthase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8632-8649. [PMID: 38577880 DOI: 10.1021/acs.jafc.4c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Our previous studies found that Sea Buckthorn polyphenols (SBP) extract inhibits fatty acid synthase (FAS) in vitro. Thus, we continued to explore possible effects and underlying mechanisms of SBP on complicated metabolic disorders in long-term high-fat-diet (HFD)-fed mice. To reveal that, an integrated approach was developed in this study. Targeted quantitative lipidomics with a total of 904 unique lipids mapping contributes to profiling the comprehensive features of disarranged hepatic lipid homeostasis and discovering a set of newfound lipid-based biomarkers to predict the occurrence and indicate the progression of metabolic disorders beyond current indicators. On the other hand, technologies of intermolecular interactions characterization, especially surface plasmon resonance (SPR) assay, contribute to recognizing targeted bioactive constituents present in SBP. Our findings highlight hepatic lipid homeostasis maintenance and constituent-FAS enzyme interactions, to provide new insights that SBP as a functional food alleviates HFD-induced metabolic disorders in mice via reprograming hepatic lipid homeostasis caused by targeting FAS, owing to four polyphenols directly interacting with FAS and cinaroside binding to FAS with good affinity.
Collapse
Affiliation(s)
- Luping Yuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Wanlin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Wenxiu Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xinying Zhuang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Wan Gong
- Fuyang Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoying Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yingting Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xiaoyan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| |
Collapse
|
11
|
Kumar R, Khan MI, Ashfaq F, Alsayegh AA, Khatoon F, Altamimi TN, Rizvi SI. Hesperidin Supplementation Improves Altered PON -1, LDL Oxidation, Inflammatory Response and Hepatic Function in an Experimental Rat Model of Hyperlipidemia. Indian J Clin Biochem 2024; 39:257-263. [PMID: 38577143 PMCID: PMC10987415 DOI: 10.1007/s12291-023-01140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 04/06/2024]
Abstract
In this study, we have examined the effect of hesperidin on rats fed on an experimental high-fat diet. Male Wistar rats were given a high-fat diet orally for one month for developing an HFD (High fat- diet) model. Rats were also supplemented with hesperidin (100 mg/kg body weight) for one month. We determined serum LDL (Low-density lipoprotein) oxidation, Paraoxonase-1 (PON-1) activity, and histopathological profile of the liver. Inflammatory cytokines levels were also measured in serum. HFD induced significant changes in LDL oxidation and PON-1 activity. Liver tissue histopathology and gene expression of inflammatory markers (Il-6(Interleukin-6), TNF- alpha (Tumor necrosis factor alpha), NF-KB (Nuclear factor kappa B) show that significant changes occur in the hyperlipidemic model of rats. We also show that hesperidin can effectively improve plasma antioxidant, LDL oxidation, and inflammatory cytokine expression in rats already subjected to hyperlipidemic stress. We conclude that hesperidin may protect the liver from oxidative stress by improving hepatic function.
Collapse
Affiliation(s)
- Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, 211002 India
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass, 51921 Saudi Arabia
| | - Fauzia Ashfaq
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, 82817 Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, 82817 Saudi Arabia
| | - Fahmida Khatoon
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Tahani Nasser Altamimi
- Department of Family and Community Medicine, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, 211002 India
| |
Collapse
|
12
|
Corporeau C, Le Foll C, Cruciani-Guglielmacci C, Le Stunff H, Mithieux G, Magnan C, Delarue J. Fish oil minimises feed intake and improves insulin sensitivity in Zucker fa/fa rats. Br J Nutr 2024; 131:749-761. [PMID: 37877265 DOI: 10.1017/s0007114523002404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Long-chain n-3 PUFA (LC n-3 PUFA) prevent, in rodents, insulin resistance (IR) induced by a high-fat and/or fructose diet but not IR induced by glucocorticoids. In humans, contrasting effects have also been reported. We investigated their effects on insulin sensitivity, feed intake (FI) and body weight gain in genetically insulin resistant male obese (fa/fa) Zucker (ZO) rats during the development of obesity. ZO rats were fed a diet supplemented with 7 % fish oil (FO) + 1 % corn oil (CO) (wt/wt) (ZOFO), while the control group was fed a diet containing 8 % fat from CO (wt/wt) (ZOCO). Male lean Zucker (ZL) rats fed either FO (ZLFO) or CO (ZLCO) diet were used as controls. FO was a marine-derived TAG oil containing EPA 90 mg/g + DHA 430 mg/g. During an oral glucose tolerance test, glucose tolerance remained unaltered by FO while insulin response was reduced in ZOFO only. Liver insulin sensitivity (euglycaemic-hyperinsulinaemic clamp + 2 deoxyglucose) was improved in ZOFO rats, linked to changes in phosphoenolpyruvate carboxykinase expression, activity and glucose-6-phosphatase activity. FI in response to intra-carotid insulin/glucose infusion was decreased similarly in ZOFO and ZOCO. Hypothalamic ceramides levels were lower in ZOFO than in ZOCO. Our study demonstrates that LC n-3 PUFA can minimise weight gain, possibly by alleviating hypothalamic lipotoxicity, and liver IR in genetically obese Zucker rats.
Collapse
Affiliation(s)
- Charlotte Corporeau
- Department of Nutritional Sciences, Hospital University, Faculty of Medicine, University of Brest, Plouzané, France
- Present address: Ifremer, University of Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Christelle Le Foll
- Department of Nutritional Sciences, Hospital University, Faculty of Medicine, University of Brest, Plouzané, France
- Present address: Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | | | - Hervé Le Stunff
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
- Present address: Institut des Neurosciences Paris-Saclay-Université Paris-Saclay-CNRS UMR 9197, Gif-sur-Yvette, France
| | - Gilles Mithieux
- Inserm, U855, Lyon, F-69008, France
- University Lyon 1, Villeurbanne, F-69622, France
- University of Lyon, Lyon, F-69008, France
| | - Christophe Magnan
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Jacques Delarue
- Department of Nutritional Sciences, ER7479 SPURBO, Hospital University, Faculty of Medicine University of Brest, Plouzane, France
| |
Collapse
|
13
|
Tobin D, Svensen H, Shanmugasundaram D, Ruyter B, Stoknes I, Dornish M. Toxicological evaluation of a fish oil concentrate containing Very Long Chain Fatty Acids. Food Chem Toxicol 2024; 186:114518. [PMID: 38387522 DOI: 10.1016/j.fct.2024.114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Very long chain fatty acids (VLCFA) have a chain length ≥24 carbons. Fish contain low levels of these fatty acids. A commercial oil called EPAX® Evolve 05 with an up-concentration of VLCFAs of approximately 10 times, has been developed as a dietary supplement by Epax Norway AS. A series of toxicological studies were performed using mice and rats to determine the safety and toxicity of repeat dosing with a gavage administered VLCFA formulation. The results suggest transient lipid accumulation in kidneys and liver. Lipid accumulation was seen with the test item and with the soya control but was not dose related. Liver and kidney lipid accumulation, whilst present in 14- day repeat dose study, was absent in a 90-day rat study. No treatment-effect was seen in urine analysis in any of the studies. No treatment-related effects were seen with a functional observation battery, ophthalmological examination, haematology, urine analysis, oestrus cycle, thyroid hormones, organ weight, or histopathology. In the 90-day study the liver enzymes ALP, AST and ALT were statistically significantly increased with test item but within control values. There were no associated histological findings in the liver suggesting there was no toxic effect and the normalisation of values for all liver enzymes in the recovery groups suggests an adaptive response rather than a prevailing toxic response. The no-observed-adverse-effect level (NOAEL) was determined as 1200 mg VLCFA/kg b.w./day.
Collapse
|
14
|
Kaffe E, Tisi A, Magkrioti C, Aidinis V, Mehal WZ, Flavell RA, Maccarrone M. Bioactive signalling lipids as drivers of chronic liver diseases. J Hepatol 2024; 80:140-154. [PMID: 37741346 DOI: 10.1016/j.jhep.2023.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/25/2023]
Abstract
Lipids are important in multiple cellular functions, with most having structural or energy storage roles. However, a small fraction of lipids exert bioactive roles through binding to G protein-coupled receptors and induce a plethora of processes including cell proliferation, differentiation, growth, migration, apoptosis, senescence and survival. Bioactive signalling lipids are potent modulators of metabolism and energy homeostasis, inflammation, tissue repair and malignant transformation. All these events are involved in the initiation and progression of chronic liver diseases. In this review, we focus specifically on the roles of bioactive lipids derived from phospholipids (lyso-phospholipids) and poly-unsaturated fatty acids (eicosanoids, pro-resolving lipid mediators and endocannabinoids) in prevalent chronic liver diseases (alcohol-associated liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma). We discuss the balance between pathogenic and beneficial bioactive lipids as well as potential therapeutic targets related to the agonism or antagonism of their receptors.
Collapse
Affiliation(s)
- Eleanna Kaffe
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA.
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | - Vassilis Aidinis
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | - Wajahat Z Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, 06520, USA; Veterans Affairs Medical Center, West Haven, CT, 06516, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy; Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy.
| |
Collapse
|
15
|
Syed-Abdul MM. Lipid Metabolism in Metabolic-Associated Steatotic Liver Disease (MASLD). Metabolites 2023; 14:12. [PMID: 38248815 PMCID: PMC10818604 DOI: 10.3390/metabo14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Metabolic-associated steatotic liver disease (MASLD) is a cluster of pathological conditions primarily developed due to the accumulation of ectopic fat in the hepatocytes. During the severe form of the disease, i.e., metabolic-associated steatohepatitis (MASH), accumulated lipids promote lipotoxicity, resulting in cellular inflammation, oxidative stress, and hepatocellular ballooning. If left untreated, the advanced form of the disease progresses to fibrosis of the tissue, resulting in irreversible hepatic cirrhosis or the development of hepatocellular carcinoma. Although numerous mechanisms have been identified as significant contributors to the development and advancement of MASLD, altered lipid metabolism continues to stand out as a major factor contributing to the disease. This paper briefly discusses the dysregulation in lipid metabolism during various stages of MASLD.
Collapse
Affiliation(s)
- Majid Mufaqam Syed-Abdul
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
16
|
Fernández-Pérez L, Guerra B, Recio C, Cabrera-Galván JJ, García I, De La Rosa JV, Castrillo A, Iglesias-Gato D, Díaz M. Transcriptomic and lipid profiling analysis reveals a functional interplay between testosterone and growth hormone in hypothyroid liver. Front Endocrinol (Lausanne) 2023; 14:1266150. [PMID: 38144555 PMCID: PMC10748415 DOI: 10.3389/fendo.2023.1266150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Preclinical and clinical studies suggest that hypothyroidism might cause hepatic endocrine and metabolic disturbances with features that mimic deficiencies of testosterone and/or GH. The absence of physiological interactions between testosterone and GH can be linked to male differentiated liver diseases. Testosterone plays relevant physiological effects on somatotropic-liver axis and liver composition and the liver is a primary organ of interactions between testosterone and GH. However, testosterone exerts many effects on liver through complex and poorly understood mechanisms. Testosterone impacts liver functions by binding to the Androgen Receptor, and, indirectly, through its conversion to estradiol, and cooperation with GH. However, the role of testosterone, and its interaction with GH, in the hypothyroid liver, remains unclear. In the present work, the effects of testosterone, and how they impact on GH-regulated whole transcriptome and lipid composition in the liver, were studied in the context of adult hypothyroid-orchiectomized rats. Testosterone replacement positively modulated somatotropic-liver axis and impacted liver transcriptome involved in lipid and glucose metabolism. In addition, testosterone enhanced the effects of GH on the transcriptome linked to lipid biosynthesis, oxidation-reduction, and metabolism of unsaturated and long-chain fatty acids (FA). However, testosterone decreased the hepatic content of cholesterol esters and triacylglycerols and increased fatty acids whereas GH increased neutral lipids and decreased polar lipids. Biological network analysis of the effects of testosterone on GH-regulated transcriptome confirmed a close connection with crucial proteins involved in steroid and fatty acid metabolism. Taken together, this comprehensive analysis of gene expression and lipid profiling in hypothyroid male liver reveals a functional interplay between testosterone and pulsed GH administration.
Collapse
Affiliation(s)
- Leandro Fernández-Pérez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Unidad de Biomedicina del Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) Asociada al Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Las Palmas de Gran Canaria, Spain
| | - Borja Guerra
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Unidad de Biomedicina del Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) Asociada al Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Las Palmas de Gran Canaria, Spain
| | - Carlota Recio
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan José Cabrera-Galván
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Irma García
- Departmento de Física Básica, Grupo de Fisiología y Biofísica de Membranas, Universidad de La Laguna, La Laguna, Spain
| | - Juan Vladimir De La Rosa
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Antonio Castrillo
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Unidad de Biomedicina del Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) Asociada al Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Las Palmas de Gran Canaria, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC), Centro Mixto CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Diego Iglesias-Gato
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mario Díaz
- Departmento de Física Básica, Grupo de Fisiología y Biofísica de Membranas, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
17
|
Lakshimi VI, Kavitha M. New Insights into Prospective Health Potential of ω-3 PUFAs. Curr Nutr Rep 2023; 12:813-829. [PMID: 37996669 DOI: 10.1007/s13668-023-00508-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE OF REVIEW Docosahexaenoic acid and eicosapentaenoic acid are the two essential long-chain ω-3 polyunsaturated fatty acids (ω-3 PUFAs) promoting human health which are obtained from diet or supplementation. The eicosanoids derived from ω-6 and ω-3 PUFAs have opposite characteristics of pro- and anti-inflammatory activities. The proinflammatory effects of ω-6 PUFAs are behind the pathology of the adverse health conditions of PUFA metabolism like cardiovascular diseases, neurological disorders, and inflammatory diseases. A balanced ω-6 to ω-3 ratio of 1-4:1 is critical to prevent the associated disorders. But due to modern agricultural practices, there is a disastrous shift in this ratio to 10-20:1. This review primarily aims to discuss the myriad health potentials of ω-3 PUFAs uncovered through recent research. It further manifests the importance of maintaining a balanced ω-6 to ω-3 PUFA ratio. RECENT FINDINGS ω-3 PUFAs exhibit protective effects against diabetes mellitus-associated complications including diabetic retinopathy, diabetic nephropathy, and proteinuria. COVID-19 is also not an exception to the health benefits of ω-3 PUFAs. Supplementation of ω-3 PUFAs improved the respiratory and clinical symptoms in COVID-19 patients. ω-3 PUFAs exhibit a variety of health benefits including anti-inflammatory property and antimicrobial property and are effective in protecting against various health conditions like atherosclerosis, cardiovascular diseases, diabetes mellitus, COVID-19, and neurological disorders. In the present review, various health potentials of ω-3 PUFAs are extensively reviewed and summarized. Further, the importance of a balanced ω-6 to ω-3 PUFA ratio has been emphasized besides stating the diverse sources of ω-3 PUFA.
Collapse
Affiliation(s)
- V Iswareya Lakshimi
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - M Kavitha
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
18
|
Gesner M, Frishman WH. Drug Therapy for Hypertriglyceridemia and Familial Chylomicronemia Syndrome: Focus on Volnesorsen. Cardiol Rev 2023; 31:325-329. [PMID: 36129324 DOI: 10.1097/crd.0000000000000468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Volanesorsen is a new medication that may soon be used in the treatment of hypertriglyceridemia and familial chylomicronemia syndrome (FCS). Volanesorsen works via binding to Apo C-III mRNA and degrading that mRNA, thus decreasing the synthesis of Apo C-III. This decreased synthesis of Apo C-III will increase the binding of triglycerides to LDL receptors and decrease triglyceride plasma levels. It is important to note that currently there are 3 other medication classes available for the treatment of hypertriglyceridemia, including niacin, fish oil/omega-3-fatty acids, and fibrates. However, there are no Food and Drug Administration-approved medications to treat FCS. Recently, volanesorsen was approved in the European Union for the treatment of FCS, but that indication was denied in the United States by the Food and Drug Administration. This was due to the side effects of the drug. Volanesorsen may cause a decrease in platelet count, renal toxicity, and elevate liver enzymes. The current drug regimen for volanesorsen consists of 285 mg once a week by subcutaneous injection, with a recommendation to immediately stop the medication if any of these side effects are noted, to prevent long-term complications. With these side effects reported, fish oil/omega-3-fatty acids seem likely the best choice when it comes to treating hypertriglyceridemia. If FCS is debilitating or greatly affecting the patient's life, then one could recommend volanesorsen. Otherwise, at this time, the side effects of volanesorsen may be too severe to justify its use for mild episodes of FCS or hypertriglyceridemia.
Collapse
Affiliation(s)
| | - William H Frishman
- Departments of Medicine and Cardiology, New York Medical College/Westchester Medical Center, Valhalla, NY
| |
Collapse
|
19
|
Spooner MH, Garcia-Jaramillo M, Apperson KD, Löhr CV, Jump DB. Time course of western diet (WD) induced nonalcoholic steatohepatitis (NASH) in female and male Ldlr-/- mice. PLoS One 2023; 18:e0292432. [PMID: 37819925 PMCID: PMC10566735 DOI: 10.1371/journal.pone.0292432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a global health problem. Identification of factors contributing to the onset and progression of NAFLD have the potential to direct novel strategies to combat NAFLD. METHODS We examined the time course of western diet (WD)-induced NAFLD and its progression to nonalcoholic steatohepatitis (NASH) in age-matched female and male Ldlr-/- mice, with time-points at 1, 4, 8, 20 and 40 weeks on the WD. Controls included Ldlr-/- mice maintained on a purified low-fat diet (LFD) for 1 and 40 weeks. The approach included quantitation of anthropometric, plasma and liver markers of disease, plus hepatic histology, lipids, oxylipins, gene expression and selected metabolites. RESULTS One week of feeding the WD caused a significant reduction in hepatic essential fatty acids (EFAs: 18:2, ω6, 18:3, ω3) which preceded the decline in many C20-22 ω3 and ω6 polyunsaturated fatty acids (PUFA) and PUFA-derived oxylipins after 4 weeks on the WD. In addition, expression of hepatic inflammation markers (CD40, CD44, Mcp1, Nlrp3, TLR2, TLR4, Trem2) increased significantly in both female & male mice after one week on the WD. These markers continued to increase over the 40-week WD feeding study. WD effects on hepatic EFA and inflammation preceded all significant WD-induced changes in body weight, insulin resistance (HOMA-IR), oxidative stress status (GSH/GSSG ratio) and histological and gene expression markers of macrosteatosis, extracellular matrix remodeling and fibrosis. CONCLUSIONS Our findings establish that feeding Ldlr-/- mice the WD rapidly lowered hepatic EFAs and induced key inflammatory markers linked to NASH. Since EFAs have an established role in inflammation and hepatic inflammation plays a major role in NASH, we suggest that early clinical assessment of EFA status and correcting EFA deficiencies may be useful in reducing NASH severity.
Collapse
Affiliation(s)
- Melinda H. Spooner
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR, United States of America
| | - Manuel Garcia-Jaramillo
- Environmental and Molecular Toxicology, Oregon State University, Corvallis OR, United States of America
| | - K. Denise Apperson
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
| | - Christiane V. Löhr
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
| | - Donald B. Jump
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
20
|
Cherian G, Fraz A, Bionaz M. Evaluating the impact of organic chromium on hepatic phospholipid fatty acid molecular species, transcription of genes associated with lipid metabolism and oxidative status in broiler chickens fed flaxseed. Poult Sci 2023; 102:102976. [PMID: 37562127 PMCID: PMC10432843 DOI: 10.1016/j.psj.2023.102976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Flaxseed is a rich source of α-linolenic acid (ALA, 18:3 n-3) and can be used to enrich chicken tissues with n-3 fatty acids (FA). However, antinutritional factors in flaxseed compromise the live performance of birds coupled with increased oxidative stress. Chromium (Cr) is a trace element with antioxidant properties. It is hypothesized that Cr supplementation will affect the hepatic total lipid profile, phospholipid n-3 and n-6 FA molecular species, lipid oxidation products, and transcription of genes associated with lipid metabolism in broiler chickens fed flaxseed. Ninety (n = 90), day-old Cornish cross chicks were fed a corn-soybean meal-based diet containing 0% flaxseed (CTR), 10% flaxseed (FLAX), and FLAX + 0.05% organic Cr (FLAXCr) for 42 d. The chicks were kept in 18 pens with 5 chicks per pen. For all response variables, the effect of dietary treatments were compared separately using SAS 9.4. P values were considered significant at ≤0.05. Total lipids, saturated FA, long-chain (≥20C) n-6 FA were reduced while total n-3 FA and long-chain n-3 FA were higher in the liver of FLAX and FLAXCr than CTR (P < 0.05). Hepatic phosphatidylcholine (PC) and phosphatidylethnolamine (PE) n-3 species (36:5, 38:6) were higher in FLAX and FLAXCr compared to CTR (P < 0.05). On the contrary, n-6 species in PC (36:4, 38:4) and PE (38:4) were lower in FLAX and FLAXCr compared to CTR (P < 0.05). Addition of Cr to a flaxseed-containing diet led to an increase in PE 36:4 (P < 0.05). A decrease in the transcription of ELOVL6 gene involved in de novo lipid synthesis was observed in FLAXCr (P = 0.01). An increase in the transcription of genes involved in FA oxidation (ACAA2, ACOX1) was observed in FLAX compared to FLAXCr (P = 0. 05; P = 0.02). A trend for a decrease in the transcription of FADS2 and HMGCS1 was observed in FLAXCr than CTR and FLAX (P = 0.06; 0.08). Transcription of other genes involved in de novo lipid synthesis (FASN, PPARA), FA oxidation (CPT1A, CPT2, ACAA1), and oxidative stress response (GPX1, NQO11, GSTA2, SLC40A1, NFE2L2) were not affected by the diets (P > 0.05). Lipid peroxidation products measured as thiobarbituric acid reactive substances (TBARS) in liver was reduced in FLAXCr than CTR (P < 0.05) and was not different from FLAX (P > 0.05). Serum cholesterol and aspartic aminotransferase were reduced in FLAX and FLAXCr compared to CTR (P < 0.05). The serum glucose level was decreased in FLAX compared to CTR (P < 0.05) and a trend in decrease was noticed in FLAXCr vs. CTR (P = 0.10). Serum TBARS were higher in CTR and FLAXCr compared to FLAX (P < 0.05). In conclusion, flaxseed supplementation enhances total and long-chain n-3 FA while reducing total lipids, saturated, and n-6 FA in the liver. Supplementing Cr along with flaxseed increased n-6 FA species in the hepatic PE and decreased the transcription of genes involved in FA oxidation and lipid synthesis.
Collapse
Affiliation(s)
- Gita Cherian
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Ahmad Fraz
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
21
|
Yang C, Shen Y, Zhang Y, Xiao H, Sun X, Liao J, Chen X, Zhang W, Yu L, Xia W, Xu S, Li Y. Air pollution exposure and plasma fatty acid profile in pregnant women: a cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108319-108329. [PMID: 37752390 DOI: 10.1007/s11356-023-29886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Air pollution exposure was known to result in body impairments by inducing inflammation and oxidation. But little is known about the associations of air pollutants with plasma fatty acid profile which may play important roles in the impairment of air pollutants based on the related mechanism, especially in pregnant women. This study aimed to explore the relationships of air pollution exposure with plasma fatty acid profile and the potential effect modification by pre-pregnancy body mass index (BMI). Based on a cohort in Wuhan, China, we measured concentrations of plasma fatty acids of 519 pregnant women enrolled from 2013 to 2016 by gas chromatography-mass spectrometry (GC-MS). Levels of exposure to air pollutants (fine particulate matter (PM2.5), inhalable particles (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO)) were estimated by using spatial-temporal land use regression models and calculated in three periods (average concentrations during 1 day, 1 week, and 1 month before the phlebotomizing day in the first trimester). Per interquartile range increment of the levels of air pollution exposure 1 day before phlebotomizing was related to 1.21-2.01% increment of omega-6 polyunsaturated fatty acids (n-6PUFA) and 0.63-1.74% decrement of omega-3 polyunsaturated fatty acids (n-3PUFA). Besides, relationships above were kept robust in the analysis during 1 week and 1 month before phlebotomizing. In women with normal BMI, plasma fatty acid profile was observed to be more sensitive to air pollutants. Our study demonstrated that increment of exposure to air pollutants was associated with higher plasma n-6PUFA known to be pro-inflammatory and lower plasma n-3PUFA known to be anti-inflammatory, which was more sensitive in pregnant women with normal BMI. Our findings suggested that changes in plasma fatty acid profile should cause concerns and may serve as biomarkers in the further studies. Future studies are needed to validate our findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Chenhui Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Ye Shen
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
- Department of Gynaecology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqiong Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Jiaqiang Liao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Xinmei Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Wenxin Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Ling Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yuanyuan Li
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
22
|
Schoeler M, Ellero-Simatos S, Birkner T, Mayneris-Perxachs J, Olsson L, Brolin H, Loeber U, Kraft JD, Polizzi A, Martí-Navas M, Puig J, Moschetta A, Montagner A, Gourdy P, Heymes C, Guillou H, Tremaroli V, Fernández-Real JM, Forslund SK, Burcelin R, Caesar R. The interplay between dietary fatty acids and gut microbiota influences host metabolism and hepatic steatosis. Nat Commun 2023; 14:5329. [PMID: 37658064 PMCID: PMC10474162 DOI: 10.1038/s41467-023-41074-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
Dietary lipids can affect metabolic health through gut microbiota-mediated mechanisms, but the influence of lipid-microbiota interaction on liver steatosis is largely unknown. We investigate the impact of dietary lipids on human gut microbiota composition and the effects of microbiota-lipid interactions on steatosis in male mice. In humans, low intake of saturated fatty acids (SFA) is associated with increased microbial diversity independent of fiber intake. In mice, poorly absorbed dietary long-chain SFA, particularly stearic acid, induce a shift in bile acid profile and improved metabolism and steatosis. These benefits are dependent on the gut microbiota, as they are transmitted by microbial transfer. Diets enriched in polyunsaturated fatty acids are protective against steatosis but have minor influence on the microbiota. In summary, we find that diets enriched in poorly absorbed long-chain SFA modulate gut microbiota profiles independent of fiber intake, and this interaction is relevant to improve metabolism and decrease liver steatosis.
Collapse
Affiliation(s)
- Marc Schoeler
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Sandrine Ellero-Simatos
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Till Birkner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Lisa Olsson
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Harald Brolin
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Ulrike Loeber
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Jamie D Kraft
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Arnaud Polizzi
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Marian Martí-Navas
- Department of Radiology, Biomedical Research Institute Imaging Research Unit, Diagnostic Imaging Institute, Doctor Josep Trueta University Hospital of Girona, Avinguda de França, s/n, 17007, Girona, Catalonia, Spain
| | - Josep Puig
- Department of Radiology, Biomedical Research Institute Imaging Research Unit, Diagnostic Imaging Institute, Doctor Josep Trueta University Hospital of Girona, Avinguda de França, s/n, 17007, Girona, Catalonia, Spain
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
- Medicina e Chirurgia d'Accettazione E d'Urgenza, Azienda Ospedaliero-Universitaria Policlinico di Bari, 70124, Bari, Italy
- Medicina Sub-Intensiva, Presidio Maxi-Emergenze Fiera del Levante, Azienda Ospedaliero-Universitaria Policlinico di Bari, 70124, Bari, Italy
| | - Alexandra Montagner
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1297, Université Paul Sabatier, Université de Toulouse, F-31432, Toulouse, France
| | - Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1297, Université Paul Sabatier, Université de Toulouse, F-31432, Toulouse, France
- Endocrinology-Diabetology-Nutrition Department, Toulouse University Hospital, Toulouse, France
| | - Christophe Heymes
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1297, Université Paul Sabatier, Université de Toulouse, F-31432, Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Valentina Tremaroli
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain
| | - Sofia K Forslund
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Remy Burcelin
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1297, Université Paul Sabatier, Université de Toulouse, F-31432, Toulouse, France
| | - Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden.
| |
Collapse
|
23
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic fatty liver disease worldwide, particularly in obese and type 2 diabetic individuals. Currently, there are no therapies for NAFLD that have been approved by the US Food and Drug Administration. Herein, we examine the rationale for using ω3 polyunsaturated fatty acids (PUFAs) in NAFLD therapy. This focus is based on the finding that NAFLD severity is associated with a reduction of hepatic C20-22 ω3 PUFAs. Because C20-22 ω3 PUFAs are pleiotropic regulators of cell function, loss of C20-22 ω3 PUFAs has the potential to significantly impact hepatic function. We describe NAFLD prevalence and pathophysiology as well as current NAFLD therapies. We also present evidence from clinical and preclinical studies that evaluated the capacity of C20-22 ω3 PUFAs to treat NAFLD. Given the clinical and preclinical evidence, dietary C20-22 ω3 PUFA supplementation has the potential to decrease human NAFLD severity by reducing hepatosteatosis and liver injury.
Collapse
Affiliation(s)
- Melinda H Spooner
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA;
| | - Donald B Jump
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA;
| |
Collapse
|
24
|
Sandel P, Ma L, Wang H, Pasman EA. You Are What You Eat: A Review on Dietary Interventions for Treating Pediatric Nonalcoholic Fatty Liver Disease. Nutrients 2023; 15:3350. [PMID: 37571287 PMCID: PMC10421125 DOI: 10.3390/nu15153350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
As the obesity pandemic worsens, cases of pediatric nonalcoholic fatty liver disease (NAFLD) and complications of this disease, such as progressive liver failure, in young adults will continue to rise. Lifestyle changes in the form of dietary modifications and exercise are currently first-line treatments. Large pediatric-specific randomized controlled trials to support specific interventions are currently lacking. A variety of dietary modifications in children with NAFLD have been suggested and studied with mixed results, including low-sugar and high-protein diets, the Mediterranean diet, and the Dietary Approach to Stop Hypertension (DASH). The roles of dietary supplements such as Vitamin E, polyunsaturated fatty acids (PUFAs), ginger, and probiotics have also been investigated. A further understanding of specific dietary interventions and supplements is needed to provide both generalizable and sustainable dietary recommendations to reverse the progression of NAFLD in the pediatric population.
Collapse
Affiliation(s)
- Piper Sandel
- Section of Academic General Pediatrics, Department of Pediatrics, University of California San Diego, San Diego, CA 92123, USA; (L.M.); (H.W.)
| | - Lawrence Ma
- Section of Academic General Pediatrics, Department of Pediatrics, University of California San Diego, San Diego, CA 92123, USA; (L.M.); (H.W.)
| | - Helen Wang
- Section of Academic General Pediatrics, Department of Pediatrics, University of California San Diego, San Diego, CA 92123, USA; (L.M.); (H.W.)
| | - Eric A. Pasman
- Division of Pediatric Gastroenterology, Department of Pediatrics, Naval Medical Center San Diego, San Diego, CA 92134, USA;
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
25
|
Wang Q, Wang X. The Effects of a Low Linoleic Acid/α-Linolenic Acid Ratio on Lipid Metabolism and Endogenous Fatty Acid Distribution in Obese Mice. Int J Mol Sci 2023; 24:12117. [PMID: 37569494 PMCID: PMC10419107 DOI: 10.3390/ijms241512117] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
A reduced risk of obesity and metabolic syndrome has been observed in individuals with a low intake ratio of linoleic acid/α-linolenic acid (LA/ALA). However, the influence of a low ratio of LA/ALA intake on lipid metabolism and endogenous fatty acid distribution in obese patients remains elusive. In this investigation, 8-week-old C57BL/6J mice were randomly assigned to four groups: low-fat diet (LFD) as a control, high-fat diet (HFD), high-fat diet with a low LA/ALA ratio (HFD+H3L6), and high-fat diet with a high LA/ALA ratio (HFD+L3H6) for 16 weeks. Our results show that the HFD+H3L6 diet significantly decreased the liver index of HFD mice by 3.51%, as well as the levels of triacylglycerols (TGs) and low-density lipoprotein cholesterol (LDL-C) by 15.67% and 10.02%, respectively. Moreover, the HFD+H3L6 diet reduced the pro-inflammatory cytokines interleukin-6 (IL-6) level and aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio and elevated the level of superoxide dismutase (SOD) in the liver. The HFD+H3L6 diet also resulted in the downregulation of fatty acid synthetase (FAS) and sterol regulatory element binding proteins-1c (SREBP-1c) expression and the upregulation of peroxisome proliferator-activated receptor-α (PPAR-α) and acyl-CoA oxidase 1 (ACOX1) gene expression in the liver. The low LA/ALA ratio diet led to a notable increase in the levels of ALA and its downstream derivative docosahexaenoic acid (DHA) in the erythrocyte, liver, perienteric fat, epididymal fat, perirenal fat, spleen, brain, heart, and gastrocnemius, with a strong positive correlation. Conversely, the accumulation of LA in abdominal fat was more prominent, and a high LA/ALA ratio diet exacerbated the deposition effect of LA. In conclusion, the low LA/ALA ratio not only regulated endogenous fatty acid levels but also upregulated PPAR-α and ACOX1 and downregulated SREBP-1c and FAS gene expression levels, thus maintaining lipid homeostasis. Optimizing dietary fat intake is important in studying lipid nutrition. These research findings emphasize the significance of understanding and optimizing dietary fat intake.
Collapse
Affiliation(s)
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
26
|
Gaete PV, Nieves-Barreto LD, Guatibonza-García V, Losada-Barragán M, Vargas-Sánchez K, Mendivil CO. Medium-chain fatty acids modify macrophage expression of metabolic and inflammatory genes in a PPAR β/δ-dependent manner. Sci Rep 2023; 13:11573. [PMID: 37463952 DOI: 10.1038/s41598-023-38700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
There is great interest on medium chain fatty acids (MCFA) for cardiovascular health. We explored the effects of MCFA on the expression of lipid metabolism and inflammatory genes in macrophages, and the extent to which they were mediated by the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPAR β/δ). J774A.1 murine macrophages were exposed to octanoate or decanoate as MCFA, a long-chain fatty acid control (palmitate), or the PPAR β/δ agonist GW501516, with or without lipopolysaccharide (LPS) stimulation, and with or without an siRNA-induced knockdown of PPAR β/δ. MCFA increased the expression of Plin2, encoding a lipid-droplet associated protein with anti-inflammatory effects in macrophages, in a partially PPAR β/δ-dependent manner. Both MCFA stimulated expression of the cholesterol efflux pump ABCA1, more pronouncedly under LPS stimulation and in the absence of PPAR β/δ. Octanoate stimulated the expression of Pltp, encoding a phospholipid transfer protein that aids ABCA1 in cellular lipid efflux. Only palmitate increased expression of the proinflammatory genes Il6, Tnf, Nos2 and Mmp9. Non-stimulated macrophages exposed to MCFA showed less internalization of fluorescently labeled lipoproteins. MCFA influenced the transcriptional responses of macrophages favoring cholesterol efflux and a less inflammatory response compared to palmitate. These effects were partially mediated by PPAR β/δ.
Collapse
Affiliation(s)
- Paula V Gaete
- Department of Physiological Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Luz D Nieves-Barreto
- School of Medicine, Universidad de los Andes, Carrera 7 No 116-05, Of 413, Bogotá, Colombia
| | | | - Mónica Losada-Barragán
- Biología Celular y Funcional e Ingeniería de Moléculas, Departamento de Biología, Universidad Antonio Nariño, Bogotá, Colombia
| | - Karina Vargas-Sánchez
- School of Medicine, Universidad de los Andes, Carrera 7 No 116-05, Of 413, Bogotá, Colombia
| | - Carlos O Mendivil
- School of Medicine, Universidad de los Andes, Carrera 7 No 116-05, Of 413, Bogotá, Colombia.
- Section of Endocrinology, Department of Internal Medicine, Fundación Santa Fe de Bogotá, Bogotá, Colombia.
| |
Collapse
|
27
|
Rundblad A, Sandoval V, Holven KB, Ordovás JM, Ulven SM. Omega-3 fatty acids and individual variability in plasma triglyceride response: A mini-review. Redox Biol 2023; 63:102730. [PMID: 37150150 PMCID: PMC10184047 DOI: 10.1016/j.redox.2023.102730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death worldwide. Supplementation with the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is associated with lower CVD risk. However, results from randomized controlled trials that examine the effect of omega-3 supplementation on CVD risk are inconsistent. This risk-reducing effect may be mediated by reducing inflammation, oxidative stress and serum triglyceride (TG) levels. However, not all individuals respond by reducing TG levels after omega-3 supplementation. This inter-individual variability in TG response to omega-3 supplementation is not fully understood. Hence, we aim to review the evidence for how interactions between omega-3 fatty acid supplementation and genetic variants, epigenetic and gene expression profiling, gut microbiota and habitual intake of omega-3 fatty acids can explain why the TG response differs between individuals. This may contribute to understanding the current controversies and play a role in defining future personalized guidelines to prevent CVD.
Collapse
Affiliation(s)
- Amanda Rundblad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O Box 1046 Blindern, 0317, Oslo, Norway
| | - Viviana Sandoval
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O Box 1046 Blindern, 0317, Oslo, Norway; Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Gral. Lagos 1025, 5110693, Valdivia, Chile
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O Box 1046 Blindern, 0317, Oslo, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Norway
| | - José M Ordovás
- Nutrition and Genomics Laboratory, USDA ARS, JM-USDA Human Research Center on Aging at Tufts University, Boston, MA, USA; Nutritional Genomics and Epigenomics Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O Box 1046 Blindern, 0317, Oslo, Norway.
| |
Collapse
|
28
|
Di Cara F, Savary S, Kovacs WJ, Kim P, Rachubinski RA. The peroxisome: an up-and-coming organelle in immunometabolism. Trends Cell Biol 2023; 33:70-86. [PMID: 35788297 DOI: 10.1016/j.tcb.2022.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/27/2022]
Abstract
Peroxisomes are essential metabolic organelles, well known for their roles in the metabolism of complex lipids and reactive ionic species. In the past 10 years, peroxisomes have also been cast as central regulators of immunity. Lipid metabolites of peroxisomes, such as polyunsaturated fatty acids (PUFAs), are precursors for important immune mediators, including leukotrienes (LTs) and resolvins. Peroxisomal redox metabolism modulates cellular immune signaling such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Additionally, peroxisomal β-oxidation and ether lipid synthesis control the development and aspects of the activation of both innate and adaptive immune cells. Finally, peroxisome number and metabolic activity have been linked to inflammatory diseases. These discoveries have opened avenues of investigation aimed at targeting peroxisomes for therapeutic intervention in immune disorders, inflammation, and cancer.
Collapse
Affiliation(s)
- Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada.
| | - Stéphane Savary
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology in Zurich (ETH Zürich), Zurich, Switzerland
| | - Peter Kim
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | | |
Collapse
|
29
|
Bednarski TK, Duda MK, Dobrzyn P. Alterations of Lipid Metabolism in the Heart in Spontaneously Hypertensive Rats Precedes Left Ventricular Hypertrophy and Cardiac Dysfunction. Cells 2022; 11:cells11193032. [PMID: 36230994 PMCID: PMC9563594 DOI: 10.3390/cells11193032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
Disturbances in cardiac lipid metabolism are associated with the development of cardiac hypertrophy and heart failure. Spontaneously hypertensive rats (SHRs), a genetic model of primary hypertension and pathological left ventricular (LV) hypertrophy, have high levels of diacylglycerols in cardiomyocytes early in development. However, the exact effect of lipids and pathways that are involved in their metabolism on the development of cardiac dysfunction in SHRs is unknown. Therefore, we used SHRs and Wistar Kyoto (WKY) rats at 6 and 18 weeks of age to analyze the impact of perturbations of processes that are involved in lipid synthesis and degradation in the development of LV hypertrophy in SHRs with age. Triglyceride levels were higher, whereas free fatty acid (FA) content was lower in the LV in SHRs compared with WKY rats. The expression of de novo FA synthesis proteins was lower in cardiomyocytes in SHRs compared with corresponding WKY controls. The higher expression of genes that are involved in TG synthesis in 6-week-old SHRs may explain the higher TG content in these rats. Adenosine monophosphate-activated protein kinase phosphorylation and peroxisome proliferator-activated receptor α protein content were lower in cardiomyocytes in 18-week-old SHRs, suggesting a lower rate of β-oxidation. The decreased protein content of α/β-hydrolase domain-containing 5, adipose triglyceride lipase (ATGL) activator, and increased content of G0/G1 switch protein 2, ATGL inhibitor, indicating a lower rate of lipolysis in the heart in SHRs. In conclusion, the present study showed that the development of LV hypertrophy and myocardial dysfunction in SHRs is associated with triglyceride accumulation, attributable to a lower rate of lipolysis and β-oxidation in cardiomyocytes.
Collapse
Affiliation(s)
- Tomasz K. Bednarski
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Monika K. Duda
- Centre of Postgraduate Medical Education, Department of Clinical Physiology, 01-813 Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence:
| |
Collapse
|
30
|
Goldberg IJ, Gjini J, Fisher EA. Big Fish or No Fish; Eicosapentaenoic Acid and Cardiovascular Disease. Endocrinol Metab Clin North Am 2022; 51:625-633. [PMID: 35963632 DOI: 10.1016/j.ecl.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benefits of omega 3 fatty acids for cardiovascular and other diseases have been touted for more than 50 years. The one clear clinical benefit of these lipids is the reduction of circulating levels of triglycerides, making them a useful approach for the prevention of pancreatitis in severely hypertriglyceridemic patients. After a series of spectacularly failed clinical trials that were criticized for the choice of subjects and doses of omega 3 fatty acids used, Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial (REDUCE-IT) using a high dose of icosapent ethyl (IPE) reported a reduction in cardiovascular disease (CVD) events. However, this trial has generated controversy due to the use of mineral oil in the control group and the associated side effects of the IPA. This review will focus on the following topics: What are the epidemiologic data suggesting a benefit of omega 3 fatty acids? What might be the mechanisms for these benefits? Why have the clinical trials failed to resolve whether these fatty acids provide benefit? What choices should a clinician consider?
Collapse
Affiliation(s)
- Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, 435 First Avenue, SB 617, New York, NY 10016, USA.
| | - Jana Gjini
- Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, 435 First Avenue, SB 617, New York, NY 10016, USA
| | - Edward A Fisher
- Division of Cardiology and Center for the Prevention of Cardiovascular Disease, New York University Grossman School of Medicine, 435 First Avenue, SB 704, New York, NY 10016, USA
| |
Collapse
|
31
|
Moir M, Yepuri N, Marshall D, Blanksby S, Darwish T. Synthesis of Perdeuterated Linoleic Acid‐d31 and Chain Deuterated 1‐Palmitoyl‐2‐linoleoyl‐sn‐glycero‐3‐phosphocholine‐d62. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael Moir
- Australian Nuclear Science and Technology Organisation AUSTRALIA
| | - Nageshwar Yepuri
- Australian Nuclear Science and Technology Organisation AUSTRALIA
| | | | | | - Tamim Darwish
- Australian Nuclear Science and Technology Organisation AUSTRALIA
| |
Collapse
|
32
|
Datsomor AK, Gillard G, Jin Y, Olsen RE, Sandve SR. Molecular Regulation of Biosynthesis of Long Chain Polyunsaturated Fatty Acids in Atlantic Salmon. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:661-670. [PMID: 35907166 PMCID: PMC9385821 DOI: 10.1007/s10126-022-10144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Salmon is a rich source of health-promoting omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA), such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). The LC-PUFA biosynthetic pathway in Atlantic salmon is one of the most studied compared to other teleosts. This has largely been due to the massive replacement of LC-PUFA-rich ingredients in aquafeeds with terrestrial plant oils devoid of these essential fatty acids (EFA) which ultimately pushed dietary content towards the minimal requirement of EFA. The practice would also reduce tissue content of n-3 LC-PUFA compromising the nutritional value of salmon to the human consumer. These necessitated detailed studies of endogenous biosynthetic capability as a contributor to these EFA. This review seeks to provide a comprehensive and concise overview of the current knowledge about the molecular genetics of PUFA biosynthesis in Atlantic salmon, highlighting the enzymology and nutritional regulation as well as transcriptional control networks. Furthermore, we discuss the impact of genome duplication on the complexity of salmon LC-PUFA pathway and highlight probable implications on endogenous biosynthetic capabilities. Finally, we have also compiled and made available a large RNAseq dataset from 316 salmon liver samples together with an R-script visualization resource to aid in explorative and hypothesis-driven research into salmon lipid metabolism.
Collapse
Affiliation(s)
- Alex K. Datsomor
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Gareth Gillard
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Yang Jin
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Rolf E. Olsen
- Institute of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Simen R. Sandve
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
33
|
Kim JE, Kim E, Lee JW. TM4SF5-Mediated Regulation of Hepatocyte Transporters during Metabolic Liver Diseases. Int J Mol Sci 2022; 23:ijms23158387. [PMID: 35955521 PMCID: PMC9369364 DOI: 10.3390/ijms23158387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is found in up to 30% of the world’s population and can lead to hepatocellular carcinoma (HCC), which has a poor 5-year relative survival rate of less than 40%. Clinical therapeutic strategies are not very successful. The co-occurrence of metabolic disorders and inflammatory environments during the development of steatohepatitis thus needs to be more specifically diagnosed and treated to prevent fatal HCC development. To improve diagnostic and therapeutic strategies, the identification of molecules and/or pathways responsible for the initiation and progression of chronic liver disease has been explored in many studies, but further study is still required. Transmembrane 4 L six family member 5 (TM4SF5) has been observed to play roles in the regulation of metabolic functions and activities in hepatocytes using in vitro cell and in vivo animal models without or with TM4SF5 expression in addition to clinical liver tissue samples. TM4SF5 is present on the membranes of different organelles or vesicles and cooperates with transporters for fatty acids, amino acids, and monocarbohydrates, thus regulating nutrient uptake into hepatocytes and metabolism and leading to phenotypes of chronic liver diseases. In addition, TM4SF5 can remodel the immune environment by interacting with immune cells during TM4SF5-mediated chronic liver diseases. Because TM4SF5 may act as an NAFLD biomarker, this review summarizes crosstalk between TM4SF5 and nutrient transporters in hepatocytes, which is related to chronic liver diseases.
Collapse
|
34
|
Zhao J, Guo S, Schrodi SJ, He D. Trends in the Contribution of Genetic Susceptibility Loci to Hyperuricemia and Gout and Associated Novel Mechanisms. Front Cell Dev Biol 2022; 10:937855. [PMID: 35813212 PMCID: PMC9259951 DOI: 10.3389/fcell.2022.937855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 11/14/2022] Open
Abstract
Hyperuricemia and gout are complex diseases mediated by genetic, epigenetic, and environmental exposure interactions. The incidence and medical burden of gout, an inflammatory arthritis caused by hyperuricemia, increase every year, significantly increasing the disease burden. Genetic factors play an essential role in the development of hyperuricemia and gout. Currently, the search on disease-associated genetic variants through large-scale genome-wide scans has primarily improved our understanding of this disease. However, most genome-wide association studies (GWASs) still focus on the basic level, whereas the biological mechanisms underlying the association between genetic variants and the disease are still far from well understood. Therefore, we summarized the latest hyperuricemia- and gout-associated genetic loci identified in the Global Biobank Meta-analysis Initiative (GBMI) and elucidated the comprehensive potential molecular mechanisms underlying the effects of these gene variants in hyperuricemia and gout based on genetic perspectives, in terms of mechanisms affecting uric acid excretion and reabsorption, lipid metabolism, glucose metabolism, and nod-like receptor pyrin domain 3 (NLRP3) inflammasome and inflammatory pathways. Finally, we summarized the potential effect of genetic variants on disease prognosis and drug efficacy. In conclusion, we expect that this summary will increase our understanding of the pathogenesis of hyperuricemia and gout, provide a theoretical basis for the innovative development of new clinical treatment options, and enhance the capabilities of precision medicine for hyperuricemia and gout treatment.
Collapse
Affiliation(s)
- Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of WI-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of WI-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of WI-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of WI-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
35
|
Šmíd V, Dvořák K, Šedivý P, Kosek V, Leníček M, Dezortová M, Hajšlová J, Hájek M, Vítek L, Bechyňská K, Brůha R. Effect of Omega-3 Polyunsaturated Fatty Acids on Lipid Metabolism in Patients With Metabolic Syndrome and NAFLD. Hepatol Commun 2022; 6:1336-1349. [PMID: 35147302 PMCID: PMC9134818 DOI: 10.1002/hep4.1906] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. n-3 polyunsaturated fatty acids (n-3-PUFAs) have been reported to ameliorate the progression of NAFLD in experimental studies; however, clinical trials have yielded contradictory results. The aim of our study was to assess the effects of n-3-PUFA administration on lipid metabolism and the progression of NAFLD in patients with metabolic syndrome. Sixty patients with metabolic syndrome and NAFLD were randomized in a double-blind placebo-controlled trial (3.6 g/day n-3-PUFA vs. placebo). During the 1-year follow-up, the patients underwent periodic clinical and laboratory examinations, liver stiffness measurements, magnetic resonance spectroscopy of the liver, and plasma lipidomic analyses. After 12 months of n-3-PUFA administration, a significant decrease in serum GGT activity was recorded compared with the placebo group (2.03 ± 2.8 vs. 1.43 ± 1.6; P < 0.05). Although no significant changes in anthropometric parameters were recorded, a significant correlation between the reduction of liver fat after 12 months of treatment-and weight reduction-was observed; furthermore, this effect was clearly potentiated by n-3-PUFA treatment (P < 0.005). In addition, n-3-PUFA treatment resulted in substantial changes in the plasma lipidome, with n-3-PUFA-enriched triacylglycerols and phospholipids being the most expressed lipid signatures. Conclusion: Twelve months of n-3-PUFA treatment of patients with NAFLD patients was associated with a significant decrease in GGT activity, the liver fat reduction in those who reduced their weight, and beneficial changes in the plasma lipid profile.
Collapse
Affiliation(s)
- Václav Šmíd
- Fourth Department of Internal MedicineFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| | - Karel Dvořák
- Fourth Department of Internal MedicineFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| | - Petr Šedivý
- Department of Diagnostic and Interventional RadiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Vít Kosek
- Department of Food Analysis and NutritionUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Martin Leníček
- Institute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| | - Monika Dezortová
- Department of Diagnostic and Interventional RadiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Jana Hajšlová
- Department of Food Analysis and NutritionUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Milan Hájek
- Department of Diagnostic and Interventional RadiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Libor Vítek
- Fourth Department of Internal MedicineFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
- Institute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| | - Kamila Bechyňská
- Department of Food Analysis and NutritionUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Radan Brůha
- Fourth Department of Internal MedicineFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| |
Collapse
|
36
|
Taghizadeh S, Gholizadeh M, Rahimi-Mianji G, Moradi MH, Costilla R, Moore S, Di Gerlando R. Genome-wide identification of copy number variation and association with fat deposition in thin and fat-tailed sheep breeds. Sci Rep 2022; 12:8834. [PMID: 35614300 PMCID: PMC9132911 DOI: 10.1038/s41598-022-12778-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Copy number variants (CNVs) are a type of genetic polymorphism which contribute to phenotypic variation in several species, including livestock. In this study, we used genomic data of 192 animals from 3 Iranian sheep breeds including 96 Baluchi sheep and 47 Lori-Bakhtiari sheep as fat-tailed breeds and 47 Zel sheep as thin-tailed sheep breed genotyped with Illumina OvineSNP50K Beadchip arrays. Also, for association test, 70 samples of Valle del Belice sheep were added to the association test as thin-tailed sheep breed. PennCNV and CNVRuler software were, respectively, used to study the copy number variation and genomic association analyses. We detected 573 and 242 CNVs in the fat and thin tailed breeds, respectively. In terms of CNV regions (CNVRs), these represented 328 and 187 CNVRs that were within or overlapping with 790 known Ovine genes. The CNVRs covered approximately 73.85 Mb of the sheep genome with average length 146.88 kb, and corresponded to 2.6% of the autosomal genome sequence. Five CNVRs were randomly chosen for validation, of which 4 were experimentally confirmed using Real time qPCR. Functional enrichment analysis showed that genes harbouring CNVs in thin-tailed sheep were involved in the adaptive immune response, regulation of reactive oxygen species biosynthetic process and response to starvation. In fat-tailed breeds these genes were involved in cellular protein modification process, regulation of heart rate, intestinal absorption, olfactory receptor activity and ATP binding. Association test identified one copy gained CNVR on chromosomes 6 harbouring two protein-coding genes HGFAC and LRPAP1. Our findings provide information about genomic structural changes and their association to the interested traits including fat deposition and environmental compatibility in sheep.
Collapse
Affiliation(s)
- Shadan Taghizadeh
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, P.O. Box - 578, Sari, Iran
| | - Mohsen Gholizadeh
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, P.O. Box - 578, Sari, Iran.
| | - Ghodrat Rahimi-Mianji
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, P.O. Box - 578, Sari, Iran
| | - Mohammad Hossein Moradi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - Roy Costilla
- Ruakura Research Centre, AgResearch, Hamilton, New Zealand
| | - Stephen Moore
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia
| | - Rosalia Di Gerlando
- Dipartimento Di Scienze Agrarie, Alimentari E Forestali, Università Degli Studi Di Palermo, Palermo, Italy
| |
Collapse
|
37
|
Rodrigo N, Saad S, Pollock C, Glastras SJ. Diet Modification before or during Pregnancy on Maternal and Foetal Outcomes in Rodent Models of Maternal Obesity. Nutrients 2022; 14:2154. [PMID: 35631295 PMCID: PMC9146671 DOI: 10.3390/nu14102154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
The obesity epidemic has serious implications for women of reproductive age; its rising incidence is associated not just with health implications for the mother but also has transgenerational ramifications for the offspring. Increased incidence of diabetes, cardiovascular disease, obesity, and kidney disease are seen in both the mothers and the offspring. Animal models, such as rodent studies, are fundamental to studying maternal obesity and its impact on maternal and offspring health, as human studies lack rigorous controlled experimental design. Furthermore, the short and prolific reproductive potential of rodents enables examination across multiple generations and facilitates the exploration of interventional strategies to mitigate the impact of maternal obesity, both before and during pregnancy. Given that obesity is a major public health concern, it is important to obtain a greater understanding of its pathophysiology and interaction with reproductive health, placental physiology, and foetal development. This narrative review focuses on the known effects of maternal obesity on the mother and the offspring, and the benefits of interventional strategies, including dietary intervention, before or during pregnancy on maternal and foetal outcomes. It further examines the contribution of rodent models of maternal obesity to elucidating pathophysiological pathways of disease development, as well as methods to reduce the impact of obesity on the mothers and the developing foetus. The translation of these findings into the human experience will also be discussed.
Collapse
Affiliation(s)
- Natassia Rodrigo
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney 2065, Australia;
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
- Department of Renal Medicine, Royal North Shore Hospital, Sydney 2065, Australia
| | - Sarah J. Glastras
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney 2065, Australia;
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
38
|
Bioaccumulation of Blood Long-Chain Fatty Acids during Hemodialysis. Metabolites 2022; 12:metabo12030269. [PMID: 35323712 PMCID: PMC8949028 DOI: 10.3390/metabo12030269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Long-chain fatty acids (LCFAs) serve as energy sources, components of cell membranes, and precursors for signaling molecules. Uremia alters LCFA metabolism so that the risk of cardiovascular events in chronic kidney disease (CKD) is increased. End-stage renal disease (ESRD) patients undergoing dialysis are particularly affected and their hemodialysis (HD) treatment could influence blood LCFA bioaccumulation and transformation. We investigated blood LCFA in HD patients and studied LCFA profiles in vivo by analyzing arterio–venous (A–V) LFCA differences in upper limbs. We collected arterial and venous blood samples from 12 ESRD patients, before and after HD, and analyzed total LCFA levels in red blood cells (RBCs) and plasma by LC–MS/MS tandem mass spectrometry. We observed that differences in arterial and venous LFCA contents within RBCs (RBC LCFA A–V differences) were affected by HD treatment. Numerous saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) n-6 showed negative A–V differences, accumulated during peripheral tissue perfusion of the upper limbs, in RBCs before HD. HD reduced these differences. The omega-3 quotient in the erythrocyte membranes was not affected by HD in either arterial or venous blood. Our data demonstrate that A–V differences in fatty acids status of LCFA are present and active in mature erythrocytes and their bioaccumulation is sensitive to single HD treatment.
Collapse
|
39
|
Plant and marine N3-PUFA regulation of fatty acid trafficking along the adipose tissue-liver axis varies according to nutritional state. J Nutr Biochem 2022; 102:108940. [PMID: 35017005 DOI: 10.1016/j.jnutbio.2022.108940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Marine sourced N3-PUFA regulate lipid metabolism in adipose tissue and liver; however, less is known about plant sourced N3-PUFA. The goal of this study was to investigate plant and marine N3-PUFA regulation of fatty acid trafficking along the adipose tissue-liver axis according to nutritional state. METHODS Mice were fed low-fat diets (7% w/w) containing either lard, flaxseed, or menhaden oils for 8 weeks, and were euthanized in either fed or fasted states. Substrate utilization and physical activity were assessed during the transition from a fed to fasted state. Plasma biomarkers (triglycerides (TAG), non-esterified fatty acids (NEFA)), as well as liver and epididymal adipose tissue (eWAT) lipogenic and lipolytic markers, were measured. RESULTS Neither plant nor marine N3-PUFA influenced substrate utilization or activity during the transition from a fed to fasted state. In the fed state, marine N3-PUFA reduced plasma TAG levels compared to the other diets, with no further reduction seen in fasted mice. Hepatic lipogenic markers (Fasn, Acc, Scd1, and Elovl6) were reduced in the fed state with marine N3-PUFA, but not plant N3-PUFA. In the fasted state, mice fed either N3-PUFA accumulated less liver TAG, had lower plasma NEFA, and suppressed eWAT HSL activity compared to lard. CONCLUSION Marine N3-PUFA are more potent regulators of lipogenesis than plant N3-PUFA in the fed state, whereas both N3-PUFA influence eWAT lipolysis and plasma NEFA in the fasted state. This work provides novel insights regarding N3-PUFA regulation of fatty acid trafficking along the adipose tissue-liver axis according to nutritional state.
Collapse
|
40
|
Ochin CC, Wilson T, Garelnabi M. Dietary Oxidized Linoleic Acids Modulate Fatty Acids in Mice. J Lipid Atheroscler 2022; 11:197-210. [PMID: 35656146 PMCID: PMC9133782 DOI: 10.12997/jla.2022.11.2.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/11/2022] Open
Abstract
Objective An elevated concentration of oxidized lipids along with the abnormal accumulation of lipids has been linked to the formation of atheromatous plaque and the development of cardiovascular diseases. This study aims to investigate if consumption of different concentrations of dietary oxidized linoleic acid alters the distribution of long chain fatty acids (LCFAs) within the liver relative to plasma in mice. Methods C57BL/6 male mice (n = 40) were divided into 4 groups: Standard chow as plain control (P group, n =10), Chow supplemented with linoleic acid 9 mg/mouse/day, linoleic control (C group, n=0), oxidized linoleic acid; 9 mg/mouse/day (A group, n=10) and oxidized linoleic acid 18 mg/mouse/day diet (B group, n=10). Liver and plasma samples were extracted, trans-esterified and subsequently analyzed using gas chromatography mass spectrometry (GC-MS) for LCFAs; palmitic acid, stearic acid, oleic acid, linoleic acid and arachidonic acid. Results LCFA methyl esters were eluted and identified based on their respective physiochemical characteristics of GCMS assay with inter assay coefficient of variation percentage (CV%, 1.81–5.28%), limits of quantification and limit of detection values (2.021–11.402 mg/mL and 1.016–4.430 mg/mL) respectively. Correlation analysis of liver and plasma lipids of the mice groups yielded coefficients (r=0.96, 0.6, 0.8 and 0.33) with fatty acid percentage total of (16%, 10%, 16% and 58%) for the P, C, A and B groups respectively. Conclusion The sustained consumption of a diet rich in oxidized linoleic acid disrupted fatty acid metabolism. The intake also resulted in elevated concentration of LCFAs that are precursors of bioactive metabolite molecule.
Collapse
Affiliation(s)
- Chinedu C. Ochin
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Thomas Wilson
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Mahdi Garelnabi
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| |
Collapse
|
41
|
Wiśniewska A, Stachowicz A, Kuś K, Ulatowska-Białas M, Totoń-Żurańska J, Kiepura A, Stachyra K, Suski M, Gajda M, Jawień J, Olszanecki R. Inhibition of Atherosclerosis and Liver Steatosis by Agmatine in Western Diet-Fed apoE-Knockout Mice Is Associated with Decrease in Hepatic De Novo Lipogenesis and Reduction in Plasma Triglyceride/High-Density Lipoprotein Cholesterol Ratio. Int J Mol Sci 2021; 22:ijms221910688. [PMID: 34639029 PMCID: PMC8509476 DOI: 10.3390/ijms221910688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis and NAFLD are the leading causes of death worldwide. The hallmark of NAFLD is triglyceride accumulation caused by an imbalance between lipogenesis de novo and fatty acid oxidation. Agmatine, an endogenous metabolite of arginine, exerts a protective effect on mitochondria and can modulate fatty acid metabolism. In the present study, we investigate the influence of agmatine on the progression of atherosclerotic lesions and the development of hepatic steatosis in apoE−/− mice fed with a Western high-fat diet, with a particular focus on its effects on the DNL pathway in the liver. We have proved that treatment of agmatine inhibits the progression of atherosclerosis and attenuates hepatic steatosis in apoE−/− mice on a Western diet. Such effects are associated with decreased total macrophage content in atherosclerotic plaque as well as a decrease in the TG levels and the TG/HDL ratio in plasma. Agmatine also reduced TG accumulation in the liver and decreased the expression of hepatic genes and proteins involved in lipogenesis de novo such as SREBP-1c, FASN and SCD1. In conclusion, agmatine may present therapeutic potential for the treatment of atherosclerosis and fatty liver disease. However, an exact understanding of the mechanisms of the advantageous actions of agmatine requires further study.
Collapse
Affiliation(s)
- Anna Wiśniewska
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (A.W.); (A.S.); (K.K.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (J.J.)
| | - Aneta Stachowicz
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (A.W.); (A.S.); (K.K.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (J.J.)
| | - Katarzyna Kuś
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (A.W.); (A.S.); (K.K.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (J.J.)
| | | | - Justyna Totoń-Żurańska
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (A.W.); (A.S.); (K.K.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (J.J.)
| | - Anna Kiepura
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (A.W.); (A.S.); (K.K.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (J.J.)
| | - Kamila Stachyra
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (A.W.); (A.S.); (K.K.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (J.J.)
| | - Maciej Suski
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (A.W.); (A.S.); (K.K.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (J.J.)
| | - Mariusz Gajda
- Department of Histology, Jagiellonian University Medical College, 31-034 Cracow, Poland;
| | - Jacek Jawień
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (A.W.); (A.S.); (K.K.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (J.J.)
| | - Rafał Olszanecki
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (A.W.); (A.S.); (K.K.); (J.T.-Ż.); (A.K.); (K.S.); (M.S.); (J.J.)
- Correspondence: ; Tel.: +48-12-421-1168
| |
Collapse
|
42
|
Zhou N, Du S, Dai Y, Yang F, Li X. ω3PUFAs improve hepatic steatosis in postnatal overfed rats and HepG2 cells by inhibiting acetyl-CoA carboxylase. Food Sci Nutr 2021; 9:5153-5165. [PMID: 34532024 PMCID: PMC8441356 DOI: 10.1002/fsn3.2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/14/2021] [Accepted: 07/07/2021] [Indexed: 11/18/2022] Open
Abstract
Postnatal overfeeding can lead to persistent increases in hepatic lipid synthesis and the risk of nonalcoholic fatty liver disease (NAFLD) in adulthood. The ω3 polyunsaturated fatty acids (ω3PUFAs) exhibit beneficial effects on NAFLD. Here, we employed a rat model and an in vitro HepG2 cell model to investigate whether fish oil (FO) affects hepatic lipid synthesis due to postnatal overfeeding. Male Sprague-Dawley were divided into litter sizes of three (small litters, SLs) or 10 (normal litters, NLs) on postnatal day 3 and were fed standard chow or FO diet beginning on postnatal week 3 to generate NL, SL, NL-FO, and SL-FO groups. The results indicated that the FO diet reduced the postnatal overfeeding-induced body weight gain and NAFLD characteristics (such as serum and liver triglyceride (TG) and hepatic steatosis). In addition, FO restored the expression of hepatic lipid metabolism-related genes (including SCD1, FASN, CPT1, LPL, ACC, and SREBP-1c) in SL-FO rats. Specifically, the activity and expression pattern of ACC were consistent with SREBP-1c. Furthermore, HepG2 cells were treated with oleic acid (OA), followed by eicosapentenoic acid (EPA), with or without SREBP-1c siRNA. The cellular lipid droplets, TG content, and the expression of ACC (by 75%) and SREBP-1c (by 45%) were increased by OA stimulation (p < .05), which was inhibited by EPA treatment. However, the effect of EPA treatment was abolished when SREBP-1c was silenced. In conclusion, ω3PUFAs-rich diet may be an effective way to reverse the developmental programming of hepatic lipid synthesis, at least partially, by inhibiting ACC through modulating SREBP-1c.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Child Health CareChildren’s Hospital of Nanjing Medical UniversityNanjingChina
| | - Susu Du
- Department of Child Health CareChildren’s Hospital of Nanjing Medical UniversityNanjingChina
| | - Yanyan Dai
- Department of Child Health CareChildren’s Hospital of Nanjing Medical UniversityNanjingChina
| | - Fan Yang
- Department of Child Health CareChildren’s Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiaonan Li
- Department of Child Health CareChildren’s Hospital of Nanjing Medical UniversityNanjingChina
- Institute of Pediatric ResearchNanjing Medical UniversityNanjingChina
| |
Collapse
|
43
|
Behl T, Sehgal A, Grover M, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Aleya L, Bungau S. Uncurtaining the pivotal role of ABC transporters in diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41533-41551. [PMID: 34085197 DOI: 10.1007/s11356-021-14675-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The metabolic disorders are the edge points for the initiation of various diseases. These disorders comprised of several diseases including diabetes, obesity, and cardiovascular complications. Worldwide, the prevalence of these disorders is increasing day by day. The world's population is at higher threat of developing metabolic disease, especially diabetes. Therefore, there is an impregnable necessity of searching for a newer therapeutic target to reduce the burden of these disorders. Diabetes mellitus (DM) is marked with the dysregulated insulin secretion and resistance. The lipid and glucose transporters portray a pivotal role in the metabolism and transport of both of these. The excess production of lipid and glucose and decreased clearance of these leads to the emergence of DM. The ATP-binding cassette transporters (ABCT) are important for the metabolism of glucose and lipid. Various studies suggest the key involvement of ABCT in the pathologic process of different diseases. In addition, the involvement of other pathways, including IGF signaling, P13-Akt/PKC/MAPK signaling, and GLP-1 via regulation of ABCT, may help develop new treatment strategies to cope with insulin resistance dysregulated glucose metabolism, key features in DM.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Madhuri Grover
- BS Anangpuria Institute of Pharmacy, Faridabad, Haryana, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
44
|
Luo H, Zhao M, Feng X, Gao X, Hong M, Liu M, Li Y, Liu W, Liu Y, Yu C, Cao Y, Yang X, Fang Z, Zhang P. Decreased plasma n6 : n3 polyunsaturated fatty acids ratio interacting with high C-peptide promotes non-alcoholic fatty liver disease in type 2 diabetes patients. J Diabetes Investig 2021; 12:1263-1271. [PMID: 33244871 PMCID: PMC8264392 DOI: 10.1111/jdi.13469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
AIMS/INTRODUCTION To explore relationships between polyunsaturated fatty acids (PUFA) and non-alcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes, and whether insulin action has an interactive effect with PUFA on NAFLD progression. MATERIALS AND METHODS We extracted clinical and omics data of 482 type 2 diabetes patients from a tertiary hospital consecutively from April 2018 to April 2019. NAFLD was estimated by ultrasound at admission. Plasma fasting n3 and n6 fatty acids were quantified by liquid chromatography-tandem mass spectrometry analysis. Restricted cubic spline nested in binary logistic regression was used to select the cut-off point, and estimate odds ratios and 95% confidence intervals. Additive interactions of the n6 : n3 ratio with insulin action for NAFLD were estimated using relative excess risk due to interaction, attributable proportion due to interaction and synergy index. Relative excess risk due to interaction >0, attributable proportion due to interaction >0 or synergy index >1 indicates biological interaction. Spearman correlation analysis was used to obtain partial correlation coefficients between PUFA and hallmarks of NAFLD. RESULTS Of 482 patients, 313 were with and 169 were without NAFLD. N3 ≥800 and n6 PUFA ≥8,100 μmol/L were independently associated with increased NAFLD risk; n6 : n3 ratio ≤10 was associated with NAFLD (odds ratio 1.80, 95% confidence interval 1.20-2.71), and the effect size was amplified by high C-peptide (odds ratio 8.89, 95% confidence interval 4.48-17.7) with significant interaction. The additive interaction of the n6 : n3 ratio and fasting insulin was not significant. CONCLUSION Decreased n6 : n3 ratio was associated with increased NAFLD risk in type 2 diabetes patients, and the effect was only significant and amplified when there was the co-presence of high C-peptide.
Collapse
Affiliation(s)
- Hui‐Huan Luo
- Department of EndocrinologyThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Toxicology and Sanitary ChemistrySchool of Public HealthTianjin Medical UniversityTianjinChina
| | - Meng‐Di Zhao
- Department of EndocrinologyThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xiao‐Fei Feng
- Department of Toxicology and Sanitary ChemistrySchool of Public HealthTianjin Medical UniversityTianjinChina
| | - Xiao‐Qian Gao
- Department of Toxicology and Sanitary ChemistrySchool of Public HealthTianjin Medical UniversityTianjinChina
| | - Mo Hong
- RSKT Biopharma IncDalianLiaoningChina
| | | | - Yan‐Ping Li
- Department of EndocrinologyThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Wan‐Qiu Liu
- Department of EndocrinologyThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yu‐Mo Liu
- Department of EndocrinologyThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Cheng‐Cheng Yu
- Department of EndocrinologyThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yun‐Feng Cao
- RSKT Biopharma IncDalianLiaoningChina
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesBeijingChina
| | - Xi‐Lin Yang
- Department of Epidemiology and BiostatisticsSchool of Public HealthTianjin Medical UniversityTianjinChina
| | - Zhong‐Ze Fang
- Department of Toxicology and Sanitary ChemistrySchool of Public HealthTianjin Medical UniversityTianjinChina
| | - Ping Zhang
- Department of EndocrinologyThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
45
|
Combination Treatment of Arazyme and Soy Leaf Extract Attenuates Hyperglycemia and Hepatic Steatosis in High-Fat Diet-Fed C57BL/6J Mice. Life (Basel) 2021; 11:life11070645. [PMID: 34357017 PMCID: PMC8304291 DOI: 10.3390/life11070645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Arazyme and extracts of soy leaves (ESLs) are used as ingredients for functional foods; however, their combined administration has not been studied. This study assessed the combined effect of Arazyme and ESLs in high-fat-diet (HFD)-induced obese C57BL/6J mice fed 2 mg/kg Arazyme, 50 mg/kg ESLs, or a combination of 2 mg/kg Arazyme and 50 mg/kg ESLs by oral gavage for 13 weeks. Individually, Arazyme and ESLs had no effect on the HFD-induced phenotypes. The combination of Arazyme and ESLs significantly suppressed body weight gain, improved glucose and insulin tolerance, and suppressed hepatic steatosis by reducing lipid synthesis and enhancing lipid utilization gene expression. Furthermore, the combination significantly reduced HFD-induced plasma bile acid reabsorption by suppressing bile acid transporter expression, including the ATP biding cassette subfamily B member 11 (Abcb11), solute carrier family 10 member 1 (Slc10a1), Slc10a2, Slc51a, and Slc51b in the liver and gut. Moreover, the combination of Arazyme and ESLs significantly prevented HFD-induced islet compensation in the pancreas. These results suggest that the incorporation of Arazyme combined with ESLs reduces HFD-induced body weight, hyperglycemia, and hepatic steatosis by regulating liver–gut bile acid circulation in HFD-fed mice. This combination can markedly reduce treatment doses and enhance their therapeutic effects, thereby reducing therapeutic healthcare costs.
Collapse
|
46
|
Bruinstroop E, Zhou J, Tripathi M, Yau WW, Boelen A, Singh BK, Yen PM. Early induction of hepatic deiodinase type 1 inhibits hepatosteatosis during NAFLD progression. Mol Metab 2021; 53:101266. [PMID: 34098145 PMCID: PMC8237360 DOI: 10.1016/j.molmet.2021.101266] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD) comprises a spectrum ranging from hepatosteatosis to progressive nonalcoholic steatohepatitis that can lead to cirrhosis. Humans with low levels of prohormone thyroxine (T4) have a higher incidence of NAFLD, and thyroid hormone treatment is very promising in all patients with NAFLD. Deiodinase type 1 (Dio1) is a hepatic enzyme that converts T4 to the bioactive T3 and therefore regulates thyroid hormone availability within hepatocytes. We investigated the role of this intrahepatic regulation during the progression of NAFLD. METHODS We investigated hepatic thyroid hormone metabolism in two NAFLD models: wild-type mice fed a Western diet with fructose and Leprdb mice fed a methionine- and choline-deficient diet. AAV8-mediated liver-specific Dio1 knockdown was employed to investigate the role of Dio1 during the progression of NAFLD. Intrahepatic thyroid hormone levels, deiodinase activity, and metabolic parameters were measured. RESULTS Dio1 expression and activity were increased in the early stages of NAFLD and were associated with an increased T3/T4 ratio. Prevention of this increase by AAV8-mediated liver-specific Dio1 knockdown increased hepatic triglycerides and cholesterol and decreased the pACC/ACC ratio and acylcarnitine levels, suggesting there was lower β-oxidation. Dio1 siRNA KD in hepatic cells treated with fatty acids showed increased lipid accumulation and decreased oxidative phosphorylation. CONCLUSION Hepatic Dio1 gene expression was modulated by dietary conditions, was increased during hepatosteatosis and early NASH, and regulated hepatic triglyceride content. These early adaptations likely represent compensatory mechanisms that reduce hepatosteatosis and prevent NASH progression.
Collapse
Affiliation(s)
- Eveline Bruinstroop
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Department of Endocrinology & Metabolism, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| | - Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Madhulika Tripathi
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Winifred W Yau
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Anita Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Brijesh Kumar Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Duke Molecular Physiology Institute, Duke University School of Medicine, 300 N Duke St, Durham, NC 27701, USA; Endocrinology, Diabetes, and Metabolism Division, Duke University School of Medicine, 300 N Duke St, Durham, NC 27701, USA
| |
Collapse
|
47
|
Hamilton MC, Heintz MM, Pfohl M, Marques E, Ford L, Slitt AL, Baldwin WS. Increased toxicity and retention of perflourooctane sulfonate (PFOS) in humanized CYP2B6-Transgenic mice compared to Cyp2b-null mice is relieved by a high-fat diet (HFD). Food Chem Toxicol 2021; 152:112175. [PMID: 33838175 PMCID: PMC8154739 DOI: 10.1016/j.fct.2021.112175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 01/11/2023]
Abstract
PFOS is a persistent, fluorosurfactant used in multiple products. Murine Cyp2b's are induced by PFOS and high-fat diets (HFD) and therefore we hypothesized that human CYP2B6 may alleviate PFOS-induced steatosis. Cyp2b-null and hCYP2B6-Tg mice were treated with 0, 1, or 10 mg/kg/day PFOS by oral gavage for 21-days while provided a chow diet (ND) or HFD. Similar to murine Cyp2b10, CYP2B6 is inducible by PFOS. Furthermore, three ND-fed hCYP2B6-Tg females treated with 10 mg/kg/day PFOS died during the exposure period; neither Cyp2b-null nor HFD-fed mice died. hCYP2B6-Tg mice retained more PFOS in serum and liver than Cyp2b-null mice presumably causing the observed toxicity. In contrast, serum PFOS retention was reduced in the HFD-fed hCYP2B6-Tg mice; the opposite trend observed in HFD-fed Cyp2b-null mice. Hepatotoxicity biomarkers, ALT and ALP, were higher in PFOS-treated mice and repressed by a HFD. However, PFOS combined with a HFD exacerbated steatosis in all mice, especially in the hCYP2B6-Tg mice with significant disruption of key lipid metabolism genes such as Srebp1, Pparg, and Hmgcr. In conclusion, CYP2B6 is induced by PFOS but does not alleviate PFOS toxicity presumably due to increased retention. CYP2B6 protects from PFOS-mediated steatosis in ND-fed mice, but increases steatosis when co-treated with a HFD.
Collapse
Affiliation(s)
- Matthew C Hamilton
- Environmental Toxicology Program, Clemson University, Clemson, SC, 29634, USA
| | - Melissa M Heintz
- Environmental Toxicology Program, Clemson University, Clemson, SC, 29634, USA
| | - Marisa Pfohl
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Emily Marques
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Lucie Ford
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Angela L Slitt
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - William S Baldwin
- Environmental Toxicology Program, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
48
|
Gonzalez-Soto M, Mutch DM. Diet Regulation of Long-Chain PUFA Synthesis: Role of Macronutrients, Micronutrients, and Polyphenols on Δ-5/Δ-6 Desaturases and Elongases 2/5. Adv Nutr 2021; 12:980-994. [PMID: 33186986 PMCID: PMC8166571 DOI: 10.1093/advances/nmaa142] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/04/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023] Open
Abstract
Deficiencies in the n-3 (ω-3) long-chain PUFAs (LC-PUFAs) EPA and DHA are associated with increased risk for the development of numerous diseases. Although n-3 LC-PUFAs can be obtained by consuming marine products, they are also synthesized endogenously through a biochemical pathway regulated by the Δ-5/Δ-6 desaturase and elongase 2/5 enzymes. This narrative review collates evidence from the past 40 y demonstrating that mRNA expression and activity of desaturase and elongase enzymes are influenced by numerous dietary components, including macronutrients, micronutrients, and polyphenols. Specifically, we highlight that both the quantity and the composition of dietary fats, carbohydrates, and proteins can differentially regulate desaturase pathway activity. Furthermore, desaturase and elongase mRNA levels and enzyme activities are also influenced by micronutrients (folate, vitamin B-12, vitamin A), trace minerals (iron, zinc), and polyphenols (resveratrol, isoflavones). Understanding how these various dietary components influence LC-PUFA synthesis will help further advance our understanding of how dietary patterns, ranging from caloric excesses to micronutrient deficiencies, influence disease risks.
Collapse
Affiliation(s)
- Melissa Gonzalez-Soto
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
49
|
Cui P, Hu W, Ma T, Hu M, Tong X, Zhang F, Shi J, Xu X, Li X, Shao LR, Billig H, Feng Y. Long-term androgen excess induces insulin resistance and non-alcoholic fatty liver disease in PCOS-like rats. J Steroid Biochem Mol Biol 2021; 208:105829. [PMID: 33513383 DOI: 10.1016/j.jsbmb.2021.105829] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Women with polycystic ovary syndrome (PCOS) are at higher risk for metabolic disorders compared to healthy women, and about 51 % of women with PCOS suffer from non-alcoholic fatty liver disease (NAFLD). Investigation into the pathological mechanism behind this association will provide insights for the prevention and treatment of this complication. METHODS Dihydrotestosterone (DHT), a nonaromatic androgen, was used to mimic the pathological conditions of hyperandrogenism and insulin resistance. Hematoxylin and eosin staining, Oil Red O staining, immunofluorescent staining, Western blots, and qRT-PCR were used to verify the hepatic steatosis and inflammation, and the latter two methods were also used for energy and mitochondrion-related assays. ELISA was used to measure the level of reactive oxygen species. RESULTS Twelve weeks of DHT exposure led to obesity and insulin resistance as well as hepatic steatosis, lipid deposition, and different degrees of inflammation. The expression of molecules involved in respiratory chain and aerobic respiration processes, such as electron transfer complex II, pyruvate dehydrogenase, and succinate dehydrogenase complex subunit A, was inhibited. In addition, molecules associated with apoptosis and autophagy were also abnormally expressed, such as increased Bak mRNA, an increased activated caspase-3 to caspase-3 ratio, and increased Atg12 protein expression. All of these changes are associated with the mitochondria and lead to lipid deposition and inflammation in the liver. CONCLUSIONS Long-term androgen excess contributes to insulin resistance and hepatic steatosis by affecting mitochondrial function and causing an imbalance in apoptosis and autophagy, thus suggesting the pathogenesis of NAFLD in women with PCOS.
Collapse
Affiliation(s)
- Peng Cui
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China; Department of Obstetrics and Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China; Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Wei Hu
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Tong Ma
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Min Hu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden; Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Xiaoyu Tong
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Feifei Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011, Shanghai, China
| | - Jiemei Shi
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Xiaoqing Xu
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Xin Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden; Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011, Shanghai, China
| | - Linus Ruijin Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden.
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
50
|
Ma S, Zhou B, Yang Q, Pan Y, Yang W, Freedland SJ, Ding LW, Freeman MR, Breunig JJ, Bhowmick NA, Pan J, Koeffler HP, Lin DC. A Transcriptional Regulatory Loop of Master Regulator Transcription Factors, PPARG, and Fatty Acid Synthesis Promotes Esophageal Adenocarcinoma. Cancer Res 2021; 81:1216-1229. [PMID: 33402390 PMCID: PMC8026506 DOI: 10.1158/0008-5472.can-20-0652] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/21/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022]
Abstract
Although obesity is one of the strongest risk factors for esophageal adenocarcinoma, the molecular mechanisms underlying this association remain unclear. We recently identified four esophageal adenocarcinoma-specific master regulator transcription factors (MRTF) ELF3, KLF5, GATA6, and EHF. In this study, gene-set enrichment analysis of both esophageal adenocarcinoma patient samples and cell line models unbiasedly underscores fatty acid synthesis as the central pathway downstream of three MRTFs (ELF3, KLF5, GATA6). Further characterizations unexpectedly identified a transcriptional feedback loop between MRTF and fatty acid synthesis, which mutually activated each other through the nuclear receptor, PPARG. MRTFs cooperatively promoted PPARG transcription by directly regulating its promoter and a distal esophageal adenocarcinoma-specific enhancer, leading to PPARG overexpression in esophageal adenocarcinoma. PPARG was also elevated in Barrett's esophagus, a recognized precursor to esophageal adenocarcinoma, implying that PPARG might play a role in the intestinal metaplasia of esophageal squamous epithelium. Upregulation of PPARG increased de novo synthesis of fatty acids, phospholipids, and sphingolipids as revealed by mass spectrometry-based lipidomics. Moreover, ChIP-seq, 4C-seq, and a high-fat diet murine model together characterized a novel, noncanonical, and cancer-specific function of PPARG in esophageal adenocarcinoma. PPARG directly regulated the ELF3 super-enhancer, subsequently activating the transcription of other MRTFs through an interconnected regulatory circuitry. Together, elucidation of this novel transcriptional feedback loop of MRTF/PPARG/fatty acid synthesis advances our understanding of the mechanistic foundation for epigenomic dysregulation and metabolic alterations in esophageal adenocarcinoma. More importantly, this work identifies a potential avenue for prevention and early intervention of esophageal adenocarcinoma by blocking this feedback loop. SIGNIFICANCE: These findings elucidate a transcriptional feedback loop linking epigenomic dysregulation and metabolic alterations in esophageal adenocarcinoma, indicating that blocking this feedback loop could be a potential therapeutic strategy in high-risk individuals.
Collapse
Affiliation(s)
- Sai Ma
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Bo Zhou
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Qian Yang
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yunzhi Pan
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Wei Yang
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephen J Freedland
- Division of Urology, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, USA and the Durham VA Medical Center, Durham, North Carolina
| | - Ling-Wen Ding
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael R Freeman
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Joshua J Breunig
- Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Neil A Bhowmick
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jian Pan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - H Phillip Koeffler
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - De-Chen Lin
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|