1
|
Abu-Alghayth MH, Abalkhail A, Hazazi A, Alyahyawi Y, Abdulaziz O, Alsharif A, Nassar SA, Omar BIA, Alqahtani SF, Shmrany HA, Khan FR. MicroRNAs and long non-coding RNAs In T-cell lymphoma: Mechanisms, pathway, therapeutic opportunities. Pathol Res Pract 2024; 266:155769. [PMID: 39740285 DOI: 10.1016/j.prp.2024.155769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
T-cell lymphomas represent non-Hodgkin lymphomas distinguished by the uncontrolled proliferation of malignant T lymphocytes. Classifying these neoplasms and the ongoing investigation of their underlying biological mechanisms remains challenging. Significant subtypes encompass peripheral T-cell lymphomas, anaplastic large-cell lymphomas, cutaneous T-cell lymphomas, and adult T-cell leukemia/lymphoma. A systematic literature survey used electronic databases, including PubMed, Springer Link, Google Scholar, and Web of Science. Search keywords included "T-cell lymphoma," "therapeutic approaches," "RNA therapeutics," "microRNA," and "signaling pathways". T-cell lymphomas are believed to arise from a complex interplay of genetic predispositions and environmental factors. Epstein-Barr virus (EBV) and Human T-cell leukemia virus-1 (HTLV-1), have been implicated as potential etiologic agents. While the exact molecular mechanisms are under investigation, T-cell lymphomas are distinguished by aberrant proliferation of T-cells resulting from dysregulated gene expression. Contemporary research has emphasized the significance of non-coding RNAs, including microRNAs and long non-coding RNAs, in the etiology and advancement of T-cell lymphomas. Certain miRNAs function as tumor suppressors (e.g., miR-451, miR-31, miR-150, miR-29a), while others can act as oncogenes (e.g., miR-223, miR-17-92, miR-155). Additionally, lcRNAs are responsible for modulating gene expression, and their influence on T-cell function suggests their potential outcome as therapeutic targets. Current therapeutic strategies for T-cell lymphomas predominantly rely on chemotherapy, with emerging modalities encompassing immunotherapy and targeted therapies. Despite these advancements, a substantial subset of T-cell lymphomas remains challenging to manage, especially those in advanced stages or refractory to conventional treatments. RNA-based therapeutics represent a promising strategy, offering many advantages such as targeted therapy, potential for personalized medicine, reduced side effects, rapid development, and synergy with other therapies while facing challenges in delivery, immune response, and specificity. Future research should focus on improving delivery systems, modulating immune responses, and optimizing production to unlock its full potential. This review comprehensively explored T-cell lymphomas, delving into their classification, pathogenesis, and existing therapeutic options. Additionally, we explore the evolving function of non-coding RNAs in the pathogenesis of T-cell lymphoma. Furthermore, we discuss the potential of RNA-based therapeutics as a promising treatment strategy.
Collapse
Affiliation(s)
- Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia.
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia.
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Yara Alyahyawi
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Somia A Nassar
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt.
| | - Bashir Ibrahim A Omar
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Sultan F Alqahtani
- Laboratory Department, Aliman General Hospital, Riyadh 13782, Saudi Arabia.
| | - Humood Al Shmrany
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Farhan R Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Deo AS, Shrijana, S U S, Karun S, Bisaria K, Sarkar K. Participation of T cells in generating immune protection against cancers. Pathol Res Pract 2024; 262:155534. [PMID: 39180801 DOI: 10.1016/j.prp.2024.155534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
T cells are essential to the immune system's reaction. The major job of the immune system is to identify and get rid of any abnormal or malignant cells in the body. White blood cells called T cells coordinate and carry out immunological responses, including identifying and eliminating cancer cells. It mostly consists of two types called helper T-cells and cytotoxic T-cells. Together, they create an efficient reaction against cancer. Both the primary T cell subtype - CD4+ and CD8+ Tcells have specific role to play in our immune system.CD4+ T cells are limited to MHC-II molecules and acts as helper cell by activating and enhancing other immune cells. On the other side CD8+ T cells are called the killer cells as they eradicate the abnormal and contaminated cells and are limited to MHC-I molecules. The malignant cells are destroyed when cytotoxic T cells come into direct contact with them. This happens via number of processes, including TCR recognition, the release of cytotoxic chemicals, and finally the activation of the immune system. T cell receptors on the surface of cytotoxic T cells allow them to identify tumour cells and these T cells release harmful chemicals like perforins and granzymes when they connect to malignant cells. T-cells that have been stimulated release cytokines such as gamma interferon. T-cells can also acquire memory responses that improve their capacity for recognition and response. Helper T-cells contribute to the development of an immune response. It entails coordination and activation as well as the enlistment of additional immune cells, including macrophages and natural killer cells, to assist in the eradication of cancer cells. Despite the fact that the cancer frequently creates defence systems to circumvent their immune response. Together, these activities support the immune surveillance and T-cell-mediated regulation of cancer cells. Treatments like chemotherapy, radiation, and surgery are main ways to treat cancer but immunotherapy has been emerging since last few decades. These immune specific treatments have shown huge positive result. CAR T cell therapy is a promising weapon to fight again blood cancer and it works by focusing on our immune system to fight and eliminate cancer.
Collapse
Affiliation(s)
- Anisha Singha Deo
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Shrijana
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sruthika S U
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Shreya Karun
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kashish Bisaria
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
3
|
Irimia R, Piccaluga PP. Histone Deacetylase Inhibitors for Peripheral T-Cell Lymphomas. Cancers (Basel) 2024; 16:3359. [PMID: 39409979 PMCID: PMC11482620 DOI: 10.3390/cancers16193359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Histone deacetylase inhibitors (HDACis) are being recognized as a potentially effective treatment approach for peripheral T-cell lymphomas (PTCLs), a heterogeneous group of aggressive malignancies with an unfavorable prognosis. Recent evidence has shown that HDACis are effective in treating PTCL, especially in cases where the disease has relapsed or is resistant to conventional treatments. Several clinical trials have demonstrated that HDACis, such as romidepsin and belinostat, can elicit long-lasting positive outcomes in individuals with PTCLs, either when used alone or in conjunction with conventional chemotherapy. They exert their anti-tumor effects by regulating gene expression through the inhibition of histone deacetylases, which leads to cell cycle arrest, induction of programmed cell death, and,the transformation of cancerous T cells, as demonstrated by gene expression profile studies. Importantly, besides clinical trials, real-world evidence indicated that the utilization of HDACis presents a significant and beneficial treatment choice for PTCLs. However, although HDACis showed potential effectiveness, they could not cure most patients. Therefore, new combinations with conventional drugs as well as new targeted agents are under investigation.
Collapse
Affiliation(s)
- Ruxandra Irimia
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, 030167 Bucharest, Romania;
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Pier Paolo Piccaluga
- Department of Medical and Surgical Sciences, School of Medicine, University of Bologna, 40138 Bologna, Italy
- Biobank of Research, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Institute of Hematology and Medical Oncology “L&A Seràgnoli”, 40138 Bologna, Italy
| |
Collapse
|
4
|
Lu X, Wang S, Hua X, Chen X, Zhan M, Hu Q, Cao L, Wu Z, Zhang W, Zuo X, Gui R, Fan L, Li J, Shi W, Jin H. Targeting the cGAS-STING Pathway Inhibits Peripheral T-cell Lymphoma Progression and Enhances the Chemotherapeutic Efficacy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306092. [PMID: 38145335 PMCID: PMC10933671 DOI: 10.1002/advs.202306092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/01/2023] [Indexed: 12/26/2023]
Abstract
Peripheral T-cell lymphoma (PTCL) is a highly heterogeneous group of mature T-cell malignancies. The efficacy of current first-line treatment is dismal, and novel agents are urgently needed to improve patient outcomes. A close association between the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway and tumor promotion exists, revealing prospective therapeutic targets. This study, investigates the role of the cGAS-STING pathway and its underlying mechanisms in PTCL progression. Single-cell RNA sequencing showes that the cGAS-STING pathway is highly expressed and closely associated with PTCL proliferation. cGAS inhibition suppresses tumor growth and impaires DNA damage repair. Moreover, Cdc2-like kinase 1 (CLK1) is critical for residual tumor cell survival after treatment with cGAS inhibitors, and CLK1 suppression enhances sensitivity to cGAS inhibitors. Single-cell dynamic transcriptomic analysis indicates reduced proliferation-associated nascent RNAs as the underlying mechanism. In first-line therapy, chemotherapy-triggered DNA damage activates the cGAS-STING pathway, and cGAS inhibitors can synergize with chemotherapeutic agents to kill tumors. The cGAS-STING pathway is oncogenic in PTCL, whereas targeting cGAS suppresses tumor growth, and CLK1 may be a sensitivity indicator for cGAS inhibitors. These findings provide a theoretical foundation for optimizing therapeutic strategies for PTCL, especially in patients with relapsed/refractory disease.
Collapse
Affiliation(s)
- Xueying Lu
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Shunan Wang
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Xin Hua
- Department of OncologyAffiliated Hospital of Nantong UniversityNantong226001China
| | - Xiao Chen
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Mengtao Zhan
- Nanjing Aoyin Biotechnology Company LimitedNanjing210043China
| | - Qiaoyun Hu
- Singleron BiotechnologiesNanjing211899China
| | - Lei Cao
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
- Nanjing Pukou Central HospitalPuKou Branch Hospital of Jiangsu Province HospitalNanjing211800China
| | - Zijuan Wu
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Wei Zhang
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Xiaoling Zuo
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Renfu Gui
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Lei Fan
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Jianyong Li
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Wenyu Shi
- Department of OncologyAffiliated Hospital of Nantong UniversityNantong226001China
| | - Hui Jin
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| |
Collapse
|
5
|
Yadav M, Uikey BN, Rathore SS, Gupta P, Kashyap D, Kumar C, Shukla D, Vijayamahantesh, Chandel AS, Ahirwar B, Singh AK, Suman SS, Priyadarshi A, Amit A. Role of cytokine in malignant T-cell metabolism and subsequent alternation in T-cell tumor microenvironment. Front Oncol 2023; 13:1235711. [PMID: 37746258 PMCID: PMC10513393 DOI: 10.3389/fonc.2023.1235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
T cells are an important component of adaptive immunity and T-cell-derived lymphomas are very complex due to many functional sub-types and functional elasticity of T-cells. As with other tumors, tissues specific factors are crucial in the development of T-cell lymphomas. In addition to neoplastic cells, T- cell lymphomas consist of a tumor micro-environment composed of normal cells and stroma. Numerous studies established the qualitative and quantitative differences between the tumor microenvironment and normal cell surroundings. Interaction between the various component of the tumor microenvironment is crucial since tumor cells can change the microenvironment and vice versa. In normal T-cell development, T-cells must respond to various stimulants deferentially and during these courses of adaptation. T-cells undergo various metabolic alterations. From the stage of quiescence to attention of fully active form T-cells undergoes various stage in terms of metabolic activity. Predominantly quiescent T-cells have ATP-generating metabolism while during the proliferative stage, their metabolism tilted towards the growth-promoting pathways. In addition to this, a functionally different subset of T-cells requires to activate the different metabolic pathways, and consequently, this regulation of the metabolic pathway control activation and function of T-cells. So, it is obvious that dynamic, and well-regulated metabolic pathways are important for the normal functioning of T-cells and their interaction with the microenvironment. There are various cell signaling mechanisms of metabolism are involved in this regulation and more and more studies have suggested the involvement of additional signaling in the development of the overall metabolic phenotype of T cells. These important signaling mediators include cytokines and hormones. The impact and role of these mediators especially the cytokines on the interplay between T-cell metabolism and the interaction of T-cells with their micro-environments in the context of T-cells lymphomas are discussed in this review article.
Collapse
Affiliation(s)
- Megha Yadav
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Blessi N. Uikey
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Priyanka Gupta
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Diksha Kashyap
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Chanchal Kumar
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Vijayamahantesh
- Department of Immunology and Microbiology, University of Missouri, Columbia, SC, United States
| | - Arvind Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Bharti Ahirwar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Shashi Shekhar Suman
- Department of Zoology, Udayana Charya (UR) College, Lalit Narayan Mithila University, Darbhanga, India
| | - Amit Priyadarshi
- Department of Zoology, Veer Kunwar Singh University, Arrah, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|
6
|
Lu G, Jin S, Lin S, Gong Y, Zhang L, Yang J, Mou W, Du J. Update on histone deacetylase inhibitors in peripheral T-cell lymphoma (PTCL). Clin Epigenetics 2023; 15:124. [PMID: 37533111 PMCID: PMC10398948 DOI: 10.1186/s13148-023-01531-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are a group of highly aggressive malignancies with generally poor prognoses, and the first-line chemotherapy of PTCL has limited efficacy. Currently, several novel targeted agents, including histone deacetylase inhibitors (HDACis), have been investigated to improve the therapeutic outcome of PTCLs. Several HDACis, such as romidepsin, belinostat, and chidamide, have demonstrated favorable clinical efficacy and safety in PTCLs. More novel HDACis and new combination therapies are undergoing preclinical or clinical trials. Mutation analysis based on next-generation sequencing may advance our understanding of the correlation between epigenetic mutation profiles and relevant targeted therapies. Multitargeted HDACis and HDACi-based prodrugs hold promising futures and offer further directions for drug design.
Collapse
Affiliation(s)
- Guang Lu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, 257034, Shandong, People's Republic of China
| | - Shikai Jin
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Suwen Lin
- Clinical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong, People's Republic of China
| | - Yuping Gong
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Liwen Zhang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jingwen Yang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Weiwei Mou
- Department of Pediatrics, Shengli Oilfield Central Hospital, Dongying, 257034, Shandong, People's Republic of China.
| | - Jun Du
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
7
|
Zain J, Kallam A. Challenges in nodal peripheral T-cell lymphomas: from biological advances to clinical applicability. Front Oncol 2023; 13:1150715. [PMID: 37188189 PMCID: PMC10175673 DOI: 10.3389/fonc.2023.1150715] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/06/2023] [Indexed: 05/17/2023] Open
Abstract
T cell lymphomas are a heterogenous group with varying biological and clinical features that tend to have poor outcomes with a few exceptions. They account for 10-15% of all non-Hodgkin lymphomas (NHL), and 20% of aggressive NHL. There has been little change in the overall prognosis of T cell lymphomas over the last 2 decades. Most subtypes carry an inferior prognosis when compared to the B cell lymphomas, with a 5-year OS of 30%. Gene expression profiling and other molecular techniques has enabled a deeper understanding of these differences in the various subtypes as reflected in the latest 5th WHO and ICC classification of T cell lymphomas. It is becoming increasingly clear that therapeutic approaches that target specific cellular pathways are needed to improve the clinical outcomes of T cell lymphomas. This review will focus on nodal T cell lymphomas and describe novel treatments and their applicability to the various subtypes.
Collapse
Affiliation(s)
- Jasmine Zain
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| | | |
Collapse
|
8
|
Wang Y, Geng H, Li X, Chen P, Xu S, Zhang S, Weng P, Guo J, Huang M, Wu Y, Chen Y. A novel nomogram for predicting overall survival in peripheral T cell lymphoma patients.. [DOI: 10.21203/rs.3.rs-2823604/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Abstract
Background The prognosis of peripheral T cell lymphomas (PTCLs) varies greatly. This study aimed at generating a prognostic nomogram based on differentially expressed genes (DEGs).Methods Firstly, we collected RNA transcripts from Gene Expression Omnibus and identified DEGs. Secondly we used univariate Cox regression, Least absolute shrinkage and selection operator (LASSO) to screen the independent risk factors to construct nomogram in the training cohort. Thirdly, we evaluate its prediction accuracy via decision curves analysis (DCA), receiver operating characteristic (ROC) and calibration rate to confirm its performance on survival in training and validation cohort. Then we carried out subgroup analysis in training and validation to eliminate the effects of age, gender, and pathological subtype. Lastly, to verify feasibility of nomogram in practice, we applied immunohistochemistry to clinical samples and analyzed the relationship between IHC scores and prognosis.Results The 702 DEGs between 40 PTCLs and 20 non-tumor patients were identified. Then ANGPTL2, CPSF4, CLIC4 and OTUD6B were screened out as independent risk factors via univariate Cox regression and LASSO. The DCA, ROC, Harrell’s concordance index (c-index) and calibration rate showed nomogram predicting more accurately than any single specific transcript. The results showed PTCLs with higher nomogram-score had a longer survival, regardless of age, gender and pathological subtype. Finally, the high expression level of ANGPTL2, CPSF4 and OTUD6B related to poor prognosis. Higher expression of CLIC4 related to longer survival.Conclusion This nomogram showed the favorable clinical applicability, regardless of age, gender and pathological subtype.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Hai-Li Geng
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Xiao-Fan Li
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Ping Chen
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Shu-Juan Xu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Shu-Xia Zhang
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Ping Weng
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Jiang-Rui Guo
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Mei-Juan Huang
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Yong Wu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Yuan-Zhong Chen
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| |
Collapse
|
9
|
Weiss J, Reneau J, Wilcox RA. PTCL, NOS: An update on classification, risk-stratification, and treatment. Front Oncol 2023; 13:1101441. [PMID: 36845711 PMCID: PMC9947853 DOI: 10.3389/fonc.2023.1101441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
The peripheral T-cell lymphomas (PTCL) are relatively rare, heterogeneous, and therapeutically challenging. While significant therapeutic gains and improved understanding of disease pathogenesis have been realized for selected PTCL subtypes, the most common PTCL in North America remains "not otherwise specified (NOS)" and is an unmet need. However, improved understanding of the genetic landscape and ontogeny for the PTCL subtypes currently classified as PTCL, NOS have been realized, and have significant therapeutic implications, which will be reviewed here.
Collapse
Affiliation(s)
- Jonathan Weiss
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, United States
| | - John Reneau
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Ryan A. Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Zhao H, Chen Y, Liao YP, Chen HM, Yang QH, Xiao Y, Luo J, Chen ZZ, Yi L, Hu GY. Immunohistochemical evaluation and prognostic value of monocarboxylate transporter 1 (MCT1) and 4 (MCT4) in T-cell non-Hodgkin lymphoma. Clin Exp Med 2023; 23:55-64. [PMID: 35239073 DOI: 10.1007/s10238-022-00805-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/05/2022] [Indexed: 01/17/2023]
Abstract
Tumor cells often exhibit the Warburg effect, wherein, they preferentially undergo glycolysis over oxidative phosphorylation for energy production. Monocarboxylate transporter 1 (MCT1) and 4 (MCT4) are critical symporters mediating lactate efflux and preventing intracellular acidification during tumor growth. Numerous studies have focused on inhibiting MCT1 or MCT4 in various cancers. However, its role in T-cell lymphoma (TCL) is not yet investigated owing to the low incidence of TCL. This study was designed to investigate the expression of MCT1/MCT4 in patients with TCL and determine their prognostic value in this cancer. We performed immunohistochemistry to evaluate the expression level of MCT1/MCT4 in 38 TCL tissue samples and then compared their expression among different TCL subgroups, which were formed based on different clinical characteristics. Survival analysis was performed to evaluate the relationship between MCT1/MCT4 expression and both overall survival (OS) and progression-free survival (PFS). Our results revealed that MCT1 and MCT4 expression was significantly increased in TCL tissues compared to the control group. In addition, increased MCT1 expression associated with the female sex, advanced disease stage, increased serum LDH, Ki-67 at ≥ 50%, and intermediate or high-risk groups as categorized by the International Prognostic Index (IPI) score. We also found that increased MCT1 expression may be associated with reduced OS and PFS. In conclusion, MCT1 and MCT4 are overexpressed in patients with TCL and may predict poor prognosis. MCT1 inhibition might be a novel treatment strategy for TCL, and further preclinical trials are required.
Collapse
Affiliation(s)
- Hu Zhao
- XiangYa School of Medicine, Department of Hematology, Central South University, The Affiliated Zhuzhou Hospital, No.116 Changjiang South Road, Tianyuan District, Zhuzhou, Hunan, China
| | - Yuan Chen
- XiangYa School of Medicine, Department of Hematology, Central South University, The Affiliated Zhuzhou Hospital, No.116 Changjiang South Road, Tianyuan District, Zhuzhou, Hunan, China
| | - You-Ping Liao
- XiangYa School of Medicine, Department of Hematology, Central South University, The Affiliated Zhuzhou Hospital, No.116 Changjiang South Road, Tianyuan District, Zhuzhou, Hunan, China
| | - Hai-Mei Chen
- XiangYa School of Medicine, Department of Hematology, Central South University, The Affiliated Zhuzhou Hospital, No.116 Changjiang South Road, Tianyuan District, Zhuzhou, Hunan, China
| | - Qiu-Hong Yang
- XiangYa School of Medicine, Department of Hematology, Central South University, The Affiliated Zhuzhou Hospital, No.116 Changjiang South Road, Tianyuan District, Zhuzhou, Hunan, China
| | - Yin Xiao
- XiangYa School of Medicine, Department of Hematology, Central South University, The Affiliated Zhuzhou Hospital, No.116 Changjiang South Road, Tianyuan District, Zhuzhou, Hunan, China
| | - Jing Luo
- XiangYa School of Medicine, Department of Hematology, Central South University, The Affiliated Zhuzhou Hospital, No.116 Changjiang South Road, Tianyuan District, Zhuzhou, Hunan, China
| | - Zhen-Zhen Chen
- XiangYa School of Medicine, Department of Hematology, Central South University, The Affiliated Zhuzhou Hospital, No.116 Changjiang South Road, Tianyuan District, Zhuzhou, Hunan, China
| | - Lai Yi
- XiangYa School of Medicine, Department of Hematology, Central South University, The Affiliated Zhuzhou Hospital, No.116 Changjiang South Road, Tianyuan District, Zhuzhou, Hunan, China
| | - Guo-Yu Hu
- XiangYa School of Medicine, Department of Hematology, Central South University, The Affiliated Zhuzhou Hospital, No.116 Changjiang South Road, Tianyuan District, Zhuzhou, Hunan, China.
| |
Collapse
|
11
|
Shen D, Hong Y, Feng Z, Chen X, Cai Y, Peng Q, Tu J. Development of dynamical network biomarkers for regulation in Epstein-Barr virus positive peripheral T cell lymphoma unspecified type. Front Genet 2022; 13:966247. [PMID: 36544484 PMCID: PMC9760704 DOI: 10.3389/fgene.2022.966247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background: This study was performed to identify key regulatory network biomarkers including transcription factors (TFs), miRNAs and lncRNAs that may affect the oncogenesis of EBV positive PTCL-U. Methods: GSE34143 dataset was downloaded and analyzed to identify differentially expressed genes (DEGs) between EBV positive PTCL-U and normal samples. Gene ontology and pathway enrichment analyses were performed to illustrate the potential function of the DEGs. Then, key regulators including TFs, miRNAs and lncRNAs involved in EBV positive PTCL-U were identified by constructing TF-mRNA, lncRNA-miRNA-mRNA, and EBV encoded miRNA-mRNA regulatory networks. Results: A total of 96 DEGs were identified between EBV positive PTCL-U and normal tissues, which were related to immune responses, B cell receptor signaling pathway, chemokine activity. Pathway analysis indicated that the DEGs were mainly enriched in cytokine-cytokine receptor interaction and chemokine signaling pathway. Based on the TF network, hub TFs were identified regulate the target DEGs. Afterwards, a ceRNA network was constructed, in which miR-181(a/b/c/d) and lncRNA LINC01744 were found. According to the EBV-related miRNA regulatory network, CXCL10 and CXCL11 were found to be regulated by EBV-miR-BART1-3p and EBV-miR-BHRF1-3, respectively. By integrating the three networks, some key regulators were found and may serve as potential network biomarkers in the regulation of EBV positive PTCL-U. Conclusion: The network-based approach of the present study identified potential biomarkers including transcription factors, miRNAs, lncRNAs and EBV-related miRNAs involved in EBV positive PTCL-U, assisting us in understanding the molecular mechanisms that underlie the carcinogenesis and progression of EBV positive PTCL-U.
Collapse
Affiliation(s)
- Dan Shen
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Hong
- Department of Cardiothoracic Surgery, Suzhou BenQ Hospital, Suzhou, China
| | - Zhengyang Feng
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangying Chen
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxing Cai
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiliang Peng
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China,*Correspondence: Jian Tu, ; Qiliang Peng,
| | - Jian Tu
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China,*Correspondence: Jian Tu, ; Qiliang Peng,
| |
Collapse
|
12
|
Nicolae A, Bouilly J, Lara D, Fataccioli V, Lemonnier F, Drieux F, Parrens M, Robe C, Poullot E, Bisig B, Bossard C, Letourneau A, Missiaglia E, Bonnet C, Szablewski V, Traverse-Glehen A, Delfau-Larue MH, de Leval L, Gaulard P. Nodal cytotoxic peripheral T-cell lymphoma occurs frequently in the clinical setting of immunodysregulation and is associated with recurrent epigenetic alterations. Mod Pathol 2022; 35:1126-1136. [PMID: 35301414 DOI: 10.1038/s41379-022-01022-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/26/2022] [Indexed: 12/18/2022]
Abstract
Nodal peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS) with cytotoxic phenotype is overall rare, with most reports coming from Asia. Given its elusive pathobiology, we undertook a clinicopathological and molecular study of 54 Western patients diagnosed with PTCL, NOS expressing cytotoxic molecules, within a lymph node. More commonly males (M/F-2,6/1) with median age of 60 years were affected. Besides lymphadenopathy, 87% of patients had ≥1 involved extranodal site. High-stage disease (III-IV), International Prognostic Index >2, B symptoms, LDH level, and cytopenia(s) were observed in 92, 63, 67, 78, and 66% of cases, respectively. Ten patients had a history of B-cell malignancies, one each of myeloid neoplasm, breast or prostate cancer, and 4 others had underlying immune disorders. Most patients (70%) died, mostly of disease, with a median overall survival of 12.7 months. Immunophenotypically, the neoplastic lymphocytes were T-cell receptor (TCR) αβ + (47%), TCR-silent (44%) or TCRγδ+ (10%), commonly CD8 + (45%) or CD4-CD8- (32%). All except one had an activated cytotoxic profile, and 95% were subclassified into PTCL-TBX21 subtype based on CXCR3, TBX21, and GATA3 expression pattern. Seven patients (13%) disclosed EBER + tumor cells. Targeted DNA deep-sequencing (33 cases) and multiplex ligation-dependent reverse transcription-polymerase chain reaction assay (43 cases) identified frequent mutations in epigenetic modifiers (73%), including TET2 (61%) and DNMT3A (39%), recurrent alterations affecting the TCR (36%) and JAK/STAT (24%) signaling pathways and TP53 mutations (18%). Fusion transcripts involving VAV1 were identified in 6/43 patients (14%). Patients with nodal cytotoxic PTCL, NOS have an aggressive behavior and frequently present in a background of impaired immunity, although the association with Epstein-Barr virus is rare. The recurrent alterations in genes involved in DNA methylation together with genes related to cytokine or TCR signaling, suggest that co-operation of epigenetic modulation with cell-signaling pathways plays a critical role in the pathogeny of these lymphomas.
Collapse
Affiliation(s)
- Alina Nicolae
- Department of Pathology, Hautepierre, University Hospital Strasbourg, Strasbourg, France.,INSERM, IRFAC / UMR-S1113, ITI InnoVec, FHU ARRIMAGE, FMTS, University of Strasbourg, Strasbourg, France.,INSERM U955, Université Paris-Est, Créteil, France
| | - Justine Bouilly
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Diane Lara
- INSERM U955, Université Paris-Est, Créteil, France.,Service d'Hématologie, Centre Hospitalier Robert Boulin, Libourne, France
| | - Virginie Fataccioli
- INSERM U955, Université Paris-Est, Créteil, France.,Département de Pathologie, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
| | - François Lemonnier
- INSERM U955, Université Paris-Est, Créteil, France.,Unité Hémopathies lymphoïdes, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
| | - Fanny Drieux
- INSERM U1245, Centre Henri Becquerel, Rouen, France.,Service d'Anatomie et Cytologie Pathologiques, Centre Henri Becquerel, Rouen, France
| | - Marie Parrens
- Département de Pathologie, Hôpital Haut -Lévêque, Université de Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
| | - Cyrielle Robe
- INSERM U955, Université Paris-Est, Créteil, France.,Département de Pathologie, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
| | - Elsa Poullot
- INSERM U955, Université Paris-Est, Créteil, France.,Département de Pathologie, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
| | - Bettina Bisig
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Céline Bossard
- Service d'Anatomie et Cytologie Pathologiques, CHU de Nantes, Nantes, France
| | - Audrey Letourneau
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Edoardo Missiaglia
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | | | - Marie-Hélène Delfau-Larue
- INSERM U955, Université Paris-Est, Créteil, France.,Département d'Hématologie et Immunologie Biologique, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Philippe Gaulard
- INSERM U955, Université Paris-Est, Créteil, France. .,Département de Pathologie, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France.
| |
Collapse
|
13
|
Al-Khreisat MJ, Hussain FA, Abdelfattah AM, Almotiri A, Al-Sanabra OM, Johan MF. The Role of NOTCH1, GATA3, and c-MYC in T Cell Non-Hodgkin Lymphomas. Cancers (Basel) 2022; 14:cancers14112799. [PMID: 35681778 PMCID: PMC9179380 DOI: 10.3390/cancers14112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Lymphomas are heterogeneous malignant tumours of white blood cells characterised by the aberrant proliferation of mature lymphoid cells or their precursors. Lymphomas are classified into main types depending on the histopathologic evidence of biopsy taken from an enlarged lymph node, progress stages, treatment strategies, and outcomes: Hodgkin and non-Hodgkin lymphoma (NHL). Moreover, lymphomas can be further divided into subtypes depending on the cell origin, and immunophenotypic and genetic aberrations. Many factors play vital roles in the progression, pathogenicity, incidence, and mortality rate of lymphomas. Among NHLs, peripheral T cell lymphomas (PTCLs) are rare lymphoid malignancies, that have various cellular morphology and genetic mutations. The clinical presentations are usually observed at the advanced stage of the disease. Many recent studies have reported that the expressions of NOTCH1, GATA3, and c-MYC are associated with poorer prognosis in PTCL and are involved in downstream activities. However, questions have been raised about the pathological relationship between these factors in PTCLs. Therefore, in this review, we investigate the role and relationship of the NOTCH1 pathway, transcriptional factor GATA3 and proto-oncogene c-MYC in normal T cell development and malignant PTCL subtypes.
Collapse
Affiliation(s)
- Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Ali Mahmoud Abdelfattah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Alhomidi Almotiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences—Dawadmi, Shaqra University, Dawadmi 17464, Saudi Arabia;
| | - Ola Mohammed Al-Sanabra
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan;
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Correspondence: ; Tel.: +60-97-67-62-00
| |
Collapse
|
14
|
Cortes JR, Filip I, Albero R, Patiño-Galindo JA, Quinn SA, Lin WHW, Laurent AP, Shih BB, Brown JA, Cooke AJ, Mackey A, Einson J, Zairis S, Rivas-Delgado A, Laginestra MA, Pileri S, Campo E, Bhagat G, Ferrando AA, Rabadan R, Palomero T. Oncogenic Vav1-Myo1f induces therapeutically targetable macrophage-rich tumor microenvironment in peripheral T cell lymphoma. Cell Rep 2022; 39:110695. [PMID: 35443168 PMCID: PMC9059228 DOI: 10.1016/j.celrep.2022.110695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/26/2022] [Accepted: 03/25/2022] [Indexed: 11/03/2022] Open
Abstract
Peripheral T cell lymphoma not otherwise specified (PTCL-NOS) comprises heterogeneous lymphoid malignancies characterized by pleomorphic lymphocytes and variable inflammatory cell-rich tumor microenvironment. Genetic drivers in PTCL-NOS include genomic alterations affecting the VAV1 oncogene; however, their specific role and mechanisms in PTCL-NOS remain incompletely understood. Here we show that expression of Vav1-Myo1f, a recurrent PTCL-associated VAV1 fusion, induces oncogenic transformation of CD4+ T cells. Notably, mouse Vav1-Myo1f lymphomas show T helper type 2 features analogous to high-risk GATA3+ human PTCL. Single-cell transcriptome analysis reveals that Vav1-Myo1f alters T cell differentiation and leads to accumulation of tumor-associated macrophages (TAMs) in the tumor microenvironment, a feature linked with aggressiveness in human PTCL. Importantly, therapeutic targeting of TAMs induces strong anti-lymphoma effects, highlighting the lymphoma cells' dependency on the microenvironment. These results demonstrate an oncogenic role for Vav1-Myo1f in the pathogenesis of PTCL, involving deregulation in T cell polarization, and identify the lymphoma-associated macrophage-tumor microenvironment as a therapeutic target in PTCL.
Collapse
Affiliation(s)
- Jose R Cortes
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Ioan Filip
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Robert Albero
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | | - S Aidan Quinn
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Wen-Hsuan W Lin
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Anouchka P Laurent
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Bobby B Shih
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Jessie A Brown
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Anisha J Cooke
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Adam Mackey
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Jonah Einson
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Sakellarios Zairis
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | | | | | - Stefano Pileri
- Division of Hematopathology, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Elias Campo
- Hematopathology Unit, Department of Pathology, Hospital Clínic-IDIBAPS, Barcelona 08036, Spain
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Teresa Palomero
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
15
|
Hathuc V, Kreisel F. Genetic Landscape of Peripheral T-Cell Lymphoma. Life (Basel) 2022; 12:life12030410. [PMID: 35330161 PMCID: PMC8954173 DOI: 10.3390/life12030410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral T-Cell lymphoma (PTCL) comprises a heterogenous group of uncommon lymphomas derived from mature, post-thymic or “peripheral” T- and natural killer cells. The World Health Organization (WHO) emphasizes a multiparameter approach in the diagnosis and subclassification of these neoplasms, integrating clinical, morphologic, immunophenotypic, and genetic features into the final diagnosis. Clinical presentation is particularly important due to histologic, immunophenotypic and genetic variations within established subtypes, and no convenient immunophenotypic marker of monoclonality exists. In recent years, widespread use of gene expression profiling and next-generation sequencing (NGS) techniques have contributed to an improved understanding of the pathobiology in PTCLs, and these have been incorporated into the 2016 revised WHO classification of mature T- and NK-cell neoplasms which now encompasses nearly 30 distinct entities. This review discusses the genetic landscape of PTCL and its role in subclassification, prognosis, and potential targeted therapy. In addition to discussing T-Cell lymphoma subtypes with relatively well-defined or relevant genetic aberrancies, special attention is given to genetic advances in T-Cell lymphomas of T follicular helper cell (TFH) origin, highlighting genetic overlaps between angioimmunoblastic T-Cell lymphoma (AITL), follicular T-Cell lymphoma, and nodal peripheral T-Cell lymphoma with a TFH phenotype. Furthermore, genetic drivers will be discussed for ALK-negative anaplastic large cell lymphomas and their role in differentiating these from CD30+ peripheral T-Cell lymphoma, not otherwise specified (NOS) and primary cutaneous anaplastic large cell lymphoma. Lastly, a closer look is given to genetic pathways in peripheral T-Cell lymphoma, NOS, which may guide in teasing out more specific entities in a group of T-Cell lymphomas that represents the most common subcategory and is sometimes referred to as a “wastebasket” category.
Collapse
|
16
|
Emerging Therapeutic Landscape of Peripheral T-Cell Lymphomas Based on Advances in Biology: Current Status and Future Directions. Cancers (Basel) 2021; 13:cancers13225627. [PMID: 34830782 PMCID: PMC8616039 DOI: 10.3390/cancers13225627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Peripheral T-cell lymphoma is a rare but aggressive tumor. Due to its rarity, the disease has not been completely understood. In our review, we look at this lymphoma at the molecular level based on available literature. We highlight the mechanism behind the progression and resistance of this tumor. In doing so, we bring forth possible mechanism that could be exploited through novel chemotherapy drugs. In addition, we also look at the current available drugs used in treating this disease, as well as highlight other new drugs, describing their potential in treating this lymphoma. We comprehensively have collected and present the available biology behind peripheral T-cell lymphoma and discuss the available treatment options. Abstract T-cell lymphomas are a relatively rare group of malignancies with a diverse range of pathologic features and clinical behaviors. Recent molecular studies have revealed a wide array of different mechanisms that drive the development of these malignancies and may be associated with resistance to therapies. Although widely accepted chemotherapeutic agents and combinations, including stem cell transplantation, obtain responses as initial therapy for these diseases, most patients will develop a relapse, and the median survival is only 5 years. Most patients with relapsed disease succumb within 2 to 3 years. Since 2006, the USFDA has approved five medications for treatment of these diseases, and only anti-CD30-therapy has made a change in these statistics. Clearly, newer agents are needed for treatment of these disorders, and investigators have proposed studies that evaluate agents that target these malignancies and the microenvironment depending upon the molecular mechanisms thought to underlie their pathogenesis. In this review, we discuss the currently known molecular mechanisms driving the development and persistence of these cancers and discuss novel targets for therapy of these diseases and agents that may improve outcomes for these patients.
Collapse
|
17
|
Distinction of lymphoid and myeloid clonal hematopoiesis. Nat Med 2021; 27:1921-1927. [PMID: 34663986 DOI: 10.1038/s41591-021-01521-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/27/2021] [Indexed: 01/21/2023]
Abstract
Clonal hematopoiesis (CH) results from somatic genomic alterations that drive clonal expansion of blood cells. Somatic gene mutations associated with hematologic malignancies detected in hematopoietic cells of healthy individuals, referred to as CH of indeterminate potential (CHIP), have been associated with myeloid malignancies, while mosaic chromosomal alterations (mCAs) have been associated with lymphoid malignancies. Here, we analyzed CHIP in 55,383 individuals and autosomal mCAs in 420,969 individuals with no history of hematologic malignancies in the UK Biobank and Mass General Brigham Biobank. We distinguished myeloid and lymphoid somatic gene mutations, as well as myeloid and lymphoid mCAs, and found both to be associated with risk of lineage-specific hematologic malignancies. Further, we performed an integrated analysis of somatic alterations with peripheral blood count parameters to stratify the risk of incident myeloid and lymphoid malignancies. These genetic alterations can be readily detected in clinical sequencing panels and used with blood count parameters to identify individuals at high risk of developing hematologic malignancies.
Collapse
|
18
|
Zain JM, Hanona P. Aggressive T-cell lymphomas: 2021 Updates on diagnosis, risk stratification and management. Am J Hematol 2021; 96:1027-1046. [PMID: 34111312 DOI: 10.1002/ajh.26270] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Aggressive T-cell lymphomas continue to have a poor prognosis. There are over 27 different subtypes of peripheral T-cell lymphoma (PTCL), and we are now beginning to understand the differences between the various subtypes beyond histologic variations. MOLECULAR PATHOGENESIS OF VARIOUS SUBTYPES OF PTCL Gene expression profiling (GEP) can help in diagnosis and prognostication of various subtypes including PTCL-nos and anaplastic large cell lymphoma (ALCL). In addition, mutational analysis is now being incorporated in clinical trials of novel agents to evaluate various biomarkers of response to allow better therapeutic choices for patients. TARGETED THERAPIES There are many targeted agents currently in various stages of clinical trials for PTCL that take advantage of the differential expression of specific proteins or receptors in PTCL tumors. This includes the CD30 directed antibody drug conjugate brentuximab vedotin. Other notable targets are CD25, CCR4, inhibition of PI3kinase - m TOR and JAK/STAT pathways. The ALK inhibitors are promising for ALK expressing tumors. IMMUNOTHERAPIES Allogeneic stem cell transplant continues to be the curative therapy for most aggressive subtypes of PTCL. The use of checkpoint inhibitors in the treatment of PTCL is still controversial. The most promising results have been seen in cases of extranodal natural killer cell/T-cell (ENK/T) lymphomas and cutaneous T-cell lymphomas (CTCL). Bispecific antibody based treatments as well as CAR-T cell based therapies are in clinical trials.
Collapse
Affiliation(s)
- Jasmine M. Zain
- Department of Hematology/Hematopoietic Cell Transplantation City of Hope Medical Center Duarte California USA
| | | |
Collapse
|
19
|
Gene alterations in epigenetic modifiers and JAK-STAT signaling are frequent in breast implant-associated ALCL. Blood 2020; 135:360-370. [PMID: 31774495 DOI: 10.1182/blood.2019001904] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
The oncogenic events involved in breast implant-associated anaplastic large cell lymphoma (BI-ALCL) remain elusive. To clarify this point, we have characterized the genomic landscape of 34 BI-ALCLs (15 tumor and 19 in situ subtypes) collected from 54 BI-ALCL patients diagnosed through the French Lymphopath network. Whole-exome sequencing (n = 22, with paired tumor/germline DNA) and/or targeted deep sequencing (n = 24) showed recurrent mutations of epigenetic modifiers in 74% of cases, involving notably KMT2C (26%), KMT2D (9%), CHD2 (15%), and CREBBP (15%). KMT2D and KMT2C mutations correlated with a loss of H3K4 mono- and trimethylation by immunohistochemistry. Twenty cases (59%) showed mutations in ≥1 member of the JAK/STAT pathway, including STAT3 (38%), JAK1 (18%), and STAT5B (3%), and in negative regulators, including SOCS3 (6%), SOCS1 (3%), and PTPN1 (3%). These mutations were more frequent in tumor-type samples than in situ samples (P = .038). All BI-ALCLs expressed pSTAT3, regardless of the mutational status of genes in the JAK/STAT pathway. Mutations in the EOMES gene (12%) involved in lymphocyte development, PI3K-AKT/mTOR (6%), and loss-of-function mutations in TP53 (12%) were also identified. Copy-number aberration (CNA) analysis identified recurrent alterations, including gains on chromosomes 2, 9p, 12p, and 21 and losses on 4q, 8p, 15, 16, and 20. Regions of CNA encompassed genes involved in the JAK/STAT pathway and epigenetic regulators. Our results show that the BI-ALCL genomic landscape is characterized by not only JAK/STAT activating mutations but also loss-of-function alterations of epigenetic modifiers.
Collapse
|
20
|
Fiore D, Cappelli LV, Broccoli A, Zinzani PL, Chan WC, Inghirami G. Peripheral T cell lymphomas: from the bench to the clinic. Nat Rev Cancer 2020; 20:323-342. [PMID: 32249838 DOI: 10.1038/s41568-020-0247-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Peripheral T cell lymphomas (PTCLs) are a heterogeneous group of orphan neoplasms. Despite the introduction of anthracycline-based chemotherapy protocols, with or without autologous haematopoietic transplantation and a plethora of new agents, the progression-free survival of patients with PTCLs needs to be improved. The rarity of these neoplasms, the limited knowledge of their driving defects and the lack of experimental models have impaired clinical successes. This scenario is now rapidly changing with the discovery of a spectrum of genomic defects that hijack essential signalling pathways and foster T cell transformation. This knowledge has led to new genomic-based stratifications, which are being used to establish objective diagnostic criteria, more effective risk assessment and target-based interventions. The integration of genomic and functional data has provided the basis for targeted therapies and immunological approaches that underlie individual tumour vulnerabilities. Fortunately, novel therapeutic strategies can now be rapidly tested in preclinical models and effectively translated to the clinic by means of well-designed clinical trials. We believe that by combining new targeted agents with immune regulators and chimeric antigen receptor-expressing natural killer and T cells, the overall survival of patients with PTCLs will dramatically increase.
Collapse
MESH Headings
- Epigenesis, Genetic/genetics
- Epigenesis, Genetic/physiology
- Humans
- Immunotherapy
- Lymphoma, T-Cell, Peripheral/drug therapy
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/immunology
- Lymphoma, T-Cell, Peripheral/metabolism
- Molecular Targeted Therapy
- Mutation
- Signal Transduction/genetics
- Signal Transduction/physiology
- T-Lymphocytes/physiology
- Transcription Factors/genetics
- Transcription Factors/physiology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Danilo Fiore
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Luca Vincenzo Cappelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Alessandro Broccoli
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy.
| | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte, CA, USA.
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
21
|
Fragliasso V, Verma A, Manzotti G, Tameni A, Bareja R, Heavican TB, Iqbal J, Wang R, Fiore D, Mularoni V, Chan WC, Lhoumaud P, Skok J, Zanetti E, Merli F, Ciarrocchi A, Elemento O, Inghirami G. The novel lncRNA BlackMamba controls the neoplastic phenotype of ALK - anaplastic large cell lymphoma by regulating the DNA helicase HELLS. Leukemia 2020; 34:2964-2980. [PMID: 32123306 DOI: 10.1038/s41375-020-0754-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/20/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023]
Abstract
The molecular mechanisms leading to the transformation of anaplastic lymphoma kinase negative (ALK-) anaplastic large cell lymphoma (ALCL) have been only in part elucidated. To identify new culprits which promote and drive ALCL, we performed a total transcriptome sequencing and discovered 1208 previously unknown intergenic long noncoding RNAs (lncRNAs), including 18 lncRNAs preferentially expressed in ALCL. We selected an unknown lncRNA, BlackMamba, with an ALK- ALCL preferential expression, for molecular and functional studies. BlackMamba is a chromatin-associated lncRNA regulated by STAT3 via a canonical transcriptional signaling pathway. Knockdown experiments demonstrated that BlackMamba contributes to the pathogenesis of ALCL regulating cell growth and cell morphology. Mechanistically, BlackMamba interacts with the DNA helicase HELLS controlling its recruitment to the promoter regions of cell-architecture-related genes, fostering their expression. Collectively, these findings provide evidence of a previously unknown tumorigenic role of STAT3 via a lncRNA-DNA helicase axis and reveal an undiscovered role for lncRNA in the maintenance of the neoplastic phenotype of ALK-ALCL.
Collapse
Affiliation(s)
- Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Akanksha Verma
- Institute for Computational Biomedicine & Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.,Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, 10065, USA
| | - Gloria Manzotti
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Annalisa Tameni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Rohan Bareja
- Institute for Computational Biomedicine & Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Tayla B Heavican
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68182, USA
| | - Javeed Iqbal
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68182, USA
| | - Rui Wang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Danilo Fiore
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Valentina Mularoni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Priscillia Lhoumaud
- Department of Pathology, New York University School of Medicine, Langone Medical Center, New York, NY, 10016, USA
| | - Jane Skok
- Department of Pathology, New York University School of Medicine, Langone Medical Center, New York, NY, 10016, USA
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Francesco Merli
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy.
| | - Oliver Elemento
- Institute for Computational Biomedicine & Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
22
|
Dos Santos NR, Ghysdael J, Tran Quang C. The TCR/CD3 complex in leukemogenesis and as a therapeutic target in T-cell acute lymphoblastic leukemia. Adv Biol Regul 2019; 74:100638. [PMID: 31378701 DOI: 10.1016/j.jbior.2019.100638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) arises from T cell precursors and is characterized by expression of many lineage-specific proteins. While T-cell antigen receptor (TCR) signaling and its strength are central for thymocyte development, mature T cell homeostasis and immune responses, their roles in T-ALL remain undetermined. Indeed, in contrast to mouse models, in which absence of TCR or major histocompatibility complex binding does not impact on leukemogenesis, other mouse models suggest that basal or weak signaling drives leukemia development. However, recent reports indicate that strong TCR signaling can be detrimental to leukemic cells. Indeed, sustained/high level TCR signaling, stimulated by antigen or CD3 antibody, is strongly anti-leukemic in both murine T-ALL expressing endogenous or transgenic TCR and diagnostic T-ALL cases. As discussed, further work should address the efficacy of T-ALL therapeutic targeting with either TCR/CD3 antibodies or TCR-directed chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Nuno R Dos Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| | - Jacques Ghysdael
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, F-91405, Orsay, France.
| | - Christine Tran Quang
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, F-91405, Orsay, France.
| |
Collapse
|
23
|
Li YL, Wang HP, Zhang C, Zhai ZM. CD20-positive primary nasal peripheral T-cell lymphoma: An analysis of one case and review of the literature. CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 98:348-354. [PMID: 31682318 DOI: 10.1002/cyto.b.21852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023]
Abstract
CD20-positive T-cell lymphoma (TCL) is a very rare disease entity that is associated with the co-expressions of a range of T cell lineage makers, such as, CD2, CD3, CD5, or CD7, and CD20. The biological and clinical significance of CD20 antigen expressed in TCL has been unclear. Here, we are reporting an unusual case of CD20-positive primary nasal peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) in a 62-year-old female with both peripheral blood (PB) and bone marrow (BM) involvement. Flow cytometry (FC) analysis revealed CD20+ lymphoma cells in PB, BM, and lymph node (LN) and was consistent with pathological findings. FC immunophenotyping was proved of great diagnostic contribution.
Collapse
Affiliation(s)
- Yan-Li Li
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hui-Ping Wang
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Cui Zhang
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Zhi-Min Zhai
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
24
|
Cell of Origin and Immunologic Events in the Pathogenesis of Breast Implant-Associated Anaplastic Large-Cell Lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:2-10. [PMID: 31610171 PMCID: PMC7298558 DOI: 10.1016/j.ajpath.2019.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022]
Abstract
Breast implant–associated anaplastic large-cell lymphoma (BIA-ALCL) is a CD30-positive, anaplastic lymphoma kinase–negative T-cell lymphoma. Nearly all cases have been associated with textured implants. Most cases are of effusion-limited, indolent disease, with an excellent prognosis after implant and capsule removal. However, capsular invasion and tumor mass have a more aggressive course and a fatal outcome risk. This review summarizes the current knowledge on BIA-ALCL cell of origin and immunologic factors underlying its pathogenesis. Cytokine expression profiling of BIA-ALCL cell lines and clinical specimens reveals a predominantly type 17 helper T-cell (Th17)/Th1 signature, implicating this as its cell of origin. However, a Th2 allergic inflammatory response is suggested by the presence of IL-13, with infiltration of eosinophils and IgE-coated mast cells in clinical specimens of BIA-ALCL. The microenvironment-induced T-cell plasticity, a factor increasingly appreciated, may partially explain these divergent results. Mutations resulting in constitutive Janus kinase (JAK)–STAT activation have been detected and associated with BIA-ALCL pathogenesis in a small number of cases. One possible scenario is that an inflammatory microenvironment stimulates an immune response, followed by polyclonal expansion of Th17/Th1 cell subsets with release of inflammatory cytokines and chemokines and accumulation of seroma. JAK-STAT3 gain-of-function mutations within this pathway and others may subsequently lead to monoclonal T-cell proliferation and clinical BIA-ALCL. Current research suggests that therapies targeting JAK proteins warrant investigation in BIA-ALCL.
Collapse
|
25
|
Zain JM. Aggressive T-cell lymphomas: 2019 updates on diagnosis, risk stratification, and management. Am J Hematol 2019; 94:929-946. [PMID: 31119775 DOI: 10.1002/ajh.25513] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Aggressive T-cell lymphomas continue to have a poor prognosis. There are over 27 different subtypes of peripheral T-cell lymphoma (PTCL) and we are now beginning to understand the differences between the various subtypes beyond histologic variations. MOLECULAR PATHOGENESIS OF VARIOUS SUBTYPES OF PTCL Gene expression profiling can help in diagnosis and prognostication of various subtypes including PTCL-nos and anaplastic large cell lymphoma. In addition, mutational analysis is now being incorporated in clinical trials of novel agents to evaluate various biomarkers of response to allow better therapeutic choices for patients. TARGETED THERAPIES There are many targeted agents currently in various stages of clinical trials for PTCL that take advantage of the differential expression of specific proteins or receptors in PTCL tumors. The most promising is the CD30 directed antibody drug conjugate brentuximab vedotin. This has recently been approved by the Food and Drug Administration for the upfront treatment of CD30 expressing PTCLs in combination with cyclophosphamide, doxorubicin, and prednisone chemotherapy. Other notable targets are CD25, CCR4 tag, PI3kinase inhibitors, and JAK/STAT inhibitors. Anaplastic lymphoma kinase (ALK) inhibitors are promising for ALK expressing tumors. IMMUNOTHERAPIES The use of checkpoint inhibitors in the treatment of PTCL is still controversial. The most promising results have been seen in cases of extranodal natural killer cell/T-cell lymphomas and cutaneous T-cell lymphomas. For all other subtypes, immune checkpoint inhibitors should be used with extreme caution and only in the context of a clinical trial. Allogeneic stem cell transplant continues to be the curative therapy for most aggressive subtypes of PTCL.
Collapse
Affiliation(s)
- Jasmine M. Zain
- Department of Hematology/Hematopoietic Cell TransplantationCity of Hope Medical Center Duarte California
| |
Collapse
|
26
|
Nakhoul H, Lin Z, Wang X, Roberts C, Dong Y, Flemington E. High-Throughput Sequence Analysis of Peripheral T-Cell Lymphomas Indicates Subtype-Specific Viral Gene Expression Patterns and Immune Cell Microenvironments. mSphere 2019; 4:e00248-19. [PMID: 31292228 PMCID: PMC6620372 DOI: 10.1128/msphere.00248-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Certain peripheral T-cell lymphomas (PTCLs) have been associated with viral infection, particularly infection with Epstein-Barr virus (EBV). However, a comprehensive virome analysis across PTCLs has not previously been reported. Here we utilized published whole-transcriptome RNA sequencing (RNA-seq) data sets from seven different PTCL studies and new RNA-seq data from our laboratory to screen for virus association, to analyze viral gene expression, and to assess B- and T-cell receptor diversity paradigms across PTCL subtypes. In addition to identifying EBV in angioimmunoblastic T-cell lymphoma (AITL) and extranodal NK/T-cell lymphoma (ENKTL), two PTCL subtypes with well-established EBV associations, we also detected EBV in several cases of anaplastic large-cell lymphoma (ALCL), and we found evidence of infection by the oncogenic viruses Kaposi's sarcoma-associated herpesvirus and human T-cell leukemia virus type 1 in isolated PTCL cases. In AITLs, EBV gene expression analysis showed expression of immediate early, early, and late lytic genes, suggesting either low-level lytic gene expression or productive infection in a subset of EBV-infected B-lymphocyte stromal cells. Deconvolution of immune cell subpopulations demonstrated a greater B-cell signal in AITLs than in other PTCL subtypes, consistent with a larger role for B-cell support in the pathogenesis of AITL. Reconstructed T-cell receptor (TCR) and B-cell receptor (BCR) repertoires demonstrated increased BCR diversity in AITLs, consistent with a possible EBV-driven polyclonal response. These findings indicate potential alternative roles for EBV in PTCLs, in addition to the canonical oncogenic mechanisms associated with EBV latent infection. Our findings also suggest the involvement of other viruses in PTCL pathogenesis and demonstrate immunological alterations associated with these cancers.IMPORTANCE In this study, we utilized next-generation sequencing data from 7 different studies of peripheral T-cell lymphoma (PTCL) patient samples to globally assess viral associations, provide insights into the contributions of EBV gene expression to the tumor phenotype, and assess the unique roles of EBV in modulating the immune cell tumor microenvironment. These studies revealed potential roles for EBV replication genes in some PTCL subtypes, the possible role of additional human tumor viruses in rare cases of PTCLs, and a role for EBV in providing a unique immune microenvironmental niche in one subtype of PTCLs. Together, these studies provide new insights into the understudied role of tumor viruses in PTCLs.
Collapse
Affiliation(s)
- Hani Nakhoul
- Department of Pathology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Zhen Lin
- Department of Pathology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Xia Wang
- Department of Pathology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Claire Roberts
- Department of Pathology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Erik Flemington
- Department of Pathology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Novel immunotherapies such as checkpoint inhibitors, bispecific antibodies, and chimeric antigen receptor T cells are leading to promising responses when treating solid tumors and hematological malignancies. T cell neoplasms include leukemia and lymphomas that are derived from T cells and overall are characterized by poor clinical outcomes. This review describes the rational and preliminary results of immunotherapy for patients with T cell lymphoma and leukemia. RECENT FINDINGS For T cell neoplasms, despite significant research effort, only few agents, such as monoclonal antibodies and allogeneic stem cell transplantation, showed some clinical activity. One of the major hurdles to targeting T cell neoplasms is that activation or elimination of T cells, either normal or neoplastic, can cause significant toxicity. A need to develop novel safe and effective immunotherapies for T cell neoplasms exists. In this review, we will discuss the rationale for immunotherapy of T cell leukemia and lymphoma and present the most recent therapeutic approaches.
Collapse
|
28
|
Ng SY, Jacobsen ED. Peripheral T-Cell Lymphoma: Moving Toward Targeted Therapies. Hematol Oncol Clin North Am 2019; 33:657-668. [PMID: 31229161 DOI: 10.1016/j.hoc.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Therapeutic advances for peripheral T-cell non-Hodgkin lymphoma (PTCL) have lagged behind their B-cell NHL counterparts in part because novel agents to treat PTCL have been developed empirically. The recent clinical success of brentuximab-vedotin suggests that novel therapies for PTCL can significantly improve outcomes when properly targeted. Aberrancies in T-cell receptor, Jak/STAT, and DNA methylation pathways play critical roles in T-NHL pathogenesis based on genomic studies and preclinical experimental validation. New strategies targeting these pathways in patients with PTCL are underway, and this clinical trial experience will possibly contribute to additional improvements in outcome for patients with these diseases.
Collapse
Affiliation(s)
- Samuel Y Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| | - Eric D Jacobsen
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
29
|
Molecular Insights Into Pathogenesis of Peripheral T Cell Lymphoma: a Review. Curr Hematol Malig Rep 2018; 13:318-328. [DOI: 10.1007/s11899-018-0460-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|