1
|
El Azzouzi M, El Ahanidi H, Hassan I, Tetou M, Ameur A, Bensaid M, Al Bouzidi A, Oukabli M, Alaoui CH, Addoum B, Chaoui I, Benbacer L, Mzibri ME, Attaleb M. Comprehensive behavioural assessment of TERT in bladder cancer. Urol Oncol 2024; 42:451.e19-451.e29. [PMID: 39147693 DOI: 10.1016/j.urolonc.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Telomerase activity plays a crucial role in cancer development and progression. Thus, telomerase activation through the interplay of mutations and epigenetic alterations in the telomerase reverse transcriptase (TERT) promoter may provide further insight into bladder cancer induction and progression. METHODS In this study 100 bladder tumour tissues were selected, and four molecular signatures were analysed: THOR methylation status, TERT promotor mutation, telomere length, and TERT expression. RESULTS In our study, 88% of bladder cancer patients had an hypermethylation of the THOR region and 60% had mutations in the TERT promoter region. TERT promoter methylation was observed in all stages and grades of bladder cancer. While, TERT promoter mutations were detected in advanced stages and grades. In our cohort, high levels of TERT expression and long telomeres have been found in noninvasive cases of bladder cancer, with a significant association between TERT expression and Telomere length. Interestingly, patients with low TERT expression and cases with long telomeres had significantly longer Disease-free survival and overall survival. CONCLUSION The methylation and mutations occurring in the TERT promoter are implicated in bladder carcinogenesis, offering added prognostic and supplying novel insight into telomere biology in cancer.
Collapse
Affiliation(s)
- Meryem El Azzouzi
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco; Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Hajar El Ahanidi
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco; Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Ilias Hassan
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Department of Urology, Military Hospital Mohammed V, Rabat, Morocco
| | - Mohammed Tetou
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Department of Urology, Military Hospital Mohammed V, Rabat, Morocco
| | - Ahmed Ameur
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Department of Urology, Military Hospital Mohammed V, Rabat, Morocco
| | - Mounia Bensaid
- Laboratory of Pathological Anatomy, Military Hospital Mohamed V, Rabat, Morocco; Royal School of Military Health Service, Rabat, Morocco
| | | | - Mohamed Oukabli
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Laboratory of Pathological Anatomy, Military Hospital Mohamed V, Rabat, Morocco
| | - Chaimae Hafidi Alaoui
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco; Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | | | - Imane Chaoui
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco
| | - Laila Benbacer
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco
| | | | | |
Collapse
|
2
|
Mani AK, Parvathi VD, Ravindran S. The Anti-Elixir Triad: Non-Synced Circadian Rhythm, Gut Dysbiosis, and Telomeric Damage. Med Princ Pract 2024:1-14. [PMID: 39536739 DOI: 10.1159/000542557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Aging is an inevitable life process which is accelerated by lifestyle and environmental factors. It is an irreversible accretion of molecular and cellular damage associated with changes in the body composition and deterioration in physiological functions. Each cell (other than stem cells) reaches the limit of its ability to replicate, known as cellular or replicative senescence, and consequently, the organs lose their physiological functions, resulting in overall impairment. Other factors that promote aging include smoking, alcohol, UV rays, sleep habits, food, stress, sedentary lifestyle, and genetic abnormalities. These stress factors can alter our endogenous clock (the circadian rhythm) and the microbial commensals. As a result of the effect of these stressors, the microorganisms that generally support human physiological processes become baleful. The disturbance of natural physiology instigates many age-related pathologies, such as cardiovascular diseases, chronic obstructive pulmonary disorder, cerebrovascular diseases, opportunistic infections, high blood pressure, cancer, diabetes, kidney diseases, dementia, and Alzheimer's disease. The present review covers the three most essential processes of the circadian clock; the circadian gene mechanism and regulation, the mitotic clock (which plays a vital role in the telomere's attrition) and the gut microbiota and their metabolome that drive aging and lead to age-related pathologies. In conclusion, maintaining a synchronized circadian rhythm, a healthy gut microbiome, and telomere integrity is essential for mitigating the effects of aging and promoting longevity. The interplay among these factors underscores the importance of lifestyle choices in enhancing overall health and lifespan.
Collapse
Affiliation(s)
- Anup Kumar Mani
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sumitha Ravindran
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
3
|
Song T, Liu J, Zhao K, Li S, Qiu M, Zhang M, Wang H. The causal effect of telomere length on the risk of malignant lymphoma: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e39584. [PMID: 39312382 PMCID: PMC11419458 DOI: 10.1097/md.0000000000039584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Telomere length (TL) has been implicated in the risk assessment of numerous cancers in observational studies. Nevertheless, the relationship between TL and malignant lymphoma remains unclear, displaying inconsistent patterns across different studies. A summary dataset for genome-wide association study of TL and malignant lymphoma was acquired from the OpenGWAS website. An extensive 2-sample Mendelian randomization (MR) analysis was performed, encompassing various methodologies such as MR-Egger, weighted median, weighted mode, simple mode, and the primary method of inverse-variance weighting (IVW). Sensitivity evaluations were performed using the Cochran Q test, MR-Egger regression, and leave-one-out analysis. The main method IVW revealed that TL substantially increased the risk of Hodgkin lymphoma (HL; odds ratio [OR] = 2.135; 95% confidence interval [CI] = 1.181-3.859; P = .012). Both the IVW and weighted median methods indicated statistical associations between genetically predicted TL and other types of non-HL (OR = 1.671, 95% CI = 1.009-2.768, P = .045; OR = 2.310, 95% CI = 1.033-5.169, P = .042). However, there was no association between TL and diffuse large B-cell lymphoma, follicular lymphoma, or mature T/natural Killer-cell lymphoma, and sensitivity analysis revealed no heterogeneity or horizontal pleiotropy, indicating that the causal effect was robust. Our study shows that TL plays different roles in different types of lymphomas. A longer TL significantly increases the risk of HL and other types of non-HL.
Collapse
Affiliation(s)
- Teng Song
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Jie Liu
- Department of Cardiology, Tianjin Bei Chen Hospital, Tianjin, China
| | - Ke Zhao
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Shuping Li
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Minghan Qiu
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Miao Zhang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Huaqing Wang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Liu F, Chen J, Li K, Li H, Zhu Y, Zhai Y, Lu B, Fan Y, Liu Z, Chen X, Jia X, Dong Z, Liu K. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol Cancer 2024; 23:148. [PMID: 39048965 PMCID: PMC11270804 DOI: 10.1186/s12943-024-02046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
Ubiquitination, a pivotal posttranslational modification of proteins, plays a fundamental role in regulating protein stability. The dysregulation of ubiquitinating and deubiquitinating enzymes is a common feature in various cancers, underscoring the imperative to investigate ubiquitin ligases and deubiquitinases (DUBs) for insights into oncogenic processes and the development of therapeutic interventions. In this review, we discuss the contributions of the ubiquitin-proteasome system (UPS) in all hallmarks of cancer and progress in drug discovery. We delve into the multiple functions of the UPS in oncology, including its regulation of multiple cancer-associated pathways, its role in metabolic reprogramming, its engagement with tumor immune responses, its function in phenotypic plasticity and polymorphic microbiomes, and other essential cellular functions. Furthermore, we provide a comprehensive overview of novel anticancer strategies that leverage the UPS, including the development and application of proteolysis targeting chimeras (PROTACs) and molecular glues.
Collapse
Affiliation(s)
- Fangfang Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Jingyu Chen
- Department of Pediatric Medicine, School of Third Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Kai Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Haochen Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yiyi Zhu
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yubo Zhai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanle Fan
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Ziyue Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaojie Chen
- School of Basic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Zigang Dong
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Kangdong Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
5
|
Nikolouzakis TK, Chrysos E, Docea AO, Fragkiadaki P, Souglakos J, Tsiaoussis J, Tsatsakis A. Current and Future Trends of Colorectal Cancer Treatment: Exploring Advances in Immunotherapy. Cancers (Basel) 2024; 16:1995. [PMID: 38893120 PMCID: PMC11171065 DOI: 10.3390/cancers16111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer of the colon and rectum (CRC) has been identified among the three most prevalent types of cancer and cancer-related deaths for both sexes. Even though significant progress in surgical and chemotherapeutic techniques has markedly improved disease-free and overall survival rates in contrast to those three decades ago, recent years have seen a stagnation in these improvements. This underscores the need for new therapies aiming to augment patient outcomes. A number of emerging strategies, such as immune checkpoint inhibitors (ICIs) and adoptive cell therapy (ACT), have exhibited promising outcomes not only in preclinical but also in clinical settings. Additionally, a thorough appreciation of the underlying biology has expanded the scope of research into potential therapeutic interventions. For instance, the pivotal role of altered telomere length in early CRC carcinogenesis, leading to chromosomal instability and telomere dysfunction, presents a promising avenue for future treatments. Thus, this review explores the advancements in CRC immunotherapy and telomere-targeted therapies, examining potential synergies and how these novel treatment modalities intersect to potentially enhance each other's efficacy, paving the way for promising future therapeutic advancements.
Collapse
Affiliation(s)
| | - Emmanuel Chrysos
- Department of General Surgery, University General Hospital of Heraklion, 71110 Heraklion, Greece; (T.K.N.); (E.C.)
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Persefoni Fragkiadaki
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece; (P.F.); (A.T.)
| | - John Souglakos
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - John Tsiaoussis
- Department of Anatomy, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece; (P.F.); (A.T.)
| |
Collapse
|
6
|
Zhang XX, Yu XY, Xu SJ, Shi XQ, Chen Y, Shi Q, Sun C. rs2736098, a synonymous polymorphism, is associated with carcinogenesis and cell count in multiple tissue types by regulating TERT expression. Heliyon 2024; 10:e27802. [PMID: 38496869 PMCID: PMC10944260 DOI: 10.1016/j.heliyon.2024.e27802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
rs2736098 is a synonymous polymorphism in TERT (telomerase reverse transcriptase), an enzyme involved in tumor onset of multiple tissues, and should play no roles in carcinogenesis. However, a search in cancer somatic mutation database indicated that the mutation frequency at rs2736098 is much higher than the average one for TERT. Moreover, there are significant H3K4me1 and H3K27Ac signals, two universal histone modifications for active enhancers, surrounding rs2736098. Therefore, we hypothesized that rs2736098 might be within an enhancer region, regulate TERT expression and influence cancer risk. Through luciferase assay, it was verified that the enhancer activity of rs2736098C allele is significantly higher than that of T in multiple tissues. Transfection of plasmids containing TERT coding region with two different alleles indicated that rs2736098C allele can induce a significantly higher TERT expression than T. By chromatin immunoprecipitation, it was observed that the fragment spanning rs2736098 can interact with USF1 (upstream transcription factor 1). The two alleles of rs2736098 present evidently different binding affinity with nuclear proteins. Database and literature search indicated that rs2736098 is significantly associated with carcinogenesis in multiple tissues and count of multiple cell types. All these facts indicated that rs2736098 is also an oncogenic polymorphism and plays important role in cell proliferation.
Collapse
Affiliation(s)
- Xin-Xin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Xin-Yi Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Shuang-Jia Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Xiao-Qian Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Ying Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Qiang Shi
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi, 726000, PR China
| | - Chang Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| |
Collapse
|
7
|
Lin F, Huang J, Zhu W, Jiang T, Guo J, Xia W, Chen M, Guo L, Deng W, Lin H. Prognostic value and immune landscapes of TERT promoter methylation in triple negative breast cancer. Front Immunol 2023; 14:1218987. [PMID: 37575241 PMCID: PMC10416624 DOI: 10.3389/fimmu.2023.1218987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Background Treatment options for patients with triple-negative breast cancer (TNBC) remain limited to mainstay therapies owing to a lack of efficacious therapeutic targets. Accordingly, there is an urgent need to discover and identify novel molecular targets for the treatment and diagnosis of this disease. In this study, we analyzed the correlation of telomerase reverse transcriptase (TERT) methylation status with TERT expression, prognosis, and immune infiltration in TNBC and identified the role of TERT methylation in the regulation TNBC prognosis and immunotherapy. Methods Data relating to the transcriptome, clinicopathological characteristics and methylation of TNBC patients were obtained from The Cancer Genome Atlas (TCGA) database. TERT expression levels and differential methylation sites (DMSs) were detected. The correlations between TERT expression and DMSs were calculated. Kaplan-Meier curves was plotted to analyze the relationship between the survival of TNBC patients and the DMSs. The correlations of DMSs and TERT expression with several immunological characteristics of immune microenvironment (immune cell infiltration, immunomodulators, immune-related biological pathways, and immune checkpoints) were assessed. The results were validated using 40 TNBC patients from Sun Yat-sen University Cancer Center (SYSUCC). Results Six DMSs were identified. Among them, four sites (cg11625005, cg07380026, cg17166338, and cg26006951) were within the TERT promoter, in which two sites (cg07380026 and cg26006951) were significantly related to the prognosis of patients with TNBC. Further validation using 40 TNBC samples from SYSUCC showed that the high methylation of the cg26006951 CpG site was associated with poor survival prognosis (P=0.0022). TERT expression was significantly correlated with pathological N stage and clinical stage, and cg07380026 were significantly associated with pathological T and N stages in the TCGA cohort. Moreover, the methylation site cg26006951, cg07380026 and TERT expression were significantly correlated with immune cell infiltration, common immunomodulators, and the level of the immune checkpoint receptor lymphocyte activation gene 3 (LAG-3) in TNBC patients. Conclusion TERT promotertypermethylation plays an important role in TERT expression regulation and tumor microenvironment in TNBC. It is associated with overall survival and LAG-3 expression. TERT promoter hypermethylation may be a potential molecular biomarker for predicting response to the TERT inhibitors and immune checkpoint inhibitors in TNBC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ling Guo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huanxin Lin
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
8
|
MacKenzie TMG, Cisneros R, Maynard RD, Snyder MP. Reverse-ChIP Techniques for Identifying Locus-Specific Proteomes: A Key Tool in Unlocking the Cancer Regulome. Cells 2023; 12:1860. [PMID: 37508524 PMCID: PMC10377898 DOI: 10.3390/cells12141860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
A phenotypic hallmark of cancer is aberrant transcriptional regulation. Transcriptional regulation is controlled by a complicated array of molecular factors, including the presence of transcription factors, the deposition of histone post-translational modifications, and long-range DNA interactions. Determining the molecular identity and function of these various factors is necessary to understand specific aspects of cancer biology and reveal potential therapeutic targets. Regulation of the genome by specific factors is typically studied using chromatin immunoprecipitation followed by sequencing (ChIP-Seq) that identifies genome-wide binding interactions through the use of factor-specific antibodies. A long-standing goal in many laboratories has been the development of a 'reverse-ChIP' approach to identify unknown binding partners at loci of interest. A variety of strategies have been employed to enable the selective biochemical purification of sequence-defined chromatin regions, including single-copy loci, and the subsequent analytical detection of associated proteins. This review covers mass spectrometry techniques that enable quantitative proteomics before providing a survey of approaches toward the development of strategies for the purification of sequence-specific chromatin as a 'reverse-ChIP' technique. A fully realized reverse-ChIP technique holds great potential for identifying cancer-specific targets and the development of personalized therapeutic regimens.
Collapse
Affiliation(s)
| | - Rocío Cisneros
- Sarafan ChEM-H/IMA Postbaccalaureate Fellow in Target Discovery, Stanford University, Stanford, CA 94305, USA
| | - Rajan D Maynard
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| | - Michael P Snyder
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Delyon J, Vallet A, Bernard-Cacciarella M, Kuzniak I, Reger de Moura C, Louveau B, Jouenne F, Mourah S, Lebbé C, Dumaz N. TERT Expression Induces Resistance to BRAF and MEK Inhibitors in BRAF-Mutated Melanoma In Vitro. Cancers (Basel) 2023; 15:cancers15112888. [PMID: 37296851 DOI: 10.3390/cancers15112888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Because BRAF-mutated melanomas are addicted to the Mitogen Activated Protein Kinase (MAPK) pathway they show a high response rate to BRAF and MEK inhibitors. However, the clinical responses to these inhibitors are often short-lived with the rapid onset of resistance to treatment. Deciphering the molecular mechanisms driving resistance has been the subject of intense research. Recent in vitro and clinical data have suggested a link between expression of telomerase and resistance to targeted therapy in melanoma. TERT promoter mutations are the main mechanism for the continuous upregulation of telomerase in melanoma and co-occur frequently with BRAF alterations. To understand how TERT promoter mutations could be associated with resistance to targeted therapy in melanoma, we conducted translational and in vitro studies. In a cohort of V600E-BRAF-mutated melanoma patients, we showed that the TERT promoter mutation status and TERT expression tended to be associated with response to BRAF and MEK inhibitors. We demonstrated that TERT overexpression in BRAF-mutated melanoma cells reduced sensitivity to BRAF and MEK independently of TERT's telomer maintenance activity. Interestingly, inhibition of TERT reduced growth of BRAF-mutated melanoma including resistant cells. TERT expression in melanoma can therefore be a new biomarker for resistance to MAPK inhibitors as well as a novel therapeutic target.
Collapse
Affiliation(s)
- Julie Delyon
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
- Département de Dermatologie, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Anaïs Vallet
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
| | - Mélanie Bernard-Cacciarella
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
- Département de Dermatologie, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Isabelle Kuzniak
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
| | - Coralie Reger de Moura
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
- Département de Pharmacogénomique, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Baptiste Louveau
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
- Département de Pharmacogénomique, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Fanélie Jouenne
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
- Département de Pharmacogénomique, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Samia Mourah
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
- Département de Pharmacogénomique, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Céleste Lebbé
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
- Département de Dermatologie, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Nicolas Dumaz
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
| |
Collapse
|
10
|
Palamarchuk AI, Kovalenko EI, Streltsova MA. Multiple Actions of Telomerase Reverse Transcriptase in Cell Death Regulation. Biomedicines 2023; 11:biomedicines11041091. [PMID: 37189709 DOI: 10.3390/biomedicines11041091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Telomerase reverse transcriptase (TERT), a core part of telomerase, has been known for a long time only for its telomere lengthening function by reverse transcription of RNA template. Currently, TERT is considered as an intriguing link between multiple signaling pathways. The diverse intracellular localization of TERT corresponds to a wide range of functional activities. In addition to the canonical function of protecting chromosome ends, TERT by itself or as a part of the telomerase complex participates in cell stress responses, gene regulation and mitochondria functioning. Upregulation of TERT expression and increased telomerase activity in cancer and somatic cells relate to improved survival and persistence of such cells. In this review, we summarize the data for a comprehensive understanding of the role of TERT in cell death regulation, with a focus on the interaction of TERT with signaling pathways involved in cell survival and stress response.
Collapse
Affiliation(s)
- Anastasia I. Palamarchuk
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Elena I. Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maria A. Streltsova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
11
|
Yang Q, Nie Z, Zhu Y, Hao M, Liu S, Ding X, Wang F, Wang F, Geng X. Inhibition of TRF2 Leads to Ferroptosis, Autophagic Death, and Apoptosis by Causing Telomere Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6897268. [PMID: 37113742 PMCID: PMC10129434 DOI: 10.1155/2023/6897268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/23/2022] [Accepted: 02/04/2023] [Indexed: 04/29/2023]
Abstract
Background Gastric cancer (GC) is an aggressive malignancy with a high mortality rate and poor prognosis. Telomeric repeat-binding factor 2 (TRF2) is a critical telomere protection protein. Emerging evidence indicates that TRF2 may be an essential treatment option for GC; however, the exact mechanism remains largely unknown. Objective We aimed to explore the role of TRF2 in GC cells. The function and molecular mechanisms of TRF2 in the pathogenesis of GC were mainly discussed in this study. Methods Relevant data from GEPIA and TCGA databases regarding TRF2 gene expression and its prognostic significance in GC samples were analyzed. Analysis of 53BP1 foci at telomeres by immunofluorescence, metaphase spreads, and telomere-specific FISH analysis was carried out to explore telomere damage and dysfunction after TRF2 depletion. CCK8 cell proliferation, trypan blue staining, and colony formation assay were performed to evaluate cell survival. Apoptosis and cell migration were determined with flow cytometry and scratch-wound healing assay, respectively. qRT-PCR and Western blotting were carried out to analyze the mRNA and protein expression levels after TRF2 depletion on apoptosis, autophagic death, and ferroptosis. Results By searching with GEPIA and TCGA databases, the results showed that the expression levels of TRF2 were obviously elevated in the samples of GC patients, which was associated with adverse prognosis. Knockdown of TRF2 suppressed the cell growth, proliferation, and migration in GC cells, causing significant telomere dysfunction. Apoptosis, autophagic death, and ferroptosis were also triggered in this process. The pretreatment of chloroquine (autophagy inhibitor) and ferrostatin-1 (ferroptosis inhibitor) improved the survival phenotypes of GC cells. Conclusion Our data suggest that TRF2 depletion can inhibit cell growth, proliferation, and migration through the combined action of ferroptosis, autophagic death, and apoptosis in GC cells. The results indicate that TRF2 might be used as a potential target to develop therapeutic strategies for treating GC.
Collapse
Affiliation(s)
- Qiuhui Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Ziyang Nie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
- School of Life Sciences, Central China Normal University, Hubei Province, China
| | - Yukun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
- Fuyang Hospital Affiliated to Anhui Medical University, Anhui Province 236000, China
| | - Mingying Hao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Siqi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Xuelu Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University, General Hospital, Tianjin 300052, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
12
|
Hasanau TN, Pisarev EP, Kisil OV, Zvereva ME. The TERT Promoter: A Key Player in the Fight for Cancer Cell Immortality. BIOCHEMISTRY (MOSCOW) 2023; 88:S21-S38. [PMID: 37069112 DOI: 10.1134/s000629792314002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The review describes the role of telomeres and telomerase in tumor progression, as well as various mechanisms of the activation of telomerase reverse transcriptase (TERT) expression in CNS tumors and other cancers. The main mechanism of TERT activation involves acquisition of somatic mutations by the TERT gene promoter (TERTp). The article presents information on the TERTp structure and transcription factors directly interacting with TERTp and regulating its transcription. The prospects of using the mutational status of TERTp as a prognostic marker of CNS malignancies and other tumors with a common profile of TERTp mutations are discussed.
Collapse
Affiliation(s)
- Tsimur N Hasanau
- Natural Compounds Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Eduard P Pisarev
- Natural Compounds Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Olga V Kisil
- Gause Institute of New Antibiotics, Moscow, 119021, Russia
| | - Maria E Zvereva
- Natural Compounds Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
13
|
Al Khleifat A, Iacoangeli A, Jones AR, van Vugt JJFA, Moisse M, Shatunov A, Zwamborn RAJ, van der Spek RAA, Cooper-Knock J, Topp S, van Rheenen W, Kenna B, Van Eijk KR, Kenna K, Byrne R, López V, Opie-Martin S, Vural A, Campos Y, Weber M, Smith B, Fogh I, Silani V, Morrison KE, Dobson R, van Es MA, McLaughlin RL, Vourc’h P, Chio A, Corcia P, de Carvalho M, Gotkine M, Panades MP, Mora JS, Shaw PJ, Landers JE, Glass JD, Shaw CE, Basak N, Hardiman O, Robberecht W, Van Damme P, van den Berg LH, Veldink JH, Al-Chalabi A. Telomere length analysis in amyotrophic lateral sclerosis using large-scale whole genome sequence data. Front Cell Neurosci 2022; 16:1050596. [PMID: 36589292 PMCID: PMC9799999 DOI: 10.3389/fncel.2022.1050596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of upper and lower motor neurons, leading to progressive weakness of voluntary muscles, with death following from neuromuscular respiratory failure, typically within 3 to 5 years. There is a strong genetic contribution to ALS risk. In 10% or more, a family history of ALS or frontotemporal dementia is obtained, and the Mendelian genes responsible for ALS in such families have now been identified in about 50% of cases. Only about 14% of apparently sporadic ALS is explained by known genetic variation, suggesting that other forms of genetic variation are important. Telomeres maintain DNA integrity during cellular replication, differ between sexes, and shorten naturally with age. Sex and age are risk factors for ALS and we therefore investigated telomere length in ALS. Methods Samples were from Project MinE, an international ALS whole genome sequencing consortium that includes phenotype data. For validation we used donated brain samples from motor cortex from people with ALS and controls. Ancestry and relatedness were evaluated by principal components analysis and relationship matrices of DNA microarray data. Whole genome sequence data were from Illumina HiSeq platforms and aligned using the Isaac pipeline. TelSeq was used to quantify telomere length using whole genome sequence data. We tested the association of telomere length with ALS and ALS survival using Cox regression. Results There were 6,580 whole genome sequences, reducing to 6,195 samples (4,315 from people with ALS and 1,880 controls) after quality control, and 159 brain samples (106 ALS, 53 controls). Accounting for age and sex, there was a 20% (95% CI 14%, 25%) increase of telomere length in people with ALS compared to controls (p = 1.1 × 10-12), validated in the brain samples (p = 0.03). Those with shorter telomeres had a 10% increase in median survival (p = 5.0×10-7). Although there was no difference in telomere length between sporadic ALS and familial ALS (p=0.64), telomere length in 334 people with ALS due to expanded C9orf72 repeats was shorter than in those without expanded C9orf72 repeats (p = 5.0×10-4). Discussion Although telomeres shorten with age, longer telomeres are a risk factor for ALS and worsen prognosis. Longer telomeres are associated with ALS.
Collapse
Affiliation(s)
- Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Ashley R. Jones
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Joke J. F. A. van Vugt
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology, KU Leuven—University of Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Aleksey Shatunov
- Institute of Medicine, North-Eastern Federal University, Yakutsk, Russia
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Ramona A. J. Zwamborn
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Rick A. A. van der Spek
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Simon Topp
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Wouter van Rheenen
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Brendan Kenna
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Kristel R. Van Eijk
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Kevin Kenna
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Ross Byrne
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Victoria López
- Computational Biology Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Sarah Opie-Martin
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Atay Vural
- School of Medicine, Translational Medicine Research Center-NDAL, Koc University, Istanbul, Turkey
| | - Yolanda Campos
- Computational Biology Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Markus Weber
- School of Medicine, Translational Medicine Research Center-NDAL, Koc University, Istanbul, Turkey
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Bradley Smith
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Isabella Fogh
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Karen E. Morrison
- Faculty of Medicine, Health and Life Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Richard Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Institute of Health Informatics, University College London, London, United Kingdom
| | - Michael A. van Es
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Russell L. McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Adriano Chio
- Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy
- Azienda Ospedaliera Citta della Salute e della Scienza, Turin, Italy
| | - Philippe Corcia
- Centre SLA, CHRU de Tours, Tours, France
- Federation des Centres SLA Tours and Limoges, LITORALS, Tours, France
| | - Mamede de Carvalho
- Physiology Institute, Faculty of Medicine, Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
| | - Marc Gotkine
- Department of Neurology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - John E. Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jonathan D. Glass
- Department of Neurology, Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, United States
| | - Christopher E. Shaw
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- King’s College Hospital, London, United Kingdom
| | - Nazli Basak
- School of Medicine, Translational Medicine Research Center-NDAL, Koc University, Istanbul, Turkey
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Wim Robberecht
- Department of Neurosciences, Experimental Neurology, KU Leuven—University of Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, KU Leuven—University of Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Leonard H. van den Berg
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Jan H. Veldink
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- King’s College Hospital, London, United Kingdom
| |
Collapse
|
14
|
Marchese PV, Mollica V, Tassinari E, De Biase D, Giunchi F, Marchetti A, Rosellini M, Fiorentino M, Massari F. Implications of TERT promoter mutations and telomerase activity in solid tumors with a focus on genitourinary cancers. Expert Rev Mol Diagn 2022; 22:997-1008. [PMID: 36503370 DOI: 10.1080/14737159.2022.2154148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The reactivation of telomerase represents a key moment in the carcinogenesis process. Mutations in the central promoter region of the telomerase reverse transcriptase (TERT) gene cause telomerase reactivation in approximately 90% of solid tumors. In some of these, its prognostic and predictive role in response to treatments has already been demonstrated, in others (such as tumors of the genitourinary tract like urothelial carcinoma) data are controversial and the research is still ongoing. In the future, TERT promoter mutations and telomerase activity could have diagnostic, prognostic, and therapeutic applications in many types of cancer. AREAS COVERED We performed a review the literature with the aim of describing the current evidence on the prognostic and predictive role of TERT promoter mutations. In some tumor types, TERT promoter mutations have been associated with a worse prognosis and could have a potential value as biomarkers to guide therapeutic decisions. Mutations in TERT promoter seems to make the tumor particularly immunogenic and more responsive to immunotherapy, although data is controversial. EXPERT OPINION We described the role of TERT promoter mutations in solid tumors with a particular focus in genitourinary cancers, considering their frequency in this tract.
Collapse
Affiliation(s)
- Paola Valeria Marchese
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni - 15 40138, Bologna, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni - 15 40138, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Elisa Tassinari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni - 15 40138, Bologna, Italy
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (Fabit), University of Bologna, 40138 Bologna, Italy.,Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Francesca Giunchi
- Pathology Unit, IRCCS Policlinico Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni - 15 40138, Bologna, Italy
| | - Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni - 15 40138, Bologna, Italy
| | | | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni - 15 40138, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Nrf2 Modulation in Breast Cancer. Biomedicines 2022; 10:biomedicines10102668. [PMID: 36289931 PMCID: PMC9599257 DOI: 10.3390/biomedicines10102668] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 12/05/2022] Open
Abstract
Reactive oxygen species (ROS) are identified to control the expression and activity of various essential signaling intermediates involved in cellular proliferation, apoptosis, and differentiation. Indeed, ROS represents a double-edged sword in supporting cell survival and death. Many common pathological processes, including various cancer types and neurodegenerative diseases, are inflammation and oxidative stress triggers, or even initiate them. Keap1-Nrf2 is a master antioxidant pathway in cytoprotective mechanisms through Nrf2 target gene expression. Activation of the Nfr2 pathway benefits cells in the early stages and reduces the level of ROS. In contrast, hyperactivation of Keap1-Nrf2 creates a context that supports the survival of both healthy and cancerous cells, defending them against oxidative stress, chemotherapeutic drugs, and radiotherapy. Considering the dual role of Nrf2 in suppressing or expanding cancer cells, determining its inhibitory/stimulatory position and targeting can represent an impressive role in cancer treatment. This review focused on Nrf2 modulators and their roles in sensitizing breast cancer cells to chemo/radiotherapy agents.
Collapse
|
16
|
Fanelli A, Marconato L, Licenziato L, Minoli L, Rouquet N, Aresu L. POT1 mutations are frequent and associated with Ki-67 index in canine diffuse large B-cell lymphoma. Front Vet Sci 2022; 9:968807. [PMID: 36016811 PMCID: PMC9396242 DOI: 10.3389/fvets.2022.968807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) represents one of the most frequent and deadliest neoplasia in dogs worldwide and is characterized by a remarkable degree of clinical heterogeneity, with poor chances to anticipate the outcome. Even if in the last years some recurrently mutated genes have been identified, the genetic origin of canine DLBCL (cDLBCL) is not yet completely understood. The aim of the present study was to assess the prevalence of POT1 mutations in cDLBCL and to elucidate the role of such gene in the pathogenesis of this tumor. Mutations in POT1 were retrieved in 34% of cases, in line with previous reports, but no significant associations with any clinico-pathological variable were identified. Likewise, POT1 mutations are not predictive of worse prognosis. Interestingly, Ki-67 index was significantly higher in dogs harboring POT1 mutations compared to wild-type ones. These results suggest that POT1 mutations may exert their pathogenic role in cDLBCL by promoting cellular proliferation.
Collapse
Affiliation(s)
- Antonella Fanelli
- Department of Veterinary Sciences, University of Turin, Turin, Italy
- *Correspondence: Antonella Fanelli
| | - Laura Marconato
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Luca Licenziato
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Lucia Minoli
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
17
|
Son N, Cui Y, Xi W. Association Between Telomere Length and Skin Cancer and Aging: A Mendelian Randomization Analysis. Front Genet 2022; 13:931785. [PMID: 35903361 PMCID: PMC9315360 DOI: 10.3389/fgene.2022.931785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Telomere shortening is a hallmark of cellular senescence. However, telomere length (TL)-related cellular senescence has varying effects in different cancers, resulting in a paradoxical relationship between senescence and cancer. Therefore, we used observational epidemiological studies to investigate the association between TL and skin cancer and aging, and to explore whether such a paradoxical relationship exists in skin tissue. Methods: This study employed two-sample Mendelian randomization (MR) to analyze the causal relationship between TL and skin cancer [melanoma and non-melanoma skin cancers (NMSCs)] and aging. We studied single nucleotide polymorphisms (SNPs) obtained from pooled data belonging to genome-wide association studies (GWAS) in the literature and biobanks. Quality control was performed using pleiotropy, heterogeneity, and sensitivity analyses. Results: We used five algorithms to analyze the causal relationship between TL and skin aging, melanoma, and NMSCs, and obtained consistent results. TL shortening reduced NMSC and melanoma susceptibility risk with specific odds ratios (ORs) of 1.0344 [95% confidence interval (CI): 1.0168–1.0524, p = 0.01] and 1.0127 (95% CI: 1.0046–1.0209, p = 6.36E-07), respectively. Conversely, TL shortening was validated to increase the odds of skin aging (OR = 0.96, 95% CI: 0.9332–0.9956, p = 0.03). Moreover, the MR-Egger, maximum likelihood, and inverse variance weighted (IVW) methods found significant heterogeneity among instrumental variable (IV) estimates (identified as MR-Egger skin aging Q = 76.72, p = 1.36E-04; melanoma Q = 97.10, p = 1.62E-07; NMSCsQ = 82.02, p = 1.90E-05). The leave-one-out analysis also showed that the SNP sensitivity was robust to each result. Conclusion: This study found that TL shortening may promote skin aging development and reduce the risk of cutaneous melanoma and NMSCs. The results provide a reference for future research on the causal relationship between skin aging and cancer in clinical practice.
Collapse
Affiliation(s)
| | | | - Wang Xi
- *Correspondence: Yankun Cui, ; Wang Xi,
| |
Collapse
|
18
|
Marchese PV, Mollica V, De Biase D, Giunchi F, Tassinari E, Marchetti A, Rosellini M, Nuvola G, Maloberti T, Fiorentino M, Massari F. A hypothesis-generating analysis on the role of TERT promoter mutation in advanced urothelial carcinoma treated with immunotherapy. Pathol Res Pract 2022; 236:153983. [PMID: 35751929 DOI: 10.1016/j.prp.2022.153983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The therapeutic scenario of urothelial carcinoma is constantly expanding with the widening of the knowledge on molecular characteristics, thus claiming for the need of prognostic and predictive factors to guide treatment strategy. TERT promoter mutation is one of the most frequent genomic alterations in urothelial carcinoma and could present several implications, from diagnostic to prognostic or potentially even predictive. METHODS We performed a single-center retrospective analysis on patients with advanced urothelial carcinoma treated with an immune checkpoint inhibitor as second line of therapy to assess the status of the TERT promoter and the potential implication of its mutation on survival outcomes. RESULTS We analyzed tissue samples from 11 patients with a next-generation sequencing multi-gene panel. The most frequently altered genes were TP53 (54.5%, n = 6) and TERT promoter (36.3%, n = 4). Other mutations found were BRAF, SMAD4, PIK3CA / PDGRFA. The only type of detected TERT promoter mutation was the c 0.124 C>T (n = 4/4, 100%). Of the 4 TERT mutated patients, 2 presented a co-mutation of TP53. Patients with TERT promoter mutation treated with immunotherapy presented a low median overall survival (16.5 months) and progression-free survival (3.8 months). CONCLUSIONS Our hypothesis-generating analysis suggests that the presence of TERT promoter mutation could have a negative prognostic value and should be further evaluated in wider cohorts.
Collapse
Affiliation(s)
- Paola Valeria Marchese
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni - 15, Bologna 40138, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni - 15, Bologna 40138, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40138 Bologna, Italy; Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Francesca Giunchi
- Pathology Unit, IRCCS Policlinico Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Elisa Tassinari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni - 15, Bologna 40138, Italy
| | - Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni - 15, Bologna 40138, Italy
| | - Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni - 15, Bologna 40138, Italy
| | - Giacomo Nuvola
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni - 15, Bologna 40138, Italy
| | - Thais Maloberti
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | | | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni - 15, Bologna 40138, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Karvouni M, Vidal-Manrique M, Lundqvist A, Alici E. Engineered NK Cells Against Cancer and Their Potential Applications Beyond. Front Immunol 2022; 13:825979. [PMID: 35242135 PMCID: PMC8887605 DOI: 10.3389/fimmu.2022.825979] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
Cell therapy is an innovative therapeutic concept where viable cells are implanted, infused, or grafted into a patient to treat impaired or malignant tissues. The term was first introduced circa the 19th century and has since resulted in multiple breakthroughs in different fields of medicine, such as neurology, cardiology, and oncology. Lately, cell and gene therapy are merging to provide cell products with additional or enhanced properties. In this context, adoptive transfer of genetically modified cytotoxic lymphocytes has emerged as a novel treatment option for cancer patients. To this day, five cell therapy products have been FDA approved, four of which for CD19-positive malignancies and one for B-cell maturation antigen (BCMA)-positive malignancies. These are personalized immunotherapies where patient T cells are engineered to express chimeric antigen receptors (CARs) with the aim to redirect the cells against tumor-specific antigens. CAR-T cell therapies show impressive objective response rates in clinical trials that, in certain instances, may reach up to 80%. However, the life-threatening side effects associated with T cell toxicity and the manufacturing difficulties of developing personalized therapies hamper their widespread use. Recent literature suggests that Natural Killer (NK) cells, may provide a safer alternative and an 'off-the-shelf' treatment option thanks to their potent antitumor properties and relatively short lifespan. Here, we will discuss the potential of NK cells in CAR-based therapies focusing on the applications of CAR-NK cells in cancer therapy and beyond.
Collapse
Affiliation(s)
- Maria Karvouni
- Center for Hematology and Regenerative Medicine, Department of Medicine-Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Marcos Vidal-Manrique
- Center for Hematology and Regenerative Medicine, Department of Medicine-Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology‐Pathology, Karolinska Institute, Stockholm, Sweden
| | - Evren Alici
- Center for Hematology and Regenerative Medicine, Department of Medicine-Huddinge, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
20
|
El Ahanidi H, El Azzouzi M, Hafidi Alaoui C, Tetou M, Bensaid M, Chaoui I, Benbacer L, Hassan I, Oukabli M, Michaud K, Ameur A, Al Bouzidi A, El Mzibri M, Jandus C, Attaleb M. Immune Checkpoint and Telomerase Crosstalk Is Mediated by miRNA-138 in Bladder Cancer. Front Oncol 2022; 11:795242. [PMID: 35223454 PMCID: PMC8874320 DOI: 10.3389/fonc.2021.795242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 11/15/2022] Open
Abstract
Background Tumor recurrence and progression in non-muscle invasive bladder cancer (NMIBC), therapy failure, and severe side effects in muscle invasive bladder cancer (MIBC) are the major challenges in the clinical management of bladder cancer (BC). Here, we identify new molecular targetable signatures to improve BC patients’ stratification and the outcome of current immunotherapies. Material and Methods In a prospective cohort of 70 BC patients, we assessed the genetic and molecular regulation of TERT in maintaining telomere length in parallel to immune checkpoint and microRNA expression. Results TERT was undetectable in healthy bladder tissues but upregulated in invasive BC stages and high tumor grade. Its expression was linked with the combined effect of the C250T mutation and THOR hypermethylation, associated with progressing tumors and maintaining of telomere length. In the same cohort, PD-L1 scored highest in NMIBC, while PD-L2 was upregulated in MIBC. We also show that miR-100-5p and 138-5p were highly expressed in healthy bladder specimens and cell line, while expression decreased in the BC tissues and BC cell lines. In line with the binding prediction for these miRNAs on target genes, miRs 100-5p and 138-5p expression strongly inverse correlated with TERT, PD-L1, and PD-L2 expression, but not PD1. Conclusion We identify a loop involving TERT, PD1-ligands, and miR-138-5p in BC, that might represent not only a useful biomarker for improved diagnosis and patients’ stratification but also as a promising axis that might be therapeutically targeted in situ.
Collapse
Affiliation(s)
- Hajar El Ahanidi
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucleaires (CNESTEN), Rabat, Morocco
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Meryem El Azzouzi
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucleaires (CNESTEN), Rabat, Morocco
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Chaimae Hafidi Alaoui
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucleaires (CNESTEN), Rabat, Morocco
- Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohammed Tetou
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Military Hospital Mohammed V, Rabat, Morocco
| | | | - Imane Chaoui
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucleaires (CNESTEN), Rabat, Morocco
| | - Laila Benbacer
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucleaires (CNESTEN), Rabat, Morocco
| | - Ilias Hassan
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Military Hospital Mohammed V, Rabat, Morocco
| | - Mohamed Oukabli
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Military Hospital Mohammed V, Rabat, Morocco
| | - Katarzyna Michaud
- University Center of Legal Medicine Lausanne-Geneva, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Ahmed Ameur
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucleaires (CNESTEN), Rabat, Morocco
- Military Hospital Mohammed V, Rabat, Morocco
| | | | - Mohammed El Mzibri
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucleaires (CNESTEN), Rabat, Morocco
| | - Camilla Jandus
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Mohammed Attaleb
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucleaires (CNESTEN), Rabat, Morocco
- *Correspondence: Mohammed Attaleb, ;
| |
Collapse
|
21
|
Kunieda J, Yamashita K, Togashi Y, Baba S, Sakata S, Inamura K, Ae K, Matsumoto S, Machinami R, Kitagawa M, Takeuchi K. High prevalence of TERT aberrations in myxoid liposarcoma: TERT reactivation may play a crucial role in tumorigenesis. Cancer Sci 2021; 113:1078-1089. [PMID: 34971481 PMCID: PMC8898734 DOI: 10.1111/cas.15256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022] Open
Abstract
Myxoid liposarcoma (MLPS) is genetically characterized by FUS‐DDIT3 or EWSR1‐DDIT3 gene fusion and the high frequency of hotspot mutations (C228T or C250T) in the promoter region of telomerase reverse transcriptase (TERT) that encodes the TERT protein. The latter leads to telomerase reactivation, a mechanism of telomere maintenance. Although the TERT promoter hotspot mutation is a poor prognostic factor in various tumors, its effect on MLPS has not been reported in detail. In the present study, we examined the clinicopathological characteristics, prognosis, and telomere maintenance mechanisms in 83 primary tumor samples of MLPS, which were resected surgically at the Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan, from 2008 to 2020. TERT promoter hotspot mutations were observed in 77% (63/82) cases, and alternative lengthening of telomeres (ALT) was absent in all cases. Among the cases without TERT promoter hotspot mutations, TERT rearrangements, and minor point mutations in the TERT promoter region were found in 3 and 2 cases, respectively. TERT mRNA expression was observed consistently even in patients for whom no genomic TERT aberrations were detected, and the presence of TERT promoter hotspot mutation did not correlate significantly with either overall and metastasis‐free survival (P = .56, P = .83, respectively) or clinicopathological features. Therefore, patients with MLPS characteristically shows TERT expression and a high prevalence of TERT aberrations. Our findings suggest that TERT aberration is not prognostic factor, but might occur at an early stage and play a key role in tumorigenesis.
Collapse
Affiliation(s)
- Junko Kunieda
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyoko Yamashita
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuki Togashi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoko Baba
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Seiji Sakata
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kentaro Inamura
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Keisuke Ae
- Department of Orthopedic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Seiichi Matsumoto
- Department of Orthopedic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Rikuo Machinami
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Pathology, Kawakita General Hospital, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.,Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
22
|
Zheng X, Wezel F, Azoitei A, Meessen S, Wang W, Najjar G, Wang X, Kraus JM, Kestler HA, John A, Zengerling F, Bolenz C, Günes C. Shorter Leukocyte Telomere Length Is Associated with Worse Survival of Patients with Bladder Cancer and Renal Cell Carcinoma. Cancers (Basel) 2021; 13:3774. [PMID: 34359672 PMCID: PMC8345040 DOI: 10.3390/cancers13153774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Telomeres are protein-DNA complexes at the tips of linear chromosomes. They protect the DNA from end-to-end fusion and exonucleolytic degradation. Shortening of telomeric DNA during aging can generate dysfunctional telomeres, promoting tumorigenesis. More recent data indicate that both short and long telomeres of peripheral blood leukocyte (PBL) cells can serve as prognostic biomarkers for cancer risk and may be associated with survival of patients with solid cancers. Telomere length in PBL cells could also be a potential prognostic biomarker for survival in bladder cancer (BC) or renal cell carcinoma (RCC). METHODS The relative telomere length (RTL) of PBL cells was assessed in patients with BC (n = 144) and RCC (n = 144) by using qPCR. A control population of patients without malignant disease (NC, n = 73) was included for comparison. The correlation and association of RTL with histopathological parameters and overall survival (OS) were evaluated. RESULTS Patients with BC and RCC had significantly shorter telomeres compared to patients without malignant disease. Within the cancer cohorts, multivariate analysis revealed that short RTL is an independent predictor of worse survival in BC (p = 0.039) and RCC (p = 0.041). CONCLUSION Patients with BC and RCC had significantly shorter telomeres compared to the normal population. Shorter RTL in BC and RCC was an independent predictor of reduced survival.
Collapse
Affiliation(s)
- Xi Zheng
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Felix Wezel
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Anca Azoitei
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Sabine Meessen
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Wenya Wang
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Gregoire Najjar
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Xue Wang
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Johann M. Kraus
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany; (J.M.K.); (H.A.K.)
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany; (J.M.K.); (H.A.K.)
| | - Axel John
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Friedemann Zengerling
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Cagatay Günes
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| |
Collapse
|
23
|
Khodadadi E, Mir SM, Memar MY, Sadeghi H, Kashiri M, Faeghiniya M, Jamalpoor Z, Sheikh Arabi M. Shelterin complex at telomeres: Roles in cancers. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Kan G, Wang Z, Sheng C, Yao C, Mao Y, Chen S. Inhibition of DKC1 induces telomere-related senescence and apoptosis in lung adenocarcinoma. J Transl Med 2021; 19:161. [PMID: 33879171 PMCID: PMC8056518 DOI: 10.1186/s12967-021-02827-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background Lung cancer is one of the most widely spread cancers in the world and half of the non-small cell lung cancers are lung adenocarcinoma (LUAD). Although there were several drugs been approved for LUAD therapy, a large portion of LUAD still cannot be effectively treated due to lack of available therapeutic targets. Here, we investigated the oncogenic roles of DKC1 in LUAD and its potential mechanism and explored the possibility of targeting DKC1 for LUAD therapy. Methods The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas Program (TCGA) databases were used to examine the DKC1 transcript levels. Gene expression with clinical information from tissue microarray of LUAD were analyzed for associations between DKC1 expression and LUAD prognosis. In addition, loss- and gain-of-function assays were used for oncogenic function of DKC1 both in vitro and in vivo. Results DKC1 is overexpressed in LUAD compared with adjacent normal tissues. High expression of DKC1 predicts the poor overall survival. DKC1 knockdown in LUAD cell lines induced G1 phase arrest and inhibited cell proliferation. Ectopic expression of DKC1 could rescue the growth of LUAD cell lines. In addition, the abundance of DKC1 is positively correlated with telomerase RNA component (TERC) and telomerase reverse transcriptase (TERT) levels in LUAD. DKC1 downregulation resulted in decreased TERC expression, reduced telomerase activity and shorten telomere, and thus eventually led to cell senescence and apoptosis. Conclusions Our results show that high DKC1 expression indicates poor prognosis of LUAD and DKC1 downregulation could induce telomere-related cell senescence and apoptosis. This study suggests that DKC1 could serve as a candidate diagnostic biomarker and therapeutic target for LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02827-0.
Collapse
Affiliation(s)
- Guangyan Kan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Ziyang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Chunjie Sheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Chen Yao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Yizhi Mao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Shuai Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
25
|
Abstract
The field of single nanoparticle plasmonics has grown enormously. There is no doubt that a wide diversity of the nanoplasmonic techniques and nanostructures represents a tremendous opportunity for fundamental biomedical studies as well as sensing and imaging applications. Single nanoparticle plasmonic biosensors are efficient in label-free single-molecule detection, as well as in monitoring real-time binding events of even several biomolecules. In the present review, we have discussed the prominent advantages and advances in single particle characterization and synthesis as well as new insight into and information on biomedical diagnosis uniquely obtained using single particle approaches. The approaches include the fundamental studies of nanoplasmonic behavior, two typical methods based on refractive index change and characteristic light intensity change, exciting innovations of synthetic strategies for new plasmonic nanostructures, and practical applications using single particle sensing, imaging, and tracking. The basic sphere and rod nanostructures are the focus of extensive investigations in biomedicine, while they can be programmed into algorithmic assemblies for novel plasmonic diagnosis. Design of single nanoparticles for the detection of single biomolecules will have far-reaching consequences in biomedical diagnosis.
Collapse
Affiliation(s)
- Xingyi Ma
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| |
Collapse
|
26
|
Watkinson F, Nayar SK, Rani A, Sakellariou CA, Elhage O, Papaevangelou E, Dasgupta P, Galustian C. IL-15 Upregulates Telomerase Expression and Potently Increases Proliferative Capacity of NK, NKT-Like, and CD8 T Cells. Front Immunol 2021; 11:594620. [PMID: 33537030 PMCID: PMC7848219 DOI: 10.3389/fimmu.2020.594620] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Interleukin-15 (IL-15) is a cytokine that has been shown to expand CD8 T cell and natural killer (NK) cell populations, and therefore has potential for potentiating adoptive immune cell therapy for cancer. Previously, IL-15 has been shown to induce proliferation of CD8 memory T cells through activation of telomerase. Here, we investigated whether telomerase is also activated during the IL-15 mediated proliferation of NK and NKT-like (CD56+CD3+) cells. We also examined the extent that each of the three signaling pathways known to be stimulated by IL-2/IL-15 (JAK-STAT, PI3K-AKT Ras-RAF/MAPK) were activated and involved in the telomerase expression in the three cell types NK, NKT, or CD8 T cells. To assess cell proliferation and doubling, peripheral blood mononuclear cells (PBMCs) or isolated NK, NKT-like or CD8 T cells were incubated with varying concentrations of IL-15 or IL-2 for 7 days. CD8 T, NK, and NKT cell expansion was determined by fluorophore-conjugated antibody staining and flow cytometry. Cell doubling was investigated using carboxyfluorescein-succinimidyl-ester (CFSE). Telomerase expression was investigated by staining cells with anti-telomerase reverse transcriptase (anti-TERT). Telomerase activity in CD56+ and CD8 T cells was also measured via Telomerase Repeat Amplification Protocol (TRAP). Analysis of cellular expansion, proliferation and TERT expression concluded that IL-15 increased cellular growth of NK, NKT, and CD8 T cells more effectively than IL-2 using low or high doses. IL-15, increased TERT expression in NK and NKT cells by up to 2.5 fold, the same increase seen in CD8 T cells. IL-2 had effects on TERT expression only at high doses (100–1000 ng/ml). Proteome profiling identified that IL-15 activated selected signaling proteins in the three pathways (JAK-STAT, PI3K-AKT, Ras-MAPK) known to mediate IL-2/IL-15 signaling, more strongly than IL-2. Evaluation by signaling pathway inhibitors revealed that JAK/STAT and PI3K/AKT pathways are important in IL-15’s ability to upregulate TERT expression in NK and NKT cells, whereas all three pathways were involved in CD8 T cell TERT expression. In conclusion, this study shows that IL-15 potently stimulates TERT upregulation in NK and NKT cells in addition to CD8 T cells and is therefore a valuable tool for adoptive cell therapies.
Collapse
Affiliation(s)
- Fiona Watkinson
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, London, United Kingdom
| | - Sandeep Krishan Nayar
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, London, United Kingdom
| | - Aradhana Rani
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, London, United Kingdom
| | - Christina A Sakellariou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, London, United Kingdom
| | - Oussama Elhage
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, London, United Kingdom.,Urology Centre, Guy's Hospital, London, United Kingdom
| | - Efthymia Papaevangelou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, London, United Kingdom
| | - Prokar Dasgupta
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, London, United Kingdom.,Urology Centre, Guy's Hospital, London, United Kingdom
| | - Christine Galustian
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|
27
|
Natural antisense transcripts in the biological hallmarks of cancer: powerful regulators hidden in the dark. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:187. [PMID: 32928281 PMCID: PMC7490906 DOI: 10.1186/s13046-020-01700-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Natural antisense transcripts (NATs), which are transcribed from opposite strands of DNA with partial or complete overlap, affect multiple stages of gene expression, from epigenetic to post-translational modifications. NATs are dysregulated in various types of cancer, and an increasing number of studies focusing on NATs as pivotal regulators of the hallmarks of cancer and as promising candidates for cancer therapy are just beginning to unravel the mystery. Here, we summarize the existing knowledge on NATs to highlight their underlying mechanisms of functions in cancer biology, discuss their potential roles in therapeutic application, and explore future research directions.
Collapse
|
28
|
Zhang X, Bai J, Yin H, Long L, Zheng Z, Wang Q, Chen F, Yu X, Zhou Y. Exosomal miR-1255b-5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial-to-mesenchymal transition. Mol Oncol 2020; 14:2589-2608. [PMID: 32679610 PMCID: PMC7530775 DOI: 10.1002/1878-0261.12765] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/04/2020] [Accepted: 06/14/2020] [Indexed: 12/27/2022] Open
Abstract
Cancer cells undergo epithelial‐to‐mesenchymal transition (EMT) in response to hypoxia. Exosomes produced in tumor microenvironments carry microRNAs (miRNAs) that affect proliferation, metastasis, and EMT. Hypoxic regulation of EMT is associated with telomerase content and stability, but the underlying mechanisms remain unclear. We identified a targeting relationship between tumor‐suppressing miR‐1255b‐5p and human telomerase reverse transcriptase (hTERT) via clinical screening of serum samples in colorectal cancer (CRC) patients. EMT suppression via exosomal miR‐1255b‐5p delivery was investigated by assessing hTERT expression, Wnt/β‐catenin signaling, and telomerase activity. We revealed that hypoxia directly affected exosomal miR‐1255b‐5p content, the delivery of which between CRC cells significantly impacted cell invasion, EMT‐related protein expression, and telomerase stability. Specifically, miR‐1255b‐5p suppressed EMT by inhibiting Wnt/β‐catenin activation via hTERT inhibition. Hypoxia reduced exosomal miR‐1255b‐5p secretion by CRC cells, thereby increasing hTERT expression to enhance EMT and telomerase activity. In a mouse CRC model, hypoxic exosomes containing overexpressed miR‐1255b‐5p attenuated EMT, tumor progression, and liver metastasis. Our results suggest the antitumor role of miR‐1255b‐5p and its involvement in the regulation of hTERT‐mediated EMT. We propose that miRNA‐targeted regulation of telomerase is a promising therapeutic strategy for future CRC treatment.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Jian Bai
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China.,Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hang Yin
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Long Long
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Zhewen Zheng
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Qingqing Wang
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Fengxia Chen
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Xiaoyan Yu
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Yunfeng Zhou
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| |
Collapse
|
29
|
Lili M, Yuxiang F, Zhongcheng H, Ying S, Ru C, Rong X, Jiang L. Genetic variations associated with telomere length affect the risk of gastric carcinoma. Medicine (Baltimore) 2020; 99:e20551. [PMID: 32502020 PMCID: PMC7306382 DOI: 10.1097/md.0000000000020551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 03/13/2020] [Accepted: 05/03/2020] [Indexed: 11/26/2022] Open
Abstract
This study aimed to further understand the role of relative telomere length (RTL) in susceptibility to gastric carcinoma (GC) and investigate the association between genetic polymorphisms in the telomere length related genes and GC risk.RTL was measured using the real-time quantitative polymerase chain reaction from 1000 patients and 1100 healthy controls. Genotyping was performed using the Agena MassARRAY platform. The statistical analysis was performed using the chi-square/ Welch T tests, Mann-Whitney U test, and logistic regression analysis.The association analysis of telomere length and GC showed that the RTL in the case group was shorter than in the controls, and the shorter RTL was associated with an increased risk of GC. The association analysis between telomere length related genes polymorphisms and genetic susceptibility to GC indicated that: In the allele models and genetic models, TERT (rs10069690, rs2242652 and rs2853676) and TN1F1 (rs7708392 and rs10036748) were significantly associated with an increased risk of GC. In addition, the haplotype 'Grs10069690Crs2242652" of TERT and the haplotype 'Grs7708392Trs10036748" of TNIP1 were associated with an increased risk of GCOur results suggested that shorter RTL was associated with an increased risk of GC; The association analysis have identified that the TERT (rs10069690, rs2242652 and rs2853676) and TN1P1 (rs7708392 and rs10036748) were associated with GC risk.
Collapse
Affiliation(s)
- Ma Lili
- Department of Oncology, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Fan Yuxiang
- The Second Department of Oncology, Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region (The Fourth Affiliated Hospital of Xinjiang Medical University), Urumqi, Xinjiang, China
| | - Han Zhongcheng
- Department of Oncology, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Su Ying
- Department of Oncology, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Chen Ru
- Department of Oncology, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Xu Rong
- Department of Oncology, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Liu Jiang
- Department of Oncology, People's Hospital of Xinjiang Uygur Autonomous Region
| |
Collapse
|
30
|
6-Dithio-2'-deoxyguanosine analogs induce reactive oxygen species-mediated tumor cell apoptosis via bi-targeting thioredoxin 1 and telomerase. Toxicol Appl Pharmacol 2020; 401:115079. [PMID: 32497534 DOI: 10.1016/j.taap.2020.115079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/16/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Thioredoxin 1 (Trx1) and telomerase play key roles in the development and progression process of most tumors, and they both are promising drug therapy targets. We have, for the first time, discovered that Trx1 and telomerase had a dual-target synergistic effect. Based on that results, we designed a series of 6-dithio-2'-deoxyguanosine analogs (named as YLS00X) and verified whether they can inhibit Trx1 and telomerase simultaneously. TrxR1/Trx1 system activity and telomerase expression were significantly inhibited by 6-dithio-2'-deoxyguanosine analogs, especially YLS004. YLS004 can also cause ROS accumulation, and induce tumor cell apoptosis. The vitro antitumor activity of 6-dithio-2'-deoxyguanosine analogs using MTT assay on 11 different human cancer cells and found that human colon cancer cells(HCT116) and melanoma cells (A375) were the most sensitive cells to 6-dithio-2'-deoxyguanosine analogs treatment and vivo xenografts models also confirmed that. The serum biochemical parameters and multiple organs HE staining results of subacute experiments indicated that YLS004 might be mildly toxic to immune organs, including the thymus, spleen, and hematopoietic system. Besides, YLS004 was rapidly metabolized in the rats' blood. Our study revealed that YLS004, a Trx1 and telomerase inhibitor, has strong anti-tumor effects to colon cancer and melanoma cells and is a promising new candidate drug.
Collapse
|
31
|
Morais M, Dias F, Teixeira AL, Medeiros R. Telomere Length in Renal Cell Carcinoma: The Jekyll and Hyde Biomarker of Ageing of the Kidney. Cancer Manag Res 2020; 12:1669-1679. [PMID: 32184670 PMCID: PMC7064280 DOI: 10.2147/cmar.s211225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/02/2019] [Indexed: 12/17/2022] Open
Abstract
Renal cell carcinoma (RCC) is a heterogeneous group of cancers where the clear cell (ccRCC) is the most common and the most lethal. The absence of accurate diagnostic and follow-up biomarkers along with the time-limited response to therapies may explain the lethality and shows the necessity of new sensitive and specific biomarkers. One of the most studied molecules are the telomeres: specialized ribonucleoprotein structures that keep the structural integrity of the genome. Among other features, telomere length (TL) has been widely studied in several tumor models regarding its biomarker potential, due to the easy detection and quantification. The scope of this review was to analyze all the information about this parameter in RCC. There was some disparity in the results of the studies, since some pointed to an association between short TL and risk or poor outcome of RCC; others between long TL and RCC outcome and some did not find any association. We propose some epidemiological and biological explanations to these differences. The telomeres may play a dual role during RCC carcinogenesis in the early stages, short telomeres may increase RCC risk and in late carcinogenesis, long telomeres seem to be associated with tumor prognosis. However, the controversy of the results along with the lack of specificity are some problems that need to be clarified for the usage of TL as a prognostic biomarker.
Collapse
Affiliation(s)
- Mariana Morais
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto4200-072, Portugal
- Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto4200-172, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto4200-072, Portugal
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto4200-072, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto4200-072, Portugal
- Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto4200-172, Portugal
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, Portugal
- FMUP, Faculty of Medicine, University of Porto, Porto4200-319, Portugal
- CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Porto4249-004, Portugal
| |
Collapse
|
32
|
Srinivas N, Rachakonda S, Kumar R. Telomeres and Telomere Length: A General Overview. Cancers (Basel) 2020; 12:E558. [PMID: 32121056 PMCID: PMC7139734 DOI: 10.3390/cancers12030558] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Telomeres are highly conserved tandem nucleotide repeats that include proximal double-stranded and distal single-stranded regions that in complex with shelterin proteins afford protection at chromosomal ends to maintain genomic integrity. Due to the inherent limitations of DNA replication and telomerase suppression in most somatic cells, telomeres undergo age-dependent incremental attrition. Short or dysfunctional telomeres are recognized as DNA double-stranded breaks, triggering cells to undergo replicative senescence. Telomere shortening, therefore, acts as a counting mechanism that drives replicative senescence by limiting the mitotic potential of cells. Telomere length, a complex hereditary trait, is associated with aging and age-related diseases. Epidemiological data, in general, support an association with varying magnitudes between constitutive telomere length and several disorders, including cancers. Telomere attrition is also influenced by oxidative damage and replicative stress caused by genetic, epigenetic, and environmental factors. Several single nucleotide polymorphisms at different loci, identified through genome-wide association studies, influence inter-individual variation in telomere length. In addition to genetic factors, environmental factors also influence telomere length during growth and development. Telomeres hold potential as biomarkers that reflect the genetic predisposition together with the impact of environmental conditions and as targets for anti-cancer therapies.
Collapse
Affiliation(s)
| | | | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center, Im Neunheimer Feld 580, 69120 Heidelberg, Germany; (N.S.); (S.R.)
| |
Collapse
|
33
|
Zhang Q, Liu N, Bai J, Zhou Q, Mao J, Xu L, Liu J, Wei H, Ren C, Wu X, Wang M, Zhao B, Cong YS. Human telomerase reverse transcriptase is a novel target of Hippo-YAP pathway. FASEB J 2020; 34:4178-4188. [PMID: 31950551 DOI: 10.1096/fj.201902147r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/20/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022]
Abstract
Telomerase plays a pivotal role in tumorigenesis by maintaining telomere homeostasis, a hallmark of cancer. However, the mechanisms by which telomerase is reactivated or upregulated during tumorigenesis remain incompletely understood. Here, we report that the Hippo pathway effector Yes-associated protein (YAP) regulates the expression of human telomerase reverse transcriptase (hTERT). Ectopic expression or physiological activation of YAP increases hTERT expression, whereas knockdown of YAP decreases the expression of hTERT. YAP binds to the hTERT promoter through interaction with the TEA domain family transcription factors and activates hTERT transcription. Furthermore, sustained YAP hyperactivation promotes telomerase activity and extends telomere length, with increased hTERT expression. In addition, we show that hTERT expression is positively correlated with YAP activation in human liver cancer tissues. Together, our results demonstrate that YAP promotes hTERT expression, which could contribute to tumor progression.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Ning Liu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Junjie Bai
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Qi Zhou
- MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jian Mao
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Lu Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Jiang Liu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Haibin Wei
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, China
| | - Chengcheng Ren
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Xiaoying Wu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Miao Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Bin Zhao
- MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
Lu L, Jin W, Wang LL. RECQ DNA Helicases and Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:37-54. [PMID: 32767233 DOI: 10.1007/978-3-030-43085-6_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RECQ family of DNA helicases is a conserved group of enzymes that plays an important role in maintaining genomic stability. Humans possess five RECQ helicase genes, and mutations in three of them - BLM, WRN, and RECQL4 - are associated with the genetic disorders Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome (RTS), respectively. These syndromes share overlapping clinical features, and importantly they are all associated with an increased risk of cancer. Patients with RTS have the highest specific risk of developing osteosarcoma compared to all other cancer predisposition syndromes; therefore, RTS serves as a relevant model to study the pathogenesis and molecular genetics of osteosarcoma. The "tumor suppressor" function of the RECQ helicases continues to be an area of active investigation. This chapter will focus primarily on the known cellular functions of RECQL4 and how these may relate to tumorigenesis, as well as ongoing efforts to understand RECQL4's functions in vivo using animal models. Understanding the RECQ pathways will provide insight into avenues for novel cancer therapies in the future.
Collapse
Affiliation(s)
- Linchao Lu
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Weidong Jin
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lisa L Wang
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
35
|
Wang W, Wang P, Wang S, Duan X, Wang T, Feng X, Li L, Zhang Y, Li G, Zhao J, Li L, Wang Y, Yan Z, Feng F, Zhou X, Yao W, Zhang Y, Yang Y. Benchmark dose assessment for coke oven emissions-induced telomere length effects in occupationally exposed workers in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109453. [PMID: 31349105 DOI: 10.1016/j.ecoenv.2019.109453] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Telomeres are DNA-protein structures that protect chromosome ends from degradation and fusion, which are shortened by oxidative stress, for example air pollution including benzene, toluene, Coke Oven Emissions (COEs), and so on. As a biomarker of health and disease, telomere length is associated with cardiovascular, diabetes and cancers. The aim of this study was to estimate the effects of COEs exposure on telomere length and the benchmark dose (BMD) of COEs. A total of 542 coke oven workers and 235 healthy controls without exposure to toxicants were recruited. Quantitative PCR was used to determine the telomere length in human peripheral blood leukocytes DNA. Propensity scoring was used to match coke oven workers to healthy controls. Linear regression models and trend tests were used to the relationship between COEs exposure and telomere length. Telomere length in COEs exposed group 0.764 (0.536, 1.092) was significantly shorter than that in the control group 1.064(0.762, 1.438), (P < 0.001). There were significantly dose-response relationships between COEs exposure and telomere damage with telomere length as a biomarker. A BMDL value lower than the present occupational exposure limits (OELs) of COEs exposure was evaluated using the BMD approach in coke oven workers. Our results suggested that shorter telomere length is related to occupational exposure to COEs and the level of COEs exposure lower than the current national OELs in China and many other countries could induce telomere damage.
Collapse
Affiliation(s)
- Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Pengpeng Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Sihua Wang
- Department of Occupational Health, Henan Institute for Occupational Medicine, Zhengzhou, China
| | - Xiaoran Duan
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tuanwei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaolei Feng
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Lei Li
- Department of Occupational Health, Zhengzhou Institute for Occupational Medicine, Zhengzhou, China
| | - Yuhong Zhang
- Department of Occupational Health, Zhengzhou Institute for Occupational Medicine, Zhengzhou, China
| | - Guoyu Li
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Junfeng Zhao
- Department of Occupational Health, Zhengzhou Institute for Occupational Medicine, Zhengzhou, China
| | - Leike Li
- Department of Occupational Health, Zhengzhou Institute for Occupational Medicine, Zhengzhou, China
| | - Yanbin Wang
- Department of Safety Management Office, Anyang Iron and Steel Company Limit by Share, Anyang, China
| | - Zhen Yan
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoshan Zhou
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yawei Zhang
- Department of Surgery, Yale University School of Medicine, New Haven, USA; Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, USA
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
36
|
Jebaraj BMC, Tausch E, Landau DA, Bahlo J, Robrecht S, Taylor-Weiner AN, Bloehdorn J, Scheffold A, Mertens D, Böttcher S, Kneba M, Jäger U, Zenz T, Wenger MK, Fingerle-Rowson G, Wendtner C, Fink AM, Wu CJ, Eichhorst B, Fischer K, Hallek M, Döhner H, Stilgenbauer S. Short telomeres are associated with inferior outcome, genomic complexity, and clonal evolution in chronic lymphocytic leukemia. Leukemia 2019; 33:2183-2194. [PMID: 30911113 PMCID: PMC6737251 DOI: 10.1038/s41375-019-0446-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/19/2019] [Accepted: 02/11/2019] [Indexed: 11/08/2022]
Abstract
Telomere length in chronic lymphocytic leukemia (CLL) has been shown to be of prognostic importance, but the analyses have largely been executed on heterogeneous patient cohorts outside of clinical trials. In the present study, we performed a comprehensive analysis of telomere length associations in the well characterized CLL8 trial (n = 620) of the German CLL study group, with validation in a representative cohort of the CLL4 trial (n = 293). Absolute telomere length was analyzed using quantitative-PCR. Apart from identifying associations of short telomere length with adverse prognostic factors and survival, the study identified cases with 17p- and 11q- associated with TP53 and ATM loss, respectively, to have the shortest telomeres, even when these aberrations were present in small subclones. Thus, telomere shortening may precede acquisition of the high-risk aberrations, contributing to disease evolution. In line with this, telomere shortening was associated with an increase in genomic complexity as well as clonal evolution, highlighting its importance as a biomarker especially in monitoring disease progression in non-high-risk CLL.
Collapse
Affiliation(s)
| | - Eugen Tausch
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Dan A Landau
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, USA
- New York Genome Center, New York, NY, USA
| | - Jasmin Bahlo
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Sandra Robrecht
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | | | | | - Annika Scheffold
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Daniel Mertens
- Department of Internal Medicine III, Ulm University, Ulm, Germany
- Mechanisms of Leukemogenesis, DKFZ, Heidelberg, Germany
| | - Sebastian Böttcher
- Department II of Internal Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
- Division of Internal Medicine, Medical Clinic III, Rostock University Medical Center, Rostock, Germany
| | - Michael Kneba
- Department II of Internal Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Ulrich Jäger
- Department of Medicine I, Division of Hematology and Hemostaeology, Medical University of Vienna, Vienna, Austria
| | - Thorsten Zenz
- Department of Internal Medicine III, Ulm University, Ulm, Germany
- Division of Hematology, University Hospital Zürich, Zürich, Switzerland
| | | | | | - Clemens Wendtner
- Klinikum Schwabing, Academic Teaching Hospital of University of Munich, Munich, Germany
| | - Anna-Maria Fink
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | | | - Barbara Eichhorst
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Kirsten Fischer
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | | |
Collapse
|
37
|
Shaban MM, Elhefny RA, Hussein SH, Badr AA, Nour ZA. Role of telomerase expression in interstitial lung diseases. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2019. [DOI: 10.4103/ejb.ejb_71_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
38
|
Beh CW, Zhang Y, Zheng YL, Sun B, Wang TH. Fluorescence spectroscopic detection and measurement of single telomere molecules. Nucleic Acids Res 2019; 46:e117. [PMID: 30010842 PMCID: PMC6212783 DOI: 10.1093/nar/gky627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/28/2018] [Indexed: 01/26/2023] Open
Abstract
Telomeres are the end-caps of chromosomes that serve to protect the integrity of the genome. Below certain critical lengths, the telomeres can no longer fulfill their protective function, and chromosomal instability ensues. Telomeres shorten during normal cell division due to the end replication problem and are implicated in the development of various aging-associated diseases, including cancer. Telomere length has the potential to serve as a useful biomarker in the field of aging and cancer. However, existing methods of telomere measurement are either too laborious, unable to provide absolute measurement of individual telomere lengths, or limited to certain chromosomes or cell types. Here, we describe an easy single-molecule, fluorescence spectroscopic method for measuring the length of telomeres that permits the profiling of absolute telomere lengths in any DNA sample. We have demonstrated the accurate detection of telomeres as short as 100 bp using cloned telomere standards, and have profiled telomere lengths in human cancer cell lines and primary cells. Since this method allows direct comparison between samples, it could greatly improve the clinical utility of telomere biomarkers.
Collapse
Affiliation(s)
- Cyrus W Beh
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ye Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yun-Ling Zheng
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Bing Sun
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
39
|
Zhao W, Niu F, Xie Z, Yan M, Li J, Zhang Y, Chen J, Liu Q, Jin T. Assessment of the association between ACYP2 and laryngeal squamous cell carcinoma risk in Chinese males. Mol Genet Genomic Med 2019; 7:e00731. [PMID: 31140742 PMCID: PMC6625106 DOI: 10.1002/mgg3.731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is one of the most prevalent malignant neoplasms of the upper respiratory tract. Studies have confirmed that an unstable chromosome constitution promotes the progress of laryngeal tumorigenesis, and ACYP2 has been confirmed as a telomere length-related gene. However, to date, the association between ACYP2 polymorphisms and LSCC susceptibility has not been investigated. METHODS We performed this study to explore the effect of 11 single-nucleotide polymorphisms (SNPs) in ACYP2 on LSCC susceptibility in Chinese Han males. Unconditional logistic regression analysis adjusted for age was used to calculate the odds ratios and 95% confidence intervals. RESULTS Based on allele and genotype models, our results showed that rs1682111 variant was significantly associated with a decreased LSCC susceptibility (p < 0.05). On the contrary, polymorphisms of rs10439478, rs11125529, rs12615793, rs843711, rs11896604, and rs17045754 were significantly associated with an increased LSCC risk (p < 0.05). The results of haplotype analysis indicated that haplotypes "TTCTCG" and "TTCTAA" in block 1 and "TG" in block 2 showed a risk factor for the development of LCSS (p = 0.009, p < 0.001, and p = 0.001, respectively). The results of Genotype-Tissue Expression analysis indicate that these significant SNPs were known to be associated with ACYP2 expression. CONCLUSION Our data demonstrated that ACYP2 polymorphisms may exert effects on LSCC susceptibility in Chinese Han males.
Collapse
Affiliation(s)
- Wenhui Zhao
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, China
| | - Zhilan Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, China
| | - Mengdan Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, China
| | - Jingjie Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, China
| | - Yuan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, China
| | - Jun Chen
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Qiufang Liu
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital Affiliated to Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| |
Collapse
|
40
|
Al Khleifat A, Iacoangeli A, Shatunov A, Fang T, Sproviero W, Jones AR, Opie-Martin S, Morrison KE, Shaw PJ, Shaw CE, Powell JF, Dobson R, Newhouse SJ, Al-Chalabi A. Telomere length is greater in ALS than in controls: a whole genome sequencing study. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:229-234. [PMID: 30931641 PMCID: PMC6567548 DOI: 10.1080/21678421.2019.1586951] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 12/30/2022]
Abstract
Background: Amyotrophic lateral sclerosis is a neurodegenerative disease of motor neurons resulting in progressive paralysis and death, typically within 3-5 years. Although the heritability of ALS is about 60%, only about 11% is explained by common gene variants, suggesting that other forms of genetic variation are important. Telomeres maintain DNA integrity during cellular replication and shorten naturally with age. Gender and age are risk factors for ALS and also associated with telomere length. We therefore investigated telomere length in ALS. Methods: We estimated telomere length by applying a bioinformatics analysis to whole genome sequence data of leukocyte-derived DNA from people with ALS and age and gender-matched matched controls in a UK population. We tested the association of telomere length with ALS and ALS survival. Results: There were 1241 people with ALS and 335 controls. The median age for ALS was 62.5 years and for controls, 60.1 years, with a male-female ratio of 62:38. Accounting for age and sex, there was a 9% increase of telomere length in ALS compared to matched controls. Those with longer telomeres had a 16% increase in median survival. Of nine SNPs associated with telomere length, two were also associated with ALS: rs8105767 near the ZNF208 gene (p = 1.29 × 10-4) and rs6772228 (p = 0.001), which is in an intron for the PXK gene. Conclusions: Longer telomeres in leukocyte-derived DNA are associated with ALS, and with increased survival in those with ALS.
Collapse
Affiliation(s)
- Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
| | - Aleksey Shatunov
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Ton Fang
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - William Sproviero
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Ashley R. Jones
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Sarah Opie-Martin
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Karen E. Morrison
- Faculty of Medicine, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Christopher E. Shaw
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- King’s College Hospital, London, UK
- Psychology and Neuroscience, United Kingdom Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, King’s College London, London, UK, and
| | - John F. Powell
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Richard Dobson
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Farr Institute of Health Informatics Research, UCL Institute of Health Informatics, University College London, London, UK
| | - Steven J. Newhouse
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Farr Institute of Health Informatics Research, UCL Institute of Health Informatics, University College London, London, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- King’s College Hospital, London, UK
| |
Collapse
|
41
|
Wood MD, Halfpenny AM, Moore SR. Applications of molecular neuro-oncology - a review of diffuse glioma integrated diagnosis and emerging molecular entities. Diagn Pathol 2019; 14:29. [PMID: 30967140 PMCID: PMC6457044 DOI: 10.1186/s13000-019-0802-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/12/2019] [Indexed: 11/10/2022] Open
Abstract
Insights into the molecular underpinnings of primary central nervous system tumors have radically changed the approach to tumor diagnosis and classification. Diagnostic emphasis has shifted from the morphology of a tumor under the microscope to an integrated approach based on morphologic and molecular features, including gene mutations, chromosomal copy number alterations, and gene rearrangements. In 2016, the World Health Organization provided guidelines for making an integrated diagnosis that incorporates both morphologic and molecular features in a subset of brain tumors. The integrated diagnosis now applies to infiltrating gliomas, a category that includes diffusely infiltrating astrocytoma grades II, III, and IV, and oligodendroglioma, grades II and III, thereby encompassing the most common primary intra-axial central nervous system tumors. Other neoplasms such as medulloblastoma, embryonal tumor with multilayered rosettes, certain supratentorial ependymomas, and atypical teratoid/rhabdoid tumor are also eligible for integrated diagnosis, which can sometimes be aided by characteristic immunohistochemical markers. Since 2016, advances in molecular neuro-oncology have resulted in periodic updates and clarifications to the integrated diagnostic approach. These advances reflect expanding knowledge on the molecular pathology of brain tumors, but raise a challenge in rapidly incorporating new molecular findings into diagnostic practice. This review provides a background on the molecular characteristics of primary brain tumors, emphasizing the molecular basis for classification of infiltrating gliomas, the most common entities that are eligible for an integrated diagnosis. We then discuss entities within the diffuse gliomas that do not receive an integrated diagnosis by WHO 2016 criteria, but have distinctive molecular features that are important to recognize because their clinical behavior can influence clinical management and prognosis. Particular attention is given to the histone H3 G34R/G34V mutant astrocytomas, an entity to consider when faced with an infiltrating glioma in the cerebral hemisphere of children and young adults, and to the group of histologically lower grade diffuse astrocytic gliomas with molecular features of glioblastoma, an important category of tumors to recognize due to their aggressive clinical behavior.
Collapse
Affiliation(s)
- Matthew D Wood
- OHSU Department of Pathology, Division of Anatomic Pathology, Section of Neuropathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L-113, Portland, OR, 97213, USA.
| | - Aaron M Halfpenny
- OHSU Department of Pathology, Division of Anatomic Pathology, Section of Neuropathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L-113, Portland, OR, 97213, USA
| | - Stephen R Moore
- Knight Diagnostic Laboratories and Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
42
|
Non-Coding Variants in BRCA1 and BRCA2 Genes: Potential Impact on Breast and Ovarian Cancer Predisposition. Cancers (Basel) 2018; 10:cancers10110453. [PMID: 30453575 PMCID: PMC6266896 DOI: 10.3390/cancers10110453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
BRCA1 and BRCA2 are major breast cancer susceptibility genes whose pathogenic variants are associated with a significant increase in the risk of breast and ovarian cancers. Current genetic screening is generally limited to BRCA1/2 exons and intron/exon boundaries. Most identified pathogenic variants cause the partial or complete loss of function of the protein. However, it is becoming increasingly clear that variants in these regions only account for a small proportion of cancer risk. The role of variants in non-coding regions beyond splice donor and acceptor sites, including those that have no qualitative effect on the protein, has not been thoroughly investigated. The key transcriptional regulatory elements of BRCA1 and BRCA2 are housed in gene promoters, untranslated regions, introns, and long-range elements. Within these sequences, germline and somatic variants have been described, but the clinical significance of the majority is currently unknown and it remains a significant clinical challenge. This review summarizes the available data on the impact of variants on non-coding regions of BRCA1/2 genes and their role on breast and ovarian cancer predisposition.
Collapse
|
43
|
Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 2018; 20:1-16. [PMID: 30229407 DOI: 10.1007/s10522-018-9769-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/12/2018] [Indexed: 01/10/2023]
Abstract
Aging is a biological process characterized by a progressive functional decline in tissues and organs, which eventually leads to mortality. Telomeres, the repetitive DNA repeat sequences at the end of linear eukaryotic chromosomes protecting chromosome ends from degradation and illegitimate recombination, play a crucial role in cell fate and aging. Due to the mechanism of replication, telomeres shorten as cells proliferate, which consequently contributes to cellular senescence and mitochondrial dysfunction. Cells are the basic unit of organismal structure and function, and mitochondria are the powerhouse and metabolic center of cells. Therefore, cellular senescence and mitochondrial dysfunction would result in tissue or organ degeneration and dysfunction followed by somatic aging through multiple pathways. In this review, we summarized the main mechanisms of cellular senescence, mitochondrial malfunction and aging triggered by telomere attrition. Understanding the molecular mechanisms involved in the aging process may elicit new strategies for improving health and extending lifespan.
Collapse
Affiliation(s)
- Yukun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xuewen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xuelu Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China. .,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
44
|
Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the Hallmarks of Cancer. Cancer Cell 2018; 34:21-43. [PMID: 29731393 PMCID: PMC6039250 DOI: 10.1016/j.ccell.2018.03.022] [Citation(s) in RCA: 1075] [Impact Index Per Article: 153.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/11/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022]
Abstract
The transcription factor NRF2 is the master regulator of the cellular antioxidant response. Though recognized originally as a target of chemopreventive compounds that help prevent cancer and other maladies, accumulating evidence has established the NRF2 pathway as a driver of cancer progression, metastasis, and resistance to therapy. Recent studies have identified new functions for NRF2 in the regulation of metabolism and other essential cellular functions, establishing NRF2 as a truly pleiotropic transcription factor. In this review, we explore the roles of NRF2 in the hallmarks of cancer, indicating both tumor suppressive and tumor-promoting effects.
Collapse
Affiliation(s)
- Montserrat Rojo de la Vega
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
45
|
Li C, Wang X, Li Y, Zhang X, Sun M, Liu S, Sun L, Shi L, Yao Y. Genetic polymorphisms in the TERT gene and susceptibility to non-small cell lung cancer in a Chinese Han population. Cancer Manag Res 2018; 10:1487-1495. [PMID: 29928145 PMCID: PMC6001840 DOI: 10.2147/cmar.s166235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Recent studies have revealed that the TERT gene plays crucial roles in cancer initiation and development. Genome-wide analysis studies and case-control studies have demonstrated that polymorphisms in the TERT gene are associated with various cancers. Materials and methods In the current study, we analyzed the associations of eight single nucleotide polymorphisms (SNPs) in the TERT gene with non-small cell lung cancer (NSCLC) in a Chinese Han population. A total of 467 NSCLC patients and 526 healthy individuals were recruited for SNP genotyping using a TaqMan assay. Results Our results revealed that the allelic frequencies of rs2853677 and rs2853691 were significantly different between the NSCLC and control groups (P=0.004 and 0.001, respectively). Moreover, the T allele of rs2853677 and the A allele of rs2853691 might be the protective factors against NSCLC (OR=0.766; 95%CI: 0.639–0.918 and OR=0.714; 95%CI: 0.584–0.875, respectively). Additionally, stratified association analysis of the eight SNPs with the different pathological NSCLC stages (I+II and III+IV) and different pathological types (adenocarcinoma and squamous cell carcinoma) revealed that none of the SNPs were significantly different between patients with different pathological stages and pathological types. Conclusion Our results indicated that rs2853677 and rs2853691 in the TERT gene might be associated with NSCLC in this Chinese Han population.
Collapse
Affiliation(s)
- Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Xiaona Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Yingfu Li
- Department of Geriatrics, The No.1 Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Xinwen Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Le Sun
- Kunming Medical University, Kunming 650032, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
46
|
Gaspar TB, Sá A, Lopes JM, Sobrinho-Simões M, Soares P, Vinagre J. Telomere Maintenance Mechanisms in Cancer. Genes (Basel) 2018; 9:E241. [PMID: 29751586 PMCID: PMC5977181 DOI: 10.3390/genes9050241] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Tumour cells can adopt telomere maintenance mechanisms (TMMs) to avoid telomere shortening, an inevitable process due to successive cell divisions. In most tumour cells, telomere length (TL) is maintained by reactivation of telomerase, while a small part acquires immortality through the telomerase-independent alternative lengthening of telomeres (ALT) mechanism. In the last years, a great amount of data was generated, and different TMMs were reported and explained in detail, benefiting from genome-scale studies of major importance. In this review, we address seven different TMMs in tumour cells: mutations of the TERT promoter (TERTp), amplification of the genes TERT and TERC, polymorphic variants of the TERT gene and of its promoter, rearrangements of the TERT gene, epigenetic changes, ALT, and non-defined TMM (NDTMM). We gathered information from over fifty thousand patients reported in 288 papers in the last years. This wide data collection enabled us to portray, by organ/system and histotypes, the prevalence of TERTp mutations, TERT and TERC amplifications, and ALT in human tumours. Based on this information, we discuss the putative future clinical impact of the aforementioned mechanisms on the malignant transformation process in different setups, and provide insights for screening, prognosis, and patient management stratification.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - Ana Sá
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - José Manuel Lopes
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Department of Pathology and Oncology, Centro Hospitalar São João, 4200-139 Porto, Portugal.
| | - Manuel Sobrinho-Simões
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Department of Pathology and Oncology, Centro Hospitalar São João, 4200-139 Porto, Portugal.
| | - Paula Soares
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - João Vinagre
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
| |
Collapse
|
47
|
Fry EA, Inoue K. Aberrant expression of ETS1 and ETS2 proteins in cancer. CANCER REPORTS AND REVIEWS 2018; 2:10.15761/CRR.1000151. [PMID: 29974077 PMCID: PMC6027756 DOI: 10.15761/crr.1000151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ETS transcription factors regulate expression of genes involved in normal cell development, proliferation, differentiation, angiogenesis, and apoptosis, consisting of 28 family members in humans. Dysregulation of these transcription factors facilitates cell proliferation in cancers, and several members participate in invasion and metastasis by activating gene transcription. ETS1 and ETS2 are the founding members of the ETS family and regulate transcription by binding to ETS sequences. They are both involved in oncogenesis and tumor suppression depending on the biological situations used. The essential roles of ETS proteins in human telomere maintenance have been suggested, which have been linked to creation of new Ets binding sites. Recently, preferential binding of ETS2 to gain-of-function mutant p53 and ETS1 to wild type p53 (WTp53) has been suggested, raising the tumor promoting role for the former and tumor suppressive role for the latter. The oncogenic and tumor suppressive functions of ETS1 and 2 proteins have been discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- The Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Kazushi Inoue
- The Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
48
|
Integrated analysis of promoter methylation and expression of telomere related genes in breast cancer. Oncotarget 2018; 8:25442-25454. [PMID: 28424414 PMCID: PMC5421942 DOI: 10.18632/oncotarget.16036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Telomeres at the ends of eukaryotic chromosomes play a critical role in tumorgenesis. Using microfluidic PCR and next-generation bisulfite sequencing technology, we investigated the promoter methylation of 29 telomere related genes in paired tumor and normal tissues from 184 breast cancer patients. The expression of significantly differentially methylated genes was quantified using qPCR method.We observed that the average methylation level of the 29 telomere related genes was significant higher in tumor than that in normal tissues (P = 4.30E-21). A total of 4 genes (RAD50, RTEL, TERC and TRF1) showed significant hyper-methylation in breast tumor tissues. RAD51D showed significant methylation difference among the four breast cancer subtypes. The methylation of TERC showed significant association with ER status of breast cancer. The expression profiles of the 4 hyper-methylated genes showed significantly reduced expression in tumor tissues. The integration analysis of methylation and expression of these 4 genes showed a good performance in breast cancer prediction (AUC = 0.947).Our results revealed the methylation pattern of telomere related genes in breast cancer and suggested a novel 4-gene panel might be a valuable biomarker for breast cancer diagnosis.
Collapse
|
49
|
Abstract
Glioblastoma (GBM) is the most common and most aggressive type of primary brain tumour in adults. It represents 54% of all gliomas and 16% of all brain tumours (Ostrom et al. 2016). Despite surgery and treatment with radiotherapy plus an oral alkylating agent, temozolomide (TMZ), tumours invariably recur, and the patient survival is an average of ~14–16 months. In this review we summarise the current understanding of multiple factors that may affect survival of patients with GBMs. In particular, we discuss recent advancements in surgery and detection of genomic-based markers with prognostic values, such as IDH1/2 mutations, MGMT gene promoter methylation, and TERT gene promoter alterations. We address the issue of tumour heterogeneity and evolution that may result in different parts of the same tumour exhibiting different GBM subtypes and in subtype switching, which may restrict the usefulness of the expression-based classification as a prognostic marker before relapse. The determinants of long-term survival in patients with IDH1/2wt GBM, beyond MGMT promoter methylation, remain to be identified, and even the absence of both IDH1/2 mutations and MGMT promoter methylation does not preclude long-term survival. These findings suggest that host-derived factors, such as immune system responsiveness may contribute to long-term survival in such patients. We report the results of high-throughput approaches, suggesting links between long-term survival and enhanced immune-related gene expression. The further search for new gene candidates, promoter methylation status, and specific features of host immunity should provide prognostic biomarkers for the evaluation of survival of IDH1 wild-type/non-G-CIMP GBMs.
Collapse
|
50
|
Snetselaar R, van Oosterhout MFM, Grutters JC, van Moorsel CHM. Telomerase Reverse Transcriptase Polymorphism rs2736100: A Balancing Act between Cancer and Non-Cancer Disease, a Meta-Analysis. Front Med (Lausanne) 2018. [PMID: 29536006 PMCID: PMC5835035 DOI: 10.3389/fmed.2018.00041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The enzyme telomerase reverse transcriptase (TERT) is essential for telomere maintenance. In replicating cells, maintenance of telomere length is important for the preservation of vital genetic information and prevention of genomic instability. A common genetic variant in TERT, rs2736100 C/A, is associated with both telomere length and multiple diseases. Carriage of the C allele is associated with longer telomere length, while carriage of the A allele is associated with shorter telomere length. Furthermore, some diseases have a positive association with the C and some with the A allele. In this study, meta-analyses were performed for two groups of diseases, cancerous diseases, e.g., lung cancer and non-cancerous diseases, e.g., pulmonary fibrosis, using data from genome-wide association studies and case-control studies. In the meta-analysis it was found that cancer positively associated with the C allele (pooled OR 1.16 [95% CI 1.09–1.23]) and non-cancerous diseases negatively associated with the C allele (pooled OR 0.81 [95% CI 0.65–0.99]). This observation illustrates that the ambiguous role of telomere maintenance in disease hinges, at least in part, on a single locus in telomerase genes. The dual role of this single nucleotide polymorphism also emphasizes that therapeutic agents aimed at influencing telomere maintenance should be used with caution.
Collapse
Affiliation(s)
- Reinier Snetselaar
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands
| | - Matthijs F M van Oosterhout
- Interstitial Lung Diseases Center of Excellence, Department of Pathology, St Antonius Hospital, Nieuwegein, Netherlands
| | - Jan C Grutters
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands.,Division of Heart and Lung, University Medical Center Utrecht, Utrecht, Netherlands
| | - Coline H M van Moorsel
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands.,Division of Heart and Lung, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|