1
|
Siebenhaar F, Sofi S, Neisinger S, Akin C, Pyatilova P, Grekowitz E, Haendel A, Hawro T, Kiefer L, Magerl M, Metz M, Maurer M, Weller K. The Mastocytosis Control Test: A Patient-Reported Outcome Measure Assessing Disease Control. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024:S2213-2198(24)01237-6. [PMID: 39637940 DOI: 10.1016/j.jaip.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Mastocytosis is characterized by expanding neoplastic mast cells in organs such as the skin, bone marrow, and gastrointestinal tract. The release of mast cell mediators triggers cutaneous, gastrointestinal, and other symptoms. Currently, no validated mastocytosis-specific patient-reported outcome measure (PROM) exists to assess disease control. OBJECTIVE Here, we developed a disease-specific instrument, the Mastocytosis Control Test (MCT), for evaluating and monitoring disease control in patients with nonadvanced disease. METHODS Six potential MCT items were generated using a combined approach consisting of a literature review, patient interviews, and expert input. Item selection and reduction were performed by impact analysis and interitem correlation, followed by expert reviews and cognitive debriefings. In a validation study, the resulting MCT was tested for validity and reliability by assessing internal consistency, test-retest reliability, convergent validity, known-groups validity, and receiver operating characteristics (ROC) analysis. RESULTS Ten patients participated in the item generation phase and 101 in the item reduction and validation phase. The final MCT consisted of 5 items. Our methods showed a valid total score, high internal consistency, and test-retest reliability. Convergent and known-groups validity demonstrated a strong correlation with related anchors. The ROC curve analysis suggested a cutoff value of ≥13 points to identify patients with good disease control. CONCLUSIONS The MCT is a disease-specific, valid, and reliable PROM for adult patients with nonadvanced disease. It may measure and monitor disease control in routine daily practice and clinical trials.
Collapse
Affiliation(s)
- Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Insititute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| | - Senan Sofi
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Insititute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Sophia Neisinger
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Insititute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Mich
| | - Polina Pyatilova
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Insititute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Eva Grekowitz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Insititute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Antje Haendel
- Patient Advocacy Group, Mastozytose e.V., Toenisvorst, Germany
| | - Tomasz Hawro
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein (UKSH), Lübeck, Germany
| | - Lea Kiefer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Insititute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Markus Magerl
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Insititute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Insititute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Insititute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Karsten Weller
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Insititute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| |
Collapse
|
2
|
Hamilton MJ, Greene LW, Madigan LM, Wang SA, Arana Yi C, Kuykendall A, George TI, Castells MC. Case Report: Multidisciplinary management of a patient with indolent systemic mastocytosis and refractory symptoms. FRONTIERS IN ALLERGY 2024; 5:1401187. [PMID: 39493747 PMCID: PMC11527781 DOI: 10.3389/falgy.2024.1401187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Systemic mastocytosis (SM) is a rare hematologic condition characterized by the proliferation and accumulation in tissue of clonal mast cells in multiple organ systems. The release of mast cell mediators in the indolent disease type and the predominant mast cell infiltration of tissues in advanced disease contribute to the heterogeneous clinical presentation. The disease driver in >90% of adult cases is an activating KIT mutation, with D816V being the most frequent. Here we describe a case of a young adult male presenting with osteoporosis with associated symptoms of reflux and a history of bee sting anaphylaxis. A multidisciplinary approach to the diagnosis and management was required to minimize morbidities and prevent complications. Current best supportive care was inadequate to control the patient's disease, and a selective KIT D816V inhibitor (avapritinib) was initiated. Conventional, and advanced therapies, including those in the treatment pipeline for SM are discussed.
Collapse
Affiliation(s)
- Matthew J. Hamilton
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Loren W. Greene
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, United States
| | - Lauren M. Madigan
- Department of Dermatology, University of Utah, Salt Lake City, UT, United States
| | - Sa A. Wang
- Division of Pathology-Lab Medicine Division, Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, United States
| | - Cecilia Arana Yi
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Andrew Kuykendall
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Tracy I. George
- ARUP Laboratories, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Mariana C. Castells
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Cilloni D, Maffeo B, Savi A, Danzero AC, Bonuomo V, Fava C. Detection of KIT Mutations in Systemic Mastocytosis: How, When, and Why. Int J Mol Sci 2024; 25:10885. [PMID: 39456668 PMCID: PMC11507058 DOI: 10.3390/ijms252010885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
More than 90% of patients affected by mastocytosis are characterized by a somatic point mutation of KIT, which induces ligand-independent activation of the receptor and downstream signal triggering, ultimately leading to mast cell accumulation and survival. The most frequent mutation is KIT p.D816V, but other rarer mutations can also be found. These mutations often have a very low variant allele frequency (VAF), well below the sensitivity of common next-generation sequencing (NGS) methods used in routine diagnostic panels. Highly sensitive methods are developing for detecting mutations. This review summarizes the current indications on the recommended methods and on how to manage and interpret molecular data for the diagnosis and follow-up of patients with mastocytosis.
Collapse
Affiliation(s)
- Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Mauriziano Hospital, 10128 Turin, Italy; (B.M.); (A.S.); (A.C.D.); (V.B.); (C.F.)
| | | | | | | | | | | |
Collapse
|
4
|
Wu T, Yan S, Yeh YW, Fang Y, Xiang Z. FcγR-dependent apoptosis regulates tissue persistence of mucosal and connective tissue mast cells. Eur J Immunol 2023; 53:e2250221. [PMID: 37137469 DOI: 10.1002/eji.202250221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
Rodent mast cells can be divided into two major subtypes: the mucosal mast cell (MMC) and the connective tissue mast cell (CTMC). A decade-old observation revealed a longer lifespan for CTMC compared with MMC. The precise mechanisms underlying such differential tissue persistence of mast cell subsets have not been described. In this study, we have discovered that mast cells expressing only one receptor, either FcγRIIB or FcγRIIIA, underwent caspase-independent apoptosis in response to IgG immune complex treatment. Lower frequencies of CTMC in mice that lacked either FcγRIIB or FcγRIIIA compared with WT mice were recorded, especially in aged mice. We proposed that this paradigm of FcγR-mediated mast cell apoptosis could account for the more robust persistence of CTMC, which express both FcγRIIB and FcγRIIIA, than MMC, which express only FcγRIIB. Importantly, we reproduced these results using a mast cell engraftment model, which ruled out possible confounding effects of mast cell recruitment or FcγR expression by other cells on mast cell number regulation. In conclusion, our work has uncovered an FcγR-dependent mast cell number regulation paradigm that might provide a mechanistic explanation for the long-observed differential mast cell subset persistence in tissues.
Collapse
Affiliation(s)
- Tongqian Wu
- Center for Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Shirong Yan
- Center for Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Yu-Wen Yeh
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Yu Fang
- Center for Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, P. R. China
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Chia SL, Kapoor S, Carvalho C, Bajénoff M, Gentek R. Mast cell ontogeny: From fetal development to life-long health and disease. Immunol Rev 2023; 315:31-53. [PMID: 36752151 PMCID: PMC10952628 DOI: 10.1111/imr.13191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mast cells (MCs) are evolutionarily ancient innate immune cells with important roles in protective immunity against bacteria, parasites, and venomous animals. They can be found in most organs of the body, where they also contribute to normal tissue functioning, for example by engaging in crosstalk with nerves. Despite this, they are most widely known for their detrimental roles in allergy, anaphylaxis, and atopic disease. Just like macrophages, mast cells were conventionally thought to originate from the bone marrow. However, they are already present in fetal tissues before the onset of bone marrow hematopoiesis, questioning this dogma. In recent years, our view of myeloid cell ontogeny has been revised. We now know that the first mast cells originate from progenitors made in the extra-embryonic yolk sac, and later get supplemented with mast cells produced from subsequent waves of hematopoiesis. In most connective tissues, sizeable populations of fetal-derived mast cells persist into adulthood, where they self-maintain largely independently from the bone marrow. These developmental origins are highly reminiscent of macrophages, which are known to have critical functions in development. Mast cells too may thus support healthy development. Their fetal origins and longevity also make mast cells susceptible to genetic and environmental perturbations, which may render them pathological. Here, we review our current understanding of mast cell biology from a developmental perspective. We first summarize how mast cell populations are established from distinct hematopoietic progenitor waves, and how they are subsequently maintained throughout life. We then discuss what functions mast cells may normally have at early life stages, and how they may be co-opted to cause, worsen, or increase susceptibility to disease.
Collapse
Affiliation(s)
- Shin Li Chia
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Simran Kapoor
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Cyril Carvalho
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille‐Luminy (CIML)MarseilleFrance
| | - Rebecca Gentek
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| |
Collapse
|
6
|
MITF Downregulation Induces Death in Human Mast Cell Leukemia Cells and Impairs IgE-Dependent Degranulation. Int J Mol Sci 2023; 24:ijms24043515. [PMID: 36834926 PMCID: PMC9961600 DOI: 10.3390/ijms24043515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Activating mutations in KIT (CD117) have been associated with several diseases, including gastrointestinal stromal tumors and mastocytosis. Rapidly progressing pathologies or drug resistance highlight the need for alternative treatment strategies. Previously, we reported that the adaptor molecule SH3 binding protein 2 (SH3BP2 or 3BP2) regulates KIT expression at the transcriptional level and microphthalmia-associated transcription factor (MITF) expression at the post-transcriptional level in human mast cells and gastrointestinal stromal tumor (GIST) cell lines. Lately, we have found that the SH3BP2 pathway regulates MITF through miR-1246 and miR-5100 in GIST. In this study, miR-1246 and miR-5100 were validated by qPCR in the SH3BP2-silenced human mast cell leukemia cell line (HMC-1). MiRNA overexpression reduces MITF and MITF-dependent target expression in HMC-1. The same pattern was observed after MITF silencing. In addition, MITF inhibitor ML329 treatment reduces MITF expression and affects the viability and cell cycle progression in HMC-1. We also examine whether MITF downregulation affected IgE-dependent mast cell degranulation. MiRNA overexpression, MITF silencing, and ML329 treatment reduced IgE-dependent degranulation in LAD2- and CD34+-derived mast cells. These findings suggest MITF may be a potential therapeutic target for allergic reactions and deregulated KIT mast-cell-mediated disorders.
Collapse
|
7
|
Valent P, Akin C, Sperr WR, Horny HP, Arock M, Metcalfe DD, Galli SJ. New Insights into the Pathogenesis of Mastocytosis: Emerging Concepts in Diagnosis and Therapy. ANNUAL REVIEW OF PATHOLOGY 2023; 18:361-386. [PMID: 36270293 DOI: 10.1146/annurev-pathmechdis-031521-042618] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mastocytosis is a heterogeneous group of neoplasms defined by a numerical increase and accumulation of clonal mast cells (MCs) in various organ systems. The disease may present as cutaneous mastocytosis or systemic mastocytosis (SM). On the basis of histopathological and molecular features, clinical variables, and organ involvement, SM is divided into indolent SM, smoldering SM, SM with an associated hematologic neoplasm, aggressive SM, and MC leukemia. Each variant is defined by unique diagnostic criteria and a unique spectrum of clinical presentations. A key driver of MC expansion and disease evolution is the oncogenic machinery triggered by mutant forms of KIT. The genetic background, additional somatic mutations, and comorbidities also contribute to the course and prognosis. Patients with SM may also suffer from mediator-related symptoms or even an MC activation syndrome. This article provides an update of concepts on the genetics, etiology, and pathology of mastocytosis, with emphasis on diagnostic criteria and new treatment concepts.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; .,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; .,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilian University, Munich, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Charles-Foix Hospital, AP-HP Sorbonne University, Paris, France
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen J Galli
- Department of Pathology, Department of Microbiology and Immunology, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
8
|
Bandara G, Falduto GH, Luker A, Bai Y, Pfeiffer A, Lack J, Metcalfe DD, Olivera A. CRISPR/Cas9-engineering of HMC-1.2 cells renders a human mast cell line with a single D816V-KIT mutation: An improved preclinical model for research on mastocytosis. Front Immunol 2023; 14:1078958. [PMID: 37025992 PMCID: PMC10071028 DOI: 10.3389/fimmu.2023.1078958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
The HMC-1.2 human mast cell (huMC) line is often employed in the study of attributes of neoplastic huMCs as found in patients with mastocytosis and their sensitivity to interventional drugs in vitro and in vivo. HMC-1.2 cells express constitutively active KIT, an essential growth factor receptor for huMC survival and function, due to the presence of two oncogenic mutations (D816V and V560G). However, systemic mastocytosis is commonly associated with a single D816V-KIT mutation. The functional consequences of the coexisting KIT mutations in HMC-1.2 cells are unknown. We used CRISPR/Cas9-engineering to reverse the V560G mutation in HMC-1.2 cells, resulting in a subline (HMC-1.3) with a single mono-allelic D816V-KIT variant. Transcriptome analyses predicted reduced activity in pathways involved in survival, cell-to-cell adhesion, and neoplasia in HMC-1.3 compared to HMC-1.2 cells, with differences in expression of molecular components and cell surface markers. Consistently, subcutaneous inoculation of HMC-1.3 into mice produced significantly smaller tumors than HMC-1.2 cells, and in colony assays, HMC-1.3 formed less numerous and smaller colonies than HMC-1.2 cells. However, in liquid culture conditions, the growth of HMC-1.2 and HMC-1.3 cells was comparable. Phosphorylation levels of ERK1/2, AKT and STAT5, representing pathways associated with constitutive oncogenic KIT signaling, were also similar between HMC-1.2 and HMC-1.3 cells. Despite these similarities in liquid culture, survival of HMC-1.3 cells was diminished in response to various pharmacological inhibitors, including tyrosine kinase inhibitors used clinically for treatment of advanced systemic mastocytosis, and JAK2 and BCL2 inhibitors, making HMC-1.3 more susceptible to these drugs than HMC-1.2 cells. Our study thus reveals that the additional V560G-KIT oncogenic variant in HMC-1.2 cells modifies transcriptional programs induced by D816V-KIT, confers a survival advantage, alters sensitivity to interventional drugs, and increases the tumorigenicity, suggesting that engineered huMCs with a single D816V-KIT variant may represent an improved preclinical model for mastocytosis.
Collapse
Affiliation(s)
- Geethani Bandara
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Guido H. Falduto
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrea Luker
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yun Bai
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Annika Pfeiffer
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Justin Lack
- National Institute of Allergy and Infectious Diseases (NIAID), Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dean D. Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Ana Olivera,
| |
Collapse
|
9
|
Systemic Mastocytosis and Other Entities Involving Mast Cells: A Practical Review and Update. Cancers (Basel) 2022; 14:cancers14143474. [PMID: 35884535 PMCID: PMC9322501 DOI: 10.3390/cancers14143474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Evidence in the recent literature suggests that the presentation spectrum of mast cell neoplasms is broad. In this article, we elaborate on recent data pertaining to minor diagnostic criteria of systemic mastocytosis (SM), including sensitive testing methods for detection of activating mutations in the KIT gene or its variants, and adjusted serum tryptase levels in cases with hereditary α-tryptasemia. We also summarize entities that require differential diagnosis, such as the recently reclassified SM subtype named bone marrow mastocytosis, mast cell leukemia (an SM subtype that can be acute or chronic); the rare morphological variant of all SM subtypes known as well-differentiated systemic mastocytosis; the extremely rare myelomastocytic leukemia and its differentiating features from mast cell leukemia; and mast cell activation syndrome. In addition, we provide a concise clinical update of the latest adjusted risk stratification model incorporating genomic data to define prognosis in SM and new treatments that were approved for advanced SM (midostaurin, avapritinib).
Collapse
|
10
|
Hoermann G, Sotlar K, Jawhar M, Kristensen T, Bachelot G, Nedoszytko B, Carter MC, Horny HP, Bonadonna P, Sperr WR, Hartmann K, Brockow K, Lyons JJ, Kluin-Nelemans HC, Hermine O, Akin C, Broesby-Olsen S, Triggiani M, Butterfield JH, Schwaab J, Reiter A, Gotlib J, Metcalfe DD, George TI, Orfao A, Valent P, Arock M. Standards of Genetic Testing in the Diagnosis and Prognostication of Systemic Mastocytosis in 2022: Recommendations of the EU-US Cooperative Group. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1953-1963. [PMID: 35283331 DOI: 10.1016/j.jaip.2022.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
Mastocytosis comprises rare heterogeneous diseases characterized by an increased accumulation of abnormal mast cells in various organs/tissues. The pathogenesis of mastocytosis is strongly linked to the presence of KIT-activating mutations. In systemic mastocytosis (SM), the most frequent mutation encountered is KIT p.D816V, whose presence constitutes one of the minor diagnostic criteria. Different techniques are used to search and quantify the KIT p.D816V mutant; however, allele-specific quantitative PCR and droplet digital PCR are today the most sensitive. The analysis of the KIT p.D816V allele burden has undeniable interest for diagnostic, prognostic, and therapeutic monitoring. The analysis of non-mast cell hematological compartments in SM is similarly important because KIT p.D816V multilineage involvement is associated with a worse prognosis. In addition, in advanced forms of SM, mutations in genes other than KIT are frequently identified and affect negatively disease outcome and response to therapy. Thus, combined quantitative and sensitive analysis of KIT mutations and next-generation sequencing of other recurrently involved myeloid genes make it possible to better characterize the extent of the affected cellular compartments and additional molecular aberrations, providing a more detailed overview of the complex mutational landscape of SM, in relation with the clinical heterogeneity of the disease. In this article, we report the latest recommendations of the EU-US Cooperative Group presented in September 2020 in Vienna during an international working conference, on the techniques we consider standard to detect and quantify the KIT p.D816V mutant in SM and additional myeloid mutations found in SM subtypes.
Collapse
Affiliation(s)
- Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; MLL Munich Leukemia Laboratory, Munich, Germany.
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Mohamad Jawhar
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Thomas Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Guillaume Bachelot
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University (UPMC), Paris, France
| | - Boguslaw Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Melody C Carter
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | | | - Wolfgang R Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel, Basel, Switzerland; University of Basel, Basel, Switzerland; Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Munich, Germany
| | - Jonathan J Lyons
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hanneke C Kluin-Nelemans
- Department of Haematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Olivier Hermine
- Imagine Institute, Université Paris Descartes, Sorbonne, Paris Cité, Centre national de référence des mastocytoses, Paris, France
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Mich
| | - Sigurd Broesby-Olsen
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| | | | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, Calif
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Tracy I George
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Alberto Orfao
- Servicio Central de Citometria, Centro de Investigacion del Cancer (IBMCC; CSIC/USAL), Instituto Biosanitario de Salamanca, Salamanca, Spain; Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University (UPMC), Paris, France.
| |
Collapse
|
11
|
Tefferi A, Kittur J, Farrukh F, Begna KH, Patnaik MM, Al-Kali A, Elliott MA, Reichard KK, Gangat N, Pardanani A. Cladribine therapy for advanced and indolent systemic mastocytosis: Mayo Clinic experience in 42 consecutive cases. Br J Haematol 2021; 196:975-983. [PMID: 34729775 DOI: 10.1111/bjh.17932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 01/08/2023]
Abstract
We describe our single institution experience with cladribine therapy in 42 patients with systemic mastocytosis (SM): 22 advanced (adv-SM; median age 65 years, 68% males) and 20 indolent/smouldering SM (ISM/SSM; median age 56 years, 45% males); subcategories included eight aggressive, 13 associated with another haematological neoplasm, one mast cell leukaemia, 17 ISM and three SSM. Overall/major response rates were 77%/45% for adv-SM and 70%/60% for ISM/SSM, and median (range) duration of response 10 (4-75) and 46 (4-140) months respectively. A >50% reduction in bone marrow mast cell burden and serum tryptase level was documented in 63% and 67% of patients with adv-SM and 50% and 46% with ISM/SSM respectively. The presence of KIT proto-oncogene, receptor tyrosine kinase (KIT)D816V predicted response in adv-SM: 17 (90%) of 19 with and none of three without the mutation responded (P < 0·01). Treatment-emergent adverse events were mostly limited to transient cytopenias: Grade 3/4 neutropenia, thrombocytopenia, or lymphopenia occurred in 27%, 27% and 27% of patients with adv-SM, and 5%, 5% and 30% with ISM/SSM respectively. The present study provides practical information that might be considered when making treatment choices between cladribine and newer KIT-targeted therapies and identifies the absence of KITD816V as a potential marker of cladribine resistance in advanced SM; the latter observation needs confirmation in a larger study.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jaya Kittur
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Faiqa Farrukh
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kebede H Begna
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Aref Al-Kali
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michelle A Elliott
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kaaren K Reichard
- Division of Hematopathology, Department of Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Naseema Gangat
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Animesh Pardanani
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Zanotti R, Tanasi I, Crosera L, Bonifacio M, Schena D, Orsolini G, Mastropaolo F, Tebaldi M, Olivieri E, Bonadonna P. Systemic Mastocytosis: Multidisciplinary Approach. Mediterr J Hematol Infect Dis 2021; 13:e2021068. [PMID: 34804442 PMCID: PMC8577553 DOI: 10.4084/mjhid.2021.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022] Open
Abstract
Systemic mastocytosis (SM) is a heterogeneous group of diseases that affect almost exclusively adults and are defined by the proliferation and accumulation of clonal mast cells (MC) in various tissues. Disease subtypes range from indolent to rare aggressive forms. Although SM is classified as a rare disease, it is believed to be likely underdiagnosed. Major signs and symptoms mainly depend on MC activation and less frequent organ infiltration, typical of more aggressive variants. Diagnosis may be challenging, and symptoms can be aspecific and involve several organs. Therefore, it is advisable to refer patients to specialized centers, having sufficient knowledge of the disease, sensitive diagnostic procedures, offering a personalized and multidisciplinary diagnostic approach, including at least hematological, allergological, dermatological, and rheumatological evaluations. A precise and timely diagnosis is required for: a) adequate counseling of patients and their physicians; b) beginning of symptomatic treatment (anti-mediator therapy); c) prevention of severe manifestations of the disease (i.e., recurrent anaphylaxis, osteoporosis, and bone fractures); d) cytoreductive treatment of advanced SM variants. This review summarizes the disease's main manifestations and describes the ideal diagnostic approach for adult patients with suspected SM, giving physicians the main notions for correct patient diagnosis and management. This review also highlights the importance of a multidisciplinary approach in this very complex disease.
Collapse
Affiliation(s)
- Roberta Zanotti
- Hematology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
- Interdisciplinary Study Group for Mastocytosis (GISM), Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Ilaria Tanasi
- Hematology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
- Interdisciplinary Study Group for Mastocytosis (GISM), Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Lara Crosera
- Hematology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Massimiliano Bonifacio
- Hematology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
- Interdisciplinary Study Group for Mastocytosis (GISM), Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Donatella Schena
- Interdisciplinary Study Group for Mastocytosis (GISM), Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
- Dermatology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Giovanni Orsolini
- Interdisciplinary Study Group for Mastocytosis (GISM), Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
- Rheumatology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Francesca Mastropaolo
- Interdisciplinary Study Group for Mastocytosis (GISM), Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
- Rheumatology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Morena Tebaldi
- Interdisciplinary Study Group for Mastocytosis (GISM), Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
- Gastroenterology Unit, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Elisa Olivieri
- Interdisciplinary Study Group for Mastocytosis (GISM), Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
- Allergy Unit, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Patrizia Bonadonna
- Interdisciplinary Study Group for Mastocytosis (GISM), Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
- Allergy Unit, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| |
Collapse
|
13
|
Elsaiey A, Mahmoud HS, Jensen CT, Klimkowski S, Taher A, Chaudhry H, Morani AC, Wong VK, Salem UI, Palmquist SM, Elsayes KM. Mastocytosis-A Review of Disease Spectrum with Imaging Correlation. Cancers (Basel) 2021; 13:cancers13205102. [PMID: 34680251 PMCID: PMC8533777 DOI: 10.3390/cancers13205102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this review will discuss the clinical presentation, pathophysiology, and role of imaging in detection and extent estimation of the systemic involvement of the disease, in addition to demonstration of appearance on varying imaging modalities. Familiarity with the potential imaging findings associated with mastocytosis can aid in early disease diagnosis and classification and accordingly can lead directing further work up and better management. Abstract Mastocytosis is a rare disorder due to the abnormal proliferation of clonal mast cells. Mast cells exist in most tissues, mature in situ from hematopoietic stem cells and develop unique characteristics of local effector cells. Mastocytosis develops by activation mutation of the KIT surface receptor which is involved in the proliferation of a number of cell lines such as mast cells, germ cells, melanocytes, and hematopoietic cells. It manifests as two main categories: cutaneous mastocytosis and systemic mastocytosis. Imaging can play an important role in detection and characterization of the disease manifestation, not only by radiography and bone scans, but also magnetic resonance imaging and computed tomography, which can be more sensitive in the assessment of distinctive disease patterns. Radiologists should be aware of various appearances of this disease to better facilitate diagnosis and patient management. Accordingly, this review will discuss the clinical presentation, pathophysiology, and role of imaging in detection and extent estimation of the systemic involvement of the disease, in addition to demonstration of appearance on varying imaging modalities. Familiarity with the potential imaging findings associated with mastocytosis can aid in early disease diagnosis and classification and accordingly can lead directing further work up and better management.
Collapse
Affiliation(s)
| | - Hagar S. Mahmoud
- Department of Diagnostic Radiology, Yale New Haven Health at 1939 Bridgeport Hospital, Bridgeport, CT 06610, USA;
| | - Corey T. Jensen
- MD Anderson Cancer Center, Department of Diagnostic Imaging, University of Texas, Houston, TX 77030, USA; (C.T.J.); (S.K.); (A.C.M.); (V.K.W.); (U.I.S.); (S.M.P.)
| | - Sergio Klimkowski
- MD Anderson Cancer Center, Department of Diagnostic Imaging, University of Texas, Houston, TX 77030, USA; (C.T.J.); (S.K.); (A.C.M.); (V.K.W.); (U.I.S.); (S.M.P.)
| | - Ahmed Taher
- Transitional Year Residency Program, Trinity Health Midatlantic, Nazareth Hospital, Philadelphia, PA 19152, USA;
| | - Humaira Chaudhry
- Department of Radiology, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Ajaykumar C. Morani
- MD Anderson Cancer Center, Department of Diagnostic Imaging, University of Texas, Houston, TX 77030, USA; (C.T.J.); (S.K.); (A.C.M.); (V.K.W.); (U.I.S.); (S.M.P.)
| | - Vincenzo K. Wong
- MD Anderson Cancer Center, Department of Diagnostic Imaging, University of Texas, Houston, TX 77030, USA; (C.T.J.); (S.K.); (A.C.M.); (V.K.W.); (U.I.S.); (S.M.P.)
| | - Usama I. Salem
- MD Anderson Cancer Center, Department of Diagnostic Imaging, University of Texas, Houston, TX 77030, USA; (C.T.J.); (S.K.); (A.C.M.); (V.K.W.); (U.I.S.); (S.M.P.)
| | - Sarah M. Palmquist
- MD Anderson Cancer Center, Department of Diagnostic Imaging, University of Texas, Houston, TX 77030, USA; (C.T.J.); (S.K.); (A.C.M.); (V.K.W.); (U.I.S.); (S.M.P.)
| | - Khaled M. Elsayes
- MD Anderson Cancer Center, Department of Diagnostic Imaging, University of Texas, Houston, TX 77030, USA; (C.T.J.); (S.K.); (A.C.M.); (V.K.W.); (U.I.S.); (S.M.P.)
- Correspondence:
| |
Collapse
|
14
|
Luo Y, Fernandez Vallone V, He J, Frischbutter S, Kolkhir P, Moñino-Romero S, Stachelscheid H, Streu-Haddad V, Maurer M, Siebenhaar F, Scheffel J. A novel approach for studying mast cell-driven disorders: Mast cells derived from induced pluripotent stem cells. J Allergy Clin Immunol 2021; 149:1060-1068.e4. [PMID: 34371081 DOI: 10.1016/j.jaci.2021.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mast cells (MCs) are considered the main effectors in allergic reactions and well known for their contribution to the pathogenesis of various inflammatory diseases, urticaria, and mastocytosis. To study their functions in vitro, human primary MCs are isolated directly from several tissues or differentiated from hematopoietic progenitors. However, these techniques bear several disadvantages and challenges including low proliferation capacity, donor-dependent heterogeneity, and the lack of a continuous cell source. OBJECTIVE To address this, we developed a novel strategy for the rapid and efficient differentiation of MCs from human-induced pluripotent stem cells (hiPSCs). METHODS A 4-step protocol for the generation of hiPSC-derived MCs, based on the use of 3 hiPSC lines, was established and validated by comparison with human skin MCs and peripheral hematopoietic stem cell-derived MCs. RESULTS hiPSC-MCs share phenotypic and functional characteristics of human skin MCs and peripheral hematopoietic stem cell-derived MCs. They display stable expression of the MC-associated receptors CD117, FcεRIα, and Mas-related G protein-coupled receptor X2 and degranulate in response to IgE/anti-IgE and substance P. CONCLUSIONS This novel hiPSC-based approach provides a sustainable and homogeneous source for a rapid and highly productive generation of phenotypically mature, functional MCs, and its principle allows for the investigation of disease- and patient-specific MC populations.
Collapse
Affiliation(s)
- Yanyan Luo
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Valeria Fernandez Vallone
- Charité-BIH Centrum Therapy and Research, BIH Stem Cell Core Facility, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jiajun He
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, China; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Stefan Frischbutter
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Pavel Kolkhir
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; I.M. Sechenov First Moscow State Medical University (Sechenov University), Division of Immune-mediated Skin Diseases, Moscow, Russia; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Sherezade Moñino-Romero
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Harald Stachelscheid
- Charité-BIH Centrum Therapy and Research, BIH Stem Cell Core Facility, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Viktoria Streu-Haddad
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| | - Frank Siebenhaar
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jörg Scheffel
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| |
Collapse
|
15
|
Hamilton MJ, Zhao M, Giannetti MP, Weller E, Hufdhi R, Novak P, Mendoza-Alvarez LB, Hornick J, Lyons JJ, Glover SC, Castells MC, Pozdnyakova O. Distinct Small Intestine Mast Cell Histologic Changes in Patients With Hereditary Alpha-tryptasemia and Mast Cell Activation Syndrome. Am J Surg Pathol 2021; 45:997-1004. [PMID: 33481382 PMCID: PMC8192345 DOI: 10.1097/pas.0000000000001676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mast cells (MCs) are important in intestinal homeostasis and pathogen defense but are also implicated in many of the clinical manifestations in disorders such as irritable bowel syndrome. The utility of specific staining for MCs to quantify and phenotype them in intestinal biopsies in patients with gastrointestinal (GI) symptoms is controversial and is not a widely adopted practice. Whether or not intestinal MCs are increased or have a unique phenotype in individuals with hereditary alpha-tryptasemia (HαT), who have extra copies of the MC tryptase gene TPSAB1 and typically elevated baseline serum tryptase levels >8 ng/mL is not known. We examined the duodenal biopsies of 17 patients with HαT and compared them to 15 patients with mast cell activation syndrome who had baseline serum tryptases <8 ng/mL (MCAS-NT) and 12 GI-controls. We determined that the HαT subjects had increased MCs in the duodenum compared with MCAS-NT and GI-controls (median=30.0; interquartile range [IQR]: 20.0 to 40.0 vs. median=15.0; IQR: 5.00 to 20.0; P=0.013 and median=15.0; IQR: 13.8 to 20.0; P=0.004, respectively). These MCs were significantly found in clusters (<15 MCs) and were located throughout the mucosa and submucosa including the superficial villi compared with MCAS-NT and GI-control patients. Spindle-shaped MCs were observed in all groups including controls. These data demonstrate that HαT is associated with increased small intestinal MCs that may contribute to the prevalent GI manifestations observed among individuals with this genetic trait.
Collapse
Affiliation(s)
- Matthew J. Hamilton
- Division of Gastroenterology, Hepatology, and Endoscopy, Mastocytosis Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Melissa Zhao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Matthew P. Giannetti
- Division of Allergy and Clinical Immunology, Mastocytosis Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Emily Weller
- Division of Allergy and Clinical Immunology, Mastocytosis Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Raied Hufdhi
- Division of Allergy and Clinical Immunology, Mastocytosis Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Peter Novak
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Lybil B. Mendoza-Alvarez
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Florida, Gainesville, FL
| | - Jason Hornick
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jonathan J. Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Sarah C. Glover
- Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, FL and Division of Digestive Diseases, Department of Medicine, University of Mississippi Medical Center, Jackson, MI
| | - Mariana C. Castells
- Division of Allergy and Clinical Immunology, Mastocytosis Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Zanelli M, Pizzi M, Sanguedolce F, Zizzo M, Palicelli A, Soriano A, Bisagni A, Martino G, Caprera C, Moretti M, Masia F, De Marco L, Froio E, Foroni M, Bernardelli G, Alvarez de Celis MI, Giunta A, Merli F, Ascani S. Gastrointestinal Manifestations in Systemic Mastocytosis: The Need of a Multidisciplinary Approach. Cancers (Basel) 2021; 13:3316. [PMID: 34282774 PMCID: PMC8269078 DOI: 10.3390/cancers13133316] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/27/2021] [Indexed: 12/16/2022] Open
Abstract
Mastocytosis represents a heterogeneous group of neoplastic mast cell disorders. The basic classification into a skin-limited disease and a systemic form with multi-organ involvement remains valid. Systemic mastocytosis is a disease often hard to diagnose, characterized by different symptoms originating from either the release of mast cell mediators or organ damage due to mast cell infiltration. Gastrointestinal symptoms represent one of the major causes of morbidity, being present in 60-80% of patients. A high index of suspicion by clinicians and pathologists is required to reach the diagnosis. Gastrointestinal mastocytosis can be a challenging diagnosis, as symptoms simulate other more common gastrointestinal diseases. The endoscopic appearance is generally unremarkable or nonspecific and gastrointestinal mast cell infiltration can be focal and subtle, requiring an adequate sampling with multiple biopsies by the endoscopists. Special stains, such as CD117, tryptase, and CD25, should be performed in order not to miss the gastrointestinal mast cell infiltrate. A proper patient's workup requires a multidisciplinary approach including gastroenterologists, endoscopists, hematologists, oncologists, and pathologists. The aim of this review is to analyze the clinicopathological features of gastrointestinal involvement in systemic mastocytosis, focusing on the relevance of a multidisciplinary approach.
Collapse
Affiliation(s)
- Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (A.B.); (L.D.M.); (E.F.); (M.F.); (G.B.)
| | - Marco Pizzi
- General Pathology and Cytopathology Unit, Department of Medicine-DMED, University of Padova, 35121 Padova, Italy;
| | | | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.G.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (A.B.); (L.D.M.); (E.F.); (M.F.); (G.B.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (A.B.); (L.D.M.); (E.F.); (M.F.); (G.B.)
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (S.A.)
| | - Cecilia Caprera
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (S.A.)
| | - Marina Moretti
- OncoHematology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (M.M.); (F.M.)
| | - Francesco Masia
- OncoHematology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (M.M.); (F.M.)
| | - Loredana De Marco
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (A.B.); (L.D.M.); (E.F.); (M.F.); (G.B.)
| | - Elisabetta Froio
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (A.B.); (L.D.M.); (E.F.); (M.F.); (G.B.)
| | - Moira Foroni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (A.B.); (L.D.M.); (E.F.); (M.F.); (G.B.)
| | - Giuditta Bernardelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (A.B.); (L.D.M.); (E.F.); (M.F.); (G.B.)
| | | | - Alessandro Giunta
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.G.)
| | - Francesco Merli
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.I.A.d.C.); (F.M.)
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (S.A.)
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| |
Collapse
|
17
|
Deepak V, Komarow HD, Alblaihess AA, Carter MC, Metcalfe DD, Ali H. Expression of MRGPRX2 in skin mast cells of patients with maculopapular cutaneous mastocytosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3841-3843.e1. [PMID: 34182161 PMCID: PMC8511159 DOI: 10.1016/j.jaip.2021.05.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Vishwa Deepak
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Hirsh D Komarow
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Abdulaziz A Alblaihess
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa; Department of Periodontics and Community Dentistry, King Saud University, College of Dentistry, Riyadh, Saudi Arabia
| | - Melody C Carter
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hydar Ali
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa.
| |
Collapse
|
18
|
Kim DK, Bandara G, Cho YE, Komarow HD, Donahue DR, Karim B, Baek MC, Kim HM, Metcalfe DD, Olivera A. Mastocytosis-derived extracellular vesicles deliver miR-23a and miR-30a into pre-osteoblasts and prevent osteoblastogenesis and bone formation. Nat Commun 2021; 12:2527. [PMID: 33953168 PMCID: PMC8100305 DOI: 10.1038/s41467-021-22754-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis and other manifestations of bone disease are frequent in patients with systemic mastocytosis (SM) in association with the presence of mast cell infiltrates in bone marrow, although the mechanisms behind bone disease remain poorly understood. We find that extracellular vesicles (EVs) released by neoplastic mast cells and present in the serum of patients with SM (SM-EVs) block osteoblast differentiation and mineralization in culture, and when injected into mice diminish the expression of osteoblast markers, and trabecular bone volume and microarchitecture. We demonstrate that miRNA-30a and miRNA-23a, increased in SM-EVs and neoplastic mast cell-derived EVs, attenuate osteoblast maturation by suppressing expression of RUNX2 and SMAD1/5, essential drivers of osteogenesis. Thus, SM-EVs carry and deliver miRNAs that epigenetically interfere with bone formation and can contribute to bone mass reduction in SM. These findings also suggest possibilities for novel approaches to the management of bone disease in mast cell proliferative disorders.
Collapse
Affiliation(s)
- Do-Kyun Kim
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Geethani Bandara
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Young-Eun Cho
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
- Department of Food and Nutrition, Andong National University, Andong, Kyungpook, Republic of Korea
| | - Hirsh D Komarow
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Danielle R Donahue
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
19
|
Tzankov A, Duncavage E, Craig FE, Kelemen K, King RL, Orazi A, Quintanilla-Martinez L, Reichard KK, Rimsza LM, Wang SA, Horny HP, George TI. Mastocytosis. Am J Clin Pathol 2021; 155:239-266. [PMID: 33313644 DOI: 10.1093/ajcp/aqaa183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES The 2019 Workshop of the Society for Hematopathology/European Association for Haematopathology received and reviewed cases covering the spectrum of mastocytosis and related diseases, including morphologic mimics, focusing on recent updates and relevant findings for pathologists. METHODS The workshop panel reviewed 99 cases of cutaneous and systemic mastocytosis (SM) and SM and associated hematologic neoplasms (SM-AHN). RESULTS Despite a common theme of KIT mutation (particularly D816V), mastocytosis is a heterogeneous neoplasm with a wide variety of presentations. This spectrum, including rare subtypes and extramedullary organ involvement, is discussed and illustrated by representative cases. CONCLUSIONS In the age of targeted treatment aimed at KIT, the accurate diagnosis and classification of mastocytosis has major implications for therapy and further interventions. Understanding the clinical, pathologic, and genetic findings of mastocytosis is crucial for selecting the proper tests to perform and subsequent arrival at a correct diagnosis in this rare disease.
Collapse
Affiliation(s)
- Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Eric Duncavage
- Department of Pathology, Washington University, St Louis, MO
| | - Fiona E Craig
- Division of Hematopathology, Mayo Clinic, Phoenix, AZ
| | | | | | - Attilio Orazi
- Department of Pathology, Texas Tech Health Sciences Center, El Paso
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| | | | - Lisa M Rimsza
- Division of Hematopathology, Mayo Clinic, Phoenix, AZ
| | - Sa A Wang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians University, Munich, Germany
| | - Tracy I George
- Department of Pathology, University of Utah School of Medicine, Salt Lake City
| |
Collapse
|
20
|
Gotlib J, Kluin-Nelemans HC, Akin C, Hartmann K, Valent P, Reiter A. Practical management of adverse events in patients with advanced systemic mastocytosis receiving midostaurin. Expert Opin Biol Ther 2021; 21:487-498. [PMID: 33063554 DOI: 10.1080/14712598.2021.1837109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Systemic mastocytosis (SM) is characterized by the overproduction and accumulation of neoplastic mast cells (MCs) in the bone marrow, skin, and visceral organs. The KIT D816V mutation is found in approximately 90% of cases. In advanced SM (advSM), inferior survival often relates to MC-induced organ damage that may impact multiple organ systems. In addition, mediator symptoms related to MC activation can severely impact the quality of life. The oral multikinase/KIT inhibitor midostaurin was approved by the US Food and Drug Administration and the European Medicines Agency as monotherapy for advSM based on data from phase 2 clinical studies. AREAS COVERED This review discusses the management of common adverse events (AEs) in patients with advSM who participated in phase 2 clinical studies that led to the approval of midostaurin. EXPERT OPINION In the advSM population undergoing treatment with midostaurin, treatment-related AEs are often difficult to distinguish from disease-related symptoms, which can lead to premature discontinuation and improper dose reduction of midostaurin therapy in patients who might have benefitted from continued therapy. Here we present strategies to help optimize AE management and maximize the potential benefits of midostaurin in advSM.
Collapse
Affiliation(s)
- Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hanneke C Kluin-Nelemans
- Department of Hematology, University Medical Center, University of Groningen, Groningen, The Netherlands
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University of Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Andreas Reiter
- University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
21
|
Ding C, Guo Y, Liang T, Liu J, Yang L, Wang T, Liu X, Kang Q. Protein 4.1R negatively regulates P815 cells proliferation by inhibiting C-Kit-mediated signal transduction. Exp Cell Res 2021; 398:112403. [PMID: 33271128 DOI: 10.1016/j.yexcr.2020.112403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022]
Abstract
The proliferation of mast cells (MCs) plays a crucial role in either physiological or pathological progression of human physical. C-Kit-mediated signaling pathway has been confirmed to play a key role in MCs proliferation, and the regulatory mechanisms of C-Kit-mediated MCs proliferation need to be further explored. Our previous study found that protein 4.1R could negatively regulate T cell receptor (TCR) mediated signal pathways in CD4+ T cells. Little is known about the function of 4.1R in C-Kit-mediated proliferation of MCs. In this study, P815-4.1R-/- cells were constructed by using CRISPR/Cas9 technique. Lack of 4.1R significantly enhanced P815 cells proliferation by accelerating the progression of cell cycle. 4.1R could also significantly alleviate the clinical symptoms of systemic mastocytosis (SM) and improve the overall survival of SM mice. Further study showed that 4.1R could interact directly with C-Kit to inhibit the activation of C-Kit-mediated Ras-Raf-MAPKs and PI3K-AKT signal pathways. Taken together, our findings demonstrate that protein 4.1R, a novel negative regulator, negatively regulates MCs proliferation by inhibiting C-Kit-mediated signal transduction, which maybe provide a potential target to the prevention and treatment of abnormal MCs proliferation-related diseases.
Collapse
Affiliation(s)
- Cong Ding
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Yuying Guo
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Taotao Liang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Jiaojiao Liu
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Lu Yang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China.
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China.
| |
Collapse
|
22
|
Di Raimondo C, Del Duca E, Silvaggio D, Di Prete M, Lombardo P, Mazzeo M, Spallone G, Campione E, Botti E, Bianchi L. Cutaneous mastocytosis: A dermatological perspective. Australas J Dermatol 2020; 62:e1-e7. [PMID: 33040350 DOI: 10.1111/ajd.13443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/01/2022]
Abstract
Mastocytosis is a rare disease characterised by expansion and collection of clonal mast cells in various organs including the skin, bone marrow, spleen, lymph nodes and gastrointestinal tract. The prevalence of mastocytosis has been estimated to be one in 10 000, while the estimated incidence is one per 100 000 people per year. Cutaneous mastocytosis is classified into (i) maculopapular cutaneous mastocytosis, also known as urticaria pigmentosa; (ii) diffuse cutaneous mastocytosis; and (iii) mastocytoma of the skin. In adults, cutaneous lesions are usually associated with indolent systemic mastocytosis and have a chronic evolution. Paediatric patients, on the contrary, have often cutaneous manifestations without systemic involvement and usually experience a spontaneous regression. Diagnosis of cutaneous mastocytosis may be challenging due to the rarity of the disease and the overlap of cutaneous manifestations. This short review describes pathogenesis and clinical aspects of cutaneous mastocytosis with a focus on diagnosis and currently available therapies.
Collapse
Affiliation(s)
| | - Ester Del Duca
- Department of Dermatology, University of Roma Tor Vergata, Rome, Italy
| | | | - Monia Di Prete
- Department of Anatomic Pathology, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Lombardo
- Department of Dermatology, University of Roma Tor Vergata, Rome, Italy
| | - Mauro Mazzeo
- Department of Dermatology, University of Roma Tor Vergata, Rome, Italy
| | - Giulia Spallone
- Department of Dermatology, University of Roma Tor Vergata, Rome, Italy
| | - Elena Campione
- Department of Dermatology, University of Roma Tor Vergata, Rome, Italy
| | - Elisabetta Botti
- Department of Dermatology, University of Roma Tor Vergata, Rome, Italy
| | - Luca Bianchi
- Department of Dermatology, University of Roma Tor Vergata, Rome, Italy
| |
Collapse
|
23
|
Ito R, Katano I, Otsuka I, Takahashi T, Suemizu H, Ito M, Simons PJ. Bovine β-lactoglobulin-induced passive systemic anaphylaxis model using humanized NOG hIL-3/hGM-CSF transgenic mice. Int Immunol 2020; 33:183-189. [PMID: 33027513 DOI: 10.1093/intimm/dxaa067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/01/2020] [Indexed: 11/12/2022] Open
Abstract
Food allergy is a common disease caused by intake of allergen-containing foods, such as milk, eggs, peanuts and wheat. Systemic anaphylaxis is a severe hypersensitive allergic reaction resulting from degranulation of mast cells or basophils after cross-linking of surface high-affinity IgE receptors (Fcε-RI) with allergen-specific IgE and allergens. In this study, we developed a novel human mast cell/basophil-engrafted mouse model that recapitulates systemic anaphylaxis triggered by β-lactoglobulin (BLG), a major allergen found in cow's milk. Human CD34+ hematopoietic stem cells were transferred into NOG (non-Tg) or NOG hIL-3/hGM-CSF transgenic (Tg) mice. After 14-16 weeks, bovine BLG-specific human IgE was intravenously injected into humanized mice, followed by intravenous or oral bovine BLG exposure 1 day later. Body temperature in Tg, but not in non-Tg, mice gradually decreased within 10 min, and 80% of Tg mice died within 1 h by intravenous BLG exposure. Serum histamine levels and anaphylaxis scores in Tg mice were markedly increased compared to non-Tg mice. Furthermore, these allergic symptoms were significantly inhibited by epinephrine treatment of the Tg mice. Therefore, the current NOG hIL-3/hGM-CSF Tg mouse model may be useful for development of novel anaphylaxis drugs for treatment of food allergies and for safety assessment of low-allergenicity extensively hydrolyzed cow's milk whey protein-based infant formulas.
Collapse
Affiliation(s)
- Ryoji Ito
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Ikumi Katano
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Iyo Otsuka
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Takeshi Takahashi
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Hiroshi Suemizu
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | | |
Collapse
|
24
|
Ren Y, Lyu Y, Mereness JA, Wang S, Pang J, Mariani TJ. Rare Pulmonary Connective Tissue Type Mast Cells Regulate Lung Endothelial Cell Angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1763-1773. [PMID: 32450152 PMCID: PMC9808505 DOI: 10.1016/j.ajpath.2020.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/24/2020] [Accepted: 04/27/2020] [Indexed: 01/07/2023]
Abstract
Within the human lung, mast cells typically reside adjacent to the conducting airway and assume a mucosal phenotype (MCT). In rare pathologic conditions, connective tissue phenotype mast cells (MCTCs) can be found in the lung parenchyma. MCTCs accumulate in the lungs of infants with severe bronchopulmonary dysplasia, a chronic lung disease associated with preterm birth, which is characterized by pulmonary vascular dysmorphia. The human mast cell line (LUVA) was used to model MCTCs or MCTs. The ability of MCTCs to affect vascular organization during fetal lung development was tested in mouse lung explant cultures. The effect of MCTCs on in vitro tube formation and barrier function was studied using primary fetal human pulmonary microvascular endothelial cells. The mechanistic role of MCTC proteases was tested using inhibitors. MCTCLUVA but not MCTLUVA was associated with vascular dysmorphia in lung explants. In vitro, the addition of MCTCLUVA potentiated fetal human pulmonary microvascular endothelial cell interactions, inhibited tube stability, and disrupted endothelial cell junctions. Protease inhibitors ameliorated the ability of MCTCLUVA to alter endothelial cell angiogenic activities in vitro and ex vivo. These data indicate that MCTCs may directly contribute to disrupted angiogenesis in bronchopulmonary dysplasia. A better understanding of factors that regulate mast cell subtype and their different effector functions is essential.
Collapse
Affiliation(s)
- Yue Ren
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester, Rochester, New York,Department of Biology, University of Rochester, Rochester, New York
| | - Yuyan Lyu
- Department of Pediatrics, University of Rochester, Rochester, New York
| | - Jared A. Mereness
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester, Rochester, New York,Department of Biomedical Genetics, University of Rochester, Rochester, New York
| | - Shumin Wang
- Department of Pediatrics, University of Rochester, Rochester, New York,Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York
| | - Jinjiang Pang
- Department of Pediatrics, University of Rochester, Rochester, New York,Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York
| | - Thomas J. Mariani
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester, Rochester, New York,Department of Biomedical Genetics, University of Rochester, Rochester, New York,Address correspondence to Thomas J. Mariani, Ph.D., Pediatric Molecular and Personalized Medicine Program, Division of Neonatology, University of Rochester Medical Center, 601 Elmwood Ave., Box 850, Rochester, NY 14642.
| |
Collapse
|
25
|
Gastrointestinal Manifestations of Hypereosinophilic Syndromes and Mast Cell Disorders: a Comprehensive Review. Clin Rev Allergy Immunol 2020; 57:194-212. [PMID: 30003499 DOI: 10.1007/s12016-018-8695-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypereosinophilic syndrome and mastocytosis are relatively rare proliferative diseases encountered in the general population. However, allergists frequently consider these disorders in the differential of patients presenting with gastrointestinal, pulmonary, cutaneous, and allergic symptoms. Gastrointestinal symptoms are some of the most frequent and/or debilitating aspects of both disease states and in many cases lead to poor quality of life and functional limitation for the patient. They are the third most common clinical manifestation in hypereosinophilic syndrome and have been found to be the most distressful aspect of the disorder in those with systemic mastocytosis. Both eosinophils and mast cells play integral parts in normal gut physiology, but when and how exactly their effector functionality translates into clinically significant disease remains unclear, and the available literature regarding their pathophysiology remains sparse. Eosinophils and mast cells even, in fact, may not necessarily function in isolation from each other but can participate in bidirectional crosstalk. Both are affected by similar mediators and can also influence one another in a paracrine fashion. Their interactions include both production of soluble mediators for specific eosinophil and mast cell receptors (for example, eosinophil recruitment and activation by mast cells releasing histamine and eotaxin) as well as direct physical contact. The mechanistic relationship between clonal forms of hypereosinophilia and systemic mastocytosis has also been explored. The nature of gastrointestinal symptomatology in the setting of both hypereosinophilic syndrome and mast cell disease is frequently manifold, heterogeneous, and the lack of better targeted therapy makes diagnosis and management challenging, especially when faced with a substantial differential. Currently, the management of these gastrointestinal symptoms relies on the treatment of the overall disease process. In hypereosinophilia patients, systemic corticosteroids are mainstay, although steroid-sparing agents such as hydroxyurea, IFN-α, methotrexate, cyclosporine, imatinib, and mepolizumab have been utilized with varying success. In mastocytosis patients, anti-mediator therapy with antihistamines and mast cell stabilization with cromolyn sodium can be considered treatments of choice, followed by other therapies yet to be thoroughly studied, including the role of the low-histamine diet, corticosteroids, and treatment of associated IBS symptoms. Given that both eosinophils and mast cells may have joint pathophysiologic roles, they have the potential to be a combined target for therapeutic intervention in disease states exhibiting eosinophil or mast cell involvement.
Collapse
|
26
|
Activation of Siglec-7 results in inhibition of in vitro and in vivo growth of human mast cell leukemia cells. Pharmacol Res 2020; 158:104682. [PMID: 32035162 DOI: 10.1016/j.phrs.2020.104682] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Advanced systemic mastocytosis is a rare and still untreatable disease. Blocking antibodies against inhibitory receptors, also known as "immune checkpoints", have revolutionized anti-cancer treatment. Inhibitory receptors are expressed not only on normal immune cells, including mast cells but also on neoplastic cells. Whether activation of inhibitory receptors through monoclonal antibodies can lead to tumor growth inhibition remains mostly unknown. Here we show that the inhibitory receptor Siglec-7 is expressed by primary neoplastic mast cells in patients with systemic mastocytosis and by mast cell leukemia cell lines. Activation of Siglec-7 by anti-Siglec-7 monoclonal antibody caused phosphorylation of Src homology region 2 domain-containing phosphatase-1 (SHP-1), reduced phosphorylation of KIT and induced growth inhibition in mast cell lines. In SCID-beige mice injected with either the human mast cell line HMC-1.1 and HMC-1.2 or with Siglec-7 transduced B cell lymphoma cells, anti-Siglec-7 monoclonal antibody reduced tumor growth by a mechanism involving Siglec-7 cytoplasmic domains in "preventive" and "treatment" settings. These data demonstrate that activation of Siglec-7 on mast cell lines can inhibit their growth in vitro and in vivo. This might pave the way to additional treatment strategies for mastocytosis.
Collapse
|
27
|
Bucci T, Parente R, De Feo G, Cardamone C, Triggiani M. Flow-mediated dilation shows impaired endothelial function in patients with mastocytosis. J Allergy Clin Immunol 2019; 144:1106-1111. [PMID: 31211959 DOI: 10.1016/j.jaci.2019.05.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/25/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
|
28
|
Mast cells drive IgE-mediated disease but might be bystanders in many other inflammatory and neoplastic conditions. J Allergy Clin Immunol 2019; 144:S19-S30. [DOI: 10.1016/j.jaci.2019.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 01/05/2023]
|
29
|
Kulinski JM, Eisch R, Young ML, Rampertaap S, Stoddard J, Monsale J, Romito K, Lyons JJ, Rosenzweig SD, Metcalfe DD, Komarow HD. Skewed Lymphocyte Subpopulations and Associated Phenotypes in Patients with Mastocytosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 8:292-301.e2. [PMID: 31319217 DOI: 10.1016/j.jaip.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mastocytosis is a clonal mast cell disorder associated with elevated mast cell mediators, which themselves have been reported to affect lymphocyte function. However, the impact of an expanded mast cell compartment on lymphocyte subpopulations, and their correlation with clinical phenotypes in patients with indolent systemic mastocytosis (ISM), has not been explored. OBJECTIVE To examine the immunophenotype of circulating lymphocytes in patients with ISM compared with healthy adult controls and examine relationships with aspects of clinical disease. METHODS We examined lymphocyte subsets in 20 adult patients with ISM and 40 healthy adult volunteers by multiparameter flow cytometry. Results were correlated with clinical characteristics. RESULTS Patients with ISM exhibited a significantly lower median frequency and absolute cell count of both circulating CD8+ T cells and natural killer cells accompanying a significantly increased ratio of CD4+/CD8+ T cells when compared with healthy volunteers. Stratification of our ISM patient cohort according to clinical manifestations revealed that CD19+CD21lowCD38low B cells were significantly higher in patients with a history of autoimmune disease and counts of terminally differentiated CD4+ T cells were significantly higher in patients with osteoporosis or osteopenia. CONCLUSIONS Several circulating lymphocyte subpopulations in patients with ISM were significantly different when compared with healthy controls; in specific lymphocyte subsets, this lymphocyte skewing correlated with clinical observations including osteoporosis and autoimmune disease. These data suggest the need for further studies on abnormalities in lymphocyte subsets and the attendant clinical consequences in both mast cell proliferative and activation disorders.
Collapse
Affiliation(s)
- Joseph M Kulinski
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Robin Eisch
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael L Young
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Md
| | - Shakuntala Rampertaap
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Md
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Md
| | - Joseph Monsale
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Md
| | - Kimberly Romito
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Md
| | - Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Md
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hirsh D Komarow
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
30
|
Altered Metabolism of Phospholipases, Diacylglycerols, Endocannabinoids, and N-Acylethanolamines in Patients with Mastocytosis. J Immunol Res 2019; 2019:5836476. [PMID: 31355297 PMCID: PMC6636572 DOI: 10.1155/2019/5836476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/02/2019] [Accepted: 05/14/2019] [Indexed: 12/28/2022] Open
Abstract
Background Mastocytosis is a condition characterized by the expansion and accumulation of mast cells (MCs) in various organs. The symptoms are related to the increased release of MC-derived mediators that exert local and distant effects. MCs are a source and target of phospholipase enzymes (PLs), which catalyze the cleavage of membrane phospholipids releasing lipid mediators (e.g., diacylglycerols (DAGs) and the endocannabinoid (EC) 2-arachidonoylglycerol (2-AG)). To date, there are no data on the role of these lipid mediators in mastocytosis. Here, we analyzed plasma levels of PLA2, PLC, DAG, ECs, and EC-related N-acylethanolamines in patients with mastocytosis. Methods In 23 patients with mastocytosis and 23 healthy individuals, we measured plasma PLA2 and PLC activities, DAG, 2-AG, anandamide (AEA), palmitoylethanolamide (PEA), and oleoylethanolamide (OEA). Results Plasma PLA2 and PLC activities were increased in mastocytosis patients compared to controls. Concentrations of DAG (18:1 20:4 and 18:0 20:4), two second messengers produced by PLC, were higher in mastocytosis compared to controls, whereas the concentrations of their metabolite, 2-AG, were not altered. AEA was decreased in mastocytosis patients compared to controls; by contrast, AEA congener, PEA, was increased. PLA2 and PLC activities were increased only in patients with mediator-related symptoms. Moreover, PLC activity was positively correlated with disease severity and tryptase concentrations. By contrast, AEA was negatively correlated with tryptase concentrations. Conclusions PLs and some lipid mediators are altered in patients with mastocytosis. Our results may pave the way for investigating the functions of these mediators in the pathophysiology of mastocytosis and provide new potential biomarkers and therapeutic targets.
Collapse
|
31
|
Theoharides TC, Tsilioni I, Ren H. Recent advances in our understanding of mast cell activation - or should it be mast cell mediator disorders? Expert Rev Clin Immunol 2019; 15:639-656. [PMID: 30884251 PMCID: PMC7003574 DOI: 10.1080/1744666x.2019.1596800] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION An increasing number of patients present with multiple symptoms affecting many organs including the brain due to multiple mediators released by mast cells. These unique tissue immune cells are critical for allergic reactions triggered by immunoglobulin E (IgE), but are also stimulated (not activated) by immune, drug, environmental, food, infectious, and stress triggers, leading to secretion of multiple mediators often without histamine and tryptase. The presentation, diagnosis, and management of the spectrum of mast cell disorders are very confusing. As a result, neuropsychiatric symptoms have been left out, and diagnostic criteria made stricter excluding most patients. Areas covered: A literature search was performed on papers published between January 1990 and November 2018 using MEDLINE. Terms used were activation, antihistamines, atopy, autism, brain fog, heparin, KIT mutation, IgE, inflammation, IL-6, IL-31, IL-37, luteolin, mast cells, mastocytosis, mediators, mycotoxins, release, secretion, tetramethoxyluteolin, and tryptase. Expert opinion: Conditions associated with elevated serum or urine levels of any mast cell mediator, in the absence of comorbidities that could explain elevated levels, should be considered 'Mast Cell Mediator Disorders (MCMD).' Emphasis should be placed on the identification of unique mast cell mediators, and development of drugs or supplements that inhibit their release.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Huali Ren
- Department of Otolaryngology, Beijing Electric Power Hospital, Beijing, China
| |
Collapse
|
32
|
Tobío A, Bandara G, Morris DA, Kim DK, O'Connell MP, Komarow HD, Carter MC, Smrz D, Metcalfe DD, Olivera A. Oncogenic D816V-KIT signaling in mast cells causes persistent IL-6 production. Haematologica 2019; 105:124-135. [PMID: 30948489 PMCID: PMC6939509 DOI: 10.3324/haematol.2018.212126] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
Persistent dysregulation of IL-6 production and signaling have been implicated in the pathology of various cancers. In systemic mastocytosis, increased serum levels of IL-6 associate with disease severity and progression, although the mechanisms involved are not well understood. Since systemic mastocytosis often associates with the presence in hematopoietic cells of a somatic gain-of-function variant in KIT, D816V-KIT, we examined its potential role in IL-6 upregulation. Bone marrow mononuclear cultures from patients with greater D816V allelic burden released increased amounts of IL-6 which correlated with the percentage of mast cells in the cultures. Intracellular IL-6 staining by flow cytometry and immunofluorescence was primarily associated with mast cells and suggested a higher percentage of IL-6 positive mast cells in patients with higher D816V allelic burden. Furthermore, mast cell lines expressing D816V-KIT, but not those expressing normal KIT or other KIT variants, produced constitutively high IL-6 amounts at the message and protein levels. We further demonstrate that aberrant KIT activity and signaling are critical for the induction of IL-6 and involve STAT5 and PI3K pathways but not STAT3 or STAT4. Activation of STAT5A and STAT5B downstream of D816V-KIT was mediated by JAK2 but also by MEK/ERK1/2, which not only promoted STAT5 phosphorylation but also its long-term transcription. Our study thus supports a role for mast cells and D816V-KIT activity in IL-6 dysregulation in mastocytosis and provides insights into the intracellular mechanisms. The findings contribute to a better understanding of the physiopathology of mastocytosis and suggest the importance of therapeutic targeting of these pathways.
Collapse
Affiliation(s)
- Araceli Tobío
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Geethani Bandara
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Denise A Morris
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Do-Kyun Kim
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael P O'Connell
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hirsh D Komarow
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Melody C Carter
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Smrz
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Wagner N, Staubach P. Mastocytosis - pathogenesis, clinical manifestation and treatment. J Dtsch Dermatol Ges 2019; 16:42-57. [PMID: 29314691 DOI: 10.1111/ddg.13418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023]
Abstract
The term mastocytosis designates a group of rare disorders characterized by typical skin lesions, frequently associated episodes of anaphylaxis, and clinical symptoms related to the release of various mediators. Dermatologists/allergists are frequently the first to establish the diagnosis. The condition is based on clonal mast cell proliferation, usually in the skin or bone marrow and only rarely in the gastrointestinal tract or other tissues. In general, mastocytosis has a good prognosis in terms of life expectancy. Rare variants - including mast cell leukemia, aggressive mastocytosis, and the exceedingly rare mast cell sarcoma - require cytoreductive therapy. In cases associated with hematological neoplasms, the prognosis depends on the underlying hematologic disorder.
Collapse
Affiliation(s)
- Nicola Wagner
- Department of Dermatology, University Medical Center, Erlangen, Germany
| | - Petra Staubach
- Department of Dermatology, University Medical Center, Mainz, Germany
| |
Collapse
|
34
|
Robida PA, Puzzovio PG, Pahima H, Levi-Schaffer F, Bochner BS. Human eosinophils and mast cells: Birds of a feather flock together. Immunol Rev 2019; 282:151-167. [PMID: 29431215 DOI: 10.1111/imr.12638] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the origin of the phrase "birds of a feather flock together" is unclear, it has been in use for centuries and is typically employed to describe the phenomenon that people with similar tastes or interests tend to seek each other out and congregate together. In this review, we have co-opted this phrase to compare innate immune cells of related origin, the eosinophil and mast cell, because they very often accumulate together in tissue sites under both homeostatic and inflammatory conditions. To highlight overlapping yet distinct features, their hematopoietic development, cell surface phenotype, mediator release profiles and roles in diseases have been compared and contrasted. What emerges is a sense that these two cell types often interact with each other and their tissue environment to provide synergistic contributions to a variety of normal and pathologic immune responses.
Collapse
Affiliation(s)
- Piper A Robida
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadas Pahima
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
35
|
Kulinski JM, Metcalfe DD, Young ML, Bai Y, Yin Y, Eisch R, Scott LM, Komarow HD. Elevation in histamine and tryptase following exercise in patients with mastocytosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 7:1310-1313.e2. [PMID: 30048767 DOI: 10.1016/j.jaip.2018.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/07/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Joseph M Kulinski
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael L Young
- Clinical Research Directorate/Clinical Monitoring Research Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Md
| | - Yun Bai
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Yuzhi Yin
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Robin Eisch
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Linda M Scott
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hirsh D Komarow
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
36
|
Serrano-Candelas E, Ainsua-Enrich E, Navinés-Ferrer A, Rodrigues P, García-Valverde A, Bazzocco S, Macaya I, Arribas J, Serrano C, Sayós J, Arango D, Martin M. Silencing of adaptor protein SH3BP2 reduces KIT/PDGFRA receptors expression and impairs gastrointestinal stromal tumors growth. Mol Oncol 2018; 12:1383-1397. [PMID: 29885053 PMCID: PMC6068349 DOI: 10.1002/1878-0261.12332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/18/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) represent about 80% of the mesenchymal neoplasms of the gastrointestinal tract. Most GISTs contain oncogenic KIT (85%) or PDGFRA (5%) receptors. The kinase inhibitor imatinib mesylate is the preferential treatment for these tumors; however, the development of drug resistance has highlighted the need for novel therapeutic strategies. Recently, we reported that the adaptor molecule SH3 Binding Protein 2 (SH3BP2) regulates KIT expression and signaling in human mast cells. Our current study shows that SH3BP2 is expressed in primary tumors and cell lines from GIST patients and that SH3BP2 silencing leads to a downregulation of oncogenic KIT and PDGFRA expression and an increase in apoptosis in imatinib-sensitive and imatinib-resistant GIST cells. The microphthalmia-associated transcription factor (MITF), involved in KIT expression in mast cells and melanocytes, is expressed in GISTs. Interestingly, MITF is reduced after SH3BP2 silencing. Importantly, reconstitution of both SH3BP2 and MITF restores cell viability. Furthermore, SH3BP2 silencing significantly reduces cell migration and tumor growth of imatinib-sensitive and imatinib-resistant cells in vivo. Altogether, SH3BP2 regulates KIT and PDGFRA expression and cell viability, indicating a role as a potential target in imatinib-sensitive and imatinib-resistant GISTs.
Collapse
Affiliation(s)
- Eva Serrano-Candelas
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, Spain.,Laboratory of Clinic and Experimental Immunoallergy, IDIBAPS, Barcelona, Spain
| | - Erola Ainsua-Enrich
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, Spain.,Laboratory of Clinic and Experimental Immunoallergy, IDIBAPS, Barcelona, Spain
| | - Arnau Navinés-Ferrer
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, Spain.,Laboratory of Clinic and Experimental Immunoallergy, IDIBAPS, Barcelona, Spain
| | - Paulo Rodrigues
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Autonomous University of Barcelona, Spain
| | | | - Sarah Bazzocco
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Autonomous University of Barcelona, Spain
| | - Irati Macaya
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Autonomous University of Barcelona, Spain
| | - Joaquín Arribas
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,The Catalan Institute of Research and Advanced Studies (ICREA), Barcelona, Spain.,CIBERONC, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - César Serrano
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Vall d'Hebron University Hospital, Barcelona, Spain
| | - Joan Sayós
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Autonomous University of Barcelona, Spain
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Autonomous University of Barcelona, Spain
| | - Margarita Martin
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, Spain.,Laboratory of Clinic and Experimental Immunoallergy, IDIBAPS, Barcelona, Spain
| |
Collapse
|
37
|
Costopoulos M, Uzunov M, Bories D, Charlotte F, Maloum K, Arock M. Acute mast cell leukemia: A rare but highly aggressive hematopoietic neoplasm. Diagn Cytopathol 2018; 46:639-641. [PMID: 29736992 DOI: 10.1002/dc.23965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Myrto Costopoulos
- Biological Haematology Department, Pitié-Salpêtrière Hospital, Paris
| | - Madalina Uzunov
- Clinical Haematology Department, Pitié-Salpêtrière Hospital, Paris
| | - Dominique Bories
- Biological Haematology Department, Henri Mondor Hospital, Créteil
| | | | - Karim Maloum
- Biological Haematology Department, Pitié-Salpêtrière Hospital, Paris
| | - Michel Arock
- Biological Haematology Department, Pitié-Salpêtrière Hospital, Paris
| |
Collapse
|
38
|
Chan IJ, Tharp MD. Comparison of lesional skin c-KIT mutations with clinical phenotype in patients with mastocytosis. Clin Exp Dermatol 2018; 43:416-422. [PMID: 29350409 DOI: 10.1111/ced.13362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Activating c-KIT mutations cause abnormal mast cell growth and appear to play a role in mastocytosis. However, the correlation of c-KIT mutations with disease phenotypes is poorly characterized. AIM To evaluate the correlation of c-KIT mutations with clinical presentations and laboratory findings. METHODS Total cellular RNA was isolated from the skin lesions of 43 adults and 7 children with mastocytosis, and PCR amplicons of cDNA were sequenced for c-KIT mutations. RESULTS The most common activating mutation, KIT-D816V, was identified in 72% of adults and 57% of children. Additional activating mutations, namely, V560G and the internal tandem duplications (ITDs) 502-503dupAY, were detected in 12% of adults and 8% of children. V560G occurred more commonly in our patients than previously reported, and it appeared to be associated with more advanced disease. Otherwise, the presence or absence of activating mutations did not correlate with skin lesion morphology, disease extent or total serum tryptase levels. Four adults had expression only of wild-type KIT, while two others had expression of a truncated KIT lacking tyrosine kinase activity; yet these patients were clinically indistinguishable from those patients with activating c-KIT mutations. CONCLUSIONS Activating c-KIT mutations exist in a significant portion of patients with mastocytosis, but not all patients showed expression of these mutations. Except for V560G, the presence or absence of activating c-KIT mutations did not predict the extent of disease. These observations suggest that although activating c-KIT mutations are associated with mast cell growth, other genes probably play a role in the cause of mastocytosis.
Collapse
Affiliation(s)
- I J Chan
- Department of Dermatology, Rush University Medical Center, Chicago, IL, USA
| | - M D Tharp
- Department of Dermatology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
39
|
Wagner N, Staubach P. Mastozytose - Pathogenese, Klinik und Therapie. J Dtsch Dermatol Ges 2018; 16:42-59. [PMID: 29314684 DOI: 10.1111/ddg.13418_g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023]
|
40
|
KIT signaling is dispensable for human mast cell progenitor development. Blood 2017; 130:1785-1794. [PMID: 28790106 DOI: 10.1182/blood-2017-03-773374] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/30/2017] [Indexed: 01/17/2023] Open
Abstract
Human hematopoietic progenitors are generally assumed to require stem cell factor (SCF) and KIT signaling during differentiation for the formation of mast cells. Imatinib treatment, which inhibits KIT signaling, depletes mast cells in vivo. Furthermore, the absence of SCF or imatinib treatment prevents progenitors from developing into mast cells in vitro. However, these observations do not mean that mast cell progenitors require SCF and KIT signaling throughout differentiation. Here, we demonstrate that circulating mast cell progenitors are present in patients undergoing imatinib treatment. In addition, we show that mast cell progenitors from peripheral blood survive, mature, and proliferate without SCF and KIT signaling in vitro. Contrary to the prevailing consensus, our results show that SCF and KIT signaling are dispensable for early mast cell development.
Collapse
|
41
|
Yang M, Pan Z, Huang K, Büsche G, Feuerhake F, Chaturvedi A, Nie D, Heuser M, Thol F, von Neuhoff N, Ganser A, Li Z. Activation of TRKA receptor elicits mastocytosis in mice and is involved in the development of resistance to KIT-targeted therapy. Oncotarget 2017; 8:73871-73883. [PMID: 29088753 PMCID: PMC5650308 DOI: 10.18632/oncotarget.18027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/08/2017] [Indexed: 12/03/2022] Open
Abstract
The neurotrophins (NTs) play a key role in neuronal survival and maintenance. The TRK (tropomyosin-related kinase) tyrosine kinase receptors (TRKA, TRKB, TRKC) are high affinity receptors for NTs. There is increasing data demonstrating an important role of the TRK family in cancer initiation and progression. NTs have been known for many years to promote chemotaxis, maturation, and survival of mast cells. However, the role of NT signaling in the pathogenesis of mastocytosis is not well understood. In this study, we demonstrate that activation of TRKA by its ligand nerve growth factor (NGF) is potent to trigger a disease in mice with striking similarities to human systemic mastocytosis (SM). Moreover, activation of TRKA by NGF strongly rescues KIT inhibition-induced cell death of mast cell lines and primary mast cells from patients with SM, and this rescue effect can be efficiently blocked by entrectinib (a new pan TRK specific inhibitor). HMC-1 mast cell leukemia cells that are resistant to KIT inhibition induced by TRKA activation show reactivation of MAPK/ERK (extracellular signal-regulated kinase) and strong upregulation of early growth response 3 (EGR3), suggesting an important role of MAPK-EGR3 axis in the development of resistance to KIT inhibition. Targeting both TRK and KIT significantly prolongs survival of mice xenotransplanted with HMC-1 cells compared with targeting KIT alone. Thus, these data strongly suggest that TRKA signaling can improve neoplastic mast cell fitness. This might explain at least in part why treatment with KIT inhibitors alone so far has been disappointing in most published clinical trials for mastocytosis. Our data suggest that targeting both KIT and TRKs might improve efficacy of molecular therapy in SM with KIT mutations.
Collapse
Affiliation(s)
- Min Yang
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Zengkai Pan
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Kezhi Huang
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guntram Büsche
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Anuhar Chaturvedi
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Danian Nie
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Nils von Neuhoff
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Zhixiong Li
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
42
|
Benedé S, Garrido-Arandia M, Martín-Pedraza L, Bueno C, Díaz-Perales A, Villalba M. Multifactorial Modulation of Food-Induced Anaphylaxis. Front Immunol 2017; 8:552. [PMID: 28559894 PMCID: PMC5432630 DOI: 10.3389/fimmu.2017.00552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/25/2017] [Indexed: 01/26/2023] Open
Abstract
Prevalence of food-induced anaphylaxis increases progressively and occurs in an unpredictable manner, seriously affecting the quality of life of patients. Intrinsic factors including age, physiological, and genetic features of the patient as well as extrinsic factors such as the intake of drugs and exposure to environmental agents modulate this disorder. It has been proven that diseases, such as mastocytosis, defects in HLA, or filaggrin genes, increase the risk of severe allergic episodes. Certain allergen families such as storage proteins, lipid transfer proteins, or parvalbumins have also been linked to anaphylaxis. Environmental factors such as inhaled allergens or sensitization through the skin can exacerbate or trigger acute anaphylaxis. Moreover, the effect of dietary habits such as the early introduction of certain foods in the diet, and the advantage of the breastfeeding remain as yet unresolved. Interaction of allergens with the intestinal cell barrier together with a set of effector cells represents the primary pathways of food-induced anaphylaxis. After an antigen cross-links the IgEs on the membrane of effector cells, a complex intracellular signaling cascade is initiated, which leads cells to release preformed mediators stored in their granules that are responsible for the acute symptoms of anaphylaxis. Afterward, they can also rapidly synthesize lipid compounds such as prostaglandins or leukotrienes. Cytokines or chemokines are also released, leading to the recruitment and activation of immune cells in the inflammatory microenvironment. Multiple factors that affect food-induced anaphylaxis are discussed in this review, paying special attention to dietary habits and environmental and genetic conditions.
Collapse
Affiliation(s)
- Sara Benedé
- Dpto. Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid, Spain
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Laura Martín-Pedraza
- Dpto. Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Bueno
- Dpto. Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid, Spain
| | - Araceli Díaz-Perales
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Mayte Villalba
- Dpto. Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|