1
|
Agca S, Kir S. EDA2R-NIK signaling in cancer cachexia. Curr Opin Support Palliat Care 2024; 18:126-131. [PMID: 38801457 DOI: 10.1097/spc.0000000000000705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
PURPOSE OF REVIEW Cachexia is a debilitating condition causing weight loss and skeletal muscle wasting that negatively influences treatment and survival of cancer patients. The objective of this review is to describe recent discoveries on the role of a novel signaling pathway involving ectodysplasin A2 receptor (EDA2R) and nuclear factor κB (NFκB)-inducing kinase (NIK) in muscle atrophy. RECENT FINDINGS Studies identified tumor-induced upregulation of EDA2R expression in muscle tissues in pre-clinical cachexia models and patients with various cancers. Activation of EDA2R by its ligand promoted atrophy in cultured myotubes and muscle tissue, which depended on NIK activity. The non-canonical NFκB pathway via NIK also stimulated muscle atrophy. Mice lacking EDA2R or NIK were protected from muscle loss due to tumors. Tumor-induced cytokine oncostatin M (OSM) upregulated EDA2R expression in muscles whereas OSM receptor-deficient mice were resistant to muscle wasting. SUMMARY Recent discoveries revealed a mechanism involving EDA2R-NIK signaling and OSM that drives cancer-associated muscle loss, opening up new directions for designing anti-cachexia treatments. The therapeutic potential of targeting this mechanism to prevent muscle loss should be further investigated. Future research should also explore broader implications of the EDA2R-NIK pathway in other muscle wasting diseases and overall muscle health.
Collapse
Affiliation(s)
- Samet Agca
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | | |
Collapse
|
2
|
Salucci S, Burattini S, Versari I, Bavelloni A, Bavelloni F, Curzi D, Battistelli M, Gobbi P, Faenza I. Morpho-Functional Analyses Demonstrate That Tyrosol Rescues Dexamethasone-Induced Muscle Atrophy. J Funct Morphol Kinesiol 2024; 9:124. [PMID: 39051285 PMCID: PMC11270424 DOI: 10.3390/jfmk9030124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Prolonged exposure to high dosages of dexamethasone, which is a synthetic glucocorticoid and a well-known anti-inflammatory drug, may lead to an increase in reactive oxygen species production, contributing to muscle wasting. The prevention of muscle atrophy by ingestion of functional foods is an attractive issue. In the last decade, natural antioxidant compounds have been increasingly investigated as promising molecules able to counteract oxidative-stress-induced muscle atrophy. Recently, we have demonstrated the antioxidant properties of two main olive oil polyphenols also known for their anticancer and anti-inflammatory activities in different cell models. Here, the preventive effect of tyrosol on dexamethasone-induced muscle atrophy has been investigated by means of morpho-functional approaches in C2C12 myotubes. Dexamethasone-treated cells showed a reduced fiber size when compared to control ones. While long and confluent myotubes could be observed in control samples, those exposed to dexamethasone appeared as immature syncytia. Dysfunctional mitochondria and the accumulation of autophagic vacuoles contributed to myotube degeneration and death. Tyrosol administration before glucocorticoid treatment prevented muscle wasting and rescued mitochondrial and lysosomal functionality. These findings demonstrate that tyrosol attenuates dexamethasone-induced myotube damage, and encourage the use of this natural molecule in preclinical and clinical studies and in synergy with other functional foods or physical activity with the aim to prevent muscle atrophy.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40126 Bologna, Italy; (I.V.); (F.B.); (I.F.)
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.B.); (M.B.); (P.G.)
| | - Ilaria Versari
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40126 Bologna, Italy; (I.V.); (F.B.); (I.F.)
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Francesco Bavelloni
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40126 Bologna, Italy; (I.V.); (F.B.); (I.F.)
| | - Davide Curzi
- Department of Humanities, Movement, and Education Sciences, University “Niccolò Cusano”, 00166 Rome, Italy;
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.B.); (M.B.); (P.G.)
| | - Pietro Gobbi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.B.); (M.B.); (P.G.)
| | - Irene Faenza
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40126 Bologna, Italy; (I.V.); (F.B.); (I.F.)
| |
Collapse
|
3
|
Liang W, Xu F, Li L, Peng C, Sun H, Qiu J, Sun J. Epigenetic control of skeletal muscle atrophy. Cell Mol Biol Lett 2024; 29:99. [PMID: 38978023 PMCID: PMC11229277 DOI: 10.1186/s11658-024-00618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Skeletal muscular atrophy is a complex disease involving a large number of gene expression regulatory networks and various biological processes. Despite extensive research on this topic, its underlying mechanisms remain elusive, and effective therapeutic approaches are yet to be established. Recent studies have shown that epigenetics play an important role in regulating skeletal muscle atrophy, influencing the expression of numerous genes associated with this condition through the addition or removal of certain chemical modifications at the molecular level. This review article comprehensively summarizes the different types of modifications to DNA, histones, RNA, and their known regulators. We also discuss how epigenetic modifications change during the process of skeletal muscle atrophy, the molecular mechanisms by which epigenetic regulatory proteins control skeletal muscle atrophy, and assess their translational potential. The role of epigenetics on muscle stem cells is also highlighted. In addition, we propose that alternative splicing interacts with epigenetic mechanisms to regulate skeletal muscle mass, offering a novel perspective that enhances our understanding of epigenetic inheritance's role and the regulatory network governing skeletal muscle atrophy. Collectively, advancements in the understanding of epigenetic mechanisms provide invaluable insights into the study of skeletal muscle atrophy. Moreover, this knowledge paves the way for identifying new avenues for the development of more effective therapeutic strategies and pharmaceutical interventions.
Collapse
Affiliation(s)
- Wenpeng Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, China
| | - Li Li
- Nantong Center for Disease Control and Prevention, Medical School of Nantong University, Nantong, 226001, China
| | - Chunlei Peng
- Department of Medical Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, 226000, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
| | - Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China.
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China.
| |
Collapse
|
4
|
Lenardič A, Domenig SA, Zvick J, Bundschuh N, Tarnowska-Sengül M, Furrer R, Noé F, Trautmann CL, Ghosh A, Bacchin G, Gjonlleshaj P, Qabrati X, Masschelein E, De Bock K, Handschin C, Bar-Nur O. Generation of allogeneic and xenogeneic functional muscle stem cells for intramuscular transplantation. J Clin Invest 2024; 134:e166998. [PMID: 38713532 PMCID: PMC11178549 DOI: 10.1172/jci166998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/23/2024] [Indexed: 05/09/2024] Open
Abstract
Satellite cells, the stem cells of skeletal muscle tissue, hold a remarkable regeneration capacity and therapeutic potential in regenerative medicine. However, low satellite cell yield from autologous or donor-derived muscles hinders the adoption of satellite cell transplantation for the treatment of muscle diseases, including Duchenne muscular dystrophy (DMD). To address this limitation, here we investigated whether satellite cells can be derived in allogeneic or xenogeneic animal hosts. First, injection of CRISPR/Cas9-corrected Dmdmdx mouse induced pluripotent stem cells (iPSCs) into mouse blastocysts carrying an ablation system of host satellite cells gave rise to intraspecies chimeras exclusively carrying iPSC-derived satellite cells. Furthermore, injection of genetically corrected DMD iPSCs into rat blastocysts resulted in the formation of interspecies rat-mouse chimeras harboring mouse satellite cells. Notably, iPSC-derived satellite cells or derivative myoblasts produced in intraspecies or interspecies chimeras restored dystrophin expression in DMD mice following intramuscular transplantation and contributed to the satellite cell pool. Collectively, this study demonstrates the feasibility of producing therapeutically competent stem cells across divergent animal species, raising the possibility of generating human muscle stem cells in large animals for regenerative medicine purposes.
Collapse
MESH Headings
- Animals
- Mice
- Muscular Dystrophy, Duchenne/therapy
- Muscular Dystrophy, Duchenne/genetics
- Induced Pluripotent Stem Cells/transplantation
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/metabolism
- Rats
- Satellite Cells, Skeletal Muscle/transplantation
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/cytology
- Stem Cell Transplantation
- Humans
- Dystrophin/genetics
- Dystrophin/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Mice, Inbred mdx
- Heterografts
- Transplantation, Heterologous
- Injections, Intramuscular
- Transplantation, Homologous
Collapse
Affiliation(s)
- Ajda Lenardič
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Seraina A. Domenig
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Joel Zvick
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Nicola Bundschuh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Monika Tarnowska-Sengül
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | | | - Falko Noé
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Christine L. Trautmann
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Adhideb Ghosh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Giada Bacchin
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Pjeter Gjonlleshaj
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Xhem Qabrati
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Evi Masschelein
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | | | - Ori Bar-Nur
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
5
|
Özen SD, Kir S. Ectodysplasin A2 receptor signaling in skeletal muscle pathophysiology. Trends Mol Med 2024; 30:471-483. [PMID: 38443222 DOI: 10.1016/j.molmed.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024]
Abstract
Skeletal muscle is essential in generating mechanical force and regulating energy metabolism and body temperature. Pathologies associated with muscle tissue often lead to impaired physical activity and imbalanced metabolism. Recently, ectodysplasin A2 receptor (EDA2R) signaling has been shown to promote muscle loss and glucose intolerance. Upregulated EDA2R expression in muscle tissue was associated with aging, denervation, cancer cachexia, and muscular dystrophies. Here, we describe the roles of EDA2R signaling in muscle pathophysiology, including muscle atrophy, insulin resistance, and aging-related sarcopenia. We also discuss the EDA2R pathway, which involves EDA-A2 as the ligand and nuclear factor (NF)κB-inducing kinase (NIK) as a downstream mediator, and the therapeutic potential of targeting these proteins in the treatment of muscle wasting and metabolic dysfunction.
Collapse
Affiliation(s)
- Sevgi Döndü Özen
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey.
| |
Collapse
|
6
|
Ahmad K, Lee EJ, Ali S, Han KS, Hur SJ, Lim JH, Choi I. Licochalcone A and B enhance muscle proliferation and differentiation by regulating Myostatin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155350. [PMID: 38237512 DOI: 10.1016/j.phymed.2024.155350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Myostatin (MSTN) inhibition has demonstrated promise for the treatment of diseases associated with muscle loss. In a previous study, we discovered that Glycyrrhiza uralensis (G. uralensis) crude water extract (CWE) inhibits MSTN expression while promoting myogenesis. Furthermore, three specific compounds of G. uralensis, namely liquiritigenin, tetrahydroxymethoxychalcone, and Licochalcone B (Lic B), were found to promote myoblast proliferation and differentiation, as well as accelerate the regeneration of injured muscle tissue. PURPOSE The purpose of this study was to build on our previous findings on G. uralensis and demonstrate the potential of its two components, Licochalcone A (Lic A) and Lic B, in muscle mass regulation (by inhibiting MSTN), aging and muscle formation. METHODS G. uralensis, Lic A, and Lic B were evaluated thoroughly using in silico, in vitro and in vivo approaches. In silico analyses included molecular docking, and dynamics simulations of these compounds with MSTN. Protein-protein docking was carried out for MSTN, as well as for the docked complex of MSTN-Lic with its receptor, activin type IIB receptor (ACVRIIB). Subsequent in vitro studies used C2C12 cell lines and primary mouse muscle stem cells to acess the cell proliferation and differentiation of normal and aged cells, levels of MSTN, Atrogin 1, and MuRF1, and plasma MSTN concentrations, employing techniques such as western blotting, immunohistochemistry, immunocytochemistry, cell proliferation and differentiation assays, and real-time RT-PCR. Furthermore, in vivo experiments using mouse models focused on measuring muscle fiber diameters. RESULTS CWE of G. uralensis and two of its components, namely Lic A and B, promote myoblast proliferation and differentiation by inhibiting MSTN and reducing Atrogin1 and MuRF1 expressions and MSTN protein concentration in serum. In silico interaction analysis revealed that Lic A (binding energy -6.9 Kcal/mol) and B (binding energy -5.9 Kcal/mol) bind to MSTN and reduce binding between it and ACVRIIB, thereby inhibiting downstream signaling. The experimental analysis, which involved both in vitro and in vivo studies, demonstrated that the levels of MSTN, Atrogin 1, and MuRF1 were decreased when G. uralensis CWE, Lic A, or Lic B were administered into mice or treated in the mouse primary muscle satellite cells (MSCs) and C2C12 myoblasts. The diameters of muscle fibers increased in orally treated mice, and the differentiation and proliferation of C2C12 cells were enhanced. G. uralensis CWE, Lic A, and Lic B also promoted cell proliferation in aged cells, suggesting that they may have anti-muslce aging properties. They also reduced the expression and phosphorylation of SMAD2 and SMAD3 (MSTN downstream effectors), adding to the evidence that MSTN is inhibited. CONCLUSION These findings suggest that CWE and its active constituents Lic A and Lic B have anti-mauscle aging potential. They also have the potential to be used as natural inhibitors of MSTN and as therapeutic options for disorders associated with muscle atrophy.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Ki Soo Han
- Neo Cremar Co., Ltd., Seoul 05702, South Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| |
Collapse
|
7
|
Wan R, Liu S, Feng X, Luo W, Zhang H, Wu Y, Chen S, Shang X. The Revolution of exosomes: From biological functions to therapeutic applications in skeletal muscle diseases. J Orthop Translat 2024; 45:132-139. [PMID: 38544740 PMCID: PMC10966453 DOI: 10.1016/j.jot.2024.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 11/11/2024] Open
Abstract
Skeletal muscle diseases, a broad category encompassing a myriad of afflictions such as acute muscle injury and muscular dystrophies, pose a significant health burden globally. These conditions often lead to muscle weakness, compromised mobility, and a diminished quality of life. In light of this, innovative and effective therapeutic strategies are fervently sought after. Exosomes, naturally extracellular vesicles with a diameter of 30-150 nm, pervade biological fluids. These microscopic entities harbor a host of biological molecules, including proteins, nucleic acids, and lipids, bearing a significant resemblance to their parent cells. The roles they play in the biological theater are manifold, influencing crucial physiological and pathological processes within the organism. In the context of skeletal muscle diseases, their potential extends beyond these roles, as they present a promising therapeutic target and a vehicle for targeted drug delivery. This potentially paves the way for significant clinical applications. This review aims to elucidate the mechanisms underpinning exosome action, their myriad biological functions, and the strides made in exosome research and application. A comprehensive exploration of the part played by exosomes in skeletal muscle repair and regeneration is undertaken. In addition, we delve into the use of exosomes in the therapeutic landscape of skeletal muscle diseases, providing a valuable reference for a deeper understanding of exosome applications in this realm. The concluding section encapsulates the prospective avenues for exosome research and the promising future they hold, underscoring the tremendous potential these diminutive vesicles possess in the field of skeletal muscle diseases. The Translational Potential of this Article. The comprehensive exploration of exosome's diverse biological functions and translational potential in the context of skeletal muscle diseases presented in this review underscores their promising future as a therapeutic target with significant clinical applications, thus paving the way for innovative and effective therapeutic strategies in this realm.
Collapse
Affiliation(s)
- Renwen Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shan Liu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xinting Feng
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hanli Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yang Wu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiliang Shang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
8
|
Cordeiro-Spinetti E, Rothbart SB. Lysine methylation signaling in skeletal muscle biology: from myogenesis to clinical insights. Biochem J 2023; 480:1969-1986. [PMID: 38054592 DOI: 10.1042/bcj20230223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Lysine methylation signaling is well studied for its key roles in the regulation of transcription states through modifications on histone proteins. While histone lysine methylation has been extensively studied, recent discoveries of lysine methylation on thousands of non-histone proteins has broadened our appreciation for this small chemical modification in the regulation of protein function. In this review, we highlight the significance of histone and non-histone lysine methylation signaling in skeletal muscle biology, spanning development, maintenance, regeneration, and disease progression. Furthermore, we discuss potential future implications for its roles in skeletal muscle biology as well as clinical applications for the treatment of skeletal muscle-related diseases.
Collapse
Affiliation(s)
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan 49503, U.S.A
| |
Collapse
|
9
|
Lv Z, Meng J, Yao S, Xiao F, Li S, Shi H, Cui C, Chen K, Luo X, Ye Y, Chen C. Naringenin improves muscle endurance via activation of the Sp1-ERRγ transcriptional axis. Cell Rep 2023; 42:113288. [PMID: 37874675 DOI: 10.1016/j.celrep.2023.113288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
Skeletal muscle function declines in the aging process or disease; however, until now, skeletal muscle has remained one of the organs most undertreated with medication. In this study, naringenin (NAR) was found to build muscle endurance in wild-type mice of different ages by increasing oxidative myofiber numbers and aerobic metabolism, and it ameliorates muscle dysfunction in mdx mice. The transcription factor Sp1 was identified as a direct target of NAR and was shown to mediate the function of NAR on muscle. Moreover, the binding site of NAR on Sp1 was further validated as GLN-110. NAR enhances the binding of Sp1 to the CCCTGCCCTC sequence of the Esrrg promoter by promoting Sp1 phosphorylation, thus upregulating Esrrg expression. The identification of the Sp1-ERRγ transcriptional axis is of great significance in basic muscle research, and this function of NAR has potential implications for the improvement of muscle function and the prevention of muscle atrophy.
Collapse
Affiliation(s)
- Zhenyu Lv
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng Yao
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Fu Xiao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Drug and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shilong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Cui
- University of Chinese Academy of Sciences, Beijing 100049, China; Drug and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kaixian Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Drug and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaomin Luo
- University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Drug and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yang Ye
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
10
|
Habibian JS, Bolino M, Qian A, Woolsey R, Quilici D, Petereit J, Ferguson BS. Class I HDAC inhibitors attenuate dexamethasone-induced muscle atrophy via increased protein kinase C (PKC) delta phosphorylation. Cell Signal 2023; 110:110815. [PMID: 37478958 PMCID: PMC10528066 DOI: 10.1016/j.cellsig.2023.110815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Skeletal muscle atrophy is defined by wasting or decrease in muscle mass owing to injury, aging, malnutrition, chronic disuse, or physical consequences of chronic illness. Under normal physiological conditions, a network of signal transduction pathways serves to balance muscle protein synthesis and proteolysis; however, metabolic shifts occur from protein synthesis to protein degradation that leads to a reduction in cross-sectional myofibers and can result in loss of skeletal muscle mass (atrophy) over time. Recent evidence highlights posttranslational modifications (PTMs) such as acetylation and phosphorylation in contractile dysfunction and muscle wasting. Indeed, histone deacetylase (HDAC) inhibitors have been shown to attenuate muscle atrophy and delay muscle damage in response to nutrient deprivation, in models of metabolic dysfunction and genetic models of muscle disease (e.g., muscle dystrophy). Despite our current understanding of lysine acetylation in muscle physiology, a role for HDACs in the regulation of muscle signal transduction remains a 'black box.' Using C2C12 myotubes stimulated with dexamethasone (Dex) as a model of muscle atrophy, we report that protein kinase C delta (PKCδ) phosphorylation decreased at threonine 505 (T505) and serine 643 (S643) in myotubes in response to muscle atrophy; these residues are important for PKCδ activity. Interestingly, PKCδ phosphorylation was restored/increased in myotubes treated with a pan-HDAC inhibitor or a class I selective HDAC inhibitor targeting HDACs1, -2, and - 3 in response to Dex. Moreover, we observed that Dex induced atrophy in skeletal muscle tissue in mice; this reduction in atrophy occurred rapidly, with weight loss noted by day 3 post-Dex and muscle weight loss noted by day 7. Similar to our findings in C2C12 myotubes, Dex attenuated phosphorylation of PKCδ at S643, while HDAC inhibition restored or increased PKCδ phosphorylation at both T505 and S643 in the tibialis anterior. Consistent with this hypothesis, we report that HDAC inhibition could not restore myotube size in response to Dex in the presence of a PKCδ inhibitor or when overexpressing a dominant negative PKCδ. Additionally, the overexpression of a constitutively active PKCδ prevented Dex-induced myotube atrophy. Combined, these data suggest that HDACs regulate muscle physiology via changes in intracellular signaling, namely PKCδ phosphorylation. Whether HDACs regulate PKCδ through canonical (e.g. gene-mediated regulation of phosphatases) or non-canonical (e.g. direct deacetylation of PKCδ to change phosphorylation states) mechanisms remain unclear and future research is needed to clarify this point.
Collapse
Affiliation(s)
- Justine S Habibian
- Department of Nutrition, The University of Nevada Reno, Reno, NV 89557, United States of America; Cellular and Molecular Biology, The University of Nevada Reno, Reno, NV 89557, United States of America; Cellular and Molecular Pharmacology and Physiology, The University of Nevada Reno, Reno, NV 89557, USA
| | - Matthew Bolino
- Department of Nutrition, The University of Nevada Reno, Reno, NV 89557, United States of America; Cellular and Molecular Biology, The University of Nevada Reno, Reno, NV 89557, United States of America
| | - Anthony Qian
- Cellular and Molecular Pharmacology and Physiology, The University of Nevada Reno, Reno, NV 89557, USA
| | - Rebekah Woolsey
- Mick Hitchcock, Ph.D. Nevada Proteomics Center (RRID:SCR_017761), The University of Nevada Reno, Reno, NV 89557, USA
| | - David Quilici
- Mick Hitchcock, Ph.D. Nevada Proteomics Center (RRID:SCR_017761), The University of Nevada Reno, Reno, NV 89557, USA
| | - Juli Petereit
- Nevada Bioinformatics Center (RRID:SCR_017802), The University of Nevada Reno, Reno, NV 89557, USA
| | - Bradley S Ferguson
- Department of Nutrition, The University of Nevada Reno, Reno, NV 89557, United States of America; Cellular and Molecular Biology, The University of Nevada Reno, Reno, NV 89557, United States of America; Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, The University of Nevada Reno, Reno, NV 89557, United States of America.
| |
Collapse
|
11
|
Domaniku A, Bilgic SN, Kir S. Muscle wasting: emerging pathways and potential drug targets. Trends Pharmacol Sci 2023; 44:705-718. [PMID: 37596181 DOI: 10.1016/j.tips.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023]
Abstract
Muscle wasting is a serious comorbidity associated with many disorders, including cancer, kidney disease, heart failure, and aging. Progressive loss of skeletal muscle mass negatively influences prognosis and survival, and is often accompanied by frailty and poor quality of life. Clinical trials testing therapeutics against muscle wasting have yielded limited success. Some therapies improved muscle mass in patients without appreciable differences in physical performance. This review article discusses emerging pathways that regulate muscle atrophy, including oncostatin M (OSM) and ectodysplasin A2 (EDA2) receptor (EDA2R) signaling, outcomes of recent clinical trials, and potential drug targets for future therapies.
Collapse
Affiliation(s)
- Aylin Domaniku
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Sevval Nur Bilgic
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey.
| |
Collapse
|
12
|
Webb EK, Ng SY, Mikhail AI, Stouth DW, vanLieshout TL, Syroid AL, Ljubicic V. Impact of short-term, pharmacological CARM1 inhibition on skeletal muscle mass, function, and atrophy in mice. Am J Physiol Endocrinol Metab 2023; 325:E252-E266. [PMID: 37493245 PMCID: PMC10625826 DOI: 10.1152/ajpendo.00047.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of arginine residues on target proteins critical for health and disease. The purpose of this study was to characterize the effects of short-term, pharmacological CARM1 inhibition on skeletal muscle size, function, and atrophy. Adult mice (n = 10 or 11/sex) were treated with either a CARM1 inhibitor (150 mg/kg EZM2302; EZM) or vehicle (Veh) via oral gavage for 11-13 days and muscle mass, function, and exercise capacity were assessed. In addition, we investigated the effect of CARM1 suppression on unilateral hindlimb denervation (DEN)-induced muscle atrophy (n = 8/sex). We report that CARM1 inhibition caused significant reductions in the asymmetric dimethylation of known CARM1 substrates but no change in CARM1 protein or mRNA content in skeletal muscle. Reduced CARM1 activity did not affect body or muscle mass, however, we observed a decrease in exercise capacity and muscular endurance in male mice. CARM1 methyltransferase activity increased in the muscle of Veh-treated mice following 7 days of DEN, and this response was blunted in EZM-dosed mice. Skeletal muscle mass and myofiber cross-sectional area were significantly reduced in DEN compared with contralateral, non-DEN limbs to a similar degree in both treatment groups. Furthermore, skeletal muscle atrophy and autophagy gene expression programs were elevated in response to DEN independent of CARM1 suppression. Collectively, these results suggest that short-term, pharmacological CARM1 inhibition in adult animals affects muscle performance in a sex-specific manner but does not impact the maintenance and remodeling of skeletal muscle mass during conditions of neurogenic muscle atrophy.NEW & NOTEWORTHY Short-term pharmacological inhibition of coactivator-associated arginine methyltransferase 1 (CARM1) was effective at significantly reducing CARM1 methyltransferase function in skeletal muscle. CARM1 inhibition did not impact muscle mass, but exercise capacity was impaired, particularly in male mice, whereas morphological and molecular signatures of denervation-induced muscle atrophy were largely maintained in animals administered the inhibitor. Altogether, the role of CARM1 in neuromuscular biology remains complex and requires further investigation of its therapeutic potential in muscle-wasting conditions.
Collapse
Affiliation(s)
- Erin K Webb
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Sean Y Ng
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Andrew I Mikhail
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Derek W Stouth
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Tiffany L vanLieshout
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Anika L Syroid
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Song B, Cheng Y, Azad MAK, Ding S, Yao K, Kong X. Muscle characteristics comparison and targeted metabolome analysis reveal differences in carcass traits and meat quality of three pig breeds. Food Funct 2023; 14:7603-7614. [PMID: 37530176 DOI: 10.1039/d2fo03709b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
This study investigated the molecular basis for differences in meat yield and quality between Duroc, Taoyuan black (TB), and Xiangcun black (XB) pigs. The results show that TB pigs have lower carcass weight, lean percentage, pH decline, and glycolytic potential but have higher fat percentage, water- holding capacity, intramuscular fat content, antioxidant capacity, and percentage of slow-twitch fibers than the Duroc pigs. Moreover, muscles of TB pigs have lower protein synthesis and lipolysis gene expression than the muscles of Duroc pigs. Targeted metabolome analysis indicates that 24 metabolites significantly differ among these three pig breeds. Correlation analysis suggests that L-malic acid and β-alanine contents in muscle are closely related to meat quality. These findings suggest that the excellent meat quality of TB pigs is closely related to muscle metabolism and fiber characteristics, while lower protein synthesis and lipolysis may contribute to less meat yield.
Collapse
Affiliation(s)
- Bo Song
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yating Cheng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Md Abul Kalam Azad
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
| | - Sujuan Ding
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
| | - Kang Yao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Roths M, Abeyta MA, Wilson B, Rudolph TE, Hudson MB, Rhoads RP, Baumgard LH, Selsby JT. Effects of heat stress on markers of skeletal muscle proteolysis in dairy cattle. J Dairy Sci 2023:S0022-0302(23)00356-9. [PMID: 37349209 DOI: 10.3168/jds.2022-22678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/20/2023] [Indexed: 06/24/2023]
Abstract
Heat stress (HS) markedly affects postabsorptive energetics and protein metabolism. Circulating urea nitrogen increases in multiple species during HS and it has been traditionally presumed to stem from increased skeletal muscle proteolysis; however, this has not been empirically established. We hypothesized HS would increase activation of the calpain and proteasome systems as well as increase degradation of autophagosomes in skeletal muscle. To test this hypothesis, lactating dairy cows (∼139 d in milk; parity ∼2.4) were exposed to thermal neutral (TN) or HS conditions for 7 d (8 cows/environment). To induce HS, cattle were fitted with electric blankets for the duration of the heating period and the semitendinosus was biopsied on d 7. Heat stress increased rectal temperature (1.3°C) and respiratory rate (38 breaths per minute) while it decreased dry matter intake (34%) and milk yield (32%). Plasma urea nitrogen (PUN) peaked following 3 d (46%) and milk urea nitrogen (MUN) peaked following 4 d of environmental treatment and while both decreased thereafter, PUN and MUN remained elevated compared with TN (PUN: 20%; MUN: 27%) on d 7 of HS. Contrary to expectations, calpain I and II abundance and activation and calpain activity were similar between groups. Likewise, relative protein abundance of E3 ligases, muscle atrophy F-box protein/atrogin-1 and muscle ring-finger protein-1, total ubiquitinated proteins, and proteasome activity were similar between environmental treatments. Finally, autophagosome degradation was also unaltered by HS. Counter to our hypothesis, these results suggest skeletal muscle proteolysis is not increased following 7 d of HS and call into question the presumed dogma that elevated skeletal muscle proteolysis, per se, drives increased AA mobilization.
Collapse
Affiliation(s)
- M Roths
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B Wilson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716
| | - T E Rudolph
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M B Hudson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716
| | - R P Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - J T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
15
|
Brock Symons T, Park J, Kim JH, Kwon EH, Delacruz J, Lee J, Park Y, Chung E, Lee S. Attenuation of skeletal muscle atrophy via acupuncture, electro-acupuncture, and electrical stimulation. Integr Med Res 2023; 12:100949. [PMID: 37214317 PMCID: PMC10192920 DOI: 10.1016/j.imr.2023.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/19/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Background Accelerated skeletal muscle wasting is a shared trait among many pathologies and aging. Acupuncture has been used as a therapeutic intervention to control pain; however, little is known about its effects on skeletal muscle atrophy and function. The study's purpose was to compare the effects of acupuncture, electro-acupuncture, and electrical stimulation on cast-induced skeletal muscle atrophy. Methods Forty female Sprague Dawley rats were randomly divided into groups: Control, casted (CAST), CAST+Acupuncture (CAST-A), 4) CAST+Electro-acupuncture (CAST-EA), and CAST+Electrical stimulation (CAST-ES) (n = 8). Plaster casting material was wrapped around the left hind limb. Acupuncture and electro-acupuncture (10 Hz, 6.4 mA) treatments were applied by needling acupoints (stomach-36 and gallbladder-34). Electrical stimulation (10 Hz, 6.4 mA) was conducted by needling the lateral and medial gastrocnemius muscles. Treatments were conducted for 15 min, three times/week for 14 days. Muscle atrophy F-box (MAFbx), muscle RING finger 1 (MuRF1), and contractile properties were assessed. Results Fourteen days of cast-immobilization decreased muscle fiber CSA by 56% in the CAST group (p = 0.00); whereas, all treatment groups demonstrated greater muscle fiber CSA than the CAST group (p = 0.00). Cast-immobilization increased MAFbx and MuRF1 protein expression in the CAST group (p<0.01) while the CAST-A, CAST-EA, and CAST-ES groups demonstrated lower levels of MAFbx and MuRF1 protein expression (p<0.02) compared to the CAST group. Following fourteen days of cast-immobilization, peak twitch tension did not differ between the CAST-A and CON groups (p = 0.12). Conclusion Skeletal muscle atrophy, induced by 14 days of cast-immobilization, was significantly attenuated by acupuncture, electro-acupuncture, or electrical stimulation.
Collapse
Affiliation(s)
- T. Brock Symons
- Department of Counselling, Health, and Kinesiology, Texas A&M University-San Antonio, San Antonio, TX, U.S.A
| | - Jinho Park
- Department of Counselling, Health, and Kinesiology, Texas A&M University-San Antonio, San Antonio, TX, U.S.A
| | - Joo Hyun Kim
- Department of Counselling, Health, and Kinesiology, Texas A&M University-San Antonio, San Antonio, TX, U.S.A
| | - Eun Hye Kwon
- Department of Counselling, Health, and Kinesiology, Texas A&M University-San Antonio, San Antonio, TX, U.S.A
| | - Jesse Delacruz
- Department of Counselling, Health, and Kinesiology, Texas A&M University-San Antonio, San Antonio, TX, U.S.A
| | - Junghoon Lee
- Department of Health and Human Performance, University of Houston, Houston, TX, U.S.A
| | - Yoonjung Park
- Department of Health and Human Performance, University of Houston, Houston, TX, U.S.A
| | - Eunhee Chung
- Department of Kinesiology, The University of Texas at San Antonio, San Antonio, TX, U.S.A
| | - Sukho Lee
- Department of Counselling, Health, and Kinesiology, Texas A&M University-San Antonio, San Antonio, TX, U.S.A
| |
Collapse
|
16
|
Setiawan T, Sari IN, Wijaya YT, Julianto NM, Muhammad JA, Lee H, Chae JH, Kwon HY. Cancer cachexia: molecular mechanisms and treatment strategies. J Hematol Oncol 2023; 16:54. [PMID: 37217930 DOI: 10.1186/s13045-023-01454-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023] Open
Abstract
Muscle wasting is a consequence of physiological changes or a pathology characterized by increased catabolic activity that leads to progressive loss of skeletal muscle mass and strength. Numerous diseases, including cancer, organ failure, infection, and aging-associated diseases, are associated with muscle wasting. Cancer cachexia is a multifactorial syndrome characterized by loss of skeletal muscle mass, with or without the loss of fat mass, resulting in functional impairment and reduced quality of life. It is caused by the upregulation of systemic inflammation and catabolic stimuli, leading to inhibition of protein synthesis and enhancement of muscle catabolism. Here, we summarize the complex molecular networks that regulate muscle mass and function. Moreover, we describe complex multi-organ roles in cancer cachexia. Although cachexia is one of the main causes of cancer-related deaths, there are still no approved drugs for cancer cachexia. Thus, we compiled recent ongoing pre-clinical and clinical trials and further discussed potential therapeutic approaches for cancer cachexia.
Collapse
Affiliation(s)
- Tania Setiawan
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yoseph Toni Wijaya
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Nadya Marcelina Julianto
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Jabir Aliyu Muhammad
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Hyeok Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Ji Heon Chae
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Hyog Young Kwon
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea.
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea.
| |
Collapse
|
17
|
McClelland TJ, Davies T, Puthucheary Z. Novel nutritional strategies to prevent muscle wasting. Curr Opin Crit Care 2023; 29:108-113. [PMID: 36762680 DOI: 10.1097/mcc.0000000000001020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW Muscle wasting in critical illness has proven to be refractory to physical rehabilitation, and to conventional nutritional strategies. This presents one of the central challenges to critical care medicine in the 21st century. Novel strategies are needed that facilitate nutritional interventions, identify patients that will benefit and have measurable, relevant benefits. RECENT FINDINGS Drug repurposing was demonstrated to be a powerful technique in the coronavirus disease 2019 pandemic, and may have similar applications to address the metabolic derangements of critical illness. Newer biological signatures may aid the application of these techniques and the association between changes in urea:creatinine ratio and the development of skeletal muscle wasting is increasing. A core outcome set for nutrition interventions in critical illness, supported by multiple international societies, was published earlier this year should be adopted by future nutrition trials aiming to attenuate muscle wasting. SUMMARY The evidence base for the lack of efficacy for conventional nutritional strategies in preventing muscle wasting in critically ill patients continues to grow. Novel strategies such as metabolic modulators, patient level biological signatures of nutritional response and standardized outcome for measurements of efficacy will be central to future research and clinical care of the critically ill patient.
Collapse
Affiliation(s)
- Thomas J McClelland
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London
| | - Thomas Davies
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London
| | - Zudin Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London
- Adult Critical Care Unit, Royal London Hospital, London, UK
| |
Collapse
|
18
|
Alhasaniah AH. l-carnitine: Nutrition, pathology, and health benefits. Saudi J Biol Sci 2023; 30:103555. [PMID: 36632072 PMCID: PMC9827390 DOI: 10.1016/j.sjbs.2022.103555] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Carnitine is a medically needful nutrient that contributes in the production of energy and the metabolism of fatty acids. Bioavailability is higher in vegetarians than in people who eat meat. Deficits in carnitine transporters occur as a result of genetic mutations or in combination with other illnesses such like hepatic or renal disease. Carnitine deficit can arise in diseases such endocrine maladies, cardiomyopathy, diabetes, malnutrition, aging, sepsis, and cirrhosis due to abnormalities in carnitine regulation. The exogenously provided molecule is obviously useful in people with primary carnitine deficits, which can be life-threatening, and also some secondary deficiencies, including such organic acidurias: by eradicating hypotonia, muscle weakness, motor skills, and wasting are all improved l-carnitine (LC) have reported to improve myocardial functionality and metabolism in ischemic heart disease patients, as well as athletic performance in individuals with angina pectoris. Furthermore, although some intriguing data indicates that LC could be useful in a variety of conditions, including carnitine deficiency caused by long-term total parenteral supplementation or chronic hemodialysis, hyperlipidemias, and the prevention of anthracyclines and valproate-induced toxicity, such findings must be viewed with caution.
Collapse
Key Words
- AD, Alzheimer's disease
- AIF, Apoptosis-inducing factor
- Anti-wasting effect
- BBB, Blood–brain barrier
- CC, Cancer cachexia
- CHF, Chronic heart failure
- COPD, Chronic obstructive pulmonary disease
- ESRD, End-stage renal disease
- GOT, Glutamic oxaloacetic transaminase
- HCC, Hepatocellular carcinoma
- HFD, High-Fat Diet
- HOI, Highest observed intake
- Health benefits
- LC, l-carnitine
- MI, myocardial infarction
- MTX, Methotrexate
- NF-kB, Nuclear factor-kB
- Nutrition
- OSL, Observed safe level
- PCD, Primary carnitine deficiency
- Pathology
- ROS, Reactive oxygen species
- SCD, Secondary carnitine deficiency
- TLE, Temporal lobe epilepsy
- VD, Vascular dementia
- l-carnitine
Collapse
Affiliation(s)
- Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| |
Collapse
|
19
|
Chiu HC, Yang RS, Weng TI, Chiu CY, Lan KC, Liu SH. A ubiquitous endocrine disruptor tributyltin induces muscle wasting and retards muscle regeneration. J Cachexia Sarcopenia Muscle 2023; 14:167-181. [PMID: 36382567 PMCID: PMC9891973 DOI: 10.1002/jcsm.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Organotin pollutant tributyltin (TBT) is an environmental endocrine disrupting chemical and is a known obesogen and diabetogen. TBT can be detected in human following consumption of contaminated seafood or water. The decrease in muscle strength and quality has been shown to be associated with type 2 diabetes in older adults. However, the adverse effects of TBT on the muscle mass and function still remain unclear. Here, we investigated the effects and molecule mechanisms of low-dose TBT on skeletal muscle regeneration and atrophy/wasting using the cultured skeletal muscle cell and adult mouse models. METHODS The mouse myoblasts (C2C12) and differentiated myotubes were used to assess the in vitro effects of low-dose tributyltin (0.01-0.5 μM). The in vivo effects of TBT at the doses of 5 and 25 μg/kg/day (n = 6/group), which were five times lower than the established no observed adverse effect level (NOAEL) and equal to NOAEL, respectively, by oral administration for 4 weeks on muscle wasting and muscle regeneration were evaluated in a mouse model with or without glycerol-induced muscle injury/regeneration. RESULTS TBT reduced myogenic differentiation in myoblasts (myotube with 6-10 nuclei: 53.9 and 35.8% control for 0.05 and 0.1 μM, respectively, n = 4, P < 0.05). TBT also decreased myotube diameter, upregulated protein expression levels of muscle-specific ubiquitin ligases (Atrogin-1 and MuRF1), myostatin, phosphorylated AMPKα, and phosphorylated NFκB-p65, and downregulated protein expression levels of phosphorylated AKT and phosphorylated FoxO1 in myotubes (0.2 and 0.5 μM, n = 6, P < 0.05). Exposure of TBT in mice elevated body weight, decreased muscle mass, and induced muscular dysfunction (5 and 25 μg/kg, P > 0.05 and P < 0.05, respectively, n = 6). TBT inhibited soleus muscle regeneration in mice with glycerol-induced muscle injury (5 and 25 μg/kg, P > 0.05 and P < 0.05, respectively, n = 6). TBT upregulated protein expression levels of Atrogin-1, MuRF1, myostatin, and phosphorylated AMPKα and downregulated protein expression level of phosphorylated FoxO1 in the mouse soleus muscles (5 and 25 μg/kg, P > 0.05 and P < 0.05, respectively, n = 6). CONCLUSIONS This study demonstrates for the first time that low-dose TBT significantly inhibits myogenic differentiation and triggers myotube atrophy in a cell model and significantly decreases muscle regeneration and muscle mass and function in a mouse model. These findings suggest that low-dose TBT exposure may be an environmental risk factor for muscle regeneration inhibition, atrophy/wasting, and disease-related myopathy.
Collapse
Affiliation(s)
- Hsien-Chun Chiu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rong-Sen Yang
- Departments of Orthopaedics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Te-I Weng
- Department of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Yuan Chiu
- Center of Consultation, Center for Drug Evaluation, Taipei, Taiwan
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Kim JY, Kim HM, Kim JH, Guo S, Lee DH, Lim GM, Kim W, Kim CY. Salvia plebeia R.Br. and Rosmarinic Acid Attenuate Dexamethasone-Induced Muscle Atrophy in C2C12 Myotubes. Int J Mol Sci 2023; 24:ijms24031876. [PMID: 36768200 PMCID: PMC9915874 DOI: 10.3390/ijms24031876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Skeletal muscle atrophy occurs when protein degradation exceeds protein synthesis and is associated with increased circulating glucocorticoid levels. Salvia plebeia R.Br. (SPR) has been used as herbal remedy for a variety of inflammatory diseases and has various biological actions such as antioxidant and anti-inflammatory activities. However, there are no reports on the effects of SPR and its bioactive components on muscle atrophy. Herein, we investigated the anti-atrophic effect of SPR and rosmarinic acid (RosA), a major compound of SPR, on dexamethasone (DEX)-induced skeletal muscle atrophy in C2C12 myotubes. Myotubes were treated with 10 μM DEX in the presence or absence of SPR or RosA at different concentrations for 24 h and subjected to immunocytochemistry, western blot, and measurements of ROS and ATP levels. SPR and RosA increased viability and inhibited protein degradation in DEX-treated C2C12 myotubes. In addition, RosA promoted the Akt/p70S6K/mTOR pathway and reduced ROS production, and apoptosis. Furthermore, the treatment of RosA significantly recovered SOD activity, autophagy activity, mitochondrial contents, and APT levels in DEX-treated myotubes. These findings suggest that SPR and RosA may provide protective effects against DEX-induced muscle atrophy and have promising potential as a nutraceutical remedy for the treatment of muscle weakness and atrophy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wondong Kim
- Correspondence: (W.K.); (C.Y.K.); Tel.: +82-31-400-5817 (W.K.); +82-31-400-5809 (C.Y.K.); Fax: +82-31-400-5958 (C.Y.K.)
| | - Chul Young Kim
- Correspondence: (W.K.); (C.Y.K.); Tel.: +82-31-400-5817 (W.K.); +82-31-400-5809 (C.Y.K.); Fax: +82-31-400-5958 (C.Y.K.)
| |
Collapse
|
21
|
Wijaya YT, Setiawan T, Sari IN, Park K, Lee CH, Cho KW, Lee YK, Lim JY, Yoon JK, Lee SH, Kwon HY. Ginsenoside Rd ameliorates muscle wasting by suppressing the signal transducer and activator of transcription 3 pathway. J Cachexia Sarcopenia Muscle 2022; 13:3149-3162. [PMID: 36127129 PMCID: PMC9745546 DOI: 10.1002/jcsm.13084] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/18/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The effects of some drugs, aging, cancers, and other diseases can cause muscle wasting. Currently, there are no effective drugs for treating muscle wasting. In this study, the effects of ginsenoside Rd (GRd) on muscle wasting were studied. METHODS Tumour necrosis factor-alpha (TNF-α)/interferon-gamma (IFN-γ)-induced myotube atrophy in mouse C2C12 and human skeletal myoblasts (HSkM) was evaluated based on cell thickness. Atrophy-related signalling, reactive oxygen species (ROS) level, mitochondrial membrane potential, and mitochondrial number were assessed. GRd (10 mg/kg body weight) was orally administered to aged mice (23-24 months old) and tumour-bearing (Lewis lung carcinoma [LLC1] or CT26) mice for 5 weeks and 16 days, respectively. Body weight, grip strength, inverted hanging time, and muscle weight were assessed. Histological analysis was also performed to assess the effects of GRd. The evolutionary chemical binding similarity (ECBS) approach, molecular docking, Biacore assay, and signal transducer and activator of transcription (STAT) 3 reporter assay were used to identify targets of GRd. RESULTS GRd significantly induced hypertrophy in the C2C12 and HSkM myotubes (average diameter 50.8 ± 2.6% and 49.9% ± 3.7% higher at 100 nM, vs. control, P ≤ 0.001). GRd treatment ameliorated aging- and cancer-induced (LLC1 or CT26) muscle atrophy in mice, which was evidenced by significant increases in grip strength, hanging time, muscle mass, and muscle tissue cross-sectional area (1.3-fold to 4.6-fold, vs. vehicle, P ≤ 0.05; P ≤ 0.01; P ≤ 0.001). STAT3 was found to be a possible target of GRd by the ECBS approach and molecular docking assay. Validation of direct interaction between GRd and STAT3 was confirmed through Biacore analysis. GRd also inhibited STAT3 phosphorylation and STAT3 reporter activity, which led to the inhibition of STAT3 nuclear translocation and the suppression of downstream targets of STAT3, such as atrogin-1, muscle-specific RING finger protein (MuRF-1), and myostatin (MSTN) (29.0 ± 11.2% to 84.3 ± 30.5%, vs. vehicle, P ≤ 0.05; P ≤ 0.01; P ≤ 0.001). Additionally, GRd scavenged ROS (91.7 ± 1.4% reduction at 1 nM, vs. vehicle, P ≤ 0.001), inhibited TNF-α-induced dysregulation of ROS level, and improved mitochondrial integrity (P ≤ 0.05; P ≤ 0.01; P ≤ 0.001). CONCLUSIONS GRd ameliorates aging- and cancer-induced muscle wasting. Our findings suggest that GRd may be a novel therapeutic agent or adjuvant for reversing muscle wasting.
Collapse
Affiliation(s)
- Yoseph Toni Wijaya
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Tania Setiawan
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Keunwan Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Chan Hee Lee
- Program of Material Science for Medicine and Pharmaceutics, Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea.,Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Yun Kyung Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea.,Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Jae-Young Lim
- Institute of Aging, Seoul National University, Seoul, Republic of Korea.,Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jeong Kyo Yoon
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea.,Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Sae Hwan Lee
- Liver Clinic, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Hyog Young Kwon
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea.,Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
22
|
Kim JY, Kim HM, Kim JH, Lee JH, Zhang K, Guo S, Lee DH, Gao EM, Son RH, Kim SM, Kim CY. Preventive effects of the butanol fraction of Justicia procumbens L. against dexamethasone-induced muscle atrophy in C2C12 myotubes. Heliyon 2022; 8:e11597. [DOI: 10.1016/j.heliyon.2022.e11597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
|
23
|
Sun D, Wang Z, Mou J, Tian F, Cao J, Guo L, Liu P. Characteristics of paraspinal muscle degeneration in degenerative diseases of the lumbar spine at different ages. Clin Neurol Neurosurg 2022; 223:107484. [DOI: 10.1016/j.clineuro.2022.107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/03/2022]
|
24
|
Stalmach A, Boehm I, Fernandes M, Rutter A, Skipworth RJE, Husi H. Gene Ontology (GO)-Driven Inference of Candidate Proteomic Markers Associated with Muscle Atrophy Conditions. Molecules 2022; 27:5514. [PMID: 36080280 PMCID: PMC9457532 DOI: 10.3390/molecules27175514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle homeostasis is essential for the maintenance of a healthy and active lifestyle. Imbalance in muscle homeostasis has significant consequences such as atrophy, loss of muscle mass, and progressive loss of functions. Aging-related muscle wasting, sarcopenia, and atrophy as a consequence of disease, such as cachexia, reduce the quality of life, increase morbidity and result in an overall poor prognosis. Investigating the muscle proteome related to muscle atrophy diseases has a great potential for diagnostic medicine to identify (i) potential protein biomarkers, and (ii) biological processes and functions common or unique to muscle wasting, cachexia, sarcopenia, and aging alone. We conducted a meta-analysis using gene ontology (GO) analysis of 24 human proteomic studies using tissue samples (skeletal muscle and adipose biopsies) and/or biofluids (serum, plasma, urine). Whilst there were few similarities in protein directionality across studies, biological processes common to conditions were identified. Here we demonstrate that the GO analysis of published human proteomics data can identify processes not revealed by single studies. We recommend the integration of proteomics data from tissue samples and biofluids to yield a comprehensive overview of the human skeletal muscle proteome. This will facilitate the identification of biomarkers and potential pathways of muscle-wasting conditions for use in clinics.
Collapse
Affiliation(s)
- Angelique Stalmach
- Centre for Health Science, Division of Biomedical Sciences, Institute of Health Research and Innovation, School of Health, Social Care and Life Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | - Ines Boehm
- Edinburgh Cancer Research UK Tissue Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marco Fernandes
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Alison Rutter
- Centre for Health Science, Division of Biomedical Sciences, Institute of Health Research and Innovation, School of Health, Social Care and Life Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | - Richard J. E. Skipworth
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Holger Husi
- Centre for Health Science, Division of Biomedical Sciences, Institute of Health Research and Innovation, School of Health, Social Care and Life Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
25
|
Establishment of a system evaluating the contractile force of electrically stimulated myotubes from wrinkles formed on elastic substrate. Sci Rep 2022; 12:13818. [PMID: 35970858 PMCID: PMC9378739 DOI: 10.1038/s41598-022-17548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
Muscle weakness is detrimental not only to quality of life but also life expectancy. However, effective drugs have still not been developed to improve and prevent muscle weakness associated with aging or diseases. One reason for the delay in drug discovery is that no suitable in vitro screening system has been established to test whether drugs improve muscle strength. Here, we used a specific deformable silicone gel substrate to effectively and sensitively evaluate the contractile force generated by myotubes from wrinkles formed on the substrate. Using this system, it was found that the contractile force generated by an atrophic phenotype of myotubes induced by dexamethasone or cancer cell-conditioned medium treatment significantly decreased while that generated by hypertrophic myotubes induced by insulin-like growth factor-1 significantly increased. Notably, it was found that changes in the index related to contractile force can detect atrophic or hypertrophic phenotypes more sensitively than changes in myotube diameter or myosin heavy chain expression, both commonly used to evaluate myotube function. These results suggest that our proposed system will be an effective tool for assessing the contractile force-related state of myotubes, which are available for the development of drugs to prevent and/or treat muscle weakness.
Collapse
|
26
|
Yadav A, Yadav SS, Singh S, Dabur R. Natural products: Potential therapeutic agents to prevent skeletal muscle atrophy. Eur J Pharmacol 2022; 925:174995. [PMID: 35523319 DOI: 10.1016/j.ejphar.2022.174995] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022]
Abstract
The skeletal muscle (SkM) is the largest organ, which plays a vital role in controlling musculature, locomotion, body heat regulation, physical strength, and metabolism of the body. A sedentary lifestyle, aging, cachexia, denervation, immobilization, etc. Can lead to an imbalance between protein synthesis and degradation, which is further responsible for SkM atrophy (SmA). To date, the understanding of the mechanism of SkM mass loss is limited which also restricted the number of drugs to treat SmA. Thus, there is an urgent need to develop novel approaches to regulate muscle homeostasis. Presently, some natural products attained immense attraction to regulate SkM homeostasis. The natural products, i.e., polyphenols (resveratrol, curcumin), terpenoids (ursolic acid, tanshinone IIA, celastrol), flavonoids, alkaloids (tomatidine, magnoflorine), vitamin D, etc. exhibit strong potential against SmA. Some of these natural products have been reported to have equivalent potential to standard treatments to prevent body lean mass loss. Indeed, owing to the large complexity, diversity, and slow absorption rate of bioactive compounds made their usage quite challenging. Moreover, the use of natural products is controversial due to their partially known or elusive mechanism of action. Therefore, the present review summarizes various experimental and clinical evidence of some important bioactive compounds that shall help in the development of novel strategies to counteract SmA elicited by various causes.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sandeep Singh
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
27
|
Böl M, Kohn S, Leichsenring K, Morales-Orcajo E, Ehret AE. On multiscale tension-compression asymmetry in skeletal muscle. Acta Biomater 2022; 144:210-220. [PMID: 35339701 DOI: 10.1016/j.actbio.2022.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
Skeletal muscle tissue shows a clear asymmetry with regard to the passive stresses under tensile and compressive deformation, referred to as tension-compression asymmetry (TCA). The present study is the first one reporting on TCA at different length scales, associated with muscle tissue and muscle fibres, respectively. This allows for the first time the comparison of TCA between the tissue and one of its individual components, and thus to identify the length scale at which this phenomenon originates. Not only the passive stress-stretch characteristics were recorded, but also the volume changes during the axial tension and compression experiments. The study reveals clear differences in the characteristics of TCA between fibres and tissue. At tissue level TCA increases non-linearly with increasing deformation and the ratio of tensile to compressive stresses at the same magnitude of strain reaches a value of approximately 130 at 13.5% deformation. At fibre level instead it initially drops to a value of 6 and then rises again to a TCA of 14. At a deformation of 13.5%, the tensile stress is about 6 times higher. Thus, TCA is about 22 times more expressed at tissue than fibre scale. Moreover, the analysis of volume changes revealed little compressibility at tissue scale whereas at fibre level, especially under compressive stress, the volume decreases significantly. The data collected in this study suggests that the extracellular matrix has a distinct role in amplifying the TCA, and leads to more incompressible tissue behaviour. STATEMENT OF SIGNIFICANCE: This article analyses and compares for the first time the tension-compression asymmetry (TCA) displayed by skeletal muscle at tissue and fibre scale. In addition, the volume changes of tissue and fibre specimens with application of passive tensile and compressive loads are studied. The study identifies a key role of the extracellular matrix in establishing the mechanical response of skeletal muscle tissue: It contributes significantly to the passive stress, it is responsible for the major part of tissue-scale TCA and, most probably, prevents/balances the volume changes of muscle fibres during deformation. These new results thus shed light on the origin of TCA and provide new information to be used in microstructure-based approaches to model and simulate skeletal muscle tissue.
Collapse
Affiliation(s)
- Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, D-38106 Braunschweig, Germany.
| | - Stephan Kohn
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| | - Kay Leichsenring
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| | - Enrique Morales-Orcajo
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| | - Alexander E Ehret
- Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland; Institute for Mechanical Systems, ETH Zurich, CH-8092, Zürich, Switzerland
| |
Collapse
|
28
|
Liu Y, Zhou T, Wang Q, Fu R, Zhang Z, Chen N, Li Z, Gao G, Peng S, Yang D. m 6 A demethylase ALKBH5 drives denervation-induced muscle atrophy by targeting HDAC4 to activate FoxO3 signalling. J Cachexia Sarcopenia Muscle 2022; 13:1210-1223. [PMID: 35142084 PMCID: PMC8978003 DOI: 10.1002/jcsm.12929] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/26/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Skeletal muscle atrophy is a common clinical manifestation of various neurotrauma and neurological diseases. In addition to the treatment of primary neuropathies, it is a clinical condition that should be investigated. FoxO3 activation is an indispensable mechanism in denervation-induced muscle atrophy; however, upstream factors that control FoxO3 expression and activity have not been fully elucidated. N6 -methyladenosine (m6 A) methylation is a novel mode of epitranscriptional gene regulation that affects several cellular processes. However, the biological significance of m6 A modification in FoxO3-dependent atrophy is unknown. METHODS We performed gain-of-function and loss-of-function experiments and used denervation-induced muscle atrophy mouse model to evaluate the effects of m6 A modification on muscle mass control and FoxO3 activation. m6 A-sequencing and mass spectrometry analyses were used to establish whether histone deacetylase 4 (HDAC4) is a mediator of m6 A demethylase ALKBH5 regulation of FoxO3. A series of cellular and molecular biological experiments (western blot, immunoprecipitation, half-life assay, m6 A-MeRIP-qPCR, and luciferase reporter assays among others) were performed to investigate regulatory relationships among ALKBH5, HDAC4, and FoxO3. RESULTS In skeletal muscles, denervation was associated with a 20.7-31.9% decrease in m6 A levels (P < 0.01) and a 35.6-115.2% increase in demethylase ALKBH5 protein levels (P < 0.05). Overexpressed ALKBH5 reduced m6 A levels, activated FoxO3 signalling, and induced excess loss in muscle wet weight (-10.3% for innervation and -11.4% for denervation, P < 0.05) as well as a decrease in myofibre cross-sectional areas (-35.8% for innervation and -33.3% for denervation, P < 0.05) during innervation and denervation. Specific deletion of Alkbh5 in the skeletal muscles prevented FoxO3 activation and protected mice from denervation-induced muscle atrophy, as evidenced by increased muscle mass (+16.0%, P < 0.05), size (+50.0%, P < 0.05) and MyHC expression (+32.6%, P < 0.05). Mechanistically, HDAC4 was established to be a crucial central mediator for ALKBH5 in enhancing FoxO3 signalling in denervated muscles. ALKBH5 demethylates and stabilizes Hdac4 mRNA. HDAC4 interacts with and deacetylates FoxO3, resulting in a significant increase in FoxO3 expression (+61.3-82.5%, P < 0.01) and activity (+51.6-122.0%, P < 0.001). CONCLUSIONS Our findings elucidate on the roles and mechanisms of ALKBH5-mediated m6 A demethylation in the control of muscle mass during denervation and activation of FoxO3 signalling by targeting HDAC4. These results suggest that ALKBH5 is a potential therapeutic target for neurogenic muscle atrophy.
Collapse
Affiliation(s)
- Yuantong Liu
- Department of Spine Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China.,Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Tianjian Zhou
- Department of Spine Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Qinghe Wang
- Department of Spine Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Runhan Fu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Zengfu Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Nandi Chen
- Department of Spine Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Zhizhong Li
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Guoyong Gao
- Department of Spine Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Dazhi Yang
- Department of Spine Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| |
Collapse
|
29
|
Ni HJ, Hsu TF, Chen LK, Chou HL, Tung HH, Chow LH, Chen YC. Effects of Exercise Programs in older adults with Muscle Wasting: A Systematic Review and Meta-analysis. Arch Gerontol Geriatr 2022; 99:104605. [DOI: 10.1016/j.archger.2021.104605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
|
30
|
Eguchi T, Yamanashi Y. Adeno-associated virus-mediated expression of an inactive CaMKIIβ mutant enhances muscle mass and strength in mice. Biochem Biophys Res Commun 2022; 589:192-196. [PMID: 34922202 DOI: 10.1016/j.bbrc.2021.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022]
Abstract
A concurrent reduction in muscle mass and strength is frequently observed in numerous conditions, including neuromuscular disease, ageing, and muscle inactivity due to limb immobilization or prolonged bed rest. Thus, identifying the molecular mechanisms that control skeletal muscle mass and strength is fundamental for developing interventions aimed at counteracting muscle loss (muscle atrophy). It was recently reported that muscle atrophy induced by denervation of motor nerves was associated with increased expression of Ca2+/calmodulin-dependent protein serine/threonine kinase II β (CaMKIIβ) in muscle. In addition, treatment with KN-93 phosphate, which inhibits CaMKII-family kinases, partly suppressed denervation-induced muscle atrophy. Therefore, to test a possible role for CaMKIIβ in muscle mass regulation, we generated and injected recombinant adeno-associated virus (AAV) vectors encoding wild-type (AAV-WT), inactive (AAV-K43 M), or constitutively active (AAV-T287D) CaMKIIβ into the left hindlimb tibialis anterior muscle of mice at three months of age. Although AAV-WT infection induced expression of exogenous CaMKIIβ in the hindlimb muscle, no significant changes in muscle mass and strength were observed. By contrast, AAV-K43 M or AAV-T287D infection induced exogenous expression of the corresponding mutants and significantly increased or decreased the muscle mass and strength of the infected hind limb, respectively. Together, these findings demonstrate the potential of CaMKIIβ as a novel therapeutic target for enhancing muscle mass and strength.
Collapse
Affiliation(s)
- Takahiro Eguchi
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yuji Yamanashi
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
31
|
Ying L, Zhang Q, Yang YM, Zhou JY. A Combination of Serum Biomarkers in Elderly Patients with Sarcopenia: A Cross-Sectional Observational Study. Int J Endocrinol 2022; 2022:4026940. [PMID: 35237317 PMCID: PMC8885259 DOI: 10.1155/2022/4026940] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The pathogenesis of sarcopenia in the elderly has not yet been fully understood. This study aimed to explore the relationship between sarcopenia and several serum biomarkers in elderly population. METHODS It was an observational cross-sectional study of data collected from 70 patients. According to the criteria of the Asian Working Group for Sarcopenia (AWGS), subjects were divided into the sarcopenia group and nonsarcopenic group. We compared age, body mass index (BMI), biochemical indexes, smoking status, underlying disease, muscle mass, handgrip strength (HS), gait speed (GS), skinfold thickness, muscle thickness, and IL-6, IL-10, IL-17A, and TNF-α levels between these groups. RESULTS Of the 70 subjects, 35 patients were diagnosed with sarcopenia. The number of men was higher than that of women in both groups. The patients with sarcopenia were older and had lower BMI and muscle thickness but higher SARC-F questionnaire scores. However, the difference in smoking status and skinfold thickness between these two groups were not statistically significant. Higher IL-6, IL-17A, and TNF-α levels were observed in participants with sarcopenia (P < 0.05). Patients with sarcopenia had a lower IL-10 level. Positive associations were present between the severity of sarcopenia and IL-6, IL-17A, and TNF-α levels, while there was an inverse correlation between the presence of sarcopenia and IL-10 level. CONCLUSIONS Our research found that in sarcopenic elderly subjects, the serum levels of several biomarkers, such as IL-6, IL-17A, and TNF-α, were higher than those in nonsarcopenic elderly persons. Further studies are needed to explore the possible molecular mechanisms and discover new therapeutic targets.
Collapse
Affiliation(s)
- Lin Ying
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qin Zhang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yun-mei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian-ying Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
32
|
Zheng X, Zheng Y, Qin D, Yao Y, Zhang X, Zhao Y, Zheng C. Regulatory Role and Potential Importance of GDF-8 in Ovarian Reproductive Activity. Front Endocrinol (Lausanne) 2022; 13:878069. [PMID: 35692411 PMCID: PMC9178251 DOI: 10.3389/fendo.2022.878069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Growth differentiation factor-8 (GDF-8) is a member of the transforming growth factor-beta superfamily. Studies in vitro and in vivo have shown GDF-8 to be involved in the physiology and pathology of ovarian reproductive functions. In vitro experiments using a granulosa-cell model have demonstrated steroidogenesis, gonadotrophin responsiveness, glucose metabolism, cell proliferation as well as expression of lysyl oxidase and pentraxin 3 to be regulated by GDF-8 via the mothers against decapentaplegic homolog signaling pathway. Clinical data have shown that GDF-8 is expressed widely in the human ovary and has high expression in serum of obese women with polycystic ovary syndrome. GDF-8 expression in serum changes dynamically in patients undergoing controlled ovarian hyperstimulation. GDF-8 expression in serum and follicular fluid is correlated with the ovarian response and pregnancy outcome during in vitro fertilization. Blocking the GDF-8 signaling pathway is a potential therapeutic for ovarian hyperstimulation syndrome and ovulation disorders in polycystic ovary syndrome. GDF-8 has a regulatory role and potential importance in ovarian reproductive activity and may be involved in folliculogenesis, ovulation, and early embryo implantation.
Collapse
Affiliation(s)
- Xiaoling Zheng
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongquan Zheng
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dongxu Qin
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Zhang
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunchun Zhao
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Caihong Zheng, ; Yunchun Zhao,
| | - Caihong Zheng
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Caihong Zheng, ; Yunchun Zhao,
| |
Collapse
|
33
|
Domenig SA, Bundschuh N, Lenardič A, Ghosh A, Kim I, Qabrati X, D'Hulst G, Bar-Nur O. CRISPR/Cas9 editing of directly reprogrammed myogenic progenitors restores dystrophin expression in a mouse model of muscular dystrophy. Stem Cell Reports 2021; 17:321-336. [PMID: 34995499 PMCID: PMC8828535 DOI: 10.1016/j.stemcr.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/09/2023] Open
Abstract
Genetic mutations in dystrophin manifest in Duchenne muscular dystrophy (DMD), the most commonly inherited muscle disease. Here, we report on reprogramming of fibroblasts from two DMD mouse models into induced myogenic progenitor cells (iMPCs) by MyoD overexpression in concert with small molecule treatment. DMD iMPCs proliferate extensively, while expressing myogenic stem cell markers including Pax7 and Myf5. Additionally, DMD iMPCs readily give rise to multinucleated myofibers that express mature skeletal muscle markers; however, they lack DYSTROPHIN expression. Utilizing an exon skipping-based approach with CRISPR/Cas9, we report on genetic correction of the dystrophin mutation in DMD iMPCs and restoration of protein expression in vitro. Furthermore, engraftment of corrected DMD iMPCs into the muscles of dystrophic mice restored DYSTROPHIN expression and contributed to the muscle stem cell reservoir. Collectively, our findings report on a novel in vitro cellular model for DMD and utilize it in conjunction with gene editing to restore DYSTROPHIN expression in vivo. iMPCs generated from DMD mouse models DMD iMPCs are expandable and express satellite cell and differentiation markers Correction of the dystrophin mutation in DMD iMPCs utilizing CRISPR/Cas9 Engraftment of corrected DMD iMPCs restores DYSTROPHIN expression in vivo
Collapse
Affiliation(s)
- Seraina A Domenig
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Nicola Bundschuh
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Ajda Lenardič
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Adhideb Ghosh
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland; Functional Genomics Center Zurich, Swiss Federal Institute of Technology (ETH) Zurich and University of Zurich, Zurich, Switzerland
| | - Inseon Kim
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Xhem Qabrati
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Gommaar D'Hulst
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Ori Bar-Nur
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
34
|
A Bioassay-Guided Fractionation of Rosemary Leaf Extract Identifies Carnosol as a Major Hypertrophy Inducer in Human Skeletal Muscle Cells. Nutrients 2021; 13:nu13124190. [PMID: 34959741 PMCID: PMC8706380 DOI: 10.3390/nu13124190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
A good quality of life requires maintaining adequate skeletal muscle mass and strength, but therapeutic agents are lacking for this. We developed a bioassay-guided fractionation approach to identify molecules with hypertrophy-promoting effect in human skeletal muscle cells. We found that extracts from rosemary leaves induce muscle cell hypertrophy. By bioassay-guided purification we identified the phenolic diterpene carnosol as the compound responsible for the hypertrophy-promoting activity of rosemary leaf extracts. We then evaluated the impact of carnosol on the different signaling pathways involved in the control of muscle cell size. We found that activation of the NRF2 signaling pathway by carnosol is not sufficient to mediate its hypertrophy-promoting effect. Moreover, carnosol inhibits the expression of the ubiquitin ligase E3 Muscle RING Finger protein-1 that plays an important role in muscle remodeling, but has no effect on the protein synthesis pathway controlled by the protein kinase B/mechanistic target of rapamycin pathway. By measuring the chymotrypsin-like activity of the proteasome, we found that proteasome activity was significantly decreased by carnosol and Muscle RING Finger 1 inactivation. These results strongly suggest that carnosol can induce skeletal muscle hypertrophy by repressing the ubiquitin-proteasome system-dependent protein degradation pathway through inhibition of the E3 ubiquitin ligase Muscle RING Finger protein-1.
Collapse
|
35
|
Chen J, Dennis SK, Abouyared M. Sarcopenia and microvascular free flap reconstruction. Curr Opin Otolaryngol Head Neck Surg 2021; 29:419-423. [PMID: 34387288 DOI: 10.1097/moo.0000000000000756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This article reviews the recent literature regarding the impact of sarcopenia on microvascular free flap reconstruction outcomes. RECENT FINDINGS Malnutrition, and consequent muscle loss, is a prevalent issue among head and neck cancer patients. However, diagnosis remains challenging due to a paucity of reliable objective measures. Traditional markers, such as albumin, have been used in the past to assess nutritional status, but cancer-related inflammation limits their predictive value. Recently, developments in the diagnosis of sarcopenia through the novel use of computed tomography (CT) cross-sectional muscle mass indices to evaluate body composition have proven effective and accessible. SUMMARY Literature shows compelling evidence that sarcopenia is associated with higher rates of surgical complications that delay recovery and increase mortality. The use of CT imaging to quantify muscle loss offers an objective way to evaluate nutritional status, which is predictive of postoperative rates of complications. Research on ways to optimize muscle mass prior to surgery is limited, however, immunonutrition is emerging as a promising intervention that can attenuate sarcopenia-related inflammation to improve outcomes.
Collapse
Affiliation(s)
- Joy Chen
- Department of Otolaryngology, University of California, Sacramento, California, USA
| | | | | |
Collapse
|
36
|
Identification of a KLF5-dependent program and drug development for skeletal muscle atrophy. Proc Natl Acad Sci U S A 2021; 118:2102895118. [PMID: 34426497 DOI: 10.1073/pnas.2102895118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle atrophy is caused by various conditions, including aging, disuse related to a sedentary lifestyle and lack of physical activity, and cachexia. Our insufficient understanding of the molecular mechanism underlying muscle atrophy limits the targets for the development of effective pharmacologic treatments and preventions. Here, we identified Krüppel-like factor 5 (KLF5), a zinc-finger transcription factor, as a key mediator of the early muscle atrophy program. KLF5 was up-regulated in atrophying myotubes as an early response to dexamethasone or simulated microgravity in vitro. Skeletal muscle-selective deletion of Klf5 significantly attenuated muscle atrophy induced by mechanical unloading in mice. Transcriptome- and genome-wide chromatin accessibility analyses revealed that KLF5 regulates atrophy-related programs, including metabolic changes and E3-ubiquitin ligase-mediated proteolysis, in coordination with Foxo1. The synthetic retinoic acid receptor agonist Am80, a KLF5 inhibitor, suppressed both dexamethasone- and microgravity-induced muscle atrophy in vitro and oral Am80 ameliorated disuse- and dexamethasone-induced atrophy in mice. Moreover, in three independent sets of transcriptomic data from human skeletal muscle, KLF5 expression significantly increased with age and the presence of sarcopenia and correlated positively with the expression of the atrophy-related ubiquitin ligase genes FBXO32 and TRIM63 These findings demonstrate that KLF5 is a key transcriptional regulator mediating muscle atrophy and that pharmacological intervention with Am80 is a potentially preventive treatment.
Collapse
|
37
|
Leuchtmann AB, Adak V, Dilbaz S, Handschin C. The Role of the Skeletal Muscle Secretome in Mediating Endurance and Resistance Training Adaptations. Front Physiol 2021; 12:709807. [PMID: 34456749 PMCID: PMC8387622 DOI: 10.3389/fphys.2021.709807] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Exercise, in the form of endurance or resistance training, leads to specific molecular and cellular adaptions not only in skeletal muscles, but also in many other organs such as the brain, liver, fat or bone. In addition to direct effects of exercise on these organs, the production and release of a plethora of different signaling molecules from skeletal muscle are a centerpiece of systemic plasticity. Most studies have so far focused on the regulation and function of such myokines in acute exercise bouts. In contrast, the secretome of long-term training adaptation remains less well understood, and the contribution of non-myokine factors, including metabolites, enzymes, microRNAs or mitochondrial DNA transported in extracellular vesicles or by other means, is underappreciated. In this review, we therefore provide an overview on the current knowledge of endurance and resistance exercise-induced factors of the skeletal muscle secretome that mediate muscular and systemic adaptations to long-term training. Targeting these factors and leveraging their functions could not only have broad implications for athletic performance, but also for the prevention and therapy in diseased and elderly populations.
Collapse
|
38
|
Boyer O, Butler-Browne G, Chinoy H, Cossu G, Galli F, Lilleker JB, Magli A, Mouly V, Perlingeiro RCR, Previtali SC, Sampaolesi M, Smeets H, Schoewel-Wolf V, Spuler S, Torrente Y, Van Tienen F. Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle. Front Genet 2021; 12:702547. [PMID: 34408774 PMCID: PMC8365145 DOI: 10.3389/fgene.2021.702547] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/16/2021] [Indexed: 01/04/2023] Open
Abstract
This article will review myogenic cell transplantation for congenital and acquired diseases of skeletal muscle. There are already a number of excellent reviews on this topic, but they are mostly focused on a specific disease, muscular dystrophies and in particular Duchenne Muscular Dystrophy. There are also recent reviews on cell transplantation for inflammatory myopathies, volumetric muscle loss (VML) (this usually with biomaterials), sarcopenia and sphincter incontinence, mainly urinary but also fecal. We believe it would be useful at this stage, to compare the same strategy as adopted in all these different diseases, in order to outline similarities and differences in cell source, pre-clinical models, administration route, and outcome measures. This in turn may help to understand which common or disease-specific problems have so far limited clinical success of cell transplantation in this area, especially when compared to other fields, such as epithelial cell transplantation. We also hope that this may be useful to people outside the field to get a comprehensive view in a single review. As for any cell transplantation procedure, the choice between autologous and heterologous cells is dictated by a number of criteria, such as cell availability, possibility of in vitro expansion to reach the number required, need for genetic correction for many but not necessarily all muscular dystrophies, and immune reaction, mainly to a heterologous, even if HLA-matched cells and, to a minor extent, to the therapeutic gene product, a possible antigen for the patient. Finally, induced pluripotent stem cell derivatives, that have entered clinical experimentation for other diseases, may in the future offer a bank of immune-privileged cells, available for all patients and after a genetic correction for muscular dystrophies and other myopathies.
Collapse
Affiliation(s)
- Olivier Boyer
- Department of Immunology & Biotherapy, Rouen University Hospital, Normandy University, Inserm U1234, Rouen, France
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Hector Chinoy
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, Manchester, United Kingdom
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Francesco Galli
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - James B. Lilleker
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Rita C. R. Perlingeiro
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Stefano C. Previtali
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Hubert Smeets
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
- School for Developmental Biology and Oncology (GROW), Maastricht University, Maastricht, Netherlands
| | - Verena Schoewel-Wolf
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Yvan Torrente
- Unit of Neurology, Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Florence Van Tienen
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
39
|
Cheung WW, Zheng R, Hao S, Wang Z, Gonzalez A, Zhou P, Hoffman HM, Mak RH. The role of IL-1 in adipose browning and muscle wasting in CKD-associated cachexia. Sci Rep 2021; 11:15141. [PMID: 34302016 PMCID: PMC8302616 DOI: 10.1038/s41598-021-94565-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/29/2021] [Indexed: 10/25/2022] Open
Abstract
Cytokines such as IL-6, TNF-α and IL-1β trigger inflammatory cascades which may play a role in the pathogenesis of chronic kidney disease (CKD)-associated cachexia. CKD was induced by 5/6 nephrectomy in mice. We studied energy homeostasis in Il1β-/-/CKD, Il6-/-/CKD and Tnfα-/-/CKD mice and compared with wild type (WT)/CKD controls. Parameters of cachexia phenotype were completely normalized in Il1β-/-/CKD mice but were only partially rescued in Il6-/-/CKD and Tnfα-/-/CKD mice. We tested the effects of anakinra, an IL-1 receptor antagonist, on CKD-associated cachexia. WT/CKD mice were treated with anakinra (2.5 mg/kg/day, IP) or saline for 6 weeks and compared with WT/Sham controls. Anakinra normalized food intake and weight gain, fat and lean mass content, metabolic rate and muscle function, and also attenuated molecular perturbations of energy homeostasis in adipose tissue and muscle in WT/CKD mice. Anakinra decreased serum and muscle expression of IL-6, TNF-α and IL-1β in WT/CKD mice. Anakinra attenuated browning of white adipose tissue in WT/CKD mice. Moreover, anakinra normalized gastrocnemius weight and fiber size as well as attenuated muscle fat infiltration in WT/CKD mice. This was accompanied by correcting the increased muscle wasting signaling pathways while promoting the decreased myogenesis process in gastrocnemius of WT/CKD mice. We performed qPCR analysis for the top 20 differentially expressed muscle genes previously identified via RNAseq analysis in WT/CKD mice versus controls. Importantly, 17 differentially expressed muscle genes were attenuated in anakinra treated WT/CKD mice. In conclusion, IL-1 receptor antagonism may represent a novel targeted treatment for adipose tissue browning and muscle wasting in CKD.
Collapse
Affiliation(s)
- Wai W Cheung
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA
| | - Ronghao Zheng
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Hao
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Alex Gonzalez
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA
| | - Ping Zhou
- Sichuan Provincial Hospital for Women and Children, and Affiliated Women and Children's Hospital of Chengdu Medical College, Sichuan, China
| | - Hal M Hoffman
- Department of Pediatrics, University of California, San Diego, USA
| | - Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA.
| |
Collapse
|
40
|
Lacerda-Abreu MA, Meyer-Fernandes JR. Extracellular Inorganic Phosphate-Induced Release of Reactive Oxygen Species: Roles in Physiological Processes and Disease Development. Int J Mol Sci 2021; 22:ijms22157768. [PMID: 34360534 PMCID: PMC8346167 DOI: 10.3390/ijms22157768] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Inorganic phosphate (Pi) is an essential nutrient for living organisms and is maintained in equilibrium in the range of 0.8-1.4 mM Pi. Pi is a source of organic constituents for DNA, RNA, and phospholipids and is essential for ATP formation mainly through energy metabolism or cellular signalling modulators. In mitochondria isolated from the brain, liver, and heart, Pi has been shown to induce mitochondrial reactive oxygen species (ROS) release. Therefore, the purpose of this review article was to gather relevant experimental records of the production of Pi-induced reactive species, mainly ROS, to examine their essential roles in physiological processes, such as the development of bone and cartilage and the development of diseases, such as cardiovascular disease, diabetes, muscle atrophy, and male reproductive system impairment. Interestingly, in the presence of different antioxidants or inhibitors of cytoplasmic and mitochondrial Pi transporters, Pi-induced ROS production can be reversed and may be a possible pharmacological target.
Collapse
Affiliation(s)
- Marco Antonio Lacerda-Abreu
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
- Correspondence: (M.A.L.-A.); (J.R.M.-F.); Tel.: +55-21-3938-6781 (M.A.L.-A. & J.R.M.-F.); Fax: +55-21-2270-8647 (M.A.L.-A. & J.R.M.-F.)
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
- Correspondence: (M.A.L.-A.); (J.R.M.-F.); Tel.: +55-21-3938-6781 (M.A.L.-A. & J.R.M.-F.); Fax: +55-21-2270-8647 (M.A.L.-A. & J.R.M.-F.)
| |
Collapse
|
41
|
Pierucci F, Frati A, Battistini C, Penna F, Costelli P, Meacci E. Control of Skeletal Muscle Atrophy Associated to Cancer or Corticosteroids by Ceramide Kinase. Cancers (Basel) 2021; 13:3285. [PMID: 34209043 PMCID: PMC8269416 DOI: 10.3390/cancers13133285] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 01/19/2023] Open
Abstract
Apart from cytokines and chemokines, sphingolipid mediators, particularly sphingosine-1-phosphate (S1P) and ceramide 1-phosphate (C1P), contribute to cancer and inflammation. Cancer, as well as other inflammatory conditions, are associated with skeletal muscle (SkM) atrophy, which is characterized by the unbalance between protein synthesis and degradation. Although the signaling pathways involved in SkM mass wasting are multiple, the regulatory role of simple sphingolipids is limited. Here, we report the impairment of ceramide kinase (CerK), the enzyme responsible for the phosphorylation of ceramide to C1P, associated with the accomplishment of atrophic phenotype in various experimental models of SkM atrophy: in vivo animal model bearing the C26 adenocarcinoma or Lewis lung carcinoma tumors, in human and murine SkM cells treated with the conditioned medium obtained from cancer cells or with the glucocorticoid dexamethasone. Notably, we demonstrate in all the three experimental approaches a drastic decrease of CerK expression. Gene silencing of CerK promotes the up-regulation of atrogin-1/MAFbx expression, which was also observed after cell treatment with C8-ceramide, a biologically active ceramide analogue. Conversely, C1P treatment significantly reduced the corticosteroid's effects. Altogether, these findings provide evidence that CerK, acting as a molecular modulator, may be a new possible target for SkM mass regulation associated with cancer or corticosteroids.
Collapse
Affiliation(s)
- Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”—Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy; (F.P.); (A.F.); (C.B.)
| | - Alessia Frati
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”—Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy; (F.P.); (A.F.); (C.B.)
| | - Chiara Battistini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”—Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy; (F.P.); (A.F.); (C.B.)
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Turin, 10125 Torino, Italy; (F.P.); (P.C.)
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, 10125 Torino, Italy; (F.P.); (P.C.)
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”—Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy; (F.P.); (A.F.); (C.B.)
| |
Collapse
|
42
|
Random errors in protein synthesis activate an age-dependent program of muscle atrophy in mice. Commun Biol 2021; 4:703. [PMID: 34103648 PMCID: PMC8187632 DOI: 10.1038/s42003-021-02204-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Random errors in protein synthesis are prevalent and ubiquitous, yet their effect on organismal health has remained enigmatic for over five decades. Here, we studied whether mice carrying the ribosomal ambiguity (ram) mutation Rps2-A226Y, recently shown to increase the inborn error rate of mammalian translation, if at all viable, present any specific, possibly aging-related, phenotype. We introduced Rps2-A226Y using a Cre/loxP strategy. Resulting transgenic mice were mosaic and showed a muscle-related phenotype with reduced grip strength. Analysis of gene expression in skeletal muscle using RNA-Seq revealed transcriptomic changes occurring in an age-dependent manner, involving an interplay of PGC1α, FOXO3, mTOR, and glucocorticoids as key signaling pathways, and finally resulting in activation of a muscle atrophy program. Our results highlight the relevance of translation accuracy, and show how disturbances thereof may contribute to age-related pathologies. By introducing a ribosomal ambiguity mutation into mice, Moore et al. establish an in-vivo model to investigate how age-related diseases are related to decreasing accuracy in protein synthesis. Their findings potentially offer new insights into the pathological changes observed in age-related diseases, such as muscle atrophy
Collapse
|
43
|
Yoon JH, Kwon KS. Receptor-Mediated Muscle Homeostasis as a Target for Sarcopenia Therapeutics. Endocrinol Metab (Seoul) 2021; 36:478-490. [PMID: 34218646 PMCID: PMC8258343 DOI: 10.3803/enm.2021.1081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/19/2022] Open
Abstract
Sarcopenia is a disease characterized by age-related decline of skeletal muscle mass and function. The molecular mechanisms of the pathophysiology of sarcopenia form a complex network due to the involvement of multiple interconnected signaling pathways. Therefore, signaling receptors are major targets in pharmacological strategies in general. To provide a rationale for pharmacological interventions for sarcopenia, we herein describe several druggable signaling receptors based on their role in skeletal muscle homeostasis and changes in their activity with aging. A brief overview is presented of the efficacy of corresponding drug candidates under clinical trials. Strategies targeting the androgen receptor, vitamin D receptor, Insulin-like growth factor-1 receptor, and ghrelin receptor primarily focus on promoting anabolic action using natural ligands or mimetics. Strategies involving activin receptors and angiotensin receptors focus on inhibiting catabolic action. This review may help to select specific targets or combinations of targets in the future.
Collapse
Affiliation(s)
- Jong Hyeon Yoon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Korea
- Aventi Inc., Daejeon, Korea
| |
Collapse
|
44
|
Ozawa T, Morikawa M, Morishita Y, Ogikubo K, Itoh F, Koinuma D, Nygren PÅ, Miyazono K. Systemic administration of monovalent follistatin-like 3-Fc-fusion protein increases muscle mass in mice. iScience 2021; 24:102488. [PMID: 34113826 PMCID: PMC8170004 DOI: 10.1016/j.isci.2021.102488] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/11/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Targeting the signaling pathway of growth differentiation factor 8 (GDF8), also known as myostatin, has been regarded as a promising strategy to increase muscle mass in the elderly and in patients. Accumulating evidence in animal models and clinical trials has indicated that a rational approach is to inhibit a limited number of transforming growth factor β (TGF-β) family ligands, including GDF8 and activin A, without affecting other members. Here, we focused on one of the endogenous antagonists against TGF-β family ligands, follistatin-like 3 (FSTL3), which mainly binds and neutralizes activins, GDF8, and GDF11. Although bivalent human FSTL3 Fc-fusion protein was rapidly cleared from mouse circulation similar to follistatin (FST)-Fc, monovalent FSTL3-Fc (mono-FSTL3-Fc) generated with the knobs-into-holes technology exhibited longer serum half-life. Systemic administration of mono-FSTL3-Fc in mice induced muscle fiber hypertrophy and increased muscle mass in vivo. Our results indicate that the monovalent FSTL3-based therapy overcomes the difficulties of current anti-GDF8 therapies. FSTL3-Fc has a more specific binding profile for TGF-β family ligands than ActRIIB-Fc. Bivalent two-armed FSTL3-Fc is rapidly cleared from mouse circulation. Monovalent FSTL3-Fc has longer serum half-life and causes systemic muscle hypertrophy. ActRIIB-Fc-related side effects are not detected in monovalent FSTL3-Fc-treated mice.
Collapse
Affiliation(s)
- Takayuki Ozawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masato Morikawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuki Ogikubo
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fumiko Itoh
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Per-Åke Nygren
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, 106 91 Stockholm, Sweden.,Science for Life Laboratory, 171 65 Solna, Sweden
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
45
|
Lee SB, Lee JS, Moon SO, Lee HD, Yoon YS, Son CG. A standardized herbal combination of Astragalus membranaceus and Paeonia japonica, protects against muscle atrophy in a C26 colon cancer cachexia mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113470. [PMID: 33068652 DOI: 10.1016/j.jep.2020.113470] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus membranaceus (Fisch.) and Bunge and Paeonia japonica (Makino)Miyabe & H.Takeda have been traditionally used to improve the poor quality of life such as weakness, lack of appetite, fatigue, and malaise which is considered with cachexia condition. AIM OF THE STUDY We investigated anti-cachectic effects of a herbal formula composed of Astragalus membranaceus and Paeonia japonica (APX) and the molecular mechanisms of APX in C26 cancer-induced cachexia mice and TNF-a-treated C2C12 myotubes. Additionally synergistic anti-cachectic effects of APX were compared to those of individual herbal extracts and megestrol acetate. METHODS AND MATERIALS The forty-two BALB/c mice were randomly divided into 6 groups: normal (nontreatment), control (C26 injection), AM (C26 injection with Astragalus membranaceus), PJ (C26 injection with Paeonia japonica), APX (C26 injection with combination of Astragalus membranaceus and Paeonia japonica and MA (C26 injection with megestrol acetate). All mice were orally administered DW (normal and control groups) or 100 mg/kg AM, PJ, APX or MA for 10 days. In the animal model, several tissues were weighed, and muscle tissue and blood were used to measure pro-inflammatory cytokines. C2C12 myotubes were exposed to 100 ng/mL TNF- α with or without 10 μg/mL of AM, PJ, APX or MA for 48 h. The cells were used to immunofluorescence staining and western blot analyses. RESULTS C26 injection induced notable body and muscle weight loss while APX administration significantly attenuated these alterations and the decrease of muscle weights and strength. APX also significantly attenuated the abnormal elevations in the concentration of three muscle atrophy-inducible cytokines; serum and muscle TNF-α,muscle TWEAK and IL-6 in C26 tumor-bearing mice. In the TNF-α-treated C2C12 myotube model, TNF-α treatment notably decreased MyH but activated atrophic proteins (MuRF and Fbx32) along with p38 and NFκB while these molecular alterations were significantly ameliorated by APX treatment. These pharmacological actions of APX were supported by the results of immunofluorescence staining to MyH expression and the translocation of NFκB into the nucleus in C2C12 myotubes. CONCLUSIONS Our data indicate the potential of an herbal formula, APX as an anti-cachexia agent; the effect of APX was superior to that of megestrol acetate overall especially for muscle atrophy. The underlying mechanisms of this herbal formula may involve the modulation of muscle atrophy-promoting molecules including p38, NFκB, TNF-α and TWEAK.
Collapse
Affiliation(s)
- Sung-Bae Lee
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon University, Daejeon, 35235, Republic of Korea
| | - Jin-Seok Lee
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon University, Daejeon, 35235, Republic of Korea
| | - Sung-Ok Moon
- National Institute for Korean Medicine Development, Gyeongsan-si, 38540, Republic of Korea
| | - Hwa-Dong Lee
- National Institute for Korean Medicine Development, Gyeongsan-si, 38540, Republic of Korea
| | - Yoo-Sik Yoon
- Department of Microbiology, ChungAng University College of Medicine, Seoul, 06974, Republic of Korea
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon University, Daejeon, 35235, Republic of Korea.
| |
Collapse
|
46
|
Liver fibrosis-induced muscle atrophy is mediated by elevated levels of circulating TNFα. Cell Death Dis 2021; 12:11. [PMID: 33414474 PMCID: PMC7791043 DOI: 10.1038/s41419-020-03353-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022]
Abstract
Liver cirrhosis is a critical health problem associated with several complications, including skeletal muscle atrophy, which adversely affects the clinical outcome of patients independent of their liver functions. However, the precise mechanism underlying liver cirrhosis-induced muscle atrophy has not been elucidated. Here we show that serum factor induced by liver fibrosis leads to skeletal muscle atrophy. Using bile duct ligation (BDL) model of liver injury, we induced liver fibrosis in mice and observed subsequent muscle atrophy and weakness. We developed culture system of human primary myotubes that enables an evaluation of the effects of soluble factors on muscle atrophy and found that serum from BDL mice contains atrophy-inducing factors. This atrophy-inducing effect of BDL mouse serum was mitigated upon inhibition of TNFα signalling but not inhibition of myostatin/activin signalling. The BDL mice exhibited significantly up-regulated serum levels of TNFα when compared with the control mice. Furthermore, the mRNA expression levels of Tnf were markedly up-regulated in the fibrotic liver but not in the skeletal muscles of BDL mice. The gene expression analysis of isolated nuclei revealed that Tnf is exclusively expressed in the non-fibrogenic diploid cell population of the fibrotic liver. These findings reveal the mechanism through which circulating TNFα produced in the damaged liver mediates skeletal muscle atrophy. Additionally, this study demonstrated the importance of inter-organ communication that underlies the pathogenesis of liver cirrhosis.
Collapse
|
47
|
Yano T, Katano S, Kouzu H, Nagaoka R, Inoue T, Takamura Y, Ishigo T, Watanabe A, Ohori K, Koyama M, Nagano N, Fujito T, Nishikawa R, Hashimoto A, Miura T. Distinct determinants of muscle wasting in nonobese heart failure patients with and without type 2 diabetes mellitus. J Diabetes 2021; 13:7-18. [PMID: 32677311 DOI: 10.1111/1753-0407.13090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Muscle wasting, that is, reduction in muscle mass, is frequently observed in patients with chronic heart failure (CHF) and diabetes mellitus (DM). METHODS We retrospectively examined 185 patients with CHF (median age of 71 years [interquartile range, 61-78 years]; 64% male) who received a dual-energy X-ray absorptiometry scan for assessment of appendicular skeletal muscle mass index (ASMI). RESULTS Seventy patients with CHF (38%) had DM. Patients with DM had higher prevalences of ischemic heart disease and hypertension, lower levels of estimated glomerular filtration rate (eGFR) and ASMI, and higher levels of plasma renin activity (PRA) than did patients without DM. In simple regression analyses, ASMI was positively correlated with the Mini Nutritional Assessment Short Form (MNA-SF) score and levels of hemoglobin, eGFR, and fasting plasma insulin and was negatively correlated with levels of N-terminal pro B-type natriuretic peptide, PRA, and cortisol. In multiple linear regression analyses, age, MNA-SF score, DM, fasting plasma insulin level, and PRA were independently associated with ASMI. When multiple linear regression analyses were separately performed in a non-DM group and a DM group, MNA-SF score and fasting plasma insulin level were independent variables for ASMI in both groups. PRA was independently associated with ASMI in the DM group but not in the non-DM group, whereas cortisol concentration was independently associated with ASMI only in the non-DM group. CONCLUSIONS In addition to malnutrition and reduction in plasma insulin, renin-angiotensin system activation may be responsible for the development of muscle wasting in CHF patients with DM.
Collapse
Affiliation(s)
- Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Katano
- Division of Rehabilitation, Sapporo Medical University Hospital, Sapporo, Japan
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryohei Nagaoka
- Division of Rehabilitation, Sapporo Medical University Hospital, Sapporo, Japan
| | - Takuya Inoue
- Division of Rehabilitation, Sapporo Medical University Hospital, Sapporo, Japan
| | - Yuhei Takamura
- Division of Rehabilitation, Sapporo Medical University Hospital, Sapporo, Japan
| | - Tomoyuki Ishigo
- Division of Hospital Pharmacy, Sapporo Medical University Hospital, Sapporo, Japan
| | - Ayako Watanabe
- Division of Nursing, Sapporo Medical University Hospital, Sapporo, Japan
| | - Katsuhiko Ohori
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cardiology, Hokkaido Cardiovascular Hospital, Sapporo, Japan
| | - Masayuki Koyama
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nobutaka Nagano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takefumi Fujito
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryo Nishikawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akiyoshi Hashimoto
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Health Care Administration and Management, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
48
|
Yin L, Chen X, Li N, Jia W, Wang N, Hou B, Yang H, Zhang L, Qiang G, Yang X, Du G. Puerarin ameliorates skeletal muscle wasting and fiber type transformation in STZ-induced type 1 diabetic rats. Biomed Pharmacother 2021; 133:110977. [PMID: 33249280 DOI: 10.1016/j.biopha.2020.110977] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/24/2022] Open
Abstract
Puerarin is an isoflavonoid extracted from Pueraria lobate with extensive pharmacological effects in traditional Chinese medicine. The evidence implicates that puerarin mitigates hyperglycemia and various relevant complications. Here, the effect of puerarin on skeletal muscle wasting induced by type 1 diabetes (T1D) was explored. Streptozotocin (STZ)-induced T1D male Sprague Dawley (SD) rats were used in this study. Muscle strength, weight and size were measured. L6 rat skeletal muscle cells were applied for in vitro study. Our results showed that eight-week oral puerarin administration (100 mg/kg) increased muscle strengths and weights accompanied by enhanced skeletal muscle cross-sectional areas in diabetic rats. Simultaneously, puerarin also reduced expressions of several muscle wasting marker genes including F-box only protein 32 (Atrogin-1) and muscle-specific RING-finger 1 (Murf-1) in diabetic group both in vitro and in vivo. Transformation from type I fibers (slow muscle) to type II fibers (fast muscle) were also observed under puerarin administration in diabetic rats. Puerarin promoted Akt/mTOR while inhibited LC3/p62 signaling pathway in skeletal muscle cells. In conclusion, our study showed that puerarin mitigated skeletal muscle wasting in T1D rats and closely related with Akt/mTOR activation and autophagy inhibition. Whether this effect in murine applies to humans remains to be determined.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Cell Differentiation/drug effects
- Cell Line
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Isoflavones/pharmacology
- Male
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/pathology
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle Strength/drug effects
- Muscular Atrophy/etiology
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Muscular Atrophy/prevention & control
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Sprague-Dawley
- SKP Cullin F-Box Protein Ligases/genetics
- SKP Cullin F-Box Protein Ligases/metabolism
- Streptozocin
- TOR Serine-Threonine Kinases/metabolism
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Rats
Collapse
Affiliation(s)
- Lin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Xi Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Na Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Weihua Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Nuoqi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Biyu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Haiguang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Li Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
49
|
Tijore A, Lee BH, Salila Vijayalal Mohan HK, Li H, Tan LP. Bioactive micropatterned platform to engineer myotube-like cells from stem cells. Biofabrication 2020; 13. [PMID: 33285529 DOI: 10.1088/1758-5090/abd157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 11/12/2022]
Abstract
Skeletal muscle has the capacity to repair and heal itself after injury. However, this self-healing ability is diminished in the event of severe injuries and myopathies. In such conditions, stem cell-based regenerative treatments can play an important part in post injury restoration. We herein report the development of a bioactive (integrin-β1 antibody immobilized) gold micropatterned platform to promote human mesenchymal stem cells (hMSCs) differentiation into the myotube-like cells. hMSCs grown on bioactive micropattern differentiated into the myotube-like cells within two weeks. Further, up-regulation of myogenic markers, multi-nucleated state with continuous actin cytoskeleton and absence of proliferation marker confirmed the formation of myotube-like cells on bioactive micropattern. Prominent expression of elongated integrin-β1 focal adhesions (ITG-β1 FAs) and development of anisotropic stress fibres in those differentiated cells elucidated their importance in stem cell myogenesis. Together these findings delineate the synergistic role of engineered cell anisotropy and ITG-β1 mediated signaling in the development of myotube-like cells from hMSCs.
Collapse
Affiliation(s)
- Ajay Tijore
- National University of Singapore, Mechanobiology Institute, Singapore, 119260, SINGAPORE
| | - Bae Hoon Lee
- Nanyang Technological University, School of Materials Science and Engineering, Singapore, Singapore, 639798, SINGAPORE
| | | | - Holden Li
- Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore, Singapore, 639798, SINGAPORE
| | - Lay Poh Tan
- Nanyang Technological University, School of Materials Science and Engineering, Singapore, Singapore, 639798, SINGAPORE
| |
Collapse
|
50
|
Bortolon JR, Murata GM, Borges L, Weimann E, Silva MBB, Dermargos A, Hatanaka E. Recovery of Diabetic Rats After Physical Exhaustion: Kinetic Alterations in Muscle Inflammation and Muscle-Signaling Proteins to Atrophy and Hypertrophy. Front Physiol 2020; 11:573416. [PMID: 33281615 PMCID: PMC7688783 DOI: 10.3389/fphys.2020.573416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/09/2020] [Indexed: 01/16/2023] Open
Abstract
The complexity of the adaptive response of diabetics to intense exercise is still poorly understood. To optimize exercise interventions in diabetics, the chronology of inflammatory mediators in muscle and the signaling involved in muscle hypertrophy/atrophy must be understood. Herein, we studied the kinetic inflammatory profile and cellular signaling pathways modulated by physical exhaustion after the induction of type 1 diabetes by streptozotocin in rats. Soleus muscle samples were obtained from diabetic and control groups at the following moments: baseline (no exercise); immediately after exhaustive exercise; and at 2 h, 24 h, 48 h, and 72 h after a treadmill exhaustive exercise. Kinetic production of cytokines and kinetic activation of proteins related to muscle synthesis (p70S6K and Akt) and degradation (GSK3, MuRF1, and MAFbx) were measured in the soleus muscle. We observed that the muscle TNF-α (0.9-fold; p = 0.0007), IL-1β (0.8-fold; p = 0.01), IL-6 (0.8-fold; p = 0.0013), L-selectin (1.0-fold; p = 0.0019), and CINC-2α/β (0.9-fold; p = 0.04) levels were higher in almost all stages of the study in the diabetic animals compared with the control group. Our data showed that exhaustive exercise decreased MAFbx expression in diabetic animals compared to the control group in a time-dependent manner. The decreased activation ratios of MAFbx were followed by a decrease in TNF-α, IL-1β, and IL-6 levels. p70S6k phosphorylation was also decreased in the diabetic group compared to the control group after physical exhaustion. Regarding the activation of proteins related to muscle synthesis and degradation, we found that the alterations induced by exhaustive exercise in the diabetic rats might involve pathways related to synthesis and muscle breakdown. Moreover, after an exhaustive exercise session, the recovery of the inflammatory response in the diabetic animals was slower than that in the control rats while the return of inflammatory cytokines to baseline levels was more effective in the diabetic animals.
Collapse
Affiliation(s)
- José Ricardo Bortolon
- Instituto de Ciências da Atividade Física e Esporte (ICAFE), Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Gilson Masahiro Murata
- Instituto de Ciências da Atividade Física e Esporte (ICAFE), Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Leandro Borges
- Instituto de Ciências da Atividade Física e Esporte (ICAFE), Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Eleine Weimann
- Instituto de Ciências da Atividade Física e Esporte (ICAFE), Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Maysa Braga Barros Silva
- Instituto de Ciências da Atividade Física e Esporte (ICAFE), Universidade Cruzeiro do Sul, São Paulo, Brazil
| | | | - Elaine Hatanaka
- Instituto de Ciências da Atividade Física e Esporte (ICAFE), Universidade Cruzeiro do Sul, São Paulo, Brazil
| |
Collapse
|