1
|
Sanchez-Ruiz JM, Ibarra-Molero B. Folding Free Energy Surfaces from Differential Scanning Calorimetry. Methods Mol Biol 2022; 2376:105-116. [PMID: 34845605 DOI: 10.1007/978-1-0716-1716-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein folding/unfolding processes involve a large number of weak, non-covalent interactions and are more appropriately described in terms of the movement of a point representing protein conformation in a plot of internal free energy versus conformational degrees of freedom. While these energy landscapes have an astronomically large number of dimensions, it has been shown that many relevant aspects of protein folding can be understood in terms of their projections onto a few relevant coordinates. Remarkably, such low-dimensional free energy surfaces can be obtained from experimental DSC data using suitable analytical models. Here, we describe the experimental procedures to be used to obtain the high-quality DSC data that are required for free-energy surface analysis.
Collapse
Affiliation(s)
- Jose M Sanchez-Ruiz
- Facultad de Ciencias, Departamento de Quimica Fisica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, Granada, Spain
| | - Beatriz Ibarra-Molero
- Facultad de Ciencias, Departamento de Quimica Fisica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, Granada, Spain.
| |
Collapse
|
2
|
Diana D, Di Stasi R, García-Viñuales S, De Rosa L, Isernia C, Malgieri G, Milardi D, D'Andrea LD, Fattorusso R. Structural characterization of the thermal unfolding pathway of human VEGFR1 D2 domain. FEBS J 2021; 289:1591-1602. [PMID: 34689403 PMCID: PMC9299094 DOI: 10.1111/febs.16246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022]
Abstract
Folding stability is a crucial feature of protein evolution and is essential for protein functions. Thus, the comprehension of protein folding mechanisms represents an important complement to protein structure and function, crucial to determine the structural basis of protein misfolding. In this context, thermal unfolding studies represent a useful tool to get a molecular description of the conformational transitions governing the folding/unfolding equilibrium of a given protein. Here, we report the thermal folding/unfolding pathway of VEGFR1D2, a member of the immunoglobulin superfamily by means of a high-resolution thermodynamic approach that combines differential scanning calorimetry with atomic-level unfolding monitored by NMR. We show how VEGFR1D2 folding is driven by an oxidatively induced disulfide pairing: the key event in the achievement of its functional structure is the formation of a small hydrophobic core that surrounds a disulfide bridge. Such a 'folding nucleus' induces the cooperative transition to the properly folded conformation supporting the hypothesis that a disulfide bond can act as a folding nucleus that eases the folding process.
Collapse
Affiliation(s)
| | | | | | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
| | - Carla Isernia
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Gaetano Malgieri
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli', Caserta, Italy
| | | | - Luca D D'Andrea
- Istituto di Scienze e Tecnologie Chimiche 'Giulio Natta', CNR, Milano, Italy
| | - Roberto Fattorusso
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli', Caserta, Italy
| |
Collapse
|
3
|
Laursen L, Gianni S, Jemth P. Dissecting Inter-domain Cooperativity in the Folding of a Multi Domain Protein. J Mol Biol 2021; 433:167148. [PMID: 34245784 DOI: 10.1016/j.jmb.2021.167148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Correct protein folding underlies all cellular functions. While there are detailed descriptions and a good understanding of protein folding pathways for single globular domains there is a paucity of quantitative data regarding folding of multidomain proteins. We have here investigated the folding of a three-domain supramodule from the protein PSD-95, consisting of one PDZ domain, one SH3 domain and one guanylate kinase-like (GK) domain. This supramodule has previously been shown to work as one functional unit with regard to ligand binding. We used equilibrium and kinetic folding experiments to demonstrate that the PDZ domain folds faster and independently from the SH3-GK tandem, which folds as one cooperative unit. However, concurrent folding of the PDZ domain slows down folding of SH3-GK by non-native interactions, resulting in an off-pathway folding intermediate. Our data contribute to an emerging description of multidomain protein folding in which individual domains cannot a priori be viewed as separate folding units.
Collapse
Affiliation(s)
- Louise Laursen
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, 00185 Rome, Italy.
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden.
| |
Collapse
|
4
|
Substitution of the Native Zn(II) with Cd(II), Co(II) and Ni(II) Changes the Downhill Unfolding Mechanism of Ros87 to a Completely Different Scenario. Int J Mol Sci 2020; 21:ijms21218285. [PMID: 33167398 PMCID: PMC7663847 DOI: 10.3390/ijms21218285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
The structural effects of zinc replacement by xenobiotic metal ions have been widely studied in several eukaryotic and prokaryotic zinc-finger-containing proteins. The prokaryotic zinc finger, that presents a bigger βββαα domain with a larger hydrophobic core with respect to its eukaryotic counterpart, represents a valuable model protein to study metal ion interaction with metallo-proteins. Several studies have been conducted on Ros87, the DNA binding domain of the prokaryotic zinc finger Ros, and have demonstrated that the domain appears to structurally tolerate Ni(II), albeit with important structural perturbations, but not Pb(II) and Hg(II), and it is in vitro functional when the zinc ion is replaced by Cd(II). We have previously shown that Ros87 unfolding is a two-step process in which a zinc binding intermediate converts to the native structure thorough a delicate downhill folding transition. Here, we explore the folding/unfolding behaviour of Ros87 coordinated to Co(II), Ni(II) or Cd(II), by UV-Vis, CD, DSC and NMR techniques. Interestingly, we show how the substitution of the native metal ion results in complete different folding scenarios. We found a two-state unfolding mechanism for Cd-Ros87 whose metal affinity Kd is comparable to the one obtained for the native Zn-Ros87, and a more complex mechanism for Co-Ros87 and Ni-Ros87, that show higher Kd values. Our data outline the complex cross-correlation between the protein-metal ion equilibrium and the folding mechanism proposing such an interplay as a key factor in the proper metal ion selection by a specific metallo-protein.
Collapse
|
5
|
Subramanian S, Golla H, Divakar K, Kannan A, de Sancho D, Naganathan AN. Slow Folding of a Helical Protein: Large Barriers, Strong Internal Friction, or a Shallow, Bumpy Landscape? J Phys Chem B 2020; 124:8973-8983. [PMID: 32955882 PMCID: PMC7659034 DOI: 10.1021/acs.jpcb.0c05976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The rate at which a protein molecule
folds is determined by opposing
energetic and entropic contributions to the free energy that shape
the folding landscape. Delineating the extent to which they impact
the diffusional barrier-crossing events, including the magnitude of
internal friction and barrier height, has largely been a challenging
task. In this work, we extract the underlying thermodynamic and dynamic
contributions to the folding rate of an unusually slow-folding helical
DNA-binding domain, PurR, which shares the characteristics of ultrafast
downhill-folding proteins but nonetheless appears to exhibit an apparent
two-state equilibrium. We combine equilibrium spectroscopy, temperature-viscosity-dependent
kinetics, statistical mechanical modeling, and coarse-grained simulations
to show that the conformational behavior of PurR is highly heterogeneous
characterized by a large spread in melting temperatures, marginal
thermodynamic barriers, and populated partially structured states.
PurR appears to be at the threshold of disorder arising from frustrated
electrostatics and weak packing that in turn slows down folding due
to a shallow, bumpy landscape and not due to large thermodynamic barriers
or strong internal friction. Our work highlights how a strong temperature
dependence on the pre-exponential could signal a shallow landscape
and not necessarily a slow-folding diffusion coefficient, thus determining
the folding timescales of even millisecond folding proteins and hints
at possible structural origins for the shallow landscape.
Collapse
Affiliation(s)
- Sandhyaa Subramanian
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Hemashree Golla
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kalivarathan Divakar
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India
| | - Adithi Kannan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - David de Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Donostia-San Sebastián 20080, Spain.,Donostia International Physics Center (DIPC), PK 1072, Donostia-San Sebastián 20080, Spain
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
6
|
Atkins WM. Mechanisms of promiscuity among drug metabolizing enzymes and drug transporters. FEBS J 2020; 287:1306-1322. [PMID: 31663687 PMCID: PMC7138722 DOI: 10.1111/febs.15116] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/04/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Detoxication, or 'drug-metabolizing', enzymes and drug transporters exhibit remarkable substrate promiscuity and catalytic promiscuity. In contrast to substrate-specific enzymes that participate in defined metabolic pathways, individual detoxication enzymes must cope with substrates of vast structural diversity, including previously unencountered environmental toxins. Presumably, evolution selects for a balance of 'adequate' kcat /KM values for a wide range of substrates, rather than optimizing kcat /KM for any individual substrate. However, the structural, energetic, and metabolic properties that achieve this balance, and hence optimize detoxication, are not well understood. Two features of detoxication enzymes that are frequently cited as contributions to promiscuity include the exploitation of highly reactive versatile cofactors, or cosubstrates, and a high degree of flexibility within the protein structure. This review examines these intuitive mechanisms in detail and clarifies the contributions of the classic ligand binding models 'induced fit' (IF) and 'conformational selection' (CS) to substrate promiscuity. The available literature data for drug metabolizing enzymes and transporters suggest that IF is exploited by these promiscuous detoxication enzymes, as it is with substrate-specific enzymes, but the detoxication enzymes uniquely exploit 'IFs' to retain a wide range of substrates at their active sites. In contrast, whereas CS provides no catalytic advantage to substrate-specific enzymes, promiscuous enzymes may uniquely exploit it to recruit a wide range of substrates. The combination of CS and IF, for recruitment and retention of substrates, can potentially optimize the promiscuity of drug metabolizing enzymes and drug transporters.
Collapse
Affiliation(s)
- William M. Atkins
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
7
|
Thibeault J, Patrick J, Martin A, Ortiz-Perez B, Hill S, Zhang S, Xia K, Colón W. Sarkosyl: A milder detergent than SDS for identifying proteins with moderately high hyperstability using gel electrophoresis. Anal Biochem 2019; 571:21-24. [PMID: 30779907 DOI: 10.1016/j.ab.2019.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
Sodium dodecyl sulfate (SDS) is a detergent used as a strong denaturant of proteins in gel electrophoresis. It has previously been shown that certain hyperstable, also known as kinetically stable, proteins are resistant to SDS and thus require heating for their denaturation in the presence of SDS. Because of its high denaturing strength, relatively few proteins are resistant to SDS thereby limiting the current use of SDS-PAGE for identifying hyperstable degradation-resistant proteins. In this study, we show that sarkosyl, a milder detergent than SDS, is able to identify proteins with moderately high kinetic stability that lack SDS-resistance. Our assay involves running and subsequently comparing boiled and unheated protein samples containing sarkosyl, instead of SDS, on PAGE gels and identifying subsequent differences in protein migration. Our results also show that sarkosyl and SDS may be combined in PAGE experiments at varying relative percentages to obtain semi-quantitative information about a protein's kinetic stability in a range inaccessible by probing through native- or SDS-PAGE. Using protein extracts from various legumes as model systems, we detected proteins with a range of protein stability from nearly SDS-resistant to barely sarkosyl resistant.
Collapse
Affiliation(s)
- Jane Thibeault
- Biochemistry and Biophysics Graduate Program, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jessica Patrick
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Alexi Martin
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Brian Ortiz-Perez
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Shakeema Hill
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Songjie Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Wilfredo Colón
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
8
|
Narayan A, Naganathan AN. Switching Protein Conformational Substates by Protonation and Mutation. J Phys Chem B 2018; 122:11039-11047. [PMID: 30048131 DOI: 10.1021/acs.jpcb.8b05108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein modules that regulate the availability and conformational status of transcription factors determine the rapidity, duration, and magnitude of cellular response to changing conditions. One such system is the single-gene product Cnu, a four-helix bundle transcription co-repressor, which acts as a molecular thermosensor regulating the expression of virulence genes in enterobacteriaceae through modulation of its native conformational ensemble. Cnu and related genes have also been implicated in pH-dependent expression of virulence genes. We hypothesize that protonation of a conserved buried histidine (H45) in Cnu promotes large electrostatic frustration, thus disturbing the H-NS, a transcription factor, binding face. Spectroscopic and calorimetric methods reveal that H45 exhibits a suppressed p Ka of ∼5.1, the protonation of which switches the conformation to an alternate native ensemble in which the fourth helix is disordered. The population redistribution can also be achieved through a mutation H45V, which does not display any switching behavior at pH values greater than 4. The Wako-Saitô-Muñoz-Eaton (WSME) statistical mechanical model predicts specific differences in the conformations and fluctuations of the fourth and first helices of Cnu determining the observed pH response. We validate these predictions through fluorescence lifetime measurements of a sole tryptophan, highlighting the presence of both native and non-native interactions in the regions adjoining the binding face of Cnu. Our combined experimental-computational study thus shows that Cnu acts both as a thermo- and pH-sensor orchestrated via a subtle but quantifiable balance between the weak packing of a structural element and protonation of a buried histidine that promotes electrostatic frustration.
Collapse
Affiliation(s)
- Abhishek Narayan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
9
|
Narayan A, Campos LA, Bhatia S, Fushman D, Naganathan AN. Graded Structural Polymorphism in a Bacterial Thermosensor Protein. J Am Chem Soc 2017; 139:792-802. [DOI: 10.1021/jacs.6b10608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Abhishek Narayan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai 600036, India
| | - Luis A. Campos
- National Biotechnology Center, Consejo Superior
de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Sandhya Bhatia
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research, Bangalore 560065, India
| | - David Fushman
- Department
of Chemistry and Biochemistry, Center for Biomolecular Structure and
Organization, University of Maryland, College Park, Maryland 20742, United States
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai 600036, India
| |
Collapse
|
10
|
Engineering ancestral protein hyperstability. Biochem J 2016; 473:3611-3620. [PMID: 27528732 DOI: 10.1042/bcj20160532] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/15/2016] [Indexed: 01/23/2023]
Abstract
Many experimental analyses and proposed scenarios support that ancient life was thermophilic. In congruence with this hypothesis, proteins encoded by reconstructed sequences corresponding to ancient phylogenetic nodes often display very high stability. Here, we show that such 'reconstructed ancestral hyperstability' can be further engineered on the basis of a straightforward approach that uses exclusively information afforded by the ancestral reconstruction process itself. Since evolution does not imply continuous progression, screening of the mutations between two evolutionarily related resurrected ancestral proteins may identify mutations that further stabilize the most stable one. To explore this approach, we have used a resurrected thioredoxin corresponding to the last common ancestor of the cyanobacterial, Deinococcus and Thermus groups (LPBCA thioredoxin), which has a denaturation temperature of ∼123°C. This high value is within the top 0.1% of the denaturation temperatures in the ProTherm database and, therefore, achieving further stabilization appears a priori as a challenging task. Nevertheless, experimental comparison with a resurrected thioredoxin corresponding to the last common ancestor of bacteria (denaturation temperature of ∼115°C) immediately identifies three mutations that increase the denaturation temperature of LPBCA thioredoxin to ∼128°C. Comparison between evolutionarily related resurrected ancestral proteins thus emerges as a simple approach to expand the capability of ancestral reconstruction to search sequence space for extreme protein properties of biotechnological interest. The fact that ancestral sequences for many phylogenetic nodes can be derived from a single alignment of modern sequences should contribute to the general applicability of this approach.
Collapse
|
11
|
Broom HR, Vassall KA, Rumfeldt JAO, Doyle CM, Tong MS, Bonner JM, Meiering EM. Combined Isothermal Titration and Differential Scanning Calorimetry Define Three-State Thermodynamics of fALS-Associated Mutant Apo SOD1 Dimers and an Increased Population of Folded Monomer. Biochemistry 2016; 55:519-33. [PMID: 26710831 DOI: 10.1021/acs.biochem.5b01187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many proteins are naturally homooligomers, homodimers most frequently. The overall stability of oligomeric proteins may be described in terms of the stability of the constituent monomers and the stability of their association; together, these stabilities determine the populations of different monomer and associated species, which generally have different roles in the function or dysfunction of the protein. Here we show how a new combined calorimetry approach, using isothermal titration calorimetry to define monomer association energetics together with differential scanning calorimetry to measure total energetics of oligomer unfolding, can be used to analyze homodimeric unmetalated (apo) superoxide dismutase (SOD1) and determine the effects on the stability of structurally diverse mutations associated with amyotrophic lateral sclerosis (ALS). Despite being located throughout the protein, all mutations studied weaken the dimer interface, while concomitantly either decreasing or increasing the marginal stability of the monomer. Analysis of the populations of dimer, monomer, and unfolded monomer under physiological conditions of temperature, pH, and protein concentration shows that all mutations promote the formation of folded monomers. These findings may help rationalize the key roles proposed for monomer forms of SOD1 in neurotoxic aggregation in ALS, as well as roles for other forms of SOD1. Thus, the results obtained here provide a valuable approach for the quantitative analysis of homooligomeric protein stabilities, which can be used to elucidate the natural and aberrant roles of different forms of these proteins and to improve methods for predicting protein stabilities.
Collapse
Affiliation(s)
- Helen R Broom
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Kenrick A Vassall
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Jessica A O Rumfeldt
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Colleen M Doyle
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Ming Sze Tong
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Julia M Bonner
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Elizabeth M Meiering
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
12
|
Ibarra-Molero B, Naganathan AN, Sanchez-Ruiz JM, Muñoz V. Modern Analysis of Protein Folding by Differential Scanning Calorimetry. Methods Enzymol 2016; 567:281-318. [DOI: 10.1016/bs.mie.2015.08.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Romero-Romero S, Costas M, Rodríguez-Romero A, Fernández-Velasco DA. Reversibility and two state behaviour in the thermal unfolding of oligomeric TIM barrel proteins. Phys Chem Chem Phys 2015. [DOI: 10.1039/c5cp01599e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The reversible thermal unfolding of oligomeric TIM barrels results from a delicate balance of physicochemical properties related to the sequence, the native and unfolded states and the transition between them.
Collapse
Affiliation(s)
- Sergio Romero-Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas
- Departamento de Bioquímica
- Facultad de Medicina
- Universidad Nacional Autónoma de México
- 04510 Ciudad de México
| | - Miguel Costas
- Laboratorio de Biofisicoquímica
- Departamento de Fisicoquímica
- Facultad de Química
- Universidad Nacional Autónoma de México
- 04510 Ciudad de México
| | - Adela Rodríguez-Romero
- Laboratorio de Química de Biomacromoléculas 3
- Departamento de Química de Biomacromoléculas
- Instituto de Química
- Universidad Nacional Autónoma de México
- 04510 Ciudad de México
| | - D. Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas
- Departamento de Bioquímica
- Facultad de Medicina
- Universidad Nacional Autónoma de México
- 04510 Ciudad de México
| |
Collapse
|
14
|
Irreversible denaturation of maltodextrin glucosidase studied by differential scanning calorimetry, circular dichroism, and turbidity measurements. PLoS One 2014; 9:e115877. [PMID: 25548918 PMCID: PMC4280130 DOI: 10.1371/journal.pone.0115877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/02/2014] [Indexed: 01/28/2023] Open
Abstract
Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5–1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C).
Collapse
|
15
|
Jayaraman M, Buck PM, Alphonse Ignatius A, King KR, Wang W. Agitation-induced aggregation and subvisible particulate formation in model proteins. Eur J Pharm Biopharm 2014; 87:299-309. [DOI: 10.1016/j.ejpb.2014.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/03/2014] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
|
16
|
Palmieri M, Malgieri G, Russo L, Baglivo I, Esposito S, Netti F, Del Gatto A, de Paola I, Zaccaro L, Pedone PV, Isernia C, Milardi D, Fattorusso R. Structural Zn(II) Implies a Switch from Fully Cooperative to Partly Downhill Folding in Highly Homologous Proteins. J Am Chem Soc 2013; 135:5220-8. [DOI: 10.1021/ja4009562] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maddalena Palmieri
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Luigi Russo
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Sabrina Esposito
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Fortuna Netti
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Annarita Del Gatto
- Institute of Biostructures and Bioimaging-CNR (Naples), Via Mezzocannone 16, 80134
Naples, Italy
| | - Ivan de Paola
- Institute of Biostructures and Bioimaging-CNR (Naples), Via Mezzocannone 16, 80134
Naples, Italy
| | - Laura Zaccaro
- Institute of Biostructures and Bioimaging-CNR (Naples), Via Mezzocannone 16, 80134
Naples, Italy
| | - Paolo V. Pedone
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Carla Isernia
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Danilo Milardi
- Institute of Biostructures and Bioimaging-CNR (Catania), Viale A. Doria 6, 95125
Catania, Italy
| | - Roberto Fattorusso
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| |
Collapse
|
17
|
Doyle CM, Rumfeldt JA, Broom HR, Broom A, Stathopulos PB, Vassall KA, Almey JJ, Meiering EM. Energetics of oligomeric protein folding and association. Arch Biochem Biophys 2012; 531:44-64. [PMID: 23246784 DOI: 10.1016/j.abb.2012.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022]
Abstract
In nature, proteins most often exist as complexes, with many of these consisting of identical subunits. Understanding of the energetics governing the folding and misfolding of such homooligomeric proteins is central to understanding their function and misfunction, in disease or biotechnology. Much progress has been made in defining the mechanisms and thermodynamics of homooligomeric protein folding. In this review, we outline models as well as calorimetric and spectroscopic methods for characterizing oligomer folding, and describe extensive results obtained for diverse proteins, ranging from dimers to octamers and higher order aggregates. To our knowledge, this area has not been reviewed comprehensively in years, and the collective progress is impressive. The results provide evolutionary insights into the development of subunit interfaces, mechanisms of oligomer folding, and contributions of oligomerization to protein stability, function and regulation. Thermodynamic analyses have also proven valuable for understanding protein misfolding and aggregation mechanisms, suggesting new therapeutic avenues. Successful recent designs of novel, functional proteins demonstrate increased understanding of oligomer folding. Further rigorous analyses using multiple experimental and computational approaches are still required, however, to achieve consistent and accurate prediction of oligomer folding energetics. Modeling the energetics remains challenging but is a promising avenue for future advances.
Collapse
Affiliation(s)
- Colleen M Doyle
- Guelph-Waterloo Centre for Graduate Studies in Chemistry and Biochemistry, and Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bhattacharya M, Mukhopadhyay S. Structural and Dynamical Insights into the Molten-Globule Form of Ovalbumin. J Phys Chem B 2011; 116:520-31. [DOI: 10.1021/jp208416d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mily Bhattacharya
- Indian Institute of Science Education and Research (IISER), Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, India
| | - Samrat Mukhopadhyay
- Indian Institute of Science Education and Research (IISER), Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, India
| |
Collapse
|
19
|
Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev 2011; 63:1118-59. [PMID: 21855584 DOI: 10.1016/j.addr.2011.07.006] [Citation(s) in RCA: 350] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/19/2011] [Accepted: 07/26/2011] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to demonstrate the critical importance of understanding protein-excipient interactions as a key step in the rational design of formulations to stabilize and deliver protein-based therapeutic drugs and vaccines. Biophysical methods used to examine various molecular interactions between solutes and protein molecules are discussed with an emphasis on applications to pharmaceutical excipients in terms of their effects on protein stability. Key mechanisms of protein-excipient interactions such as electrostatic and cation-pi interactions, preferential hydration, dispersive forces, and hydrogen bonding are presented in the context of different physical states of the formulation such as frozen liquids, solutions, gels, freeze-dried solids and interfacial phenomenon. An overview of the different classes of pharmaceutical excipients used to formulate and stabilize protein therapeutic drugs is also presented along with the rationale for use in different dosage forms including practical pharmaceutical considerations. The utility of high throughput analytical methodologies to examine protein-excipient interactions is presented in terms of expanding formulation design space and accelerating experimental timelines.
Collapse
Affiliation(s)
- Tim J Kamerzell
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
20
|
Naganathan AN, Perez-Jimenez R, Muñoz V, Sanchez-Ruiz JM. Estimation of protein folding free energy barriers from calorimetric data by multi-model Bayesian analysis. Phys Chem Chem Phys 2011; 13:17064-76. [PMID: 21769353 DOI: 10.1039/c1cp20156e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The realization that folding free energy barriers can be small enough to result in significant population of the species at the barrier top has sprouted in several methods to estimate folding barriers from equilibrium experiments. Some of these approaches are based on fitting the experimental thermogram measured by differential scanning calorimetry (DSC) to a one-dimensional representation of the folding free-energy surface (FES). Different physical models have been used to represent the FES: (1) a Landau quartic polynomial as a function of the total enthalpy, which acts as an order parameter; (2) the projection onto a structural order parameter (i.e. number of native residues or native contacts) of the free energy of all the conformations generated by Ising-like statistical mechanical models; and (3) mean-field models that define conformational entropy and stabilization energy as functions of a continuous local order parameter. The fundamental question that emerges is how can we obtain robust, model-independent estimates of the thermodynamic folding barrier from the analysis of DSC experiments. Here we address this issue by comparing the performance of various FES models in interpreting the thermogram of a protein with a marginal folding barrier. We chose the small α-helical protein PDD, which folds-unfolds in microseconds crossing a free energy barrier previously estimated as ~1 RT. The fits of the PDD thermogram to the various models and assumptions produce FES with a consistently small free energy barrier separating the folded and unfolded ensembles. However, the fits vary in quality as well as in the estimated barrier. Applying Bayesian probabilistic analysis we rank the fit performance using a statistically rigorous criterion that leads to a global estimate of the folding barrier and its precision, which for PDD is 1.3 ± 0.4 kJ mol(-1). This result confirms that PDD folds over a minor barrier consistent with the downhill folding regime. We have further validated the multi-model Bayesian approach through the analysis of two additional protein systems: gpW, a midsize single-domain with α + β topology that also folds in microseconds and has been previously catalogued as a downhill folder, and α-spectrin SH3, a domain of similar size but with a β-barrel fold, slow-folding kinetics and two-state-like thermodynamics. From a general viewpoint, the Bayesian analysis developed here results in a statistically robust, virtually model-independent, method to estimate the thermodynamic free-energy barriers to protein folding from DSC thermograms. Our method appears to be sufficiently accurate to consistently detect small differences in the barrier height, and thus opens up the possibility of characterizing experimentally the changes in thermodynamic folding barriers induced by single-point mutations on proteins within the downhill regime.
Collapse
Affiliation(s)
- Athi N Naganathan
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid 28040, Spain
| | | | | | | |
Collapse
|
21
|
|