1
|
Li Y, Wang X, Huang M, Wang X, Li C, Li S, Tang Y, Yu S, Wang Y, Song W, Wu W, Liu Y, Chen YG. BMP suppresses Wnt signaling via the Bcl11b-regulated NuRD complex to maintain intestinal stem cells. EMBO J 2024; 43:6032-6051. [PMID: 39433900 PMCID: PMC11612440 DOI: 10.1038/s44318-024-00276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Lgr5+ intestinal stem cells (ISCs) are crucial for the intestinal epithelium renewal and regeneration after injury. However, the mechanism underlying the interplay between Wnt and BMP signaling in this process is not fully understood. Here we report that Bcl11b, which is downregulated by BMP signaling, enhances Wnt signaling to maintain Lgr5+ ISCs and thus promotes the regeneration of the intestinal epithelium upon injury. Loss of Bcl11b function leads to a significant decrease of Lgr5+ ISCs in both intestinal crypts and cultured organoids. Mechanistically, BMP suppresses the expression of Bcl11b, which can positively regulate Wnt target genes by inhibiting the function of the Nucleosome Remodeling and Deacetylase (NuRD) complex and facilitating the β-catenin-TCF4 interaction. Bcl11b can also promote intestinal epithelium repair after injuries elicited by both irradiation and DSS-induced inflammation. Furthermore, Bcl11b deletion prevents proliferation and tumorigenesis of colorectal cancer cells. Together, our findings suggest that BMP suppresses Wnt signaling via Bcl11b regulation, thus balancing homeostasis and regeneration in the intestinal epithelium.
Collapse
Affiliation(s)
- Yehua Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaodan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Meimei Huang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Wang
- Guangzhou National Laboratory, Guangzhou, 510700, China
| | - Chunlin Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siqi Li
- Guangzhou National Laboratory, Guangzhou, 510700, China
| | - Yuhui Tang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shicheng Yu
- Guangzhou National Laboratory, Guangzhou, 510700, China
| | - Yalong Wang
- Guangzhou National Laboratory, Guangzhou, 510700, China
| | - Wanglu Song
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Wu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Guangzhou National Laboratory, Guangzhou, 510700, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
2
|
Zhao D, Ravikumar V, Leach TJ, Kraushaar D, Lauder E, Li L, Sun Y, Oravecz-Wilson K, Keller ET, Chen F, Maneix L, Jenq RR, Britton R, King KY, Santibanez AE, Creighton CJ, Rao A, Reddy P. Inflammation-induced epigenetic imprinting regulates intestinal stem cells. Cell Stem Cell 2024; 31:1447-1464.e6. [PMID: 39232559 DOI: 10.1016/j.stem.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
It remains unknown whether and how intestinal stem cells (ISCs) adapt to inflammatory exposure and whether the adaptation leaves scars that will affect their subsequent regeneration. We investigated the consequences of inflammation on Lgr5+ ISCs in well-defined clinically relevant models of acute gastrointestinal graft-versus-host disease (GI GVHD). Utilizing single-cell transcriptomics, as well as organoid, metabolic, epigenomic, and in vivo models, we found that Lgr5+ ISCs undergo metabolic changes that lead to the accumulation of succinate, which reprograms their epigenome. These changes reduced the ability of ISCs to differentiate and regenerate ex vivo in serial organoid cultures and also in vivo following serial transplantation. Furthermore, ISCs demonstrated a reduced capacity for in vivo regeneration despite resolution of the initial inflammatory exposure, demonstrating the persistence of the maladaptive impact induced by the inflammatory encounter. Thus, inflammation imprints the epigenome of ISCs in a manner that persists and affects their sensitivity to adapt to future stress or challenges.
Collapse
Affiliation(s)
- Dongchang Zhao
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Visweswaran Ravikumar
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tyler J Leach
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Daniel Kraushaar
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Emma Lauder
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA; Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Lu Li
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Yaping Sun
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Katherine Oravecz-Wilson
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Evan T Keller
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Fengju Chen
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Laure Maneix
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Robert R Jenq
- Department of Genomic Medicine and Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Robert Britton
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Katherine Y King
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Ana E Santibanez
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Chad J Creighton
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pavan Reddy
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA; Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Larue AEM, Atlasi Y. The epigenetic landscape in intestinal stem cells and its deregulation in colorectal cancer. Stem Cells 2024; 42:509-525. [PMID: 38597726 PMCID: PMC11177158 DOI: 10.1093/stmcls/sxae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Epigenetic mechanisms play a pivotal role in controlling gene expression and cellular plasticity in both normal physiology and pathophysiological conditions. These mechanisms are particularly important in the regulation of stem cell self-renewal and differentiation, both in embryonic development and within adult tissues. A prime example of this finely tuned epigenetic control is observed in the gastrointestinal lining, where the small intestine undergoes renewal approximately every 3-5 days. How various epigenetic mechanisms modulate chromatin functions in intestinal stem cells (ISCs) is currently an active area of research. In this review, we discuss the main epigenetic mechanisms that control ISC differentiation under normal homeostasis. Furthermore, we explore the dysregulation of these mechanisms in the context of colorectal cancer (CRC) development. By outlining the main epigenetic mechanisms contributing to CRC, we highlight the recent therapeutics development and future directions for colorectal cancer research.
Collapse
Affiliation(s)
- Axelle E M Larue
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| | - Yaser Atlasi
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
4
|
Gu W, Huang X, Singh PNP, Li S, Lan Y, Deng M, Lacko LA, Gomez-Salinero JM, Rafii S, Verzi MP, Shivdasani RA, Zhou Q. A MTA2-SATB2 chromatin complex restrains colonic plasticity toward small intestine by retaining HNF4A at colonic chromatin. Nat Commun 2024; 15:3595. [PMID: 38678016 PMCID: PMC11055869 DOI: 10.1038/s41467-024-47738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
Plasticity among cell lineages is a fundamental, but poorly understood, property of regenerative tissues. In the gut tube, the small intestine absorbs nutrients, whereas the colon absorbs electrolytes. In a striking display of inherent plasticity, adult colonic mucosa lacking the chromatin factor SATB2 is converted to small intestine. Using proteomics and CRISPR-Cas9 screening, we identify MTA2 as a crucial component of the molecular machinery that, together with SATB2, restrains colonic plasticity. MTA2 loss in the adult mouse colon activated lipid absorptive genes and functional lipid uptake. Mechanistically, MTA2 co-occupies DNA with HNF4A, an activating pan-intestinal transcription factor (TF), on colonic chromatin. MTA2 loss leads to HNF4A release from colonic chromatin, and accumulation on small intestinal chromatin. SATB2 similarly restrains colonic plasticity through an HNF4A-dependent mechanism. Our study provides a generalizable model of lineage plasticity in which broadly-expressed TFs are retained on tissue-specific enhancers to maintain cell identity and prevent activation of alternative lineages, and their release unleashes plasticity.
Collapse
Affiliation(s)
- Wei Gu
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- BeiGene Institute, BeiGene (Shanghai) Research & Development Co., Ltd, Shanghai, 200131, China.
| | - Xiaofeng Huang
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Pratik N P Singh
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Sanlan Li
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Ying Lan
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Min Deng
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Lauretta A Lacko
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Human Therapeutic Organoid Core Facility, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Jesus M Gomez-Salinero
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Shahin Rafii
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Qiao Zhou
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Human Therapeutic Organoid Core Facility, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
5
|
Falick Michaeli T, Sabag O, Azria B, Fok R, Abudi N, Abramovitch R, Monin J, Gielchinsky Y, Cedar H, Bergman Y. Hepatocyte regeneration is driven by embryo-like DNA methylation reprogramming. Proc Natl Acad Sci U S A 2024; 121:e2314885121. [PMID: 38588413 PMCID: PMC11032470 DOI: 10.1073/pnas.2314885121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/05/2024] [Indexed: 04/10/2024] Open
Abstract
As a result of partial hepatectomy, the remaining liver tissue undergoes a process of renewed proliferation that leads to rapid regeneration of the liver. By following the early stages of this process, we observed dramatic programmed changes in the DNA methylation profile, characterized by both de novo and demethylation events, with a subsequent return to the original adult pattern as the liver matures. Strikingly, these transient alterations partially mimic the DNA methylation state of embryonic hepatoblasts (E16.5), indicating that hepatocytes actually undergo epigenetic dedifferentiation. Furthermore, Tet2/Tet3-deletion experiments demonstrated that these changes in methylation are necessary for carrying out basic embryonic functions, such as proliferation, a key step in liver regeneration. This implies that unlike tissue-specific regulatory regions that remain demethylated in the adult, early embryonic genes are programmed to first undergo demethylation, followed by remethylation as development proceeds. The identification of this built-in system may open targeting opportunities for regenerative medicine.
Collapse
Affiliation(s)
- Tal Falick Michaeli
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
- Sharett Institute of Oncology, Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem91120, Israel
| | - Ofra Sabag
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Batia Azria
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Rimma Fok
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Nathalie Abudi
- The Goldyne Savad Institute of Gene Therapy, Hadassah Medical Organization, Jerusalem91120, Israel
- The Wohl Institute for Translational Medicine, Hadassah Medical Organization, Jerusalem91120, Israel
| | - Rinat Abramovitch
- The Goldyne Savad Institute of Gene Therapy, Hadassah Medical Organization, Jerusalem91120, Israel
- The Wohl Institute for Translational Medicine, Hadassah Medical Organization, Jerusalem91120, Israel
- Hebrew University Medical School, Bioinformatics Unit, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem91120, Israel
| | - Jonathan Monin
- Hebrew University Medical School, Bioinformatics Unit, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem91120, Israel
| | - Yuval Gielchinsky
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem91120, Israel
- Helen Schneider Hospital for Women, Rabin Medical Center, Petach Tikva49100, Israel
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Yehudit Bergman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| |
Collapse
|
6
|
Yang Y, Ma B, Chen J, Liu D, Ma J, Li B, Hao J, Zhou X. Epigenetic regulation and factors that influence the effect of iPSCs-derived neural stem/progenitor cells (NS/PCs) in the treatment of spinal cord injury. Clin Epigenetics 2024; 16:30. [PMID: 38383473 PMCID: PMC10880347 DOI: 10.1186/s13148-024-01639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Spinal cord injury (SCI) is a severe neurological disorder that causes neurological impairment and disability. Neural stem/progenitor cells (NS/PCs) derived from induced pluripotent stem cells (iPSCs) represent a promising cell therapy strategy for spinal cord regeneration and repair. However, iPSC-derived NS/PCs face many challenges and issues in SCI therapy; one of the most significant challenges is epigenetic regulation and that factors that influence this mechanism. Epigenetics refers to the regulation of gene expression and function by DNA methylation, histone modification, and chromatin structure without changing the DNA sequence. Previous research has shown that epigenetics plays a crucial role in the generation, differentiation, and transplantation of iPSCs, and can influence the quality, safety, and outcome of transplanted cells. In this study, we review the effects of epigenetic regulation and various influencing factors on the role of iPSC-derived NS/PCs in SCI therapy at multiple levels, including epigenetic reprogramming, regulation, and the adaptation of iPSCs during generation, differentiation, and transplantation, as well as the impact of other therapeutic tools (e.g., drugs, electrical stimulation, and scaffolds) on the epigenetic status of transplanted cells. We summarize our main findings and insights in this field and identify future challenges and directions that need to be addressed and explored.
Collapse
Affiliation(s)
- Yubiao Yang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Boyuan Ma
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Jinyu Chen
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Derong Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Jun Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian Hao
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| | - Xianhu Zhou
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
7
|
Serdyukova K, Swearingen AR, Coradin M, Nevo M, Tran H, Bajric E, Brumbaugh J. Leveraging dominant-negative histone H3 K-to-M mutations to study chromatin during differentiation and development. Development 2023; 150:dev202169. [PMID: 37846748 PMCID: PMC10617616 DOI: 10.1242/dev.202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Histone modifications are associated with regulation of gene expression that controls a vast array of biological processes. Often, these associations are drawn by correlating the genomic location of a particular histone modification with gene expression or phenotype; however, establishing a causal relationship between histone marks and biological processes remains challenging. Consequently, there is a strong need for experimental approaches to directly manipulate histone modifications. A class of mutations on the N-terminal tail of histone H3, lysine-to-methionine (K-to-M) mutations, was identified as dominant-negative inhibitors of histone methylation at their respective and specific residues. The dominant-negative nature of K-to-M mutants makes them a valuable tool for studying the function of specific methylation marks on histone H3. Here, we review recent applications of K-to-M mutations to understand the role of histone methylation during development and homeostasis. We highlight important advantages and limitations that require consideration when using K-to-M mutants, particularly in a developmental context.
Collapse
Affiliation(s)
- Ksenia Serdyukova
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alison R. Swearingen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mariel Coradin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mika Nevo
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Huong Tran
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emir Bajric
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Creff J, Nowosad A, Prel A, Pizzoccaro A, Aguirrebengoa M, Duquesnes N, Callot C, Jungas T, Dozier C, Besson A. p57 Kip2 acts as a transcriptional corepressor to regulate intestinal stem cell fate and proliferation. Cell Rep 2023; 42:112659. [PMID: 37327110 DOI: 10.1016/j.celrep.2023.112659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/01/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023] Open
Abstract
p57Kip2 is a cyclin/CDK inhibitor and a negative regulator of cell proliferation. Here, we report that p57 regulates intestinal stem cell (ISC) fate and proliferation in a CDK-independent manner during intestinal development. In the absence of p57, intestinal crypts exhibit an increased proliferation and an amplification of transit-amplifying cells and of Hopx+ ISCs, which are no longer quiescent, while Lgr5+ ISCs are unaffected. RNA sequencing (RNA-seq) analyses of Hopx+ ISCs show major gene expression changes in the absence of p57. We found that p57 binds to and inhibits the activity of Ascl2, a transcription factor critical for ISC specification and maintenance, by participating in the recruitment of a corepressor complex to Ascl2 target gene promoters. Thus, our data suggest that, during intestinal development, p57 plays a key role in maintaining Hopx+ ISC quiescence and repressing the ISC phenotype outside of the crypt bottom by inhibiting the transcription factor Ascl2 in a CDK-independent manner.
Collapse
Affiliation(s)
- Justine Creff
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Ada Nowosad
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anne Prel
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anne Pizzoccaro
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Marion Aguirrebengoa
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Nicolas Duquesnes
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Caroline Callot
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Thomas Jungas
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Christine Dozier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Arnaud Besson
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France.
| |
Collapse
|