1
|
Teja BS, Jamwal G, Gupta V, Verma M, Sharma A, Sharma A, Pandit V. Biological control of bacterial leaf blight (BLB) in rice-A sustainable approach. Heliyon 2025; 11:e41769. [PMID: 39872461 PMCID: PMC11770542 DOI: 10.1016/j.heliyon.2025.e41769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Bacterial leaf blight (BLB) in rice, caused by the pathogen Xanthomonas oryzae pv. oryzae, is a significant agricultural problem managed through chemical control and cultivating rice varieties with inherent resistance to the bacterial pathogen. Research has highlighted the potential of using antagonistic microbes which can suppress the BLB pathogen through the production of secondary metabolites like siderophores, rhamnolipids, and hydroxy-alkylquinolines offering a sustainable alternative for BLB management. Additionally, the induction of plant immunity and defense-related enzymes in rice further enhances the resistance against the disease. Therefore, implementation of biological controls can complement chemical treatments in contributing towards the sustainability of rice production systems by aiming at host immunity improvement and killing of pathogen. It is crucial to continue exploring and understanding the complex interactions between various beneficial microbes, the rice plants, and the BLB pathogen to optimize and implement effective biocontrol strategies in future.
Collapse
Affiliation(s)
- Bestha Sai Teja
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Gayatri Jamwal
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Vishal Gupta
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Mansi Verma
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Ayushi Sharma
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Akash Sharma
- Division of Fruit Science, Faculty of Horticulture and Forestry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Vinod Pandit
- Centre for Agriculture and Bioscience International (CABI), New Delhi, 110012, India
| |
Collapse
|
2
|
Sousa LJD, Santos IR, Luz IS, Ribeiro DG, Oliveira-Neto OBD, Fontes W, Blum LEB, Mehta A. New potential susceptibility factors contributing to tomato bacterial spot disease. J Proteomics 2025; 314:105387. [PMID: 39863247 DOI: 10.1016/j.jprot.2025.105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
The label-free shotgun proteomics analysis carried out in this study aimed to understand the molecular mechanisms that contribute towards tomato susceptibility to Xanthomonas euvesicatoria pv. perforans (Xep). To achieve this, comparative proteomics was performed on susceptible inoculated plants with the bacterium and the control group (saline solution) at 24 and 48 h after inoculation (hai). The results revealed that most of the identified proteins showed increased abundance in the infected group and were classified into different gene ontology groups. Eight of these proteins were related to susceptibility in other pathosystems, suggesting their potential involvement in the development of bacterial spot in tomato. Some of these proteins are involved in the negative regulation of salicylic acid, PR proteins and reactive oxygen species (ROS), as well as contributing to the acquisition of sugars by the pathogen. The results obtained in this study provided us with valuable information for understanding the molecular mechanisms that lead to tomato susceptibility to Xep and will help in developing tomato cultivars resistant to bacterial spot. SIGNIFICANCE: Our proteomic study of tomato plants during infection by Xep allowed for the identification of potential proteins that contribute to bacterial spot tomato disease development. These proteins can act in different ways to favor the pathogen, such as the negative modulation of phytohormones involved in plant defense, the inhibition of PR proteins and reactive oxygen species, as well as to collaborate in the acquisition of sugar for pathogen nutrition.
Collapse
Affiliation(s)
- Lucas José de Sousa
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP 70770917, Brazil; Departamento de Fitopatologia, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, CEP 70910900, Brazil
| | - Ivonaldo Reis Santos
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP 70770917, Brazil
| | - Isabelle Souza Luz
- Departamento de Biologia Celular, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, CEP 70910900, Brazil
| | - Daiane Gonzaga Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP 70770917, Brazil; Departamento de Biologia Celular, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, CEP 70910900, Brazil
| | | | - Wagner Fontes
- Departamento de Biologia Celular, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, CEP 70910900, Brazil
| | - Luiz Eduardo Bassay Blum
- Departamento de Fitopatologia, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, CEP 70910900, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP 70770917, Brazil.
| |
Collapse
|
3
|
da Silva HAO, de Abreu LM, da Gama MAS, Huguet-Tapia J, Zhang P, Buttros VH, Mukesh J, White F, Martins SJ. Complete genome of Xanthomonas citri pv. anacardii strain CCRMTAQ13 (causal agent of angular leaf spot in cashew) from Brazil using long-read Nanopore technology. Microbiol Resour Announc 2025; 14:e0087724. [PMID: 39589126 PMCID: PMC11737142 DOI: 10.1128/mra.00877-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Here, we present a single contiguous genome sequence of Xanthomonas citri pv. anacardii (Xca; strain CCRMTAQ13), the causal agent of angular leaf spot in cashew, an important commodity crop in Brazil. Oxford Nanopore Sequencing Technology was used to assemble the genome of the Xca in a single contig of 5,086,757 bp with a 64.53% GC content. This genome sequence will provide a useful resource for studies on virulence mechanisms, including the identification of a single transcription activator-like effector gene of 3,359 bp.
Collapse
Affiliation(s)
- Hiago Antonio Oliveira da Silva
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Department of Plant Pathology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Jose Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Peiqi Zhang
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Victor Hugo Buttros
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Department of Biology, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Jain Mukesh
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Frank White
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Samuel J. Martins
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Gaudin C, Preveaux A, Aubineau N, Le Goff D, Jacques MA, Chen NWG. A dTALE approach demonstrates that induction of common bean OVATE Family Protein 7 promotes resistance to common bacterial blight. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:607-620. [PMID: 39437252 DOI: 10.1093/jxb/erae433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Common bacterial blight (CBB) is a devastating seed-transmitted disease of common bean (Phaseolus vulgaris L.), caused by Xanthomonas phaseoli pv. phaseoli and Xanthomonas citri pv. fuscans. The genes responsible for CBB resistance are largely unknown. Moreover, the lack of a reproducible and universal transformation protocol limits the study of genetic traits in common bean. We produced X. phaseoli pv. phaseoli strains expressing artificially designed transcription-activator like effectors (dTALEs) to target 14 candidate genes for resistance to CBB based on previous transcriptomic data. In planta assays in a susceptible common bean genotype showed that induction of PvOFP7, PvAP2-ERF71, or PvExpansinA17 expression by dTALEs resulted in CBB symptom reduction. After PvOFP7 induction, in planta bacterial growth was reduced at early colonization stages, and RNA-seq analysis revealed up-regulation of cell wall formation and primary metabolism, together with major down-regulation of heat shock proteins. Our results demonstrated that PvOFP7 contributes to CBB resistance, and underlined the usefulness of dTALEs for functional validation of genes whose induction impacts Xanthomonas-plant interactions.
Collapse
Affiliation(s)
- Charlotte Gaudin
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Anne Preveaux
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Nathan Aubineau
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Damien Le Goff
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Marie-Agnès Jacques
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Nicolas W G Chen
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| |
Collapse
|
5
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
6
|
Karki SJ. Better beans: designer TALE-mediated discovery of common bacterial blight resistance. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:202-204. [PMID: 39786160 PMCID: PMC11714743 DOI: 10.1093/jxb/erae497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
This article comments on:
Gaudin C, Preveaux A, Aubineau N, Le Goff D, Jacques M-A, Chen NWG. 2025. A dTALE approach demonstrates that induction of common bean OVATE Family Protein 7 promotes resistance to common bacterial blight. Journal of Experimental Botany 76, 607–620. https://doi.org/10.1093/jxb/erae433
Collapse
Affiliation(s)
- Sujit Jung Karki
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
7
|
Garcia DA, Pierre AF, Quirino L, Acharya G, Vasudevan A, Pei Y, Chung E, Chang JYH, Lee S, Endow M, Kuakini K, Bresnahan M, Chumpitaz M, Rajappan K, Parker S, Chivukula P, Boehme SA, Diaz-Trelles R. Lipid nanoparticle delivery of TALEN mRNA targeting LPA causes gene disruption and plasma lipoprotein(a) reduction in transgenic mice. Mol Ther 2025; 33:90-103. [PMID: 39563033 PMCID: PMC11764125 DOI: 10.1016/j.ymthe.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/11/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Lipoprotein(a), or Lp(a), is encoded by the LPA gene and is a causal genetic risk factor for cardiovascular disease. Individuals with high Lp(a) are at risk for cardiovascular morbidity and are refractory to standard lipid-lowering agents. Lp(a)-lowering therapies currently in clinical development require repetitive dosing, while a gene editing approach presents an opportunity for a single-dose treatment. In this study, mRNAs encoding transcription activator-like effector nucleases (TALENs) were designed to target human LPA for gene disruption and permanent Lp(a) reduction. TALEN mRNAs were screened in vitro and found to cause on-target gene editing and target protein reduction with minimal off-target editing. TALEN mRNAs were then encapsulated with LUNAR, a proprietary lipid nanoparticle (LNP), and administered to transgenic mice that expressed a human LPA transgene. A single dose of TALEN mRNA-LNPs reduced plasma Lp(a) levels in mice by over 80%, which was sustained for at least 5 weeks. Moreover, both standard and long-read next-generation sequencing confirmed the presence of gene-inactivating deletions at LPA transgene loci. Overall, this study serves as a proof-of-concept for using TALEN-mediated gene editing to disrupt LPA in vivo, paving the way for the development of a feasible gene editing therapy for patients with high Lp(a).
Collapse
Affiliation(s)
- Daniel A Garcia
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA.
| | - Abigail F Pierre
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Linda Quirino
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Grishma Acharya
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Aishwarya Vasudevan
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Yihua Pei
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Emily Chung
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Jason Y H Chang
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Samuel Lee
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Michael Endow
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Kristen Kuakini
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Michael Bresnahan
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Maria Chumpitaz
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Kumar Rajappan
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Suezanne Parker
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Pad Chivukula
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Stefen A Boehme
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA.
| | - Ramon Diaz-Trelles
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| |
Collapse
|
8
|
Choudhery MS, Arif T, Mahmood R. Bidirectional Prime Editing: Combining Precision with Versatility for Genome Editing. Cell Reprogram 2024. [PMID: 39689871 DOI: 10.1089/cell.2024.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Genome editing techniques have potential to revolutionize the field of life sciences. Several limitations associated with traditional gene editing techniques have been resolved with the development of prime editors that precisely edit the DNA without double-strand breaks (DSBs). To further improve the efficiency, several modified versions of prime editing (PE) system have been introduced. Bi-directional PE (Bi-PE), for example, uses two PE guide RNAs enabling broad and improved editing efficiency. It has the potential to alter, delete, integrate, and replace larger genome sequences and edit multiple bases at the same time. This review aims to discuss the typical gene editing methods that offer DSB-mediated repair mechanisms, followed by the latest advances in genome editing technologies with non-DSB-mediated repair. The review specifically focuses on Bi-PE being an efficient tool to edit the human genome. In addition, the review discusses the applications, limitations, and future perspectives of Bi-PE for gene editing.
Collapse
Affiliation(s)
- Mahmood S Choudhery
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Taqdees Arif
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Ruhma Mahmood
- Allama Iqbal Medical College, Jinnah Hospital, Lahore, Pakistan
| |
Collapse
|
9
|
Liang W, Zhou Y, Xu Z, Li Y, Chen X, Yu C, Hou F, Dai B, Zhong L, Bi JA, Xie L, Yan C, Chen J, Yang Y. Identification and Genome Sequencing of Novel Virulent Strains of Xanthomonas oryzae pv. oryzae Causing Rice Bacterial Blight in Zhejiang, China. Pathogens 2024; 13:1083. [PMID: 39770343 PMCID: PMC11728688 DOI: 10.3390/pathogens13121083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is the causative agent of rice bacterial blight (RBB), resulting in substantial harvest losses and posing a challenge to maintaining a stable global supply. In this study, Xoo strains isolated from Shaoxing, Quzhou, and Taizhou, where RBB occurred most frequently in Zhejiang Province in 2019, were selected as the subjects of research. Three isolated pathogenic bacteria of ZXooS (from Shaoxing), ZXooQ (from Quzhou), and ZXooT (from Taizhou) were all identified as novel Xoo strains. These novel strains demonstrate greater virulence compared to Zhe173, the previous epidemic Xoo strain from Zhejiang Province. Subsequent genomic sequencing and analysis revealed that there existed significant differences in the genome sequence, especially in effector genes corresponding to some known rice resistance (R) genes between the novel strains and Zhe173. The sequence alignment of avirulent genes (effector genes) indicated that nucleic and amino acid sequences of AvrXa5, AvrXa7, AvrXa10, and AvrXa23 in the novel strains varied prominently from those in Zhe173. Interestingly, it seemed that only the genome of ZXooQ might contain the AvrXa3 gene. In addition, the phylogenetic analysis of 61 Xoo strains revealed that the novel strains were situated in a distinct evolutionary clade separate from Zhe173. These results here suggest that the emergence of novel Xoo strains may lead to resistance loss of some R genes used in commercial rice varieties, potentially serving as one of the factors leading to RBB resurgence in Zhejiang Province, China.
Collapse
Affiliation(s)
- Weifang Liang
- College of Plant Protection, Yunnan Agricultural University, Kunming 650000, China;
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China; (Y.Z.); (X.C.)
| | - Yuhang Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China; (Y.Z.); (X.C.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315000, China; (Z.X.); (Y.L.); (C.Y.)
| | - Zhongtian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315000, China; (Z.X.); (Y.L.); (C.Y.)
| | - Yiyuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315000, China; (Z.X.); (Y.L.); (C.Y.)
| | - Xinyu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China; (Y.Z.); (X.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Chulang Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315000, China; (Z.X.); (Y.L.); (C.Y.)
| | - Fan Hou
- Wuwangnong Seed Shareholding Co., Ltd., Hangzhou 310000, China;
| | - Binfeng Dai
- Taizhou Agroecological Protection and Quality Safety Center, Taizhou 318000, China; (B.D.); (L.Z.)
| | - Liequan Zhong
- Taizhou Agroecological Protection and Quality Safety Center, Taizhou 318000, China; (B.D.); (L.Z.)
| | - Ji-An Bi
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China; (J.-A.B.); (C.Y.)
| | - Liujie Xie
- Taizhou Academy of Agricultural Sciences, Taizhou 318000, China;
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China; (J.-A.B.); (C.Y.)
| | - Jianping Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming 650000, China;
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China; (Y.Z.); (X.C.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315000, China; (Z.X.); (Y.L.); (C.Y.)
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China; (Y.Z.); (X.C.)
| |
Collapse
|
10
|
Hutin M, Carpenter S, Baruah S, Campos P, Boyer K, Andriantsimialona D, Rapanarivo SH, Pruvost O, Becker N, Gagnevin L, Koebnik R, Szurek B, Koita O, Bogdanove AJ, Rieux A. Evolutionary and Epidemiological Insights from Historical and Modern Genomes of Xanthomonas oryzae pv. oryzicola, the Causal Agent of Bacterial Leaf Streak of Rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:814-818. [PMID: 39283163 DOI: 10.1094/mpmi-05-24-0062-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak (BLS) of rice. This disease represents a major constraint for rice production, which is a crop feeding more than half of the world's population. Xoc was first described in 1918 in the Philippines and is prevalent in southeast Asia. Today, BLS is also omnipresent in both East- and West-Africa, where the disease was first reported in the early 1980s. The appearance of Xoc in Africa decades after its first report in Asia suggests that the disease could have been introduced from Asia to Africa. Strict conservation of five transcription activator-like (TAL) effectors in whole-genome sequences of 10 strains of Xoc including three from West-Africa and seven from Asia also support this hypothesis. East-Africa, especially Madagascar, where the disease was first described in 1985 is located at the interface between Asia and Africa, hence representing an interesting region to explore the link between strains from Asia and West-Africa. In this study, we did the following: (i) reconstructed the genome of a historical Xoc strain from a herbarium specimen of rice showing symptoms of BLS that was sampled in Madagascar in 1931, 50 years before the first description of the disease, and (ii) sequenced nine new modern strains, including five from Madagascar and East-Africa. The analysis of those new genomes along with previously published ones shed light within the evolutionary and epidemiological history of Xoc. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mathilde Hutin
- Plant Health Institute of Montpellier, Institut Agro, University of Montpellier, IRD, CIRAD, INRAE, Montpellier, France
| | - Sara Carpenter
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Shivrajani Baruah
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Paola Campos
- CIRAD, UMR PVBMT, Saint Pierre F-97410, La Réunion, France
| | - Karine Boyer
- CIRAD, UMR PVBMT, Saint Pierre F-97410, La Réunion, France
| | - Dodelys Andriantsimialona
- TAN Herbarium, Parc Botanique et Zoologique de Tsimbazaza (PBZT), Département FLORE, Antananarivo, Madagascar
| | - Solo Hery Rapanarivo
- TAN Herbarium, Parc Botanique et Zoologique de Tsimbazaza (PBZT), Département FLORE, Antananarivo, Madagascar
| | | | - Nathalie Becker
- CIRAD, UMR PVBMT, Saint Pierre F-97410, La Réunion, France
- Muséum national d'histoire naturelle, UMR ISYEB (Institut de Systématique Évolution Biodiversité), MNHN, CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005, Paris, France
| | - Lionel Gagnevin
- Plant Health Institute of Montpellier, Institut Agro, University of Montpellier, IRD, CIRAD, INRAE, Montpellier, France
| | - Ralf Koebnik
- Plant Health Institute of Montpellier, Institut Agro, University of Montpellier, IRD, CIRAD, INRAE, Montpellier, France
| | - Boris Szurek
- Plant Health Institute of Montpellier, Institut Agro, University of Montpellier, IRD, CIRAD, INRAE, Montpellier, France
| | - Ousmane Koita
- Laboratoire de Biologie Moléculaire Appliquée, Université des Sciences, des Techniques et des Technologies de Bamako, Faculté des Sciences et Techniques, BP E 3206, Bamako, Mali
| | - Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Adrien Rieux
- CIRAD, UMR PVBMT, Saint Pierre F-97410, La Réunion, France
| |
Collapse
|
11
|
Han X, Li S, Zeng Q, Sun P, Wu D, Wu J, Yu X, Lai Z, Milne RJ, Kang Z, Xie K, Li G. Genetic engineering, including genome editing, for enhancing broad-spectrum disease resistance in crops. PLANT COMMUNICATIONS 2024:101195. [PMID: 39568207 DOI: 10.1016/j.xplc.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
Plant diseases, caused by a wide range of pathogens, severely reduce crop yield and quality, posing a significant threat to global food security. Developing broad-spectrum resistance (BSR) in crops is a key strategy for controlling crop diseases and ensuring sustainable crop production. Cloning disease-resistance (R) genes and understanding their underlying molecular mechanisms provide new genetic resources and strategies for crop breeding. Novel genetic engineering and genome editing tools have accelerated the study and engineering of BSR genes in crops, which is the primary focus of this review. We first summarize recent advances in understanding the plant immune system, followed by an examination of the molecular mechanisms underlying BSR in crops. Finally, we highlight diverse strategies employed to achieve BSR, including gene stacking to combine multiple R genes, multiplexed genome editing of susceptibility genes and promoter regions of executor R genes, editing cis-regulatory elements to fine-tune gene expression, RNA interference, saturation mutagenesis, and precise genomic insertions. The genetic studies and engineering of BSR are accelerating the breeding of disease-resistant cultivars, contributing to crop improvement and enhancing global food security.
Collapse
Affiliation(s)
- Xinyu Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shumin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingdong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Jianguo Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ricky J Milne
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Niu D, Zhao Q, Xu L, Lin K. Physiological and Molecular Mechanisms of Lepidopteran Insects: Genomic Insights and Applications of Genome Editing for Future Research. Int J Mol Sci 2024; 25:12360. [PMID: 39596426 PMCID: PMC11594828 DOI: 10.3390/ijms252212360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Lepidopteran insects are a major threat to global agriculture, causing significant crop losses and economic damage. Traditional pest control methods are becoming less effective due to the rapid evolution of insecticide resistance. This study explores the current status and genomic characteristics of 1315 Lepidopteran records, alongside an overview of relevant research, utilizing advanced functional genomics techniques, including RNA-seq and CRISPR/Cas9 gene-editing technologies to uncover the molecular mechanisms underlying insecticide resistance. Our genomic analysis revealed significant variability in genome size, assembly quality, and chromosome number, which may influence species' biology and resistance mechanisms. We identified key resistance-associated genes and pathways, including detoxification and metabolic pathways, which help these insects evade chemical control. By employing CRISPR/Cas9 gene-editing techniques, we directly manipulated resistance-associated genes to confirm their roles in resistance, demonstrating their potential for targeted interventions in pest management. These findings emphasize the value of integrating genomic data into the development of effective and sustainable pest control strategies, reducing reliance on chemical insecticides and promoting environmentally friendly integrated pest management (IPM) approaches. Our study highlights the critical role of functional genomics in IPM and its potential to provide long-term solutions to the growing challenge of Lepidopteran resistance.
Collapse
Affiliation(s)
- Dongsheng Niu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| | - Qing Zhao
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| | - Linbo Xu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| | - Kejian Lin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| |
Collapse
|
13
|
Arrías PN, Osmanli Z, Peralta E, Chinestrad PM, Monzon AM, Tosatto SCE. Diversity and structural-functional insights of alpha-solenoid proteins. Protein Sci 2024; 33:e5189. [PMID: 39465903 PMCID: PMC11514114 DOI: 10.1002/pro.5189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/29/2024]
Abstract
Alpha-solenoids are a significant and diverse subset of structured tandem repeat proteins (STRPs) that are important in various domains of life. This review examines their structural and functional diversity and highlights their role in critical cellular processes such as signaling, apoptosis, and transcriptional regulation. Alpha-solenoids can be classified into three geometric folds: low curvature, high curvature, and corkscrew, as well as eight subfolds: ankyrin repeats; Huntingtin, elongation factor 3, protein phosphatase 2A, and target of rapamycin; armadillo repeats; tetratricopeptide repeats; pentatricopeptide repeats; Pumilio repeats; transcription activator-like; and Sel-1 and Sel-1-like repeats. These subfolds represent distinct protein families with unique structural properties and functions, highlighting the versatility of alpha-solenoids. The review also discusses their association with disease, highlighting their potential as therapeutic targets and their role in protein design. Advances in state-of-the-art structure prediction methods provide new opportunities and challenges in the functional characterization and classification of this kind of fold, emphasizing the need for continued development of methods for their identification and proper data curation and deposition in the main databases.
Collapse
Affiliation(s)
- Paula Nazarena Arrías
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - Zarifa Osmanli
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Estefanía Peralta
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | | | | | - Silvio C. E. Tosatto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Institute of Biomembranes, Bioenergetics and Molecular BiotechnologiesNational Research Council (CNR‐IBIOM)BariItaly
| |
Collapse
|
14
|
Wang Y, Geng M, Pan R, Zhang T, Lu X, Zhen X, Che Y, Li R, Liu J, Chen Y, Guo J, Yao Y. Editing of the MeSWEET10a promoter yields bacterial blight resistance in cassava cultivar SC8. MOLECULAR PLANT PATHOLOGY 2024; 25:e70010. [PMID: 39344009 PMCID: PMC11439743 DOI: 10.1111/mpp.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
Cassava starch is a widely used raw material for industrial production and food source for people. However, cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) results in severe yield losses and is the most destructive bacterial disease in all worldwide cassava-growing regions. Xam11 is a highly pathogenic subspecies from China that infects the Chinese local cassava South China No. 8 (SC8) cultivar with marked symptoms. This study showed that the transcription activator-like effector TALE20Xam11 of Xam11 strain regulates the expression of disease-susceptibility gene MeSWEET10a by binding to the EBETALE20 region of the MeSWEET10a promoter in cassava cultivar SC8. CRISPR/Cas9-generated mutations of the EBETALE20 region resulted in a significant reduction in MeSWEET10a expression after infection by Xam11, correlating with reduced disease symptoms, smaller lesion sizes and decreased bacterial proliferation compared with the wild type. Importantly, the edited plants maintained normal growth, development and yield characteristics under greenhouse conditions. The results lay a research foundation for breeding resistant cassava cultivar SC8 to bacterial blight.
Collapse
Affiliation(s)
- Yajie Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
| | - Mengting Geng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and ForestryHainan UniversityHaikouChina
| | - Ranran Pan
- College of Agriculture & BiotechnologyZhejiang UniversityHangzhouChina
| | - Tong Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and ForestryHainan UniversityHaikouChina
| | - Xiaohua Lu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and ForestryHainan UniversityHaikouChina
| | - Xinghou Zhen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and ForestryHainan UniversityHaikouChina
| | - Yannian Che
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and ForestryHainan UniversityHaikouChina
| | - Ruimei Li
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
| | - Jiao Liu
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
| | - Yinhua Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and ForestryHainan UniversityHaikouChina
| | - Jianchun Guo
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
| | - Yuan Yao
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
| |
Collapse
|
15
|
Ghavi Hossein-Zadeh N. An overview of recent technological developments in bovine genomics. Vet Anim Sci 2024; 25:100382. [PMID: 39166173 PMCID: PMC11334705 DOI: 10.1016/j.vas.2024.100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Cattle are regarded as highly valuable animals because of their milk, beef, dung, fur, and ability to draft. The scientific community has tried a number of strategies to improve the genetic makeup of bovine germplasm. To ensure higher returns for the dairy and beef industries, researchers face their greatest challenge in improving commercially important traits. One of the biggest developments in the last few decades in the creation of instruments for cattle genetic improvement is the discovery of the genome. Breeding livestock is being revolutionized by genomic selection made possible by the availability of medium- and high-density single nucleotide polymorphism (SNP) arrays coupled with sophisticated statistical techniques. It is becoming easier to access high-dimensional genomic data in cattle. Continuously declining genotyping costs and an increase in services that use genomic data to increase return on investment have both made a significant contribution to this. The field of genomics has come a long way thanks to groundbreaking discoveries such as radiation-hybrid mapping, in situ hybridization, synteny analysis, somatic cell genetics, cytogenetic maps, molecular markers, association studies for quantitative trait loci, high-throughput SNP genotyping, whole-genome shotgun sequencing to whole-genome mapping, and genome editing. These advancements have had a significant positive impact on the field of cattle genomics. This manuscript aimed to review recent advances in genomic technologies for cattle breeding and future prospects in this field.
Collapse
Affiliation(s)
- Navid Ghavi Hossein-Zadeh
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, 41635-1314, Iran
| |
Collapse
|
16
|
Roeschlin RA, Azad SM, Grove RP, Chuan A, García L, Niñoles R, Uviedo F, Villalobos L, Massimino ME, Marano MR, Boch J, Gadea J. Designer TALEs enable discovery of cell death-inducer genes. PLANT PHYSIOLOGY 2024; 195:2985-2996. [PMID: 38723194 PMCID: PMC11288752 DOI: 10.1093/plphys/kiae230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/26/2024] [Indexed: 08/02/2024]
Abstract
Transcription activator-like effectors (TALEs) in plant-pathogenic Xanthomonas bacteria activate expression of plant genes and support infection or cause a resistance response. PthA4AT is a TALE with a particularly short DNA-binding domain harboring only 7.5 repeats which triggers cell death in Nicotiana benthamiana; however, the genetic basis for this remains unknown. To identify possible target genes of PthA4AT that mediate cell death in N. benthamiana, we exploited the modularity of TALEs to stepwise enhance their specificity and reduce potential target sites. Substitutions of individual repeats suggested that PthA4AT-dependent cell death is sequence specific. Stepwise addition of repeats to the C-terminal or N-terminal end of the repeat region narrowed the sequence requirements in promoters of target genes. Transcriptome profiling and in silico target prediction allowed the isolation of two cell death inducer genes, which encode a patatin-like protein and a bifunctional monodehydroascorbate reductase/carbonic anhydrase protein. These two proteins are not linked to known TALE-dependent resistance genes. Our results show that the aberrant expression of different endogenous plant genes can cause a cell death reaction, which supports the hypothesis that TALE-dependent executor resistance genes can originate from various plant processes. Our strategy further demonstrates the use of TALEs to scan genomes for genes triggering cell death and other relevant phenotypes.
Collapse
Affiliation(s)
- Roxana A Roeschlin
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
| | - Sepideh M Azad
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - René P Grove
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Ana Chuan
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - Lucila García
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina
| | - Regina Niñoles
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - Facundo Uviedo
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
| | - Liara Villalobos
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
| | - Maria E Massimino
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - María R Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - José Gadea
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| |
Collapse
|
17
|
Elliott K, Veley KM, Jensen G, Gilbert KB, Norton J, Kambic L, Yoder M, Weil A, Motomura-Wages S, Bart RS. CRISPR/Cas9-generated mutations in a sugar transporter gene reduce cassava susceptibility to bacterial blight. PLANT PHYSIOLOGY 2024; 195:2566-2578. [PMID: 38701041 PMCID: PMC11288762 DOI: 10.1093/plphys/kiae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Bacteria from the genus Xanthomonas are prolific phytopathogens that elicit disease in over 400 plant species. Xanthomonads carry a repertoire of specialized proteins called transcription activator-like (TAL) effectors that promote disease and pathogen virulence by inducing the expression of host susceptibility (S) genes. Xanthomonas phaseoli pv. manihotis (Xpm) causes bacterial blight on the staple food crop cassava (Manihot esculenta Crantz). The Xpm effector TAL20 induces ectopic expression of the S gene Manihot esculenta Sugars Will Eventually be Exported Transporter 10a (MeSWEET10a), which encodes a sugar transporter that contributes to cassava bacterial blight (CBB) susceptibility. We used CRISPR/Cas9 to generate multiple cassava lines with edits to the MeSWEET10a TAL20 effector binding site and/or coding sequence. In several of the regenerated lines, MeSWEET10a expression was no longer induced by Xpm, and in these cases, we observed reduced CBB disease symptoms post Xpm infection. Because MeSWEET10a is expressed in cassava flowers, we further characterized the reproductive capability of the MeSWEET10a promoter and coding sequence mutants. Lines were crossed to themselves and to wild-type plants. The results indicated that expression of MeSWEET10a in female, but not male, flowers is critical to produce viable F1 seed. In the case of promoter mutations that left the coding sequence intact, viable F1 progeny were recovered. Taken together, these results demonstrate that blocking MeSWEET10a induction is a viable strategy for decreasing cassava susceptibility to CBB and that ideal lines will contain promoter mutations that block TAL effector binding while leaving endogenous expression of MeSWEET10a unaltered.
Collapse
Affiliation(s)
- Kiona Elliott
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
- Division of Biological and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Kira M Veley
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | - Greg Jensen
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | | | - Joanna Norton
- College of Tropical Agriculture & Human Resources, University of Hawaii at Manoa, Hilo, HI 96720, USA
| | - Lukas Kambic
- College of Tropical Agriculture & Human Resources, University of Hawaii at Manoa, Hilo, HI 96720, USA
| | - Marisa Yoder
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | - Alex Weil
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | - Sharon Motomura-Wages
- College of Tropical Agriculture & Human Resources, University of Hawaii at Manoa, Hilo, HI 96720, USA
| | - Rebecca S Bart
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| |
Collapse
|
18
|
Timilsina S, Kaur A, Sharma A, Ramamoorthy S, Vallad GE, Wang N, White FF, Potnis N, Goss EM, Jones JB. Xanthomonas as a Model System for Studying Pathogen Emergence and Evolution. PHYTOPATHOLOGY 2024; 114:1433-1446. [PMID: 38648116 DOI: 10.1094/phyto-03-24-0084-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In this review, we highlight studies in which whole-genome sequencing, comparative genomics, and population genomics have provided unprecedented insights into past and ongoing pathogen evolution. These include new understandings of the adaptive evolution of secretion systems and their effectors. We focus on Xanthomonas pathosystems that have seen intensive study and improved our understanding of pathogen emergence and evolution, particularly in the context of host specialization: citrus canker, bacterial blight of rice, and bacterial spot of tomato and pepper. Across pathosystems, pathogens appear to follow a pattern of bursts of evolution and diversification that impact host adaptation. There remains a need for studies on the mechanisms of host range evolution and genetic exchange among closely related but differentially host-specialized species and to start moving beyond the study of specific strain and host cultivar pairwise interactions to thinking about these pathosystems in a community context.
Collapse
Affiliation(s)
- Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Amandeep Kaur
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Anuj Sharma
- Department of Horticultural Sciences, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | | | - Gary E Vallad
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Nian Wang
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
19
|
Zhao M, Bao J, Wang Z, Sun P, Liu J, Yan Y, Ge G. Utilisation of Lactiplantibacillus plantarum and propionic acid to improve silage quality of amaranth before and after wilting: fermentation quality, microbial communities, and their metabolic pathway. Front Microbiol 2024; 15:1415290. [PMID: 38903783 PMCID: PMC11187283 DOI: 10.3389/fmicb.2024.1415290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Objective The aim of this study was to investigate the effects of Lactiplantibacillus plantarum (L. plantarum) and propionic acid (PA) on fermentation characteristics and microbial community of amaranth (Amaranthus hypochondriaus) silage with different moisture contents. Methods Amaranth was harvested at maturity stage and prepared for ensiling. There were two moisture content gradients (80%: AhG, 70%: AhS; fresh material: FM) and three treatments (control: CK, L. plantarum: LP, propionic acid: PA) set up, and silages were opened after 60 d of ensiling. Results The results showed that the addition of L. plantarum and PA increased lactic acid (LA) content and decreased pH of amaranth after fermentation. In particular, the addition of PA significantly increased crude protein content (p < 0.05). LA content was higher in wilted silage than in high-moisture silage, and it was higher with the addition of L. plantarum and PA (p < 0.05). The dominant species of AhGLP, AhSCK, AhSLP and AhSPA were mainly L. plantarum, Lentilactobacillus buchneri and Levilactobacillus brevis. The dominant species in AhGCK include Enterobacter cloacae, and Xanthomonas oryzae was dominated in AhGPA, which affected fermentation quality. L. plantarum and PA acted synergistically after ensiling to accelerate the succession of dominant species from gram-negative to gram-positive bacteria, forming a symbiotic microbial network centred on lactic acid bacteria. Both wilting and additive silage preparation methods increased the degree of dominance of global and overview maps and carbohydrate metabolism, and decreased the degree of dominance of amino acid metabolism categories. Conclusion In conclusion, the addition of L. plantarum to silage can effectively improve the fermentation characteristics of amaranth, increase the diversity of bacterial communities, and regulate the microbial community and its functional metabolic pathways to achieve the desired fermentation effect.
Collapse
Affiliation(s)
- Muqier Zhao
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Jian Bao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Zhijun Wang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Pengbo Sun
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Jingyi Liu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuting Yan
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Gentu Ge
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
20
|
Yuan YG, Liu SZ, Farhab M, Lv MY, Zhang T, Cao SX. Genome editing: An insight into disease resistance, production efficiency, and biomedical applications in livestock. Funct Integr Genomics 2024; 24:81. [PMID: 38709433 DOI: 10.1007/s10142-024-01364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
One of the primary concerns for the survival of the human species is the growing demand for food brought on by an increasing global population. New developments in genome-editing technology present promising opportunities for the growth of wholesome and prolific farm animals. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. Genome editing entails modifying genetic material by removing, adding, or manipulating particular DNA sequences from a particular locus in a way that does not happen naturally. The three primary genome editors are CRISPR/Cas 9, TALENs, and ZFNs. Each of these enzymes is capable of precisely severing nuclear DNA at a predetermined location. One of the most effective inventions is base editing, which enables single base conversions without the requirement for a DNA double-strand break (DSB). As reliable methods for precise genome editing in studies involving animals, cytosine and adenine base editing are now well-established. Effective zygote editing with both cytosine and adenine base editors (ABE) has resulted in the production of animal models. Both base editors produced comparable outcomes for the precise editing of point mutations in somatic cells, advancing the field of gene therapy. This review focused on the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of ZFNs, TALENs, and CRISPR/Cas9 base editors, and prime editing in diverse lab and farm animals. Additionally, we address the methodologies that can be used for gene regulation, base editing, and epigenetic alterations, as well as the significance of genome editing in animal models to better reflect real disease. We also look at methods designed to increase the effectiveness and precision of gene editing tools. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. This review is an overview of the existing knowledge of the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of zinc finger nucleases (ZFNs), transcription-activator-like endonucleases (TALENs), and clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR/Cas 9), base editors and prime editing in diverse lab and farm animals, which will offer better and healthier products for the entire human race.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Song-Zi Liu
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Muhammad Farhab
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Mei-Yun Lv
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ting Zhang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212499, China
| | - Shao-Xiao Cao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Jiangsu Provincial Engineering Research Center for Precision animal Breeding, Nanjing, 210014, China
| |
Collapse
|
21
|
Dimitrievska M, Bansal D, Vitale M, Strouboulis J, Miccio A, Nicolaides KH, El Hoss S, Shangaris P, Jacków-Malinowska J. Revolutionising healing: Gene Editing's breakthrough against sickle cell disease. Blood Rev 2024; 65:101185. [PMID: 38493007 DOI: 10.1016/j.blre.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Recent advancements in gene editing illuminate new potential therapeutic approaches for Sickle Cell Disease (SCD), a debilitating monogenic disorder caused by a point mutation in the β-globin gene. Despite the availability of several FDA-approved medications for symptomatic relief, allogeneic hematopoietic stem cell transplantation (HSCT) remains the sole curative option, underscoring a persistent need for novel treatments. This review delves into the growing field of gene editing, particularly the extensive research focused on curing haemoglobinopathies like SCD. We examine the use of techniques such as CRISPR-Cas9 and homology-directed repair, base editing, and prime editing to either correct the pathogenic variant into a non-pathogenic or wild-type one or augment fetal haemoglobin (HbF) production. The article elucidates ways to optimize these tools for efficacious gene editing with minimal off-target effects and offers insights into their effective delivery into cells. Furthermore, we explore clinical trials involving alternative SCD treatment strategies, such as LentiGlobin therapy and autologous HSCT, distilling the current findings. This review consolidates vital information for the clinical translation of gene editing for SCD, providing strategic insights for investigators eager to further the development of gene editing for SCD.
Collapse
Affiliation(s)
- Marija Dimitrievska
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - Dravie Bansal
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - Marta Vitale
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - John Strouboulis
- Red Cell Hematology Lab, Comprehensive Cancer Center, School of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR1163, Paris 75015, France
| | - Kypros H Nicolaides
- Women and Children's Health, School of Life Course & Population Sciences, Kings College London, London, United Kingdom; Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom
| | - Sara El Hoss
- Red Cell Hematology Lab, Comprehensive Cancer Center, School of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom.
| | - Panicos Shangaris
- Women and Children's Health, School of Life Course & Population Sciences, Kings College London, London, United Kingdom; Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| | | |
Collapse
|
22
|
Liu L, Li Y, Wang Q, Xu X, Yan J, Wang Y, Wang Y, Shah SMA, Peng Y, Zhu Z, Xu Z, Chen G. Constructed Rice Tracers Identify the Major Virulent Transcription Activator-Like Effectors of the Bacterial Leaf Blight Pathogen. RICE (NEW YORK, N.Y.) 2024; 17:30. [PMID: 38656724 PMCID: PMC11043257 DOI: 10.1186/s12284-024-00704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) injects major transcription activator-like effectors (TALEs) into plant cells to activate susceptibility (S) genes for promoting bacterial leaf blight in rice. Numerous resistance (R) genes have been used to construct differential cultivars of rice to identify races of Xoo, but the S genes were rarely considered. Different edited lines of rice cv. Kitaake were constructed using CRISPR/Cas9 gene-editing, including single, double and triple edits in the effector-binding elements (EBEs) located in the promoters of rice S genes OsSWEET11a, OsSWEET13 and OsSWEET14. The near-isogenic lines (NILs) were used as tracers to detect major TALEs (PthXo1, PthXo2, PthXo3 and their variants) in 50 Xoo strains. The pathotypes produced on the tracers determined six major TALE types in the 50 Xoo strains. The presence of the major TALEs in Xoo strains was consistent with the expression of S genes in the tracers, and it was also by known genome sequences. The EBE editing had little effect on agronomic traits, which was conducive to balancing yield and resistance. The rice-tracers generated here provide a valuable tool to track major TALEs of Xoo in Asia which then shows what rice cultivars are needed to combat Xoo in the field.
Collapse
Affiliation(s)
- Linlin Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Li
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiameng Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiali Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yijie Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Syed Mashab Ali Shah
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongzheng Peng
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhangfei Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengyin Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
23
|
Zheng Y, Li Y, Zhou K, Li T, VanDusen NJ, Hua Y. Precise genome-editing in human diseases: mechanisms, strategies and applications. Signal Transduct Target Ther 2024; 9:47. [PMID: 38409199 PMCID: PMC10897424 DOI: 10.1038/s41392-024-01750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.
Collapse
Affiliation(s)
- Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Nathan J VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
24
|
Xu Z, Xu X, Li Y, Liu L, Wang Q, Wang Y, Wang Y, Yan J, Cheng G, Zou L, Zhu B, Chen G. Tal6b/AvrXa27A, a hidden TALE targeting the susceptibility gene OsSWEET11a and the resistance gene Xa27 in rice. PLANT COMMUNICATIONS 2024; 5:100721. [PMID: 37735868 PMCID: PMC10873877 DOI: 10.1016/j.xplc.2023.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) secretes transcription activator-like effectors (TALEs) to activate rice susceptibility (S) genes, causing bacterial blight (BB), as well as resistance (R) genes, leading to defense against BB. This activation follows a gene-for-gene paradigm that results in an arms race between the TALE of the pathogen and effector-binding elements (EBEs) in the promoters of host genes. In this study, we characterized a novel TALE, designated Tal6b/AvrXa27A, that activates the rice S gene OsSWEET11a and the rice R gene Xa27. Tal6b/AvrXa27A is a member of the AvrXa27/TalAO class and contains 16 repeat variable diresidues (RVDs); one RVD is altered and one is deleted in Tal6b/AvrXa27A compared with AvrXa27, a known avirulence (avr) effector of Xa27. Tal6b/AvrXa27A can transcriptionally activate the expression of Xa27 and OsSWEET11a via EBEs in their corresponding promoters, leading to effector-triggered immunity and susceptibility, respectively. The 16 RVDs in Tal6b/AvrXa27A have no obvious similarity to the 24 RVDs in the effector PthXo1, but EBETal6b and EBEPthXo1 are overlapped in the OsSWEET11a promoter. Tal6b/AvrXa27A is prevalent among Asian Xoo isolates, but PthXo1 has only been reported in the Philippine strain PXO99A. Genome editing of EBETal6b in the OsSWEET11a promoter further confirmed the requirement for OsSWEET11a expression in Tal6b/AvrXa27A-dependent susceptibility to Xoo. Moreover, Tal6b/AvrXa27A resulted in higher transcription of Xa27 than of OsSWEET11a, which led to a strong, rapid resistance response that blocked disease development. These findings suggest that Tal6b/AvrXa27A has a dual function: triggering resistance by activating Xa27 gene expression as an avirulence factor and inducing transcription of the S gene OsSWEET11a, resulting in virulence. Intriguingly, Tal6b/AvrXa27A, but not AvrXa27, can bind to the promoter of OsSWEET11a. The underlying recognition mechanism for this binding remains unclear but appears to deviate from the currently accepted TALE code.
Collapse
Affiliation(s)
- Zhengyin Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiameng Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linlin Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yijie Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiali Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanyun Cheng
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lifang Zou
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
25
|
Fu ZW, Li JH, Gao X, Wang SJ, Yuan TT, Lu YT. Pathogen-induced methylglyoxal negatively regulates rice bacterial blight resistance by inhibiting OsCDR1 protease activity. MOLECULAR PLANT 2024; 17:325-341. [PMID: 38178576 DOI: 10.1016/j.molp.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB), a globally devastating disease of rice (Oryza sativa) that is responsible for significant crop loss. Sugars and sugar metabolites are important for pathogen infection, providing energy and regulating events associated with defense responses; however, the mechanisms by which they regulate such events in BB are unclear. As an inevitable sugar metabolite, methylglyoxal (MG) is involved in plant growth and responses to various abiotic stresses, but the underlying mechanisms remain enigmatic. Whether and how MG functions in plant biotic stress responses is almost completely unknown. Here, we report that the Xoo strain PXO99 induces OsWRKY62.1 to repress transcription of OsGLY II genes by directly binding to their promoters, resulting in overaccumulation of MG. MG negatively regulates rice resistance against PXO99: osglyII2 mutants with higher MG levels are more susceptible to the pathogen, whereas OsGLYII2-overexpressing plants with lower MG content show greater resistance than the wild type. Overexpression of OsGLYII2 to prevent excessive MG accumulation confers broad-spectrum resistance against the biotrophic bacterial pathogens Xoo and Xanthomonas oryzae pv. oryzicola and the necrotrophic fungal pathogen Rhizoctonia solani, which causes rice sheath blight. Further evidence shows that MG reduces rice resistance against PXO99 through CONSTITUTIVE DISEASE RESISTANCE 1 (OsCDR1). MG modifies the Arg97 residue of OsCDR1 to inhibit its aspartic protease activity, which is essential for OsCDR1-enhanced immunity. Taken together, these findings illustrate how Xoo promotes infection by hijacking a sugar metabolite in the host plant.
Collapse
Affiliation(s)
- Zheng-Wei Fu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jian-Hui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Shi-Jia Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
26
|
Wal P, Aziz N, Singh CP, Rasheed A, Tyagi LK, Agrawal A, Wal A. Current Landscape of Gene Therapy for the Treatment of Cardiovascular Disorders. Curr Gene Ther 2024; 24:356-376. [PMID: 38288826 DOI: 10.2174/0115665232268840231222035423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 07/16/2024]
Abstract
Cardiovascular disorders (CVD) are the primary cause of death worldwide. Multiple factors have been accepted to cause cardiovascular diseases; among them, smoking, physical inactivity, unhealthy eating habits, age, and family history are flag-bearers. Individuals at risk of developing CVD are suggested to make drastic habitual changes as the primary intervention to prevent CVD; however, over time, the disease is bound to worsen. This is when secondary interventions come into play, including antihypertensive, anti-lipidemic, anti-anginal, and inotropic drugs. These drugs usually undergo surgical intervention in patients with a much higher risk of heart failure. These therapeutic agents increase the survival rate, decrease the severity of symptoms and the discomfort that comes with them, and increase the overall quality of life. However, most individuals succumb to this disease. None of these treatments address the molecular mechanism of the disease and hence are unable to halt the pathological worsening of the disease. Gene therapy offers a more efficient, potent, and important novel approach to counter the disease, as it has the potential to permanently eradicate the disease from the patients and even in the upcoming generations. However, this therapy is associated with significant risks and ethical considerations that pose noteworthy resistance. In this review, we discuss various methods of gene therapy for cardiovascular disorders and address the ethical conundrum surrounding it.
Collapse
Affiliation(s)
- Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| | - Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| | | | - Azhar Rasheed
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| | - Lalit Kumar Tyagi
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201306, India
| | - Ankur Agrawal
- School of Pharmacy, Jai Institute of Pharmaceutical Sciences and Research, Gwalior, MP, India
| | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| |
Collapse
|
27
|
McTavish KJ, Almeida RND, Tersigni J, Raimundi MK, Gong Y, Wang PW, Gontijo GF, de Souza RM, de Resende MLV, Desveaux D, Guttman DS. Pseudomonas syringae coffee blight is associated with the horizontal transfer of plasmid-encoded type III effectors. THE NEW PHYTOLOGIST 2024; 241:409-429. [PMID: 37953378 DOI: 10.1111/nph.19364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023]
Abstract
The emergence of new pathogens is an ongoing threat to human health and agriculture. While zoonotic spillovers received considerable attention, the emergence of crop diseases is less well studied. Here, we identify genomic factors associated with the emergence of Pseudomonas syringae bacterial blight of coffee. Fifty-three P. syringae strains from diseased Brazilian coffee plants were sequenced. Comparative and evolutionary analyses were used to identify loci associated with coffee blight. Growth and symptomology assays were performed to validate the findings. Coffee isolates clustered in three lineages, including primary phylogroups PG3 and PG4, and secondary phylogroup PG11. Genome-wide association study of the primary PG strains identified 37 loci, including five effectors, most of which were encoded on a plasmid unique to the PG3 and PG4 coffee strains. Evolutionary analyses support the emergence of coffee blight in PG4 when the coffee-associated plasmid and associated effectors derived from a divergent plasmid carried by strains associated with other hosts. This plasmid was only recently transferred into PG3. Natural diversity and CRISPR-Cas9 plasmid curing were used to show that strains with the coffee-associated plasmid grow to higher densities and cause more severe disease symptoms in coffee. This work identifies possible evolutionary mechanisms underlying the emergence of a new lineage of coffee pathogens.
Collapse
Affiliation(s)
- Kathryn J McTavish
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
| | - Renan N D Almeida
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
| | - Jonathan Tersigni
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
| | - Melina K Raimundi
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - Yunchen Gong
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M6S 2Y1, Canada
| | - Pauline W Wang
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M6S 2Y1, Canada
| | - Guilherme F Gontijo
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - Ricardo M de Souza
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - Mario L V de Resende
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M6S 2Y1, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M6S 2Y1, Canada
| |
Collapse
|
28
|
Liu N, Dong W, Yang H, Li JH, Chiu TY. Application of artificial scaffold systems in microbial metabolic engineering. Front Bioeng Biotechnol 2023; 11:1328141. [PMID: 38188488 PMCID: PMC10771841 DOI: 10.3389/fbioe.2023.1328141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
In nature, metabolic pathways are often organized into complex structures such as multienzyme complexes, enzyme molecular scaffolds, or reaction microcompartments. These structures help facilitate multi-step metabolic reactions. However, engineered metabolic pathways in microbial cell factories do not possess inherent metabolic regulatory mechanisms, which can result in metabolic imbalance. Taking inspiration from nature, scientists have successfully developed synthetic scaffolds to enhance the performance of engineered metabolic pathways in microbial cell factories. By recruiting enzymes, synthetic scaffolds facilitate the formation of multi-enzyme complexes, leading to the modulation of enzyme spatial distribution, increased enzyme activity, and a reduction in the loss of intermediate products and the toxicity associated with harmful intermediates within cells. In recent years, scaffolds based on proteins, nucleic acids, and various organelles have been developed and employed to facilitate multiple metabolic pathways. Despite varying degrees of success, synthetic scaffolds still encounter numerous challenges. The objective of this review is to provide a comprehensive introduction to these synthetic scaffolds and discuss their latest research advancements and challenges.
Collapse
Affiliation(s)
- Nana Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| | - Wei Dong
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| | - Huanming Yang
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| | - Jing-Hua Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Tsan-Yu Chiu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| |
Collapse
|
29
|
Richter I, Uzum Z, Wein P, Molloy EM, Moebius N, Stinear TP, Pidot SJ, Hertweck C. Transcription activator-like effectors from endosymbiotic bacteria control the reproduction of their fungal host. mBio 2023; 14:e0182423. [PMID: 37971247 PMCID: PMC10746252 DOI: 10.1128/mbio.01824-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Interactions between fungi and bacteria are critically important in ecology, medicine, and biotechnology. In this study, we shed light on factors that promote the persistence of a toxin-producing, phytopathogenic Rhizopus-Mycetohabitans symbiosis that causes severe crop losses in Asia. We present an unprecedented case where bacterially produced transcription activator-like (TAL) effectors are key to maintaining a stable endosymbiosis. In their absence, fungal sporulation is abrogated, leading to collapse of the phytopathogenic alliance. The Mycetohabitans TAL (MTAL)-mediated mechanism of host control illustrates a unique role of bacterial effector molecules that has broader implications, potentially serving as a model to understand how prokaryotic symbionts interact with their eukaryotic hosts.
Collapse
Affiliation(s)
- Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Zerrin Uzum
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Evelyn M. Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Nadine Moebius
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute, Melbourne, Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Doherty Institute, Melbourne, Australia
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
30
|
Goettelmann F, Koebnik R, Roman-Reyna V, Studer B, Kölliker R. High genomic plasticity and unique features of Xanthomonas translucens pv. graminis revealed through comparative analysis of complete genome sequences. BMC Genomics 2023; 24:741. [PMID: 38053038 DOI: 10.1186/s12864-023-09855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Xanthomonas translucens pv. graminis (Xtg) is a major bacterial pathogen of economically important forage grasses, causing severe yield losses. So far, genomic resources for this pathovar consisted mostly of draft genome sequences, and only one complete genome sequence was available, preventing comprehensive comparative genomic analyses. Such comparative analyses are essential in understanding the mechanisms involved in the virulence of pathogens and to identify virulence factors involved in pathogenicity. RESULTS In this study, we produced high-quality, complete genome sequences of four strains of Xtg, complementing the recently obtained complete genome sequence of the Xtg pathotype strain. These genomic resources allowed for a comprehensive comparative analysis, which revealed a high genomic plasticity with many chromosomal rearrangements, although the strains were highly related. A high number of transposases were exclusively found in Xtg and corresponded to 413 to 457 insertion/excision transposable elements per strain. These mobile genetic elements are likely to be involved in the observed genomic plasticity and may play an important role in the adaptation of Xtg. The pathovar was found to lack a type IV secretion system, and it possessed the smallest set of type III effectors in the species. However, three XopE and XopX family effectors were found, while in the other pathovars of the species two or less were present. Additional genes that were specific to the pathovar were identified, including a unique set of minor pilins of the type IV pilus, 17 TonB-dependent receptors (TBDRs), and 11 plant cell wall degradative enzymes. CONCLUSION These results suggest a high adaptability of Xtg, conferred by the abundance of mobile genetic elements, which could play a crucial role in pathogen adaptation. The large amount of such elements in Xtg compared to other pathovars of the species could, at least partially, explain its high virulence and broad host range. Conserved features that were specific to Xtg were identified, and further investigation will help to determine genes that are essential to pathogenicity and host adaptation of Xtg.
Collapse
Affiliation(s)
- Florian Goettelmann
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Ralf Koebnik
- Plant Health Institute of Montpellier, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Veronica Roman-Reyna
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Roland Kölliker
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
31
|
You Y, Jiang Z. The eINTACT method for studying nuclear changes in host plant cells targeted by bacterial effectors in native infection contexts. Nat Protoc 2023; 18:3173-3193. [PMID: 37697105 DOI: 10.1038/s41596-023-00879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/23/2023] [Indexed: 09/13/2023]
Abstract
Type-III effector proteins are major virulence determinants that most gram-negative bacteria inject into host cells to manipulate cellular processes for infection. Because effector-targeted cells are embedded and underrepresented in infected plant tissues, it is technically challenging to isolate them for focused studies of effector-induced cellular changes. This protocol describes a novel technique, effector-inducible isolation of nuclei tagged in specific cell types (eINTACT), for isolating biotin-labeled nuclei from Arabidopsis plant cells that have received Xanthomonas bacterial effectors by using streptavidin-coated magnetic beads. This protocol is an extension of the existing Nature Protocols Protocol of the INTACT method for the affinity-based purification of nuclei of specific cell types in the context of developmental biology. In a phytopathology scenario, our protocol addresses how to obtain eINTACT transgenic lines and compatible bacterial mutants, verify the eINTACT system and purify nuclei of bacterial effector-recipient cells from infected tissues. Differential analyses of purified nuclei from plants infected by bacteria expressing the effector of interest and those from plants infected by effector-deletion bacterial mutants will reveal the effector-dependent nuclear changes in targeted host cells. Provided that the eINTACT system is available, the infection experiment takes 5 d, and the procedures, from collecting bacteria-infected leaves to obtaining nuclei of effector-targeted cells, can be completed in 4 h. eINTACT is a unique method for isolating high-quality nuclei from bacterial effector-targeted host cells in native infection contexts. This method is adaptable to study the functions of type-III effectors from numerous gram-negative bacteria in host plants that are amenable to transformation.
Collapse
Affiliation(s)
- Yuan You
- Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany.
- Department of General Genetics, Center for Plant Molecular Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany.
| | - Zhihao Jiang
- Department of Plant Biochemistry, Center for Plant Molecular Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
Heiden N, Roman-Reyna V, Curland RD, Dill-Macky R, Jacobs JM. Comparative Genomics of Barley-Infecting Xanthomonas translucens Shows Overall Genetic Similarity but Globally Distributed Virulence Factor Diversity. PHYTOPATHOLOGY 2023; 113:2056-2061. [PMID: 35727947 DOI: 10.1094/phyto-04-22-0113-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Xanthomonas translucens pv. translucens (Xtt) is a global barley patho-gen and a concern for resistance breeding and regulation. Long-read whole genome sequences allow in-depth understanding of pathogen diversity. We have completed long-read PacBio sequencing of two Minnesotan Xtt strains and an in-depth analysis of available Xtt genomes. We found that average nucleotide identity (ANI)-based approaches organize Xtt strains different from the previous standard multilocus sequencing analysis approach. According to ANI, Xtt forms a separate clade from X. translucens pv. undulosa and consists of three main groups which are represented on multiple continents. Some virulence factors, such as 17 Type III-secreted effectors, are highly conserved and offer potential targets for the elicitation of broad resistance. However, there is a high degree of variation in virulence factors, meaning that germplasm should be screened for resistance with a diverse panel of Xtt.
Collapse
Affiliation(s)
- Nathaniel Heiden
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Veronica Roman-Reyna
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Rebecca D Curland
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Ruth Dill-Macky
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Jonathan M Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
33
|
Heiden N, Broders KA, Hutin M, Castro MO, Roman-Reyna V, Toth H, Jacobs JM. Bacterial Leaf Streak Diseases of Plants: Symptom Convergence in Monocot Plants by Distant Pathogenic Xanthomonas Species. PHYTOPATHOLOGY 2023; 113:2048-2055. [PMID: 37996392 DOI: 10.1094/phyto-05-23-0155-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Bacterial leaf streak (BLS) is a disease of monocot plants caused by Xanthomonas translucens on small grains, X. vasicola on maize and sorghum, and X. oryzae on rice. These three pathogens cause remarkably similar symptomology in their host plants. Despite causing similar symptoms, BLS pathogens are dispersed throughout the larger Xanthomonas phylogeny. Each aforementioned species includes strain groups that do not cause BLS and instead cause vascular disease. In this commentary, we hypothesize that strains of X. translucens, X. vasicola, and X. oryzae convergently evolved to cause BLS due to shared evolutionary pressures. We examined the diversity of secreted effectors, which may be important virulence factors for BLS pathogens and their evolution. We discuss evidence that differences in gene regulation and abilities to manipulate plant hormones may also separate BLS pathogens from other Xanthomonas species or pathovars. BLS is becoming an increasing issue across the three pathosystems. Overall, we hope that a better understanding of conserved mechanisms used by BLS pathogens will enable researchers to translate findings across production systems and guide approaches to control this (re)emerging threat.
Collapse
Affiliation(s)
- Nathaniel Heiden
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Kirk A Broders
- U.S. Department of Agriculture-Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, U.S.A
| | - Mathilde Hutin
- Plant Health Institute of Montpellier, University of Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Mary Ortiz Castro
- Horticulture and Extension Programs, Colorado State University, Castle Rock, CO 80106, U.S.A
| | - Verónica Roman-Reyna
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Hannah Toth
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Jonathan M Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, U.S.A
| |
Collapse
|
34
|
Sundaresan Y, Yacoub S, Kodati B, Amankwa CE, Raola A, Zode G. Therapeutic applications of CRISPR/Cas9 gene editing technology for the treatment of ocular diseases. FEBS J 2023; 290:5248-5269. [PMID: 36877952 PMCID: PMC10480348 DOI: 10.1111/febs.16771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/04/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Ocular diseases are a highly heterogeneous group of phenotypes, caused by a spectrum of genetic variants and environmental factors that exhibit diverse clinical symptoms. As a result of its anatomical location, structure and immune privilege, the eye is an ideal system to assess and validate novel genetic therapies. Advances in genome editing have revolutionized the field of biomedical science, enabling researchers to understand the biology behind disease mechanisms and allow the treatment of several health conditions, including ocular pathologies. The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing facilitates efficient and specific genetic modifications in the nucleic acid sequence, resulting in permanent changes at the genomic level. This approach has advantages over other treatment strategies and is promising for the treatment of various genetic and non-genetic ocular conditions. This review provides an overview of the CRISPR/CRISPR-associated protein 9 (Cas9) system and summarizes recent advances in the therapeutic application of CRISPR/Cas9 for the treatment of various ocular pathologies, as well as future challenges.
Collapse
Affiliation(s)
| | | | - Bindu Kodati
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Charles E. Amankwa
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Akash Raola
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Gulab Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| |
Collapse
|
35
|
Mun W, Choi SY, Upatissa S, Mitchell RJ. Predatory bacteria as potential biofilm control and eradication agents in the food industry. Food Sci Biotechnol 2023; 32:1729-1743. [PMID: 37780591 PMCID: PMC10533476 DOI: 10.1007/s10068-023-01310-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilms are a major concern within the food industry since they have the potential to reduce productivity in situ (within the field), impact food stability and storage, and cause downstream food poisoning. Within this review, predatory bacteria as potential biofilm control and eradication agents are discussed, with a particular emphasis on the intraperiplasmic Bdellovibrio-and-like organism (BALO) grouping. After providing a brief overview of predatory bacteria and their activities, focus is given to how BALOs fulfill four attributes that are essential for biocontrol agents to be successful in the food industry: (1) Broad spectrum activity against pathogens, both plant and human; (2) Activity against biofilms; (3) Safety towards humans and animals; and (4) Compatibility with food. As predatory bacteria possess all of these characteristics, they represent a novel form of biofilm biocontrol that is ripe for use within the food industry.
Collapse
Affiliation(s)
- Wonsik Mun
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Seong Yeol Choi
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Sumudu Upatissa
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Robert J. Mitchell
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| |
Collapse
|
36
|
Zhang Q, Teng R, Yuan Z, Sheng S, Xiao Y, Deng H, Tang W, Wang F. Integrative transcriptomic analysis deciphering the role of rice bHLH transcription factor Os04g0301500 in mediating responses to biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1266242. [PMID: 37828923 PMCID: PMC10565216 DOI: 10.3389/fpls.2023.1266242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
Understanding the signaling pathways activated in response to these combined stresses and their crosstalk is crucial to breeding crop varieties with dual or multiple tolerances. However, most studies to date have predominantly focused on individual stress factors, leaving a significant gap in understanding plant responses to combined biotic and abiotic stresses. The bHLH family plays a multifaceted regulatory role in plant response to both abiotic and biotic stresses. In order to comprehensively identify and analyze the bHLH gene family in rice, we identified putative OsbHLHs by multi-step homolog search, and phylogenic analysis, molecular weights, isoelectric points, conserved domain screening were processed using MEGAX version 10.2.6. Following, integrative transcriptome analysis using 6 RNA-seq data including Xoo infection, heat, and cold stress was processed. The results showed that 106 OsbHLHs were identified and clustered into 17 clades. Os04g0301500 and Os04g0489600 are potential negative regulators of Xoo resistance in rice. In addition, Os04g0301500 was involved in non-freezing temperatures (around 4°C) but not to 10°C cold stresses, suggesting a complex interplay with temperature signaling pathways. The study concludes that Os04g0301500 may play a crucial role in integrating biotic and abiotic stress responses in rice, potentially serving as a key regulator of plant resilience under changing environmental conditions, which could be important for further multiple stresses enhancement and molecular breeding through genetic engineering in rice.
Collapse
Affiliation(s)
- Qiuping Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Rong Teng
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Ziyi Yuan
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Song Sheng
- Yuelushan Laboratory, Changsha, China
- College of Forest, Central South University of Forestry and Technology, Changsha, China
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Hybrid Rice Centre, Hunan Academy of Agricultural Science, Changsha, China
| | - Wenbang Tang
- Yuelushan Laboratory, Changsha, China
- Hunan Hybrid Rice Centre, Hunan Academy of Agricultural Science, Changsha, China
| | - Feng Wang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| |
Collapse
|
37
|
Ryu J, Adashi EY, Hennebold JD. The history, use, and challenges of therapeutic somatic cell and germline gene editing. Fertil Steril 2023; 120:528-538. [PMID: 36878350 PMCID: PMC10477338 DOI: 10.1016/j.fertnstert.2023.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
The advent of directed gene-editing technologies now over 10 years ago ushered in a new era of precision medicine wherein specific disease-causing mutations can be corrected. In parallel with developing new gene-editing platforms, optimizing their efficiency and delivery has been remarkable. With their development, there has been interest in using gene-editing systems for correcting disease mutations in differentiated somatic cells ex vivo or in vivo or for germline gene editing in gametes or 1-cell embryos to potentially limit genetic diseases in the offspring and in future generations. This review details the development and history of the current gene-editing systems and the advantages and challenges in their use for somatic cell and germline gene editing.
Collapse
Affiliation(s)
- Junghyun Ryu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Eli Y Adashi
- Department of Medical Science, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon; Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
38
|
Hao G, Naumann TA, Chen H, Bai G, McCormick S, Kim HS, Tian B, Trick HN, Naldrett MJ, Proctor R. Fusarium graminearum Effector FgNls1 Targets Plant Nuclei to Induce Wheat Head Blight. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:478-488. [PMID: 36853197 DOI: 10.1094/mpmi-12-22-0254-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most devastating diseases of wheat and barley worldwide. Effectors suppress host immunity and promote disease development. The genome of F. graminearum contains hundreds of effectors with unknown function. Therefore, investigations of the functions of these effectors will facilitate developing novel strategies to enhance wheat resistance to FHB. We characterized a F. graminearum effector, FgNls1, containing a signal peptide and multiple eukaryotic nuclear localization signals. A fusion protein of green fluorescent protein and FgNls1 accumulated in plant cell nuclei when transiently expressed in Nicotiana benthamiana. FgNls1 suppressed Bax-induced cell death when co-expressed in N. benthamiana. We revealed that the expression of FgNLS1 was induced in wheat spikes infected with F. graminearum. The Fgnls1 mutants significantly reduced initial infection and FHB spread within a spike. The function of FgNLS1 was restored in the Fgnls1-complemented strains. Wheat histone 2B was identified as an interacting protein by FgNls1-affinity chromatography. Furthermore, transgenic wheat plants that silence FgNLS1 expression had significantly lower FHB severity than control plants. This study demonstrates a critical role of FgNls1 in F. graminearum pathogenesis and indicates that host-induced gene silencing targeting F. graminearum effectors is a promising approach to enhance FHB resistance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Guixia Hao
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University, Peoria, IL 61604, U.S.A
| | - Todd A Naumann
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University, Peoria, IL 61604, U.S.A
| | - Hui Chen
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, U.S.A
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, U.S.A
| | - Susan McCormick
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University, Peoria, IL 61604, U.S.A
| | - Hye-Seon Kim
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University, Peoria, IL 61604, U.S.A
| | - Bin Tian
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Michael J Naldrett
- Nebraska Center for Biotechnology, Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Robert Proctor
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University, Peoria, IL 61604, U.S.A
| |
Collapse
|
39
|
Zhang Z, Bao X, Lin CP. Progress and Prospects of Gene Editing in Pluripotent Stem Cells. Biomedicines 2023; 11:2168. [PMID: 37626665 PMCID: PMC10452926 DOI: 10.3390/biomedicines11082168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Applying programmable nucleases in gene editing has greatly shaped current research in basic biology and clinical translation. Gene editing in human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), is highly relevant to clinical cell therapy and thus should be examined with particular caution. First, since all mutations in PSCs will be carried to all their progenies, off-target edits of editors will be amplified. Second, due to the hypersensitivity of PSCs to DNA damage, double-strand breaks (DSBs) made by gene editing could lead to low editing efficiency and the enrichment of cell populations with defective genomic safeguards. In this regard, DSB-independent gene editing tools, such as base editors and prime editors, are favored due to their nature to avoid these consequences. With more understanding of the microbial world, new systems, such as Cas-related nucleases, transposons, and recombinases, are also expanding the toolbox for gene editing. In this review, we discuss current applications of programmable nucleases in PSCs for gene editing, the efforts researchers have made to optimize these systems, as well as new tools that can be potentially employed for differentiation modeling and therapeutic applications.
Collapse
Affiliation(s)
| | | | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (Z.Z.); (X.B.)
| |
Collapse
|
40
|
Pérez-Quintero AL, Rodriguez-R LM, Cuesta-Morrondo S, Hakalová E, Betancurt-Anzola D, Valera LCC, Cardenas LAC, Matiz-Céron L, Jacobs JM, Roman-Reyna V, Muñoz AR, Giraldo AJB, Koebnik R. Comparative Genomics Identifies Conserved and Variable TAL Effectors in African Strains of the Cotton Pathogen Xanthomonas citri pv. malvacearum. PHYTOPATHOLOGY 2023; 113:1387-1393. [PMID: 37081724 DOI: 10.1094/phyto-12-22-0477-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Strains of Xanthomonas citri pv. malvacearum cause bacterial blight of cotton, a potentially serious threat to cotton production worldwide, including in sub-Saharan countries. Development of disease symptoms, such as water soaking, has been linked to the activity of a class of type 3 effectors, called transcription activator-like (TAL) effectors, which induce susceptibility genes in the host's cells. To gain further insight into the global diversity of the pathogen, to elucidate their repertoires of TAL effector genes, and to better understand the evolution of these genes in the cotton-pathogenic xanthomonads, we sequenced the genomes of three African strains of X. citri pv. malvacearum using nanopore technology. We show that the cotton-pathogenic pathovar of X. citri is a monophyletic lineage containing at least three distinct genetic subclades, which appear to be mirrored by their repertoires of TAL effectors. We observed an atypical level of TAL effector gene pseudogenization, which might be related to resistance genes that are deployed to control the disease. Our work thus contributes to a better understanding of the conservation and importance of TAL effectors in the interaction with the host plant, which can inform strategies for improving resistance against bacterial blight in cotton.
Collapse
Affiliation(s)
- Alvaro L Pérez-Quintero
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Luis M Rodriguez-R
- Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Sara Cuesta-Morrondo
- Departamento de Protección Vegetal, Laboratorio Bacteriología, Centro Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), 28040, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | - Daniela Betancurt-Anzola
- Universidad de Los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Laura Carolina Camelo Valera
- Universidad de Los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Luis Alberto Chica Cardenas
- Universidad de Los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Luisa Matiz-Céron
- Universidad de Los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Jonathan M Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, OH, U.S.A
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, U.S.A
| | - Veronica Roman-Reyna
- Department of Plant Pathology, The Ohio State University, Columbus, OH, U.S.A
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, U.S.A
| | - Alejandro Reyes Muñoz
- Universidad de Los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | | | - Ralf Koebnik
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
41
|
Diallo A, Wonni I, Sicard A, Blondin L, Gagnevin L, Vernière C, Szurek B, Hutin M. Genetic Structure and TALome Analysis Highlight a High Level of Diversity in Burkinabe Xanthomonas Oryzae pv. oryzae Populations. RICE (NEW YORK, N.Y.) 2023; 16:33. [PMID: 37523017 PMCID: PMC10390441 DOI: 10.1186/s12284-023-00648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
Bacterial Leaf Blight of rice (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major threat for food security in many rice growing countries including Burkina Faso, where the disease was first reported in the 1980's. In line with the intensification of rice cultivation in West-Africa, BLB incidence has been rising for the last 15 years. West-African strains of Xoo differ from their Asian counterparts as they (i) are genetically distant, (ii) belong to new races and, (iii) contain reduced repertoires of Transcription Activator Like (TAL) effector genes. In order to investigate the evolutionary dynamics of Xoo populations in Burkina Faso, 177 strains were collected from 2003 to 2018 in three regions where BLB is occurring. Multilocus VNTR Analysis (MLVA-14) targeting 10 polymorphic loci discriminated 24 haplotypes and showed that Xoo populations were structured according to their geographical localization and year of collection. Considering their major role in Xoo pathogenicity, we assessed the TAL effector repertoires of the 177 strains upon RFLP-based profiling. Surprisingly, an important diversity was revealed with up to eight different RFLP patterns. Finally, comparing neutral vs. tal effector gene diversity allowed to suggest scenarios underlying the evolutionary dynamics of Xoo populations in Burkina Faso, which is key to rationally guide the deployment of durably resistant rice varieties against BLB in the country.
Collapse
Affiliation(s)
- A Diallo
- INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - I Wonni
- INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso.
| | - A Sicard
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - L Blondin
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - L Gagnevin
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - C Vernière
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - B Szurek
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.
| | - M Hutin
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
42
|
Yang J, Fang Y, Wu H, Zhao N, Guo X, Mackon E, Peng H, Huang S, He Y, Qin B, Liu Y, Liu F, Chen S, Li R. Improvement of resistance to rice blast and bacterial leaf streak by CRISPR/Cas9-mediated mutagenesis of Pi21 and OsSULTR3;6 in rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1209384. [PMID: 37528980 PMCID: PMC10389665 DOI: 10.3389/fpls.2023.1209384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023]
Abstract
Rice (Oryza sativa L.) is a staple food in many countries around the world, particularly in China. The production of rice is seriously affected by the bacterial leaf streak and rice blast, which can reduce rice yield or even cause it to fail to be harvested. In this study, susceptible material 58B was edited by CRISPR/Cas9, targeting a target of the Pi21 gene and a target of the effector-binding element (EBE) of the OsSULTR3;6 gene, and the mutants 58b were obtained by Agrobacterium-mediated method. The editing efficiency of the two targets in the T0 generation was higher than 90.09%, the homozygous mutants were successfully selected in the T0 generation, and the homozygous mutation rate of each target was higher than 26.67%. The expression of the edited pi21 and EBE of Ossultr3;6 was significantly reduced, and the expression of defense responsive genes was significantly upregulated after infected with rice blast. The lesion areas of rice blast and bacterial leaf streak were significantly reduced in 58b, and the resistance of both was effectively improved. Furthermore, the gene editing events did not affect the agronomic traits of rice. In this study, the resistance of 58b to rice blast and bacterial leaf streak was improved simultaneously. This study provides a reference for using Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 (CRISPR/Cas9) to accelerate the improvement of rice varieties and the development of new materials for rice breeding.
Collapse
Affiliation(s)
- Jinlian Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Yaoyu Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Hu Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Neng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Xinying Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Enerand Mackon
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Haowen Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Sheng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yongqiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou, China
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Shengwu Chen
- Guangxi Lvhai Seed Co., Ltd, Marketing Department, Nanning, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
43
|
Patel A, Miles A, Strackhouse T, Cook L, Leng S, Patel S, Klinger K, Rudrabhatla S, Potlakayala SD. Methods of crop improvement and applications towards fortifying food security. Front Genome Ed 2023; 5:1171969. [PMID: 37484652 PMCID: PMC10361821 DOI: 10.3389/fgeed.2023.1171969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Agriculture has supported human life from the beginning of civilization, despite a plethora of biotic (pests, pathogens) and abiotic (drought, cold) stressors being exerted on the global food demand. In the past 50 years, the enhanced understanding of cellular and molecular mechanisms in plants has led to novel innovations in biotechnology, resulting in the introduction of desired genes/traits through plant genetic engineering. Targeted genome editing technologies such as Zinc-Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) have emerged as powerful tools for crop improvement. This new CRISPR technology is proving to be an efficient and straightforward process with low cost. It possesses applicability across most plant species, targets multiple genes, and is being used to engineer plant metabolic pathways to create resistance to pathogens and abiotic stressors. These novel genome editing (GE) technologies are poised to meet the UN's sustainable development goals of "zero hunger" and "good human health and wellbeing." These technologies could be more efficient in developing transgenic crops and aid in speeding up the regulatory approvals and risk assessments conducted by the US Departments of Agriculture (USDA), Food and Drug Administration (FDA), and Environmental Protection Agency (EPA).
Collapse
Affiliation(s)
- Aayushi Patel
- Penn State Harrisburg, Middletown, PA, United States
| | - Andrew Miles
- Penn State University Park, State College, University Park, PA, United States
| | | | - Logan Cook
- Penn State Harrisburg, Middletown, PA, United States
| | - Sining Leng
- Shanghai United Cell Biotechnology Co Ltd, Shanghai, China
| | - Shrina Patel
- Penn State Harrisburg, Middletown, PA, United States
| | | | | | | |
Collapse
|
44
|
de Souza-Neto RR, Vasconcelos FNDC, Teper D, Carvalho IGB, Takita MA, Benedetti CE, Wang N, de Souza AA. The Expansin Gene CsLIEXP1 Is a Direct Target of CsLOB1 in Citrus. PHYTOPATHOLOGY 2023; 113:1266-1277. [PMID: 36825333 DOI: 10.1094/phyto-11-22-0424-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transcription activator-like effectors are key virulence factors of Xanthomonas. They are secreted into host plant cells and mimic transcription factors inducing the expression of host susceptibility (S) genes. In citrus, CsLOB1 is a direct target of PthA4, the primary effector associated with citrus canker symptoms. CsLOB1 is a transcription factor, and its expression is required for canker symptoms induced by Xanthomonas citri subsp. citri. Several genes are up-regulated by PthA4; however, only CsLOB1 was described as an S gene induced by PthA4. Here, we investigated whether other up-regulated genes could be direct targets of PthA4 or CsLOB1. Seven up-regulated genes by PthA4 were investigated; however, an expansin-coding gene was more induced than CsLOB1. In Nicotiana benthamiana transient expression experiments, we demonstrate that the expansin-coding gene, referred here to as CsLOB1-INDUCED EXPANSIN 1 (CsLIEXP1), is not a direct target of PthA4, but CsLOB1. Interestingly, CsLIEXP1 was induced by CsLOB1 even without the predicted CsLOB1 binding site, which suggested that CsLOB1 has other unknown binding sites. We also investigated the minimum promoter regulated by CsLOB1, and this region and LOB1 domain were conserved among citrus species and relatives, which suggests that the interaction PthA4-CsLOB1-CsLIEXP1 is conserved in citrus species and relatives. This is the first study that experimentally demonstrated a CsLOB1 downstream target and lays the foundation to identify other new targets. In addition, we demonstrated that the CsLIEXP1 is a putative S gene indirectly induced by PthA4, which may serve as the target for genome editing to generate citrus canker-resistant varieties.
Collapse
Affiliation(s)
- Reinaldo Rodrigues de Souza-Neto
- Citrus Research Center "Sylvio Moreira", Agronomic Institute-IAC, Brazil
- Departament of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Brazil
| | | | - Doron Teper
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, Volcani Center, Israel
| | | | | | - Celso Eduardo Benedetti
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Brazil
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, U.S.A
| | | |
Collapse
|
45
|
Shahwar D, Ahn N, Kim D, Ahn W, Park Y. Mutagenesis-based plant breeding approaches and genome engineering: A review focused on tomato. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108473. [PMID: 37716439 DOI: 10.1016/j.mrrev.2023.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Breeding is the most important and efficient method for crop improvement involving repeated modification of the genetic makeup of a plant population over many generations. In this review, various accessible breeding approaches, such as conventional breeding and mutation breeding (physical and chemical mutagenesis and insertional mutagenesis), are discussed with respect to the actual impact of research on the economic improvement of tomato agriculture. Tomatoes are among the most economically important fruit crops consumed worldwide because of their high nutritional content and health-related benefits. Additionally, we summarize mutation-based mapping approaches, including Mutmap and MutChromeSeq, for the efficient mapping of several genes identified by random indel mutations that are beneficial for crop improvement. Difficulties and challenges in the adaptation of new genome editing techniques that provide opportunities to demonstrate precise mutations are also addressed. Lastly, this review focuses on various effective and convenient genome editing tools, such as RNA interference (RNAi), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9), and their potential for the improvement of numerous desirable traits to allow the development of better varieties of tomato and other horticultural crops.
Collapse
Affiliation(s)
- Durre Shahwar
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea
| | - Namju Ahn
- Daenong Seed Company, Hwasun-gun 58155, Republic of Korea
| | - Donghyun Kim
- Daenong Seed Company, Hwasun-gun 58155, Republic of Korea
| | - Wooseong Ahn
- Daenong Seed Company, Hwasun-gun 58155, Republic of Korea
| | - Younghoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea.
| |
Collapse
|
46
|
Yadav RK, Tripathi MK, Tiwari S, Tripathi N, Asati R, Chauhan S, Tiwari PN, Payasi DK. Genome Editing and Improvement of Abiotic Stress Tolerance in Crop Plants. Life (Basel) 2023; 13:1456. [PMID: 37511831 PMCID: PMC10381907 DOI: 10.3390/life13071456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Genome editing aims to revolutionise plant breeding and could assist in safeguarding the global food supply. The inclusion of a 12-40 bp recognition site makes mega nucleases the first tools utilized for genome editing and first generation gene-editing tools. Zinc finger nucleases (ZFNs) are the second gene-editing technique, and because they create double-stranded breaks, they are more dependable and effective. ZFNs were the original designed nuclease-based approach of genome editing. The Cys2-His2 zinc finger domain's discovery made this technique possible. Clustered regularly interspaced short palindromic repeats (CRISPR) are utilized to improve genetics, boost biomass production, increase nutrient usage efficiency, and develop disease resistance. Plant genomes can be effectively modified using genome-editing technologies to enhance characteristics without introducing foreign DNA into the genome. Next-generation plant breeding will soon be defined by these exact breeding methods. There is abroad promise that genome-edited crops will be essential in the years to come for improving the sustainability and climate-change resilience of food systems. This method also has great potential for enhancing crops' resistance to various abiotic stressors. In this review paper, we summarize the most recent findings about the mechanism of abiotic stress response in crop plants and the use of the CRISPR/Cas mediated gene-editing systems to improve tolerance to stresses including drought, salinity, cold, heat, and heavy metals.
Collapse
Affiliation(s)
- Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India
| | - Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Shailja Chauhan
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Prakash Narayan Tiwari
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | | |
Collapse
|
47
|
Lin Y, Sun M, Zhang J, Li M, Yang K, Wu C, Zulfiqar H, Lai H. Computational identification of promoters in Klebsiella aerogenes by using support vector machine. Front Microbiol 2023; 14:1200678. [PMID: 37250059 PMCID: PMC10215528 DOI: 10.3389/fmicb.2023.1200678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Promoters are the basic functional cis-elements to which RNA polymerase binds to initiate the process of gene transcription. Comprehensive understanding gene expression and regulation depends on the precise identification of promoters, as they are the most important component of gene expression. This study aimed to develop a machine learning-based model to predict promoters in Klebsiella aerogenes (K. aerogenes). In the prediction model, the promoter sequences in K. aerogenes genome were encoded by pseudo k-tuple nucleotide composition (PseKNC) and position-correlation scoring function (PCSF). Numerical features were obtained and then optimized using mRMR by combining with support vector machine (SVM) and 5-fold cross-validation (CV). Subsequently, these optimized features were inputted into SVM-based classifier to discriminate promoter sequences from non-promoter sequences in K. aerogenes. Results of 10-fold CV showed that the model could yield the overall accuracy of 96.0% and the area under the ROC curve (AUC) of 0.990. We hope that this model will provide help for the study of promoter and gene regulation in K. aerogenes.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Meili Sun
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Junjie Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Mingyan Li
- Chifeng Product Quality Inspection and Testing Centre, Chifeng, China
| | - Keli Yang
- Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji, China
| | - Chengyan Wu
- Baotou Teacher’s College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Hasan Zulfiqar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, China
| | - Hongyan Lai
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| |
Collapse
|
48
|
Zárate-Chaves CA, Audran C, Medina Culma CA, Escalon A, Javegny S, Gagnevin L, Thomas E, Pimparé LL, López CE, Jacobs JM, Noël LD, Koebnik R, Bernal AJ, Szurek B. CRISPRi in Xanthomonas demonstrates functional convergence of transcription activator-like effectors in two divergent pathogens. THE NEW PHYTOLOGIST 2023; 238:1593-1604. [PMID: 36764921 DOI: 10.1111/nph.18808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Functional analysis of large gene families in plant pathogens can be cumbersome using classical insertional mutagenesis. Additionally, Cas9 toxicity has limited the application of CRISPR-Cas9 for directed mutagenesis in bacteria. Here, we successfully applied a CRISPR interference strategy to investigate the cryptic role of the transcription activator-like effector (tale) multigene family in several plant-pathogenic Xanthomonas bacterial species, owing to their contribution to pathogen virulence. Single guide RNAs (sgRNAs) designed against Xanthomonas phaseoli pv manihotis tale conserved gene sequences efficiently silenced expression of all tales, with concomitant decrease in virulence and TALE-induced host gene expression. The system is readily translatable to other Xanthomonas species infecting rice, citrus, Brassica, and cassava, silencing up to 16 tales in a given strain using a single sgRNA. Complementation with plasmid-borne designer tales lacking the sgRNA-targeted sequence restored molecular and virulence phenotypes in all pathosystems. Our results evidenced that X. campestris pv campestris CN08 tales are relevant for symptom development in cauliflower. They also show that the MeSWEET10a sugar transporter is surprisingly targeted by the nonvascular cassava pathogen X. cassavae, highlighting a new example of TALE functional convergence between phylogenetically distant Xanthomonas. Overall, this novel technology provides a platform for discovery and rapid functional understanding of highly conserved gene families.
Collapse
Affiliation(s)
| | - Corinne Audran
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, 31326, France
| | - César Augusto Medina Culma
- Laboratorio de interacciones moleculares de microorganismos agrícolas (LIMMA), Universidad de los Andes, Bogotá, 111711, Colombia
| | - Aline Escalon
- CIRAD, UMR PVBMT, Saint-Pierre, 97410, La Réunion, France
| | | | - Lionel Gagnevin
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Emilie Thomas
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Léa-Lou Pimparé
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Camilo E López
- Manihot Biotec, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, 111321, Colombia
| | - Jonathan M Jacobs
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, 43210-1358, USA
| | - Laurent D Noël
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, 31326, France
| | - Ralf Koebnik
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Adriana Jimena Bernal
- Laboratorio de interacciones moleculares de microorganismos agrícolas (LIMMA), Universidad de los Andes, Bogotá, 111711, Colombia
| | - Boris Szurek
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| |
Collapse
|
49
|
Umer MJ, Zheng J, Yang M, Batool R, Abro AA, Hou Y, Xu Y, Gebremeskel H, Wang Y, Zhou Z, Cai X, Liu F, Zhang B. Insights to Gossypium defense response against Verticillium dahliae: the Cotton Cancer. Funct Integr Genomics 2023; 23:142. [PMID: 37121989 DOI: 10.1007/s10142-023-01065-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
The soil-borne pathogen Verticillium dahliae, also referred as "The Cotton Cancer," is responsible for causing Verticillium wilt in cotton crops, a destructive disease with a global impact. To infect cotton plants, the pathogen employs multiple virulence mechanisms such as releasing enzymes that degrade cell walls, activating genes that contribute to virulence, and using protein effectors. Conversely, cotton plants have developed numerous defense mechanisms to combat the impact of V. dahliae. These include strengthening the cell wall by producing lignin and depositing callose, discharging reactive oxygen species, and amassing hormones related to defense. Despite the efforts to develop resistant cultivars, there is still no permanent solution to Verticillium wilt due to a limited understanding of the underlying molecular mechanisms that drive both resistance and pathogenesis is currently prevalent. To address this challenge, cutting-edge technologies such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), host-induced gene silencing (HIGS), and gene delivery via nano-carriers could be employed as effective alternatives to control the disease. This article intends to present an overview of V. dahliae virulence mechanisms and discuss the different cotton defense mechanisms against Verticillium wilt, including morphophysiological and biochemical responses and signaling pathways including jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and strigolactones (SLs). Additionally, the article highlights the significance of microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) in gene expression regulation, as well as the different methods employed to identify and functionally validate genes to achieve resistance against this disease. Gaining a more profound understanding of these mechanisms could potentially result in the creation of more efficient strategies for combating Verticillium wilt in cotton crops.
Collapse
Affiliation(s)
- Muhammad Jawad Umer
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Zheng
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
| | - Mengying Yang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aamir Ali Abro
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Haileslassie Gebremeskel
- Mehoni Agricultural Research Center, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Yuhong Wang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - ZhongLi Zhou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.
| | - Baohong Zhang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
50
|
Singh C, Kumar R, Sehgal H, Bhati S, Singhal T, Gayacharan, Nimmy MS, Yadav R, Gupta SK, Abdallah NA, Hamwieh A, Kumar R. Unclasping potentials of genomics and gene editing in chickpea to fight climate change and global hunger threat. Front Genet 2023; 14:1085024. [PMID: 37144131 PMCID: PMC10153629 DOI: 10.3389/fgene.2023.1085024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/24/2023] [Indexed: 09/09/2023] Open
Abstract
Genomics and genome editing promise enormous opportunities for crop improvement and elementary research. Precise modification in the specific targeted location of a genome has profited over the unplanned insertional events which are generally accomplished employing unadventurous means of genetic modifications. The advent of new genome editing procedures viz; zinc finger nucleases (ZFNs), homing endonucleases, transcription activator like effector nucleases (TALENs), Base Editors (BEs), and Primer Editors (PEs) enable molecular scientists to modulate gene expressions or create novel genes with high precision and efficiency. However, all these techniques are exorbitant and tedious since their prerequisites are difficult processes that necessitate protein engineering. Contrary to first generation genome modifying methods, CRISPR/Cas9 is simple to construct, and clones can hypothetically target several locations in the genome with different guide RNAs. Following the model of the application in crop with the help of the CRISPR/Cas9 module, various customized Cas9 cassettes have been cast off to advance mark discrimination and diminish random cuts. The present study discusses the progression in genome editing apparatuses, and their applications in chickpea crop development, scientific limitations, and future perspectives for biofortifying cytokinin dehydrogenase, nitrate reductase, superoxide dismutase to induce drought resistance, heat tolerance and higher yield in chickpea to encounter global climate change, hunger and nutritional threats.
Collapse
Affiliation(s)
- Charul Singh
- USBT, Guru Govind Singh Indraprastha University, Delhi, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad Prayagraj, Prayagraj, India
| | - Hansa Sehgal
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, India
| | - Sharmista Bhati
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Tripti Singhal
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gayacharan
- Division of Germplasm Evaluation, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - M. S. Nimmy
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | | | | | - Aladdin Hamwieh
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Cairo, Egypt
| | - Rajendra Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|