1
|
Sun N, Su Z, Zheng X. Research progress of mosquito-borne virus mRNA vaccines. Mol Ther Methods Clin Dev 2025; 33:101398. [PMID: 39834558 PMCID: PMC11743085 DOI: 10.1016/j.omtm.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In recent years, mRNA vaccines have emerged as a leading technology for preventing infectious diseases due to their rapid development and high immunogenicity. These vaccines encode viral antigens, which are translated into antigenic proteins within host cells, inducing both humoral and cellular immune responses. This review systematically examines the progress in mRNA vaccine research for major mosquito-borne viruses, including dengue virus, Zika virus, Japanese encephalitis virus, Chikungunya virus, yellow fever virus, Rift Valley fever virus, and Venezuelan equine encephalitis virus. Enhancements in mRNA vaccine design, such as improvements to the 5' cap structure, 5'UTR, open reading frame, 3'UTR, and polyadenylation tail, have significantly increased mRNA stability and translation efficiency. Additionally, the use of lipid nanoparticles and polymer nanoparticles has greatly improved the delivery efficiency of mRNA vaccines. Currently, mRNA vaccines against mosquito-borne viruses are under development and clinical trials, showing promising protective effects. Future research should continue to optimize vaccine design and delivery systems to achieve broad-spectrum and long-lasting protection against various mosquito-borne virus infections.
Collapse
Affiliation(s)
- Ningze Sun
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Zhiwei Su
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Xiaoyan Zheng
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| |
Collapse
|
2
|
Li H, Zhang Y, Rao G, Zhang C, Guan Z, Huang Z, Li S, Lozach PY, Cao S, Peng K. Rift Valley fever virus coordinates the assembly of a programmable E3 ligase to promote viral replication. Cell 2024; 187:6896-6913.e15. [PMID: 39366381 DOI: 10.1016/j.cell.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024]
Abstract
Viruses encode strategies to degrade cellular proteins to promote infection and pathogenesis. Here, we revealed that the non-structural protein NSs of Rift Valley fever virus forms a filamentous E3 ligase to trigger efficient degradation of targeted proteins. Reconstitution in vitro and cryoelectron microscopy analysis with the 2.9-Å resolution revealed that NSs forms right-handed helical fibrils. The NSs filamentous oligomers associate with the cellular FBXO3 to form a remodeled E3 ligase. The NSs-FBXO3 E3 ligase targets the cellular TFIIH complex through the NSs-P62 interaction, leading to ubiquitination and proteasome-dependent degradation of the TFIIH complex. NSs-FBXO3-triggered TFIIH complex degradation resulted in robust inhibition of antiviral immunity and promoted viral pathogenesis in vivo. Furthermore, it is demonstrated that NSs can be programmed to target additional proteins for proteasome-dependent degradation, serving as a versatile targeted protein degrader. These results showed that a virulence factor forms a filamentous and programmable degradation machinery to induce organized degradation of cellular proteins to promote viral infection.
Collapse
Affiliation(s)
- Huiling Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yulan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Guibo Rao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Chongtao Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Zhenqiong Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ziyan Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shufen Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Pierre-Yves Lozach
- Université Claude Bernard Lyon 1, INRAE, EPHE, UMR754, Team iWays, Lyon, France
| | - Sheng Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
3
|
Quellec J, Piro-Megy C, Cannac M, Nisole S, Marty FH, Gosselet F, Shimizu F, Kanda T, Cêtre-Sossah C, Salinas S. Rift Valley fever virus is able to cross the human blood-brain barrier in vitro by direct infection with no deleterious effects. J Virol 2024; 98:e0126724. [PMID: 39345143 PMCID: PMC11494904 DOI: 10.1128/jvi.01267-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Rift Valley fever (RVF) is a zoonotic arboviral disease that causes recurrent epidemics in Africa that may trigger fatal neurological disorders. However, the mechanisms of neuroinvasion by which the RVF virus (RVFV) reaches the human central nervous system (CNS) remain poorly characterized. In particular, it is not clear how RVFV is able to cross the human blood-brain barrier (hBBB), which is a neurovascular endothelium that protects the brain by regulating brain and blood exchanges. To explore these mechanisms, we used an in vitro hBBB model to mimic in vivo hBBB selectiveness and apicobasal polarity. Our results highlight the ability of RVFV to cross the hBBB by direct infection in a non-structural protein S (NSs)-independent but strain-dependent manner, leading to astrocyte and pericyte infections. Interestingly, RVFV infection did not induce hBBB disruption and was associated with progressive elimination of infected cells with no impairment of the tight junction protein scaffold and barrier function. Our work also shows that NSs, a well described RVFV virulence factor, limited the establishment of the hBBB-induced innate immune response and subsequent lymphocyte recruitment. These results provide in vitro confirmation of the ability of RVFV to reach human CNS by direct infection of the hBBB without altering its barrier function, and provide new directions to explore human RVFV neurovirulence and neuroinvasion mechanisms.IMPORTANCEThe RVF virus (RVFV) is capable of infecting humans and inducing severe and fatal neurological disorders. Neuropathogenesis and human central nervous system (CNS) invasion mechanisms of RVFV are still unknown, with only historical studies of autopsy data from fatal human cases in the 1980s and exploration studies in rodent models. One of the gaps in understanding RVFV human pathogenesis is how RVFV is able to cross the blood-brain barrier (BBB) in order to reach the human CNS. For the first time, we show that RVFV is able to directly infect cells of the human BBB in vitro to release viral particles into the human CNS, a well-characterized neuroinvasion mechanism of pathogens. Furthermore, we demonstrate strain-dependent variability of this neuroinvasion mechanism, identifying possible viral properties that could be explored to prevent neurological disorders during RVFV outbreaks.
Collapse
Affiliation(s)
- Jordan Quellec
- ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, France
- PCCEI, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
| | | | - Marion Cannac
- IRIM, CNRS UMR9004, University of Montpellier, Montpellier, France
| | - Sébastien Nisole
- IRIM, CNRS UMR9004, University of Montpellier, Montpellier, France
| | - Florent H. Marty
- PCCEI, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
| | - Fabien Gosselet
- Blood Brain Barrier Laboratory, Faculty of Science Jean Perrin, Artois University, Lens, France
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | - Sara Salinas
- PCCEI, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
| |
Collapse
|
4
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
5
|
Kim SH, Choi HN, Jo MG, Lee B, Kim YJ, Seong H, Song C, Yoo HS, Lee JH, Seong D, Park HJ, Roh IS, Yang J, Lee MY, Kim HJ, Park SW, Kim M, Kim SJ, Kim M, Kim HJ, Hong KW, Yun SP. Activation of neurotoxic A1-reactive astrocytes by SFTS virus infection accelerates fatal brain damage in IFNAR1 -/- mice. J Med Virol 2024; 96:e29854. [PMID: 39135475 DOI: 10.1002/jmv.29854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) has a high mortality rate compared to other infectious diseases. SFTS is particularly associated with a high risk of mortality in immunocompromised individuals, while most patients who die of SFTS exhibit symptoms of severe encephalitis before death. However, the region of brain damage and mechanisms by which the SFTS virus (SFTSV) causes encephalitis remains unknown. Here, we revealed that SFTSV infects the brainstem and spinal cord, which are regions of the brain associated with respiratory function, and motor nerves in IFNAR1-/- mice. Further, we show that A1-reactive astrocytes are activated, causing nerve cell death, in infected mice. Primary astrocytes of SFTSV-infected IFNAR1-/- mice also induced neuronal cell death through the activation of A1-reactive astrocytes. Herein, we showed that SFTSV induces fatal neuroinflammation in the brain regions important for respiratory function and motor nerve, which may underlie mortality in SFTS patients. This study provides new insights for the treatment of SFTS, for which there is currently no therapeutic approach.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Ha Nyeoung Choi
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Min Gi Jo
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bina Lee
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Young Jin Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyemin Seong
- Department of Ophthalmology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Chieun Song
- Department of Ophthalmology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Han Sol Yoo
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong Hyun Lee
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Daseul Seong
- Division of foreign Animal Disease, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hyun-Jin Park
- Division of foreign Animal Disease, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - In-Soon Roh
- Division of foreign Animal Disease, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Jinsung Yang
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Biochemistry, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Min Young Lee
- College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Mingyo Kim
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Rheumatology Internal Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Seong Jae Kim
- Department of Ophthalmology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Minkyeong Kim
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Hyun-Jeong Kim
- Division of foreign Animal Disease, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- Laboratory Animal Research Center, Central Scientific Instrumentation Facility, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyung-Wook Hong
- Division of Infectious Diseases, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
6
|
Borrego B, Alonso C, Moreno S, de la Losa N, Sánchez-Cordón PJ, Brun A. The Rift Valley fever (RVF) vaccine candidate 40Fp8 shows an extreme attenuation in IFNARKO mice following intranasal inoculation. PLoS Negl Trop Dis 2024; 18:e0012011. [PMID: 39159263 PMCID: PMC11361746 DOI: 10.1371/journal.pntd.0012011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/29/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
Rift Valley fever (RVF) is an important zoonotic viral disease affecting several species of domestic and wild ruminants, causing major economic losses and dozens of human deaths in various geographical areas of Africa, where it is endemic. Although it is not present in Europe, there is a risk of its introduction and spread linked to globalisation and climate change. At present, the only measure that could help to prevent the disease is vaccination of flocks in areas at risk of RVF. Available live attenuated vaccines are an effective means of controlling the disease, but their use is often questioned due to residual virulence, particularly in susceptible hosts such as pregnant sheep. On the other hand, no vaccine is currently licensed for use in humans. The development of safe and effective vaccines is therefore a major area of research. In previous studies, we selected under selective mutagenic pressure a highly attenuated RVFV 56/74 virus variant called 40Fp8. This virus showed an extremely attenuated phenotype in both wild-type and immunodeficient A129 (IFNARKO) mice, yet was still able to induce protective immunity after a single inoculation, thus supporting its use as a safe, live attenuated vaccine. To further investigate its safety, in this work we have analysed the attenuation level of 40Fp8 in immunosuppressed mice (A129) when administered by the intranasal route, and compared it with other attenuated RVF viruses that are the basis of vaccines in use or in development. Our results show that 40Fp8 has a much higher attenuated level than these other viruses and confirm its potential as a candidate for safe RVF vaccine development.
Collapse
Affiliation(s)
- Belén Borrego
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Celia Alonso
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Sandra Moreno
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Nuria de la Losa
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Pedro José Sánchez-Cordón
- Department of INFECTIOUS DISEASES AND GLOBAL HEALTH, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Alejandro Brun
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| |
Collapse
|
7
|
Connors KA, Chapman NS, McMillen CM, Hoehl RM, McGaughey JJ, Frey ZD, Midgett M, Williams C, Reed DS, Crowe JE, Hartman AL. Potent neutralizing human monoclonal antibodies protect from Rift Valley fever encephalitis. JCI Insight 2024; 9:e180151. [PMID: 39088277 PMCID: PMC11457859 DOI: 10.1172/jci.insight.180151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Rift Valley fever (RVF) is an emerging arboviral disease affecting both humans and livestock. In humans, RVF displays a spectrum of clinical manifestations, including encephalitis. To date, there are no FDA-approved vaccines or therapeutics for human use, although several are in preclinical development. Few small-animal models of RVF encephalitis exist, further complicating countermeasure assessment. Human mAbs RVFV-140, RVFV-268, and RVFV-379 are recombinant potently neutralizing antibodies that prevent infection by binding the RVFV surface glycoproteins. Previous studies showed that both RVFV-268 and RVFV-140 improve survival in a lethal mouse model of disease, and RVFV-268 has prevented vertical transmission in a pregnant rat model of infection. Despite these successes, evaluation of mAbs in the context of brain disease has been limited. This is the first study to our knowledge to assess neutralizing antibodies for prevention of RVF neurologic disease using a rat model. Administration of RVFV-140, RVFV-268, or RVFV-379 24 hours prior to aerosol exposure to the virulent ZH501 strain of RVFV resulted in substantially enhanced survival and lack of neurological signs of disease. These results using a stringent and highly lethal aerosol infection model support the potential use of human mAbs to prevent the development of RVF encephalitis.
Collapse
Affiliation(s)
- Kaleigh A. Connors
- Department of Infectious Diseases and Microbiology, School of Public Health, and
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nathaniel S. Chapman
- Department of Pathology, Microbiology and Immunology, and
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cynthia M. McMillen
- Department of Infectious Diseases and Microbiology, School of Public Health, and
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan M. Hoehl
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jackson J. McGaughey
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zachary D. Frey
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Morgan Midgett
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Connor Williams
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James E. Crowe
- Department of Pathology, Microbiology and Immunology, and
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amy L. Hartman
- Department of Infectious Diseases and Microbiology, School of Public Health, and
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Griesman T, McMillen CM, Negatu SG, Hulahan JJ, Whig K, Dohnalová L, Dittmar M, Thaiss CA, Jurado KA, Schultz DC, Hartman AL, Cherry S. The lipopeptide Pam3CSK4 inhibits Rift Valley fever virus infection and protects from encephalitis. PLoS Pathog 2024; 20:e1012343. [PMID: 38935789 PMCID: PMC11236204 DOI: 10.1371/journal.ppat.1012343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/10/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
Rift Valley fever virus (RVFV) is an encephalitic bunyavirus that can infect neurons in the brain. There are no approved therapeutics that can protect from RVFV encephalitis. Innate immunity, the first line of defense against infection, canonically antagonizes viruses through interferon signaling. We found that interferons did not efficiently protect primary cortical neurons from RVFV, unlike other cell types. To identify alternative neuronal antiviral pathways, we screened innate immune ligands and discovered that the TLR2 ligand Pam3CSK4 inhibited RVFV infection, and other bunyaviruses. Mechanistically, we found that Pam3CSK4 blocks viral fusion, independent of TLR2. In a mouse model of RVFV encephalitis, Pam3CSK4 treatment protected animals from infection and mortality. Overall, Pam3CSK4 is a bunyavirus fusion inhibitor active in primary neurons and the brain, representing a new approach toward the development of treatments for encephalitic bunyavirus infections.
Collapse
Affiliation(s)
- Trevor Griesman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia Pennsylvania, United States of America
| | - Cynthia M. McMillen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Seble Getenet Negatu
- Department of Microbiology, University of Pennsylvania, Philadelphia Pennsylvania, Unites States of America
| | - Jesse J. Hulahan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia Pennsylvania, United States of America
| | - Kanupriya Whig
- High throughput screening core, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lenka Dohnalová
- Department of Microbiology, University of Pennsylvania, Philadelphia Pennsylvania, Unites States of America
| | - Mark Dittmar
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia Pennsylvania, United States of America
| | - Christoph A. Thaiss
- Department of Microbiology, University of Pennsylvania, Philadelphia Pennsylvania, Unites States of America
| | - Kellie A. Jurado
- Department of Microbiology, University of Pennsylvania, Philadelphia Pennsylvania, Unites States of America
| | - David C. Schultz
- High throughput screening core, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amy L. Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia Pennsylvania, United States of America
- High throughput screening core, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
9
|
Hassan AM, Zehairy AA, Awatif Abid AJ, Sohrab SS, Esam IA. Cloning and phylogenetic analysis of N protein gene from Rift Valley Fever Virus (RVFV). Bioinformation 2024; 20:91-102. [PMID: 38497067 PMCID: PMC10941780 DOI: 10.6026/973206300200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Rift Valley Fever (RVF) is a mosquito-borne viral zoonosis caused by RVFV in humans and livestock. Currently, there are no approved vaccines or antiviral therapies available. Additionally, in Saudi Arabia, there is a lack of a routine screening system to monitor RVFV in humans and animals which hinders to design and develop the preventive measures as well as the prediction of future outbreaks and the potential re-emergence of RVFV. Hence, we have performed the cloning, sequencing, and phylogenetic analysis, of nucleocapsid (N) protein gene. The sequence analysis showed high similarities with RVFV isolates reported from humans and animals. The highest similarity (99.5%) was observed with an isolate from Saudi Arabia (KU978775-Human) followed by 99.1% with four RVFV isolates (Human and Bovine) from other locations. A total of 51 nucleotides and 31 amino acid variations were observed throughout the N protein gene sequences. The phylogenetic relationship formed closed clusters with other isolates collected from Saudi Arabia. Thus, we report of the cloning, sequencing, and phylogenetic analysis of the RVFV-N protein gene from Saudi Arabia.
Collapse
Affiliation(s)
- Ahmed Mohamed Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arwa Ahmed Zehairy
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Al-Judaibi Awatif Abid
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibraheem Azhar Esam
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Yao X, Yin Q, Tian X, Zheng Y, Li H, Fu S, Lian Z, Zhang Y, Li F, Zhang W, He Y, Wang R, Wu B, Nie K, Xu S, Cheng J, Li X, Wang H, Liang G. Human and animal exposure to newly discovered sand fly viruses, China. Front Cell Infect Microbiol 2024; 13:1291937. [PMID: 38235489 PMCID: PMC10791927 DOI: 10.3389/fcimb.2023.1291937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction The Hedi virus (HEDV) and Wuxiang virus (WUXV) are newly discovered Bunyaviruses transmitted by sandflies. The geographical distribution of isolation of these two viruses continues to expand and it has been reported that WUXV causes neurological symptoms and even death in suckling mice. However, little is known about the prevalence of the two viruses in mammalian infections. Methods In order to understand the infection status of HEDV and WUXV in humans and animals from regions where the viruses have been isolated, this study used Western blotting to detect the positive rates of HEDV and WUXV IgG antibodies in serum samples from febrile patients, dogs, and chickens in the forementioned regions. Results The results showed that of the 29 human serum samples, 17.24% (5/29) tested positive for HEDV, while 68.96% (20/29) were positive for WUXV. In the 31 dog serum samples, 87.10% (27/31) were positive for HEDV and 70.97% (22/31) were positive for WUXV, while in the 36 chicken serum samples, 47.22% (17/36) were positive for HEDV, and 52.78% (19/36) were positive for WUXV. Discussion These findings suggest there are widespread infections of HEDV and WUXV in mammals (dogs, chickens) and humans from the regions where these viruses have been isolated. Moreover, the positive rate of HEDV infections was higher in local animals compared to that measured in human specimens. This is the first seroepidemiological study of these two sandfly-transmitted viruses. The findings of the study have practical implications for vector-borne viral infections and related zoonotic infections in China, as well as providing an important reference for studies on the relationship between sandfly-transmitted viruses and zoonotic infections outside of China.
Collapse
Affiliation(s)
- Xiaohui Yao
- Department of Arbovirus, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Qikai Yin
- Department of Arbovirus, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaodong Tian
- Department of Vector Biology, Shanxi Province Center for Disease Control and Prevention, Taiyuan, Shanxi, China
| | - Yuke Zheng
- Department of Arbovirus, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongyan Li
- Yangquan Center for Disease Control and Prevention, Yangquan, Shanxi, China
| | - Shihong Fu
- Department of Arbovirus, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhengmin Lian
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yijia Zhang
- Department of Arbovirus, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fan Li
- Department of Arbovirus, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weijia Zhang
- Department of Arbovirus, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying He
- Department of Arbovirus, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruichen Wang
- Department of Arbovirus, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bin Wu
- Yangquan Center for Disease Control and Prevention, Yangquan, Shanxi, China
| | - Kai Nie
- Department of Arbovirus, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Songtao Xu
- Department of Arbovirus, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingxia Cheng
- Department of Vector Biology, Shanxi Province Center for Disease Control and Prevention, Taiyuan, Shanxi, China
| | - Xiangdong Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Huanyu Wang
- Department of Arbovirus, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guodong Liang
- Department of Arbovirus, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
11
|
Weber F, Bouloy M, Lozach PY. An Introduction to Rift Valley Fever Virus. Methods Mol Biol 2024; 2824:1-14. [PMID: 39039402 DOI: 10.1007/978-1-0716-3926-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Rift Valley fever virus (RVFV) is a pathogen transmitted to humans and livestock via mosquito bites. This virus, which was discovered in Kenya in 1930, is considered by the World Health Organization (WHO) and the World Organisation for Animal Health (WOAH) to be associated with a high risk of causing large-scale epidemics. However, means dedicated to fighting RVFV have been limited, and despite recent research efforts, the virus remains poorly understood at both the molecular and cellular levels as well as at a broader scale of research in the field and in animal and human populations. In this introductory chapter of a methods book, we aim to provide readers with a concise overview of RVFV, from its ecology and transmission to the structural and genomic organization of virions and its life cycle in host cells.
Collapse
Affiliation(s)
- Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Michèle Bouloy
- Institut Pasteur, Université Paris Cité, Bunyavirus Molecular Genetics Unit, Paris, France
| | - Pierre-Yves Lozach
- IVPC UMR754, INRAE, Université Claude Bernard Lyon 1, EPHE, PSL Research University, Lyon, France.
| |
Collapse
|
12
|
Alkan C, Jurado-Cobena E, Ikegami T. Advancements in Rift Valley fever vaccines: a historical overview and prospects for next generation candidates. NPJ Vaccines 2023; 8:171. [PMID: 37925544 PMCID: PMC10625542 DOI: 10.1038/s41541-023-00769-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Rift Valley fever (RVF) is a zoonotic viral disease transmitted by mosquitoes and causes abortion storms, fetal malformations, and newborn animal deaths in livestock ruminants. In humans, RVF can manifest as hemorrhagic fever, encephalitis, or retinitis. Outbreaks of RVF have been occurring in Africa since the early 20th century and continue to pose a threat to both humans and animals in various regions such as Africa, Madagascar, the Comoros, Saudi Arabia, and Yemen. The development of RVF vaccines is crucial in preventing mortality and morbidity and reducing the spread of the virus. While several veterinary vaccines have been licensed in endemic countries, there are currently no licensed RVF vaccines for human use. This review provides an overview of the existing RVF vaccines, as well as potential candidates for future studies on RVF vaccine development, including next-generation vaccines that show promise in combating the disease in both humans and animals.
Collapse
Affiliation(s)
- Cigdem Alkan
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Eduardo Jurado-Cobena
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
- The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
13
|
Guo W, Lv C, Guo M, Zhao Q, Yin X, Zhang L. Innovative applications of artificial intelligence in zoonotic disease management. SCIENCE IN ONE HEALTH 2023; 2:100045. [PMID: 39077042 PMCID: PMC11262289 DOI: 10.1016/j.soh.2023.100045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/22/2023] [Indexed: 07/31/2024]
Abstract
Zoonotic diseases, transmitted between humans and animals, pose a substantial threat to global public health. In recent years, artificial intelligence (AI) has emerged as a transformative tool in the fight against diseases. This comprehensive review discusses the innovative applications of AI in the management of zoonotic diseases, including disease prediction, early diagnosis, drug development, and future prospects. AI-driven predictive models leverage extensive datasets to predict disease outbreaks and transmission patterns, thereby facilitating proactive public health responses. Early diagnosis benefits from AI-powered diagnostic tools that expedite pathogen identification and containment. Furthermore, AI technologies have accelerated drug discovery by identifying potential drug targets and optimizing candidate drugs. This review addresses these advancements, while also examining the promising future of AI in zoonotic disease control. We emphasize the pivotal role of AI in revolutionizing our approach to managing zoonotic diseases and highlight its potential to safeguard the health of both humans and animals on a global scale.
Collapse
Affiliation(s)
- Wenqiang Guo
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenrui Lv
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Guo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Qiwei Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyi Yin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Abstract
Rift Valley Fever Virus (RVFV) is a negative sense segmented RNA virus that can cause severe hemorrhagic fever. The tri-segmented virus genome encodes for six (6) multifunctional proteins that engage host factors at a variety of different stages in the replication cycle. The S segment encodes nucleoprotein (N) and nonstructural protein S (NSs), the M segment encodes viral glycoproteins Gn and Gc as well as nonstructural protein M (NSm) and the L segment encodes the viral polymerase (L). Viral glycoproteins Gn and Gc are responsible for entry by binding to a number of host factors. Our recent studies identified a scavenger receptor, LDL receptor related protein 1 (Lrp1), as a potential pro-viral host factor for RVFV and related viruses, including Oropouche virus (OROV) infection. Coincidentally, several recent studies identified other LDL family proteins as viral entry factors and receptors for other viral families. Collectively, these observations suggest that highly conserved LDL family proteins may play a significant role in facilitating entry of viruses from several distinct families. Given the significant roles of viral and host factors during infection, characterization of these interactions is critical for therapeutic targeting with neutralizing antibodies and vaccines.
Collapse
Affiliation(s)
- Safder S Ganaie
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States; Department of Medicine, Washington University School of Medicine, St Louis, MO, United States
| | - Amy L Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States.
| |
Collapse
|
15
|
Shariff S, Kantawala B, Hamiidah N, Yadav T, Nazir A, Uwishema O. Zika virus disease: an alarming situation resurfacing on the radar - a short communication. Ann Med Surg (Lond) 2023; 85:5294-5296. [PMID: 37811053 PMCID: PMC10553178 DOI: 10.1097/ms9.0000000000001183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background/introduction On the 13th of December 2022, a 5-year-old girl from Karnataka, India, tested positive for Zika virus. The first Zika virus was isolated from the serum of a rhesus monkey in the Zika Forest of Uganda in 1947. Zika virus was largely dormant for about 70 years before suddenly resurfacing across all of America, from Brazil to the Pacific Islands and is connected to a grouping of microcephaly phenotypes based on a complete virus genome analysis. All of the aforementioned research provides an overview of the migration of this virus from the Americas to continental Africa via mosquitoes. The current study, therefore, aims to evaluate the virologic characteristics, prophylaxis, transmitting mechanisms, diagnosis, clinical manifestations, and treatment of ZIKV infection in light of the virus's widespread dissemination and deadly nature. Aim The investigation's findings aim to demonstrate that in order to prevent further outbreaks, there is a national requirement for active epidemiological and entomological observation of Zika. Materials and methods Data were extracted from academic journals of medicine published in MEDLINE, PubMed, ScienceDirect, Ovid, and Embase inventory databases with a predetermined search strategy. Articles considering the Zika virus and its clinical manifestations, especially neurological, were included. Results The Zika virus has been declared a public health emergency of global significance by the World Health Organization (WHO). It is of alarming concern that it is now one of the most prevalent infectious diseases associated with birth abnormalities discovered in the past five decades. The onset and accelerated spread of disease to other parts of the world is attributed to the migration of infected hosts and climate change. Rapid laboratory diagnosis, evaluation of serological techniques, and virus isolation are urgently needed, along with newer modalities such as mathematical modeling as prediction devices to curb this issue. Due to its grave neurological manifestations, it is mandated to engineer peptide therapies and a virus-specific vaccination to treat this neurotropic virus. Conclusion There is currently no vaccination against Zika virus infection. If societies are not adequately prepared, the epidemiological wave will have an impact on the workforce and could pose a serious threat. To alleviate the significant cost on health systems and manage its promotion globally, improved investigation and response activities are needed.
Collapse
Affiliation(s)
- Sanobar Shariff
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Yerevan State Medical University, Yerevan, Armenia
| | - Burhan Kantawala
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Yerevan State Medical University, Yerevan, Armenia
| | - Nakyanzi Hamiidah
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Nursing and Midwifery, Lira University, Lira, Uganda
| | - Tularam Yadav
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Medicine, Jinnah Postgraduate Medical Centre (JPMC), Karachi
| | - Abubakar Nazir
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- King Edward Medical University, Lahore, Pakistan
| | - Olivier Uwishema
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Clinton Global Initiative University, New York, New York, USA
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
16
|
Devignot S, Sha TW, Burkard TR, Schmerer P, Hagelkruys A, Mirazimi A, Elling U, Penninger JM, Weber F. Low-density lipoprotein receptor-related protein 1 (LRP1) as an auxiliary host factor for RNA viruses. Life Sci Alliance 2023; 6:e202302005. [PMID: 37072184 PMCID: PMC10114362 DOI: 10.26508/lsa.202302005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
Viruses with an RNA genome are often the cause of zoonotic infections. In order to identify novel pro-viral host cell factors, we screened a haploid insertion-mutagenized mouse embryonic cell library for clones that are resistant to Rift Valley fever virus (RVFV). This screen returned the low-density lipoprotein receptor-related protein 1 (LRP1) as a top hit, a plasma membrane protein involved in a wide variety of cell activities. Inactivation of LRP1 in human cells reduced RVFV RNA levels already at the attachment and entry stages of infection. Moreover, the role of LRP1 in promoting RVFV infection was dependent on physiological levels of cholesterol and on endocytosis. In the human cell line HuH-7, LRP1 also promoted early infection stages of sandfly fever Sicilian virus and La Crosse virus, but had a minor effect on late infection by vesicular stomatitis virus, whereas encephalomyocarditis virus was entirely LRP1-independent. Moreover, siRNA experiments in human Calu-3 cells demonstrated that also SARS-CoV-2 infection benefitted from LRP1. Thus, we identified LRP1 as a host factor that supports infection by a spectrum of RNA viruses.
Collapse
Affiliation(s)
- Stephanie Devignot
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Tim Wai Sha
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Thomas R Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Patrick Schmerer
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Astrid Hagelkruys
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Ali Mirazimi
- Public Health Agency of Sweden, Solna, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Solna, Sweden
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
- German Centre for Infection Research (DZIF), Partner Site Giessen, Giessen, Germany
| |
Collapse
|
17
|
Mohapatra RK, Kutikuppala LVS, Kandi V, Mishra S, Rabaan AA, Costa S, Al‐qaim ZH, Padhi BK, Sah R. Rift valley fever (RVF) viral zoonotic disease steadily circulates in the Mauritanian animals and humans: A narrative review. Health Sci Rep 2023; 6:e1384. [PMID: 37404448 PMCID: PMC10315559 DOI: 10.1002/hsr2.1384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 07/06/2023] Open
Abstract
Background and Aim Rift valley fever (RVF) virus (RVFV) is reportedly steadily circulating in Mauritania being repeated in 1987, 2010, 2012, 2015, and 2020. Mauritania seems a preferred niche for RVF virus due to its persistent outbreak there. Lately, nine Mauritanian wilayas confirmed 47 (23 fatalities with 49% CFR) human cases between August 30 and October 17, 2022. Most of the cases were largely among livestock breeders associated with animal husbandry activities. The review aimed at understanding the origin, cause, and measures to counter the virus. Methods The facts and figures from the various published articles sourced from databases including Pubmed, Web of Science, and the Scopus as also some primary data from health agencies like WHO, CDC, and so forth were evaluated and the efficacy of countermeasures reviewed. Results Among the reported confirmed cases, it was found that 3-70 year age-group males outnumbered the females. Deaths after fever occurred primarily due to acute hemorrhagic thrombocytopenia. Human infections often occurred through zoonotic transmission mainly through mosquitoes in the population contiguous to cattle outbreak, a conducive site for local RVFV transmission. Many transmission cases were through direct or indirect contact with blood or organs of the infected animal. Conclusion RVFV infection was predominant in the Mauritanian regions bordering Mali, Senegal, and Algeria. High human and domesticated animal density as also the existing zoonotic vectors further contributed to RVF virus circulation. Mauritanian RVF infection data confirmed that RVFV was zoonotic that included small ruminants, cattle, and camel. This observation hints at the role of transborder animal mobility in RVFV transmission. In light of this, preventive approaches with effective surveillance and monitoring system following the One Health model is extremely beneficial for a free and fair healthy world for all.
Collapse
Affiliation(s)
| | | | - Venkataramana Kandi
- Department of MicrobiologyPrathima Institute of Medical SciencesKarimnagarTelanganaIndia
| | - Snehasish Mishra
- School of Biotechnology, Campus‐11, KIIT Deemed‐to‐be‐UniversityBhubaneswarOdishaIndia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco HealthcareDhahranSaudi Arabia
- College of MedicineAlfaisal UniversityRiyadhSaudi Arabia
- Department of Public Health and NutritionThe University of HaripurHaripurPakistan
| | - Sharo Costa
- College of Osteopathic MedicineMichigan State UniversityEast LansingMichiganUSA
| | | | - Bijaya K. Padhi
- Department of Community MedicineSchool of Public Health, Postgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Ranjit Sah
- Institute of Medicine, Tribhuvan University Teaching HospitalKathmanduNepal
- Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
- Department of Public Health DentistryDr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| |
Collapse
|
18
|
Bergmann S, Bohn MC, Dornbusch S, Becker SC, Stern M. Influence of RVFV Infection on Olfactory Perception and Behavior in Drosophila melanogaster. Pathogens 2023; 12:pathogens12040558. [PMID: 37111444 PMCID: PMC10142484 DOI: 10.3390/pathogens12040558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
In blood-feeding dipterans, olfaction plays a role in finding hosts and, hence, in spreading pathogens. Several pathogens are known to alter olfactory responses and behavior in vectors. As a mosquito-borne pathogen, Rift Valley Fever Virus (RVFV) can affect humans and cause great losses in livestock. We test the influence of RVFV infection on sensory perception, olfactory choice behavior and activity on a non-biting insect, Drosophila melanogaster, using electroantennograms (EAG), Y-maze, and locomotor activity monitor. Flies were injected with RVFV MP12 strain. Replication of RVFV and its persistence for at least seven days was confirmed by quantitative reverse transcription-PCR (RT-qPCR). One day post injection, infected flies showed weaker EAG responses towards 1-hexanol, vinegar, and ethyl acetate. In the Y-maze, infected flies showed a significantly lower response for 1-hexanol compared to uninfected flies. At days six or seven post infection, no significant difference between infected and control flies could be found in EAG or Y-maze anymore. Activity of infected flies was reduced at both time points. We found an upregulation of the immune-response gene, nitric oxide synthase, in infected flies. An infection with RVFV is able to transiently reduce olfactory perception and attraction towards food-related odors in Drosophila, while effects on activity and immune effector gene expression persist. A similar effect in blood-feeding insects could affect vector competence in RVFV transmitting dipterans.
Collapse
Affiliation(s)
- Stella Bergmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Maja C. Bohn
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Susann Dornbusch
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Michael Stern
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| |
Collapse
|
19
|
Wang X, Yuan Y, Liu Y, Zhang L. Arm race between Rift Valley fever virus and host. Front Immunol 2022; 13:1084230. [PMID: 36618346 PMCID: PMC9813963 DOI: 10.3389/fimmu.2022.1084230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Rift Valley fever (RVF) is a zoonotic disease caused by Rift Valley fever virus (RVFV), an emerging arbovirus within the Phenuiviridae family of Bunyavirales that has potential to cause severe diseases in both humans and livestock. It increases the incidence of abortion or foetal malformation in ruminants and leads to clinical manifestations like encephalitis or haemorrhagic fever in humans. Upon virus invasion, the innate immune system from the cell or the organism is activated to produce interferon (IFN) and prevent virus proliferation. Meanwhile, RVFV initiates countermeasures to limit antiviral responses at transcriptional and protein levels. RVFV nonstructural proteins (NSs) are the key virulent factors that not only perform immune evasion but also impact the cell replication cycle and has cytopathic effects. In this review, we summarize the innate immunity host cells employ depending on IFN signal transduction pathways, as well as the immune evasion mechanisms developed by RVFV primarily with the inhibitory activity of NSs protein. Clarifying the arms race between host innate immunity and RVFV immune evasion provides new avenues for drug target screening and offers possible solutions to current and future epidemics.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yupei Yuan
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yihan Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|