1
|
Moll L, Giralt N, Planas M, Feliu L, Montesinos E, Bonaterra A, Badosa E. Prunus dulcis response to novel defense elicitor peptides and control of Xylella fastidiosa infections. PLANT CELL REPORTS 2024; 43:190. [PMID: 38976088 PMCID: PMC11231009 DOI: 10.1007/s00299-024-03276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
KEY MESSAGE New defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 h after the treatment. A library of peptides that includes BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.
Collapse
Affiliation(s)
- Luis Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Núria Giralt
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain.
| |
Collapse
|
2
|
Sapara VJ, Shankhapal AR, Reddy PS. Genome-wide screening and characterization of phospholipase A (PLA)-like genes in sorghum (Sorghum bicolor L.). PLANTA 2024; 260:35. [PMID: 38922509 DOI: 10.1007/s00425-024-04467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
MAIN CONCLUSION The characterisation of PLA genes in the sorghum genome using in-silico methods revealed their essential roles in cellular processes, providing a foundation for further detailed studies. Sorghum bicolor (L.) Moench is the fifth most cultivated crop worldwide, and it is used in many ways, but it has always gained less popularity due to the yield, pest, and environmental constraints. Improving genetic background and developing better varieties is crucial for better sorghum production in semi-arid tropical regions. This study focuses on the phospholipase A (PLA) family within sorghum, comprehensively characterising PLA genes and their expression across different tissues. The investigation identified 32 PLA genes in the sorghum genome, offering insights into their chromosomal localization, molecular weight, isoelectric point, and subcellular distribution through bioinformatics tools. PLA-like family genes are classified into three groups, namely patatin-related phospholipase A (pPLA), phospholipase A1 (PLA1), and phospholipase A2 (PLA2). In-silico chromosome localization studies revealed that these genes are unevenly distributed in the sorghum genome. Cis-motif analysis revealed the presence of several developmental, tissue and hormone-specific elements in the promoter regions of the PLA genes. Expression studies in different tissues such as leaf, root, seedling, mature seed, immature seed, anther, and pollen showed differential expression patterns. Taken together, genome-wide analysis studies of PLA genes provide a better understanding and critical role of this gene family considering the metabolic processes involved in plant growth, defence and stress response.
Collapse
Affiliation(s)
- Vidhi J Sapara
- Cell Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
- Department of Genetics, Osmania University, Hyderabad, Telangana, India
| | - Aishwarya R Shankhapal
- Cell Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
- Plant Sciences for the Bio-Economy, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Palakolanu Sudhakar Reddy
- Cell Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
| |
Collapse
|
3
|
Guo X, Zhu W, Wang F, Wang H. Genome-Wide Investigation of the PLD Gene Family in Tomato: Identification, Analysis, and Expression. Genes (Basel) 2024; 15:326. [PMID: 38540385 PMCID: PMC10970076 DOI: 10.3390/genes15030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 06/14/2024] Open
Abstract
Phospholipase Ds (PLDs) are important phospholipid hydrolases in plants that play crucial roles in the regulation of plant growth, development, and stress tolerance. In this study, 14 PLD genes were identified in the tomato genome and were localized on eight chromosomes, and one tandem-duplicated gene pair was identified. According to a phylogenetic analysis, the genes were categorized into four subtypes: SlPLDα, β, and δ belonged to the C2-PLD subfamily, while SlPLDζ belonged to the PXPH-PLD subfamily. The gene structure and protein physicochemical properties were highly conserved within the same subtype. The promoter of all the SlPLD genes contained hormone-, light-, and stress-responsive cis-acting regulatory elements, but no significant correlation between the number, distribution, and type of cis-acting elements was observed among the members of the same subtype. Transcriptome data showed that the expression of the SlPLD genes was different in multiple tissues. A quantitative RT-PCR analysis revealed that the SlPLD genes responded positively to cold, salt, drought, and abscisic acid treatments, particularly to salt stress. Different expression patterns were observed for different genes under the same stress, and for the same gene under different stresses. The results provide important insights into the functions of SlPLD genes and lay a foundation for further studies of the response of SlPLD genes to abiotic stresses.
Collapse
Affiliation(s)
| | | | | | - Hui Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (X.G.)
| |
Collapse
|
4
|
Gao L, Jiang H, Li M, Wang D, Xiang H, Zeng R, Chen L, Zhang X, Zuo J, Yang S, Shi Y. Genetic and lipidomic analyses reveal the key role of lipid metabolism for cold tolerance in maize. J Genet Genomics 2024; 51:326-337. [PMID: 37481121 DOI: 10.1016/j.jgg.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Lipid remodeling is crucial for cold tolerance in plants. However, the precise alternations of lipidomics during cold responses remain elusive, especially in maize (Zea mays L.). In addition, the key genes responsible for cold tolerance in maize lipid metabolism have not been identified. Here, we integrate lipidomic, transcriptomic, and genetic analysis to determine the profile of lipid remodeling caused by cold stress. We find that the homeostasis of cellular lipid metabolism is essential for maintaining cold tolerance of maize. Also, we detect 210 lipid species belonging to 13 major classes, covering phospholipids, glycerides, glycolipids, and free fatty acids. Various lipid metabolites undergo specific and selective alterations in response to cold stress, especially mono-/di-unsaturated lysophosphatidic acid, lysophosphatidylcholine, phosphatidylcholine, and phosphatidylinositol, as well as polyunsaturated phosphatidic acid, monogalactosyldiacylglycerol, diacylglycerol, and triacylglycerol. In addition, we identify a subset of key enzymes, including ketoacyl-acyl-carrier protein synthase II (KAS II), acyl-carrier protein 2 (ACP2), male sterility33 (Ms33), and stearoyl-acyl-carrier protein desaturase 2 (SAD2) involved in glycerolipid biosynthetic pathways are positive regulators of maize cold tolerance. These results reveal a comprehensive lipidomic profile during the cold response of maize and provide genetic resources for enhancing cold tolerance in crops.
Collapse
Affiliation(s)
- Lei Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Haifang Jiang
- State Key Laboratory of Wheat & Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Minze Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Danfeng Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao Xiang
- Suihua Branch of Heilongjiang Academy of Agricultural Machinery Sciences, Suihua, Heilongjiang 152052, China
| | - Rong Zeng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Holtsclaw RE, Mahmud S, Koo AJ. Identification and characterization of GLYCEROLIPASE A1 for wound-triggered JA biosynthesis in Nicotiana benthamiana leaves. PLANT MOLECULAR BIOLOGY 2024; 114:4. [PMID: 38227103 DOI: 10.1007/s11103-023-01408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/03/2023] [Indexed: 01/17/2024]
Abstract
Although many important discoveries have been made regarding the jasmonate signaling pathway, how jasmonate biosynthesis is initiated is still a major unanswered question in the field. Previous evidences suggest that jasmonate biosynthesis is limited by the availability of fatty acid precursor, such as ⍺-linolenic acid (⍺-LA). This indicates that the lipase responsible for releasing α-LA in the chloroplast, where early steps of jasmonate biosynthesis take place, is the key initial step in the jasmonate biosynthetic pathway. Nicotiana benthamiana glycerol lipase A1 (NbGLA1) is homologous to N. attenuata GLA1 (NaGLA1) which has been reported to be a major lipase in leaves for jasmonate biosynthesis. NbGLA1 was studied for its potential usefulness in a species that is more common in laboratories. Virus-induced gene silencing of both NbGLA1 and NbGLA2, another homolog, resulted in more than 80% reduction in jasmonic acid (JA) biosynthesis in wounded leaves. Overexpression of NbGLA1 utilizing an inducible vector system failed to increase JA, indicating that transcriptional induction of NbGLA1 is insufficient to trigger JA biosynthesis. However, co-treatment with wounding in addition to NbGLA1 induction increased JA accumulation several fold higher than the gene expression or wounding alone, indicating an enhancement of the enzyme activity by wounding. Domain-deletion of a 126-bp C-terminal region hypothesized to have regulatory roles increased NbGLA1-induced JA level. Together, the data show NbGLA1 to be a major lipase for wound-induced JA biosynthesis in N. benthamiana leaves and demonstrate the use of inducible promoter-driven construct of NbGLA1 in conjunction with its transient expression in N. benthamiana as a useful system to study its protein function.
Collapse
Affiliation(s)
- Rebekah E Holtsclaw
- Department of Biochemistry, University of Missouri, 65211, Columbia, MO, USA
- Rubi Laboratories, 94577, San Leandro, CA, USA
| | - Sakil Mahmud
- Department of Biochemistry, University of Missouri, 65211, Columbia, MO, USA
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, 65211, Columbia, MO, USA.
| |
Collapse
|
6
|
Goyal L, Kaur M, Mandal M, Panda D, Karmakar S, Molla KA, Bhatia D. Potential gene editing targets for developing haploid inducer stocks in rice and wheat with high haploid induction frequency. 3 Biotech 2024; 14:14. [PMID: 38111612 PMCID: PMC10725411 DOI: 10.1007/s13205-023-03857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Doubled haploid (DH) breeding is a powerful technique to ensure global food security via accelerated crop improvement. DH can be produced in planta by employing haploid inducer stock (HIS). Widely used HIS in maize is known to be governed by ZmPLA, ZmDMP, ZmPLD3, and ZmPOD65 genes. To develop such HIS in rice and wheat, we have identified putative orthologs of these genes using in silico approaches. The OsPLD1; TaPLD1, and OsPOD6; TaPOD8 were identified as putative orthologs of ZmPLD3 and ZmPOD65 in rice and wheat, respectively. Despite being closely related to ZmPLD3, OsPLD1 and TaPLD1 have shown higher anther-specific expression. Similarly, OsPOD6 and TaPOD8 were found closely related to the ZmPOD65 based on both phylogenetic and expression analysis. However, unlike ZmPLD3 and ZmPOD65, two ZmDMP orthologs have been found for each crop. OsDMP1 and OsDMP2 in rice and TaDMP3 and TaDMP13 in wheat have shown similarity to ZmDMP in terms of both sequence and expression pattern. Furthermore, analogs to maize DMP proteins, these genes possess four transmembrane helices making them best suited to be regarded as ZmDMP orthologs. Modifying these predicted orthologous genes by CRISPR/Cas9-based genome editing can produce a highly efficient HIS in both rice and wheat. Besides revealing the genetic mechanism of haploid induction, the development of HIS would advance the genetic improvement of these crops. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03857-9.
Collapse
Affiliation(s)
- Lakshay Goyal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| | - Mehardeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| | - Meghna Mandal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| | - Debasmita Panda
- ICAR-National Rice Research Institute, Cuttack, Odisha 753 006 India
| | - Subhasis Karmakar
- ICAR-National Rice Research Institute, Cuttack, Odisha 753 006 India
| | | | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| |
Collapse
|
7
|
Li Q, Lin H, Lin HT, Lin MS, Wang H, Wei W, Chen JY, Lu WJ, Shao XF, Fan ZQ. The metabolism of membrane lipid participates in the occurrence of chilling injury in cold-stored banana fruit. Food Res Int 2023; 173:113415. [PMID: 37803753 DOI: 10.1016/j.foodres.2023.113415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
Banana fruit is highly vulnerable to chilling injury (CI) during cold storage, which results in quality deterioration and commodity reduction. The purpose of this study was to investigate the membrane lipid metabolism mechanism underlying low temperature-induced CI in banana fruit. Chilling temperature significantly induced CI symptoms in banana fruit, compared to control temperature (22 °C). Using physiological experiments and transcriptomic analyses, we found that chilling temperature (7 °C) increased CI index, malondialdehyde content, and cell membrane permeability. Additionally, chilling temperature upregulated the genes encoding membrane lipid-degrading enzymes, such as lipoxygenase (LOX), phospholipase D (PLD), phospholipase C (PLC), phospholipase A (PLA), and lipase, but downregulated the genes encoding fatty acid desaturase (FAD). Moreover, chilling temperature raised the activities of LOX, PLD, PLC, PLA, and lipase, inhibited FAD activity, lowered contents of unsaturated fatty acids (USFAs) (γ-linolenic acid and linoleic acid), phosphatidylcholine, and phosphatidylinositol, but retained higher contents of saturated fatty acids (SFAs) (stearic acid and palmitic acid), free fatty acids, phosphatidic acid, lysophosphatidic acid, diacylglycerol, a lower USFAs index, and a lower ratio of USFAs to SFAs. Together, these results revealed that chilling temperature-induced chilling injury of bananas were caused by membrane integrity damage and were associated with the enzymatic and genetic manipulation of membrane lipid metabolism. These activities promoted the degradation of membrane phospholipids and USFAs in fresh bananas during cold storage.
Collapse
Affiliation(s)
- Qian Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Han Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - He-Tong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Meng-Shi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xing-Feng Shao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Zhong-Qi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
8
|
Xue H, Dong Y, Li Z, Wang J, Yuan X, He F, Li Z, Gao X, Liu J. Transcriptome analysis reveals the molecular mechanisms by which carbon dots regulate the growth of Chlamydomonas reinhardtii. J Colloid Interface Sci 2023; 649:22-35. [PMID: 37331107 DOI: 10.1016/j.jcis.2023.06.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
Carbon dots (CDs) have attracted increasing attention for their ability to artificially improve photosynthesis. Microalgal bioproducts have emerged as promising sources of sustainable nutrition and energy. However, the gene regulation mechanism of CDs on microalgae remains unexplored. The study synthesized red-emitting CDs and applied them to Chlamydomonas reinhardtii. Results showed that 0.5 mg/L-CDs acted as light supplements to promote cell division and biomass in C. reinhardtii. CDs improved the energy transfer of PS II, photochemical efficiency of PS II, and photosynthetic electron transfer. The pigment content and carbohydrate production slightly increased, while protein and lipid contents significantly increased (by 28.4% and 27.7%, respectively) in a short cultivation time. Transcriptome analysis identified 1166 differentially expressed genes. CDs resulted in faster cell growth by up-regulating the expression of genes associated with cell growth and death, promoting sister chromatid separation, accelerating the mitotic process and shortening the cell cycle. CDs improved the ability of energy conversion by up-regulating photosynthetic electron transfer-related genes. Carbohydrate metabolism-related genes were regulated and provided more available pyruvate for the citrate cycle. The study provides evidence for the genetic regulation of microalgal bioresources by artificially synthesized CDs.
Collapse
Affiliation(s)
- Huidan Xue
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China.
| | - Yibei Dong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhihuan Li
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaolong Yuan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fei He
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhengke Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
9
|
Laureano G, Santos C, Gouveia C, Matos AR, Figueiredo A. Grapevine-Associated Lipid Signalling Is Specifically Activated in an Rpv3 Background in Response to an Aggressive P. viticola Pathovar. Cells 2023; 12:394. [PMID: 36766736 PMCID: PMC9913531 DOI: 10.3390/cells12030394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Vitis vinifera L. is highly susceptible to the biotrophic pathogen Plasmopara viticola. To control the downy mildew disease, several phytochemicals are applied every season. Recent European Union requirements to reduce the use of chemicals in viticulture have made it crucial to use alternative and more sustainable approaches to control this disease. Our previous studies pinpoint the role of fatty acids and lipid signalling in the establishment of an incompatible interaction between grapevine and P. viticola. To further understand the mechanisms behind lipid involvement in an effective defence response we have analysed the expression of several genes related to lipid metabolism in three grapevine genotypes: Chardonnay (susceptible); Regent (tolerant), harbouring an Rpv3-1 resistance loci; and Sauvignac (resistant) that harbours a pyramid of Rpv12 and Rpv3-1 resistance loci. A highly aggressive P. viticola isolate was used (NW-10/16). Moreover, we have characterised the grapevine phospholipases C and D gene families and monitored fatty acid modulation during infection. Our results indicate that both susceptible and resistant grapevine hosts did not present wide fatty acid or gene expression modulation. The modulation of genes associated with lipid signalling and fatty acids seems to be specific to Regent, which raises the hypothesis of being specifically linked to the Rpv3 loci. In Sauvignac, the Rpv12 may be dominant concerning the defence response, and, thus, this genotype may present the activation of other pathways rather than lipid signalling.
Collapse
|
10
|
Fan R, Zhao F, Gong Z, Chen Y, Yang B, Zhou C, Zhang J, Du Z, Wang X, Yin P, Guo L, Liu Z. Insights into the mechanism of phospholipid hydrolysis by plant non-specific phospholipase C. Nat Commun 2023; 14:194. [PMID: 36635324 PMCID: PMC9837106 DOI: 10.1038/s41467-023-35915-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Non-specific phospholipase C (NPC) hydrolyzes major membrane phospholipids to release diacylglycerol (DAG), a potent lipid-derived messenger regulating cell functions. Despite extensive studies on NPCs reveal their fundamental roles in plant growth and development, the mechanistic understanding of phospholipid-hydrolyzing by NPCs, remains largely unknown. Here we report the crystal structure of Arabidopsis NPC4 at a resolution of 2.1 Å. NPC4 is divided into a phosphoesterase domain (PD) and a C-terminal domain (CTD), and is structurally distinct from other characterized phospholipases. The previously uncharacterized CTD is indispensable for the full activity of NPC4. Mechanistically, CTD contributes NPC4 activity mainly via CTDα1-PD interaction, which ultimately stabilizes the catalytic pocket in PD. Together with a series of structure-guided biochemical studies, our work elucidates the structural basis and provides molecular mechanism of phospholipid hydrolysis by NPC4, and adds new insights into the members of phospholipase family.
Collapse
Affiliation(s)
- Ruyi Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Fen Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhou Gong
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yanke Chen
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chen Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhangmeng Du
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA.,Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China. .,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
| |
Collapse
|
11
|
Luo P, Jiang A, Zhou Y, Yang M, Zhou X, Yang Y, Yu J, Tang X. Phospholipase C is a novel regulator at the early stages of microspore embryogenesis in Nicotiana tabacum. PLANT SIGNALING & BEHAVIOR 2022; 17:2094618. [PMID: 35786356 PMCID: PMC9254995 DOI: 10.1080/15592324.2022.2094618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Microspore transfers the developmental fate into embryogenesis in vitro regulated by determinant factors of stress-induced. However, the key regulators of microspore embryogenesis (ME) are still largely undiscovered to reveal the mechanism of cell fate transition. Here, we report that Phospholipase C (PLC) is involved at the early stages of ME in Nicotiana tabacum. NtPLC2/3/4 are expressed at the initial stages of ME. The expression levels of NtPLC2/3 are transient activated after 3 days in culture, while the expression level of NtPLC4 maintains relatively stable. Inhibition of PLCs induces the decrease in NtPLC2/3/4 expression level and decline of ME yield. We confirm that lipids in microspore are degraded and then re-accumulate at first embryonic division stage. Inhibition of PLCs suppresses the lipids metabolism at the early stages of ME. Thus, we propose that PLCs-mediated lipid metabolism is a novel regulator at the early stages of ME.
Collapse
Affiliation(s)
- Pan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,HubeiChina
| | - Aixi Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,HubeiChina
| | - Yi Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,HubeiChina
| | - Mingchun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,HubeiChina
| | - Xiaotong Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,HubeiChina
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,HubeiChina
| | - Jun Yu
- Tobacco Research Institute of Hubei ProvinceWuhan, Hubei, China
| | - Xingchun Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,HubeiChina
| |
Collapse
|
12
|
Cai Y, Yu XH, Shanklin J. A toolkit for plant lipid engineering: Surveying the efficacies of lipogenic factors for accumulating specialty lipids. FRONTIERS IN PLANT SCIENCE 2022; 13:1064176. [PMID: 36589075 PMCID: PMC9795026 DOI: 10.3389/fpls.2022.1064176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Plants produce energy-dense lipids from carbohydrates using energy acquired via photosynthesis, making plant oils an economically and sustainably attractive feedstock for conversion to biofuels and value-added bioproducts. A growing number of strategies have been developed and optimized in model plants, oilseed crops and high-biomass crops to enhance the accumulation of storage lipids (mostly triacylglycerols, TAGs) for bioenergy applications and to produce specialty lipids with increased uses and value for chemical feedstock and nutritional applications. Most successful metabolic engineering strategies involve heterologous expression of lipogenic factors that outperform those from other sources or exhibit specialized functionality. In this review, we summarize recent progress in engineering the accumulation of triacylglycerols containing - specialized fatty acids in various plant species and tissues. We also provide an inventory of specific lipogenic factors (including accession numbers) derived from a wide variety of organisms, along with their reported efficacy in supporting the accumulation of desired lipids. A review of previously obtained results serves as a foundation to guide future efforts to optimize combinations of factors to achieve further enhancements to the production and accumulation of desired lipids in a variety of plant tissues and species.
Collapse
Affiliation(s)
- Yingqi Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Xiao-Hong Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| |
Collapse
|
13
|
Wang Y, Zhao S, Gou B, Duan P, Wei M, Yang N, Zhang G, Wei B. Identification and expression analysis of phospholipase C family genes between different male fertility accessions in pepper. PROTOPLASMA 2022; 259:1541-1552. [PMID: 35296925 DOI: 10.1007/s00709-022-01751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Phospholipase C (PLC) is one of the major lipid-hydrolyzing enzymes, involved in lipid-mediating signal pathway. PLCs have been found to play a significant role in the growth and development of plants. In this study, the genome-wide identification and characteristic analysis of CaPLC family genes in pepper were conducted and the expression of two CaPLC genes were investigated. The results showed that a total of 11 CaPLC family genes were systematically identified, which were distributed on five chromosomes and divided into two groups based on their evolutionary relevance. Some cis-elements responding to different hormones and stresses were screened in the promoters of CaPLC genes. Quantitative real-time PCR indicated that the expression of CaPIPLC1 and CaPIPLC5 in flowers were dozens of times higher than in other tissues. In addition, with the development of flower buds, the relative expressions of CaPIPLC1 and CaPIPLC5 gradually increased in fertile materials R1 and F1. However, no expression of CaPIPLC1 and CaPIPLC5 were detected at all developmental stages of cytoplasmic male sterile lines (CMS) compared with fertile accessions. The study revealed the number and characteristics of the CaPLC family genes, which supplied a basic and systematic understanding of CaPLC family. In addition, these findings provided new insights into the role of CaPLC genes in pollen development and fertility restoration in pepper.
Collapse
Affiliation(s)
- Yongfu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Shufang Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Bingdiao Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Panpan Duan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Min Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Nan Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
14
|
Yu M, Huang D, Yin X, Liu X, Yang D, Gong C, Wang H, Wu Y. The phosphoinositide-specific phospholipase C1 modulates flowering time and grain size in rice. PLANTA 2022; 256:29. [PMID: 35781561 DOI: 10.1007/s00425-022-03941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Preferential expression of OsPLC1 is detected at the heading stage of rice, OsPLC1 overexpression results in early flowering, increased-grain size and yield; however, opposing phenotypes produced in the osplc1 mutants. Abstract: The importance of phospholipase C (PLC) in plant development has been demonstrated in several studies. OsPLC1, a member of PI-PLC in rice, although its role in the response to salt stress of rice seedlings has been reported, its functions in the growth and development of rice is elusive. Here, we report that OsPLC1 expression could be detectable in various tissues throughout the developmental stages of rice, and the highest expression level of OsPLC1 was detected at the heading stage. OsPLC1 overexpression (OE) produced rice plants with early flowering, whereas OsPLC1 loss-of-function led to delay in flowering. The expression levels of subset genes, which are involved in the control of flowering time in rice, were altered in the plants of OE and osplc1. In addition, the enlargement of grain size was observed in OE plants, however, the reduction of grain size was noticed in osplc1 mutants. The increase in the grain size and the grain yield of OE lines were associated with the improvement of cell length and expression levels of a set of genes related to cell expansion, contrarily, the decrease in osplc1 mutant grain size and yield were linked to declined cell length and expression levels of related genes. No significant differences, in terms of the grain quality of mature seeds, were found in OE and osplc1 mutants, with compared to those in Nipponbare (Nip). In summary, our study suggests that OsPLC1 could modulate rice flowering time and grain size.
Collapse
Affiliation(s)
- Min Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Dong Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Di Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chunyan Gong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hengtao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
15
|
Si J, Fan YY, Liu ZL, Wei W, Xiao XM, Yang YY, Shan W, Kuang JF, Lu WJ, Fan ZQ, Li LL, Chen JY. Comparative transcriptomic analysis reveals the potential mechanism of hot water treatment alleviated-chilling injury in banana fruit. Food Res Int 2022; 157:111296. [DOI: 10.1016/j.foodres.2022.111296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/23/2023]
|
16
|
Hamdan MF, Lung SC, Guo ZH, Chye ML. Roles of acyl-CoA-binding proteins in plant reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2918-2936. [PMID: 35560189 DOI: 10.1093/jxb/erab499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 06/15/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs) constitute a well-conserved family of proteins in eukaryotes that are important in stress responses and development. Past studies have shown that ACBPs are involved in maintaining, transporting and protecting acyl-CoA esters during lipid biosynthesis in plants, mammals, and yeast. ACBPs show differential expression and various binding affinities for acyl-CoA esters. Hence, ACBPs can play a crucial part in maintaining lipid homeostasis. This review summarizes the functions of ACBPs during the stages of reproduction in plants and other organisms. A comprehensive understanding on the roles of ACBPs during plant reproduction may lead to opportunities in crop improvement in agriculture.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
17
|
Heo Y, Lee I, Moon S, Yun JH, Kim EY, Park SY, Park JH, Kim WT, Lee W. Crystal Structures of the Plant Phospholipase A1 Proteins Reveal a Unique Dimerization Domain. Molecules 2022; 27:molecules27072317. [PMID: 35408716 PMCID: PMC9000616 DOI: 10.3390/molecules27072317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Phospholipase is an enzyme that hydrolyzes various phospholipid substrates at specific ester bonds and plays important roles such as membrane remodeling, as digestive enzymes, and the regulation of cellular mechanism. Phospholipase proteins are divided into following the four major groups according to the ester bonds they cleave off: phospholipase A1 (PLA1), phospholipase A2 (PLA2), phospholipase C (PLC), and phospholipase D (PLD). Among the four phospholipase groups, PLA1 has been less studied than the other phospholipases. Here, we report the first molecular structures of plant PLA1s: AtDSEL and CaPLA1 derived from Arabidopsis thaliana and Capsicum annuum, respectively. AtDSEL and CaPLA1 are novel PLA1s in that they form homodimers since PLAs are generally in the form of a monomer. The dimerization domain at the C-terminal of the AtDSEL and CaPLA1 makes hydrophobic interactions between each monomer, respectively. The C-terminal domain is also present in PLA1s of other plants, but not in PLAs of mammals and fungi. An activity assay of AtDSEL toward various lipid substrates demonstrates that AtDSEL is specialized for the cleavage of sn-1 acyl chains. This report reveals a new domain that exists only in plant PLA1s and suggests that the domain is essential for homodimerization.
Collapse
Affiliation(s)
- Yunseok Heo
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.H.); (I.L.); (S.M.); (J.-H.Y.); (J.-H.P.)
| | - Inhwan Lee
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.H.); (I.L.); (S.M.); (J.-H.Y.); (J.-H.P.)
| | - Sunjin Moon
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.H.); (I.L.); (S.M.); (J.-H.Y.); (J.-H.P.)
| | - Ji-Hye Yun
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.H.); (I.L.); (S.M.); (J.-H.Y.); (J.-H.P.)
- PCG-Biotech, Ltd., 508 KBIZ DMC Tower, Sangam-ro, Seoul 03929, Korea
| | - Eun Yu Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan;
| | - Jae-Hyun Park
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.H.); (I.L.); (S.M.); (J.-H.Y.); (J.-H.P.)
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
- Correspondence: (W.T.K.); (W.L.)
| | - Weontae Lee
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.H.); (I.L.); (S.M.); (J.-H.Y.); (J.-H.P.)
- PCG-Biotech, Ltd., 508 KBIZ DMC Tower, Sangam-ro, Seoul 03929, Korea
- Correspondence: (W.T.K.); (W.L.)
| |
Collapse
|
18
|
Ali U, Lu S, Fadlalla T, Iqbal S, Yue H, Yang B, Hong Y, Wang X, Guo L. The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses. Prog Lipid Res 2022; 86:101158. [PMID: 35134459 DOI: 10.1016/j.plipres.2022.101158] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
Abstract
Cell membranes are the initial site of stimulus perception from environment and phospholipids are the basic and important components of cell membranes. Phospholipases hydrolyze membrane lipids to generate various cellular mediators. These phospholipase-derived products, such as diacylglycerol, phosphatidic acid, inositol phosphates, lysophopsholipids, and free fatty acids, act as second messengers, playing vital roles in signal transduction during plant growth, development, and stress responses. This review focuses on the structure, substrate specificities, reaction requirements, and acting mechanism of several phospholipase families. It will discuss their functional significance in plant growth, development, and stress responses. In addition, it will highlight some critical knowledge gaps in the action mechanism, metabolic and signaling roles of these phospholipases and their products in the context of plant growth, development and stress responses.
Collapse
Affiliation(s)
- Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tarig Fadlalla
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Sidra Iqbal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Hong Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
19
|
Yuan Y, Yu J, Kong L, Zhang W, Hou X, Cui G. Genome-wide investigation of the PLD gene family in alfalfa (Medicago sativa L.): identification, analysis and expression. BMC Genomics 2022; 23:243. [PMID: 35350974 PMCID: PMC8962232 DOI: 10.1186/s12864-022-08424-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background External environmental factors, such as salt, alkali and drought, severely limit the acreage and yield of alfalfa. The mining of tolerance-related genes in alfalfa and improving the stress resistance of this plant are essential for increasing alfalfa yield. PLD is the main phospholipid hydrolase in plants and plays an important role in plant growth, development, signaling, and resistance to adverse stress. With the availability of whole genome sequences, the annotation and expression of PLDs in alfalfa can now be achieved. At present, few studies have investigated PLDs in alfalfa. Here, we conducted a study of PLDs in alfalfa and identified and analyzed the expression pattern of PLDs under different treatments. Results Fifty-nine MsPLDs were identified in alfalfa and classified into six subtypes: MsPLDα, β, γ, δ and ε belong to the C2-PLD subfamily, and MsPLDζ belongs to the PXPH-PLD subfamily. Members of the same PLD subtype have similar physicochemical properties, sequence structure and domains, but their cis-acting elements are different. A qRT-PCR analysis revealed that MsPLDs are expressed in multiple tissues. MsPLDs can respond to alkali, drought, ABA, IAA, and GA3 treatments and particularly to salt stress. Different expression patterns were found for the same gene under different treatments and different genes under the same treatment. Expression of MsPLD05 improved salt tolerance in yeast. Conclusion This study represents the first genome-wide characterization of MsPLDs in alfalfa. Most MsPLDs are expressed mainly in mature leaves and respond positively to abiotic stresses and hormonal treatments. This study further expands the resistance gene pool in legume forage grasses and provides a reference for further in-depth study of MsPLDs in alfalfa. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08424-9.
Collapse
|
20
|
Zhang H, Zhang Y, Xu N, Rui C, Fan Y, Wang J, Han M, Wang Q, Sun L, Chen X, Lu X, Wang D, Chen C, Ye W. Genome-wide expression analysis of phospholipase A1 (PLA1) gene family suggests phospholipase A1-32 gene responding to abiotic stresses in cotton. Int J Biol Macromol 2021; 192:1058-1074. [PMID: 34656543 DOI: 10.1016/j.ijbiomac.2021.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/01/2023]
Abstract
Cotton is the most important crop for the production of natural fibres used in the textile industry. High salinity, drought, cold and high temperature represent serious abiotic stresses, which seriously threaten cotton production. Phospholipase AS has an irreplaceable role in lipid signal transmission, growth and development and stress events. Phospholipase A can be divided into three families: PLA1, PLA2 and pPLA. Among them, the PLA1 family is rarely studied in plants. In order to study the potential functions of the PLA1 family in cotton, the bioinformatics analysis of the PLA1 family was correlated with cotton adversity, and tissue-specific analysis was performed. Explore the structure-function relationship of PLA1 members. It is found that the expression of GbPLA1-32 gene is affected by a variety of environmental stimuli, indicating that it plays a very important role in stress and hormone response, and closely associates the cotton adversity with this family. Through further functional verification, we found that virus-induced GbPLA1-32 gene silencing (VIGS) caused Gossypium barbadense to be sensitive to salt stress. This research provides an important basis for further research on the molecular mechanism of cotton resistance to abiotic stress.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China; Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052 Urumqi, China
| | - Yuexin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Nan Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Cun Rui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Yapeng Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Jing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Mingge Han
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052 Urumqi, China
| | - Qinqin Wang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052 Urumqi, China
| | - Liangqing Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Chao Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China; Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052 Urumqi, China.
| |
Collapse
|
21
|
Yu M, Cao C, Yin X, Liu X, Yang D, Gong C, Wang H, Wu Y. The rice phosphoinositide-specific phospholipase C3 is involved in responses to osmotic stresses via modulating ROS homeostasis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111087. [PMID: 34763872 DOI: 10.1016/j.plantsci.2021.111087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Four members of phosphoinositide-specific phospholipase C (PI-PLC) are predicted in rice genome. Although the involvement of OsPLC1 and OsPLC4 in the responses of rice to salt and drought stresses has been documented, the role of OsPLC3 in which, yet, is elusive. Here, we report that OsPLC3 was ubiquitously expressed in various tissues during the development of rice. The expression of YFP-tagged OsPLC3 was observed at the plasma membrane (PM), cytoplasm and nucleus of rice protoplasts, onion epidermal cells and tobacco leaves. The catalytic activity of OsPLC3 was measured using the thin-layer chromatography (TLC) method. The inhibition of OsPLC3 expression was detected in the treatments of NaCl and mannitol. Overexpression (OE) of OsPLC3 produced plants showing more sensitive to osmotic stresses when they were compared to the wild-type (HJ) and osplc3 mutants, the phenomena such as decreased plant fresh weight and increased water loss rate (WLR) were observed. Under the treatment of NaCl or mannitol, expressions of a subset osmotic stress-related genes were altered, in both OE and osplc3 mutant lines. In addition, the expressions and the enzyme activities of reactive oxygen species (ROS) scavengers were significantly decreased in OE lines, leading to over-accumulation of ROS together with less osmotic adjustment substances including proline, soluble sugars and soluble proteins in OE plants which caused the growth inhibition. Thus, our results suggested that, via modulating ROS homeostasis, OsPLC3 is involved in responses to the osmotic stress in rice.
Collapse
Affiliation(s)
- Min Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chunyan Cao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Di Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chunyan Gong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hengtao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
22
|
Li Y, Lin Z, Yue Y, Zhao H, Fei X, E L, Liu C, Chen S, Lai J, Song W. Loss-of-function alleles of ZmPLD3 cause haploid induction in maize. NATURE PLANTS 2021; 7:1579-1588. [PMID: 34887519 PMCID: PMC8677622 DOI: 10.1038/s41477-021-01037-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/01/2021] [Indexed: 05/06/2023]
Abstract
Doubled haploid technology has been widely applied to multiple plant species and is recognized as one of the most important technologies for improving crop breeding efficiency. Although mutations in MATRILINEAL/Zea mays PHOSPHOLIPASE A1/NOT LIKE DAD (MTL/ZmPLA1/NLD) and Zea mays DOMAIN OF UNKNOWN FUNCTION 679 MEMBRANE PROTEIN (ZmDMP) have been shown to generate haploids in maize, knowledge of the genetic basis of haploid induction (HI) remains incomplete. Therefore, cloning of new genes underlying HI is important for further elucidating its genetic architecture. Here, we found that loss-of-function mutations of Zea mays PHOSPHOLIPASE D3 (ZmPLD3), one of the members from the phospholipase D subfamily, could trigger maternal HI in maize. ZmPLD3 was identified through a reverse genetic strategy based on analysis of pollen-specifically expressed phospholipases, followed by validation through the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR-Cas9) system. Mutations of ZmPLD3 resulted in a haploid induction rate (HIR) similar to that of mtl/zmpla1/nld and showed synergistic effects rather than functional redundancy on tripling the HIR (from 1.19% to 4.13%) in the presence of mtl/zmpla1/nld. RNA-seq profiling of mature pollen indicated that a large number of pollen-specific differentially expressed genes were enriched in processes related to gametogenesis development, such as pollen tube development and cell communication, during the double-fertilization process. In addition, ZmPLD3 is highly conserved among cereals, highlighting the potential application of these in vivo haploid-inducer lines for other important crop plant species. Collectively, our discovery identifies a novel gene underlying in vivo maternal HI and provides possibility of breeding haploid inducers with further improved HIR.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Zhen Lin
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Yang Yue
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Haiming Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
- Sanya Institute of China Agricultural University, Sanya, P. R. China
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China
| | - Xiaohong Fei
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
- Longping Agriculture Science Co. Ltd., Beijing, P. R. China
| | - Lizhu E
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
- Sanya Institute of China Agricultural University, Sanya, P. R. China
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China
| | - Chenxu Liu
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Shaojiang Chen
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
- Sanya Institute of China Agricultural University, Sanya, P. R. China
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China
| | - Weibin Song
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China.
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China.
- Sanya Institute of China Agricultural University, Sanya, P. R. China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China.
| |
Collapse
|
23
|
Tong T, Li Q, Jiang W, Chen G, Xue D, Deng F, Zeng F, Chen ZH. Molecular Evolution of Calcium Signaling and Transport in Plant Adaptation to Abiotic Stress. Int J Mol Sci 2021; 22:12308. [PMID: 34830190 PMCID: PMC8618852 DOI: 10.3390/ijms222212308] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 01/16/2023] Open
Abstract
Adaptation to unfavorable abiotic stresses is one of the key processes in the evolution of plants. Calcium (Ca2+) signaling is characterized by the spatiotemporal pattern of Ca2+ distribution and the activities of multi-domain proteins in integrating environmental stimuli and cellular responses, which are crucial early events in abiotic stress responses in plants. However, a comprehensive summary and explanation for evolutionary and functional synergies in Ca2+ signaling remains elusive in green plants. We review mechanisms of Ca2+ membrane transporters and intracellular Ca2+ sensors with evolutionary imprinting and structural clues. These may provide molecular and bioinformatics insights for the functional analysis of some non-model species in the evolutionarily important green plant lineages. We summarize the chronological order, spatial location, and characteristics of Ca2+ functional proteins. Furthermore, we highlight the integral functions of calcium-signaling components in various nodes of the Ca2+ signaling pathway through conserved or variant evolutionary processes. These ultimately bridge the Ca2+ cascade reactions into regulatory networks, particularly in the hormonal signaling pathways. In summary, this review provides new perspectives towards a better understanding of the evolution, interaction and integration of Ca2+ signaling components in green plants, which is likely to benefit future research in agriculture, evolutionary biology, ecology and the environment.
Collapse
Affiliation(s)
- Tao Tong
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434022, China; (T.T.); (W.J.); (F.D.)
| | - Qi Li
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310030, China; (Q.L.); (G.C.)
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434022, China; (T.T.); (W.J.); (F.D.)
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310030, China; (Q.L.); (G.C.)
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China;
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434022, China; (T.T.); (W.J.); (F.D.)
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434022, China; (T.T.); (W.J.); (F.D.)
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith 2751, Australia
| |
Collapse
|
24
|
Huang HY, Ren QQ, Lai YH, Peng MY, Zhang J, Yang LT, Huang ZR, Chen LS. Metabolomics combined with physiology and transcriptomics reveals how Citrus grandis leaves cope with copper-toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112579. [PMID: 34352583 DOI: 10.1016/j.ecoenv.2021.112579] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Limited data are available on metabolic responses of plants to copper (Cu)-toxicity. Firstly, we investigated Cu-toxic effects on metabolomics, the levels of free amino acids, NH4+-N, NO3--N, total nitrogen, total soluble proteins, total phenolics, lignin, reduced glutathione (GSH) and malondialdehyde, and the activities of nitrogen-assimilatory enzymes in 'Shatian' pummelo (Citrus grandis) leaves. Then, a conjoint analysis of metabolomics, physiology and transcriptomics was performed. Herein, 59 upregulated [30 primary metabolites (PMs) and 29 secondary metabolites (SMs)] and 52 downregulated (31 PMs and 21 SMs) metabolites were identified in Cu-toxic leaves. The toxicity of Cu to leaves was related to the Cu-induced accumulation of NH4+ and decrease of nitrogen assimilation. Metabolomics combined with physiology and transcriptomics revealed some adaptive responses of C. grandis leaves to Cu-toxicity, including (a) enhancing tryptophan metabolism and the levels of some amino acids and derivatives (tryptophan, phenylalanine, 5-hydroxy-l-tryptophan, 5-oxoproline and GSH); (b) increasing the accumulation of carbohydrates and alcohols and upregulating tricarboxylic acid cycle and the levels of some organic acids and derivatives (chlorogenic acid, quinic acid, d-tartaric acid and gallic acid o-hexoside); (c) reducing phospholipid (lysophosphatidylcholine and lysophosphatidylethanolamine) levels, increasing non-phosphate containing lipid [monoacylglycerol ester (acyl 18:2) isomer 1] levels, and inducing low-phosphate-responsive gene expression; and (d) triggering the biosynthesis of some chelators (total phenolics, lignin, l-trytamine, indole, eriodictyol C-hexoside, quercetin 5-O-malonylhexosyl-hexoside, N-caffeoyl agmatine, N'-p-coumaroyl agmatine, hydroxy-methoxycinnamate and protocatechuic acid o-glucoside) and vitamins and derivatives (nicotinic acid-hexoside, B1 and methyl nicotinate). Cu-induced upregulation of many antioxidants could not protect Cu-toxic leaves from oxidative damage. To conclude, our findings corroborated the hypothesis that extensive reprogramming of metabolites was carried out in Cu-toxic C. grandis leaves in order to cope with Cu-toxicity.
Collapse
Affiliation(s)
- Hui-Yu Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qian-Qian Ren
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yin-Hua Lai
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming-Yi Peng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiang Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeng-Rong Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
25
|
Yang D, Liu X, Yin X, Dong T, Yu M, Wu Y. Rice Non-Specific Phospholipase C6 Is Involved in Mesocotyl Elongation. PLANT & CELL PHYSIOLOGY 2021; 62:985-1000. [PMID: 34021760 DOI: 10.1093/pcp/pcab069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/11/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Mesocotyl elongation of rice is crucial for seedlings pushing out of deep soil. The underlying mechanisms of phospholipid signaling in mesocotyl growth of rice are elusive. Here we report that the rice non-specific phospholipase C6 (OsNPC6) is involved in mesocotyl elongation. Our results indicated that all five OsNPCs (OsNPC1, OsNPC2, OsNPC3, OsNPC4 and OsNPC6) hydrolyzed the substrate phosphatidylcholine to phosphocholine (PCho), and all of them showed plasma membrane localization. Overexpression (OE) of OsNPC6 produced plants with shorter mesocotyls compared to those of Nipponbare and npc6 mutants. Although the mesocotyl growth of npc6 mutants was not much affected without gibberellic acid (GA)3, it was obviously elongated by treatment with GA. Upon GA3 treatment, SLENDER RICE1 (SLR1), the DELLA protein of GA signaling, was drastically increased in OE plants; by contrast, the level of SLR1 was found decreased in npc6 mutants. The GA-enhanced mesocotyl elongation and the GA-impaired SLR1 level in npc6 mutants were attenuated by the supplementation of PCho. Further analysis indicated that the GA-induced expression of phospho-base N-methyltransferase 1 in npc6 mutants was significantly weakened by the addition of PCho. In summary, our results suggest that OsNPC6 is involved in mesocotyl development via modulation of PCho in rice.
Collapse
Affiliation(s)
- Di Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tian Dong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Min Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
26
|
Kanchan M, Ramkumar TR, Himani, Sembi JK. Genome-wide characterization and expression profiling of the Phospholipase C (PLC) gene family in three orchids of economic importance. J Genet Eng Biotechnol 2021; 19:124. [PMID: 34420115 PMCID: PMC8380223 DOI: 10.1186/s43141-021-00217-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/26/2021] [Indexed: 01/02/2023]
Abstract
Background Phospholipases hydrolyze glycerophospholipids and generate diverse lipid-derived molecules with secondary messenger activity. Out of these, phospholipase C (PLC) specifically cleaves the phospholipids at ester linkages and yields diacylglycerol (DAG) and phosphorylated head groups. PLCs are classified further as phosphatidylinositol-specific PLCs (PI-PLCs) and non-specific PLCs with biased specificity for phosphatidylcholine (NPC/PC-PLC). Results In the present report, we identified and characterized PLC genes in the genomes of three orchids, Phalaenopsis equestris (seven PePLCs), Dendrobium catenatum (eight DcPLCs), and Apostasia shenzhenica (seven AsPLCs). Multiple sequence alignment analysis confirmed the presence of conserved X and Y catalytic domains, calcium/lipid-binding domain (C2 domain) at the C terminal region, and EF-hand at the N-terminal region in PI-PLC proteins and esterase domain in PC-PLC. Systematic phylogenetic analysis established the relationship of the PLC protein sequences and clustered them into two groups (PI-PLC and PC-PLC) along with those of Arabidopsis thaliana and Oryza sativa. Gene architecture studies showed the presence of nine exons in all PI-PLC genes while the number varied from one to five in PC-PLCs. RNA-seq-based spatio-temporal expression profile for PLC genes was generated, which showed that PePC-PLC1, PePC-PLC2A, DcPC-PLC1A, DcPC-PLC1B, DcPC-PLC2, DcPC-PLC1B, and AsPC-PLC1 had significant expression in all reproductive and vegetative tissues. The expression profile is matched to their upstream cis-regulatory promoter elements, which indicates that PLC genes have a role in various growth and development processes and during stress responses. Conclusions The present study unwrapped the opportunity for functional characterization of selected PLC genes in planta for plant improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00217-z.
Collapse
Affiliation(s)
- Madhvi Kanchan
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Thakku R Ramkumar
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Himani
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Jaspreet K Sembi
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
27
|
Abstract
Doubled haploid (DH) technology produces strictly homozygous fertile plant thanks to doubling the chromosomes of a haploid embryo/seedling. Haploid embryos are derived from either male or female germ line cells and hold only half the number of chromosomes found in somatic plant tissues, albeit in a recombinant form due to meiotic genetic shuffling. DH production allows to rapidly fix these recombinant haploid genomes in the form of perfectly homozygous plants (inbred lines), which are produced in two rather than six or more generations. Thus, DH breeding enables fast evaluation of phenotypic traits on homogenous progeny. While for most crops haploid embryos are produced by costly and often genotype-dependent in vitro methods, for maize, two unique in planta systems are available to induce haploid embryos directly in the seed. Two "haploid inducer lines", identified from spontaneous maize mutants, are able to induce embryos of paternal or maternal origin. Although effortless crosses with lines of interest are sufficient to trigger haploid embryos, substantial improvements were necessary to bring DH technology to large scale production. They include the development of modern haploid inducer lines with high induction rates (8-12%), and methods to sort kernels with haploid embryos from the normal ones. Chromosome doubling represents also a crucial step in the DH process. Recent identification of genomic loci involved in spontaneous doubling opens up perspectives for a fully in planta DH pipeline in maize. Although discovered more than 60 years ago, maize haploid inducer lines still make headlines thanks to novel applications and findings. Indeed, maternal haploid induction was elegantly diverted to deliver genome editing machinery in germplasm recalcitrant to transformation techniques. The recent discovery of two molecular players controlling haploid induction allowed to revisit the mechanistic basis of maize maternal haploid induction and to successfully translate haploid induction ability to other crops.
Collapse
|
28
|
Gilles LM, Calhau ARM, La Padula V, Jacquier NMA, Lionnet C, Martinant JP, Rogowsky PM, Widiez T. Lipid anchoring and electrostatic interactions target NOT-LIKE-DAD to pollen endo-plasma membrane. J Cell Biol 2021; 220:212519. [PMID: 34323919 PMCID: PMC8327379 DOI: 10.1083/jcb.202010077] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/04/2021] [Accepted: 07/08/2021] [Indexed: 01/16/2023] Open
Abstract
Phospholipases cleave phospholipids, major membrane constituents. They are thus essential for many developmental processes, including male gamete development. In flowering plants, mutation of phospholipase NOT-LIKE-DAD (NLD, also known as MTL or ZmPLA1) leads to peculiar defects in sexual reproduction, notably the induction of maternal haploid embryos. Contrary to previous reports, NLD does not localize to cytosol and plasma membrane of sperm cells but to the pollen endo-plasma membrane (endo-PM), a specific membrane derived from the PM of the pollen vegetative cell that encircles the two sperm cells. After pollen tube burst, NLD localizes at the apical region of the egg apparatus. Pharmacological approaches coupled with targeted mutagenesis revealed that lipid anchoring together with electrostatic interactions are involved in the attachment of NLD to this atypical endo-PM. Membrane surface-charge and lipid biosensors indicated that phosphatidylinositol-4,5-bisphosphate is enriched in the endo-PM, uncovering a unique example of how membrane electrostatic properties can define a specific polar domain (i.e., endo-PM), which is critical for plant reproduction and gamete formation.
Collapse
Affiliation(s)
- Laurine M Gilles
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France.,Limagrain, Limagrain Field Seeds, Research Centre, Gerzat, France
| | - Andrea R M Calhau
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Veronica La Padula
- Centre Technologique des Microstructures, Université de Lyon 1, Lyon, France
| | - Nathanaël M A Jacquier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France.,Limagrain, Limagrain Field Seeds, Research Centre, Gerzat, France
| | - Claire Lionnet
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | | | - Peter M Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| |
Collapse
|
29
|
Yu L, Zhou C, Fan J, Shanklin J, Xu C. Mechanisms and functions of membrane lipid remodeling in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:37-53. [PMID: 33853198 DOI: 10.1111/tpj.15273] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 05/20/2023]
Abstract
Lipid remodeling, defined herein as post-synthetic structural modifications of membrane lipids, play crucial roles in regulating the physicochemical properties of cellular membranes and hence their many functions. Processes affected by lipid remodeling include lipid metabolism, membrane repair, cellular homeostasis, fatty acid trafficking, cellular signaling and stress tolerance. Glycerolipids are the major structural components of cellular membranes and their composition can be adjusted by modifying their head groups, their acyl chain lengths and the number and position of double bonds. This review summarizes recent advances in our understanding of mechanisms of membrane lipid remodeling with emphasis on the lipases and acyltransferases involved in the modification of phosphatidylcholine and monogalactosyldiacylglycerol, the major membrane lipids of extraplastidic and photosynthetic membranes, respectively. We also discuss the role of triacylglycerol metabolism in membrane acyl chain remodeling. Finally, we discuss emerging data concerning the functional roles of glycerolipid remodeling in plant stress responses. Illustrating the molecular basis of lipid remodeling may lead to novel strategies for crop improvement and other biotechnological applications such as bioenergy production.
Collapse
Affiliation(s)
- Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chao Zhou
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
30
|
Yang B, Zhang K, Jin X, Yan J, Lu S, Shen Q, Guo L, Hong Y, Wang X, Guo L. Acylation of non-specific phospholipase C4 determines its function in plant response to phosphate deficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1647-1659. [PMID: 33792991 DOI: 10.1111/tpj.15260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Non-specific phospholipase C (NPC) is involved in plant growth, development and stress responses. To elucidate the mechanism by which NPCs mediate cellular functions, here we show that NPC4 is S-acylated at the C terminus and that acylation determines its plasma membrane (PM) association and function. The acylation of NPC4 was detected using NPC4 isolated from Arabidopsis and reconstituted in vitro. The C-terminal Cys-533 was identified as the S-acylation residue, and the mutation of Cys-533 to Ala-533 in NPC4 (NPC4C533A ) led to the loss of S-acylation and membrane association of NPC4. The knockout of NPC4 impeded the phosphate deficiency-induced decrease of the phosphosphingolipid glycosyl inositol phosphoryl ceramide (GIPC), but introducing NPC4C533A to npc4-1 failed to complement this defect, thereby supporting the hypothesis that the non-acylated NPC4C533A fails to hydrolyze GIPC during phosphate deprivation. Moreover, NPC4C533A failed to complement the primary root growth in npc4-1 under stress. In addition, NPC4 in Brassica napus was S-acylated and mutation of the S-acylating cysteine residue of BnaC01.NPC4 led to the loss of S-acylation and its membrane association. Together, our results reveal that S-acylation of NPC4 in the C terminus is conserved and required for its membrane association, phosphosphingolipid hydrolysis and function in plant stress responses.
Collapse
Affiliation(s)
- Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ke Zhang
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Xiong Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiayu Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingwen Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
31
|
Veličković D, Chu RK, Henkel C, Nyhuis A, Tao N, Kyle JE, Adkins JN, Anderton CR, Paurus V, Bloodsworth K, Bramer LM, Cornett DS, Curtis WR, Burnum‐Johnson KE. Preserved and variable spatial-chemical changes of lipids across tomato leaves in response to central vein wounding reveals potential origin of linolenic acid in signal transduction cascade. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:28-35. [PMID: 37283847 PMCID: PMC10168036 DOI: 10.1002/pei3.10038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/08/2023]
Abstract
Membrane lipids serve as substrates for the generation of numerous signaling lipids when plants are exposed to environmental stresses, and jasmonic acid, an oxidized product of 18-carbon unsaturated fatty acids (e.g., linolenic acid), has been recognized as the essential signal in wound-induced gene expression. Yet, the contribution of individual membrane lipids in linolenic acid generation is ill-defined. In this work, we performed spatial lipidomic experiments to track lipid changes that occur locally at the sight of leaf injury to better understand the potential origin of linolenic and linoleic acids from individual membrane lipids. The central veins of tomato leaflets were crushed using surgical forceps, leaves were cryosectioned and analyzed by two orthogonal matrix-assisted laser desorption/ionization mass spectrometry imaging platforms for insight into lipid spatial distribution. Significant changes in lipid composition are only observed 30 min after wounding, while after 60 min lipidome homeostasis has been re-established. Phosphatidylcholines exhibit a variable pattern of spatial behavior in individual plants. Among lysolipids, lysophosphatidylcholines strongly co-localize with the injured zone of wounded leaflets, while, for example, lysophosphatidylglycerol (LPG) (16:1) accumulated preferentially toward the apex in the injured zone of wounded leaflets. In contrast, two other LPGs (LPG [18:3] and LPG [18:2]) are depleted in the injured zone. Our high-resolution co-localization imaging analyses suggest that linolenic acids are predominantly released from PCs with 16_18 fatty acid composition along the entire leaf, while it seems that in the apex zone PG (16:1_18:3) significantly contributes to the linolenic acid pool. These results also indicate distinct localization and/or substrate preferences of phospholipase isoforms in leaf tissue.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWAUSA
| | - Rosalie K. Chu
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWAUSA
| | | | | | | | - Jennifer E. Kyle
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | - Joshua N. Adkins
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | - Christopher R. Anderton
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWAUSA
| | - Vanessa Paurus
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | - Kent Bloodsworth
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | - Lisa M. Bramer
- Computing & Analytics DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | | | - Wayne R. Curtis
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPAUSA
| | | |
Collapse
|
32
|
Xu Y, Caldo KMP, Singer SD, Mietkiewska E, Greer MS, Tian B, Dyer JM, Smith M, Zhou XR, Qiu X, Weselake RJ, Chen G. Physaria fendleri and Ricinus communis lecithin:cholesterol acyltransferase-like phospholipases selectively cleave hydroxy acyl chains from phosphatidylcholine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:182-196. [PMID: 33107656 DOI: 10.1111/tpj.15050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Production of hydroxy fatty acids (HFAs) in transgenic crops represents a promising strategy to meet our demands for specialized plant oils with industrial applications. The expression of Ricinus communis (castor) OLEATE 12-HYDROXYLASE (RcFAH12) in Arabidopsis has resulted in only limited accumulation of HFAs in seeds, which probably results from inefficient transfer of HFAs from their site of synthesis (phosphatidylcholine; PC) to triacylglycerol (TAG), especially at the sn-1/3 positions of TAG. Phospholipase As (PLAs) may be directly involved in the liberation of HFAs from PC, but the functions of their over-expression in HFA accumulation and distribution at TAG in transgenic plants have not been well studied. In this work, the functions of lecithin:cholesterol acyltransferase-like PLAs (LCAT-PLAs) in HFA biosynthesis were characterized. The LCAT-PLAs were shown to exhibit homology to LCAT and mammalian lysosomal PLA2 , and to contain a conserved and functional Ser/His/Asp catalytic triad. In vitro assays revealed that LCAT-PLAs from the HFA-accumulating plant species Physaria fendleri (PfLCAT-PLA) and castor (RcLCAT-PLA) could cleave acyl chains at both the sn-1 and sn-2 positions of PC, and displayed substrate selectivity towards sn-2-ricinoleoyl-PC over sn-2-oleoyl-PC. Furthermore, co-expression of RcFAH12 with PfLCAT-PLA or RcLCAT-PLA, but not Arabidopsis AtLCAT-PLA, resulted in increased occupation of HFA at the sn-1/3 positions of TAG as well as small but insignificant increases in HFA levels in Arabidopsis seeds compared with RcFAH12 expression alone. Therefore, PfLCAT-PLA and RcLCAT-PLA may contribute to HFA turnover on PC, and represent potential candidates for engineering the production of unusual fatty acids in crops.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Elzbieta Mietkiewska
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Michael S Greer
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Bo Tian
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- CAS Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - John M Dyer
- U.S. Department of Agriculture-Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Mark Smith
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Xue-Rong Zhou
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT, 2601, Australia
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
33
|
Abstract
In plants, lipids function in a variety of ways. Lipids are a major component of biological membranes and are used as a compact energy source for seed germination. Fatty acids, the major lipids in plants, are synthesized in plastid and assembled by glycerolipids or triacylglycerols in endoplasmic reticulum. The metabolism of fatty acids and triacylglycerols is well studied in most Arabidopsis model plants by forward and reverse genetics methods. However, research on the diverse functions of lipids in plants, including various crops, has yet to be completed. The papers of this Special Issue cover the core of the field of plant lipid research on the role of galactolipids in the chloroplast biogenesis from etioplasts and the role of acyltransferases and transcription factors involved in fatty acid and triacylglycerol synthesis. This information will contribute to the expansion of plant lipid research.
Collapse
|
34
|
Patatin-Related Phospholipase AtpPLAIIIα Affects Lignification of Xylem in Arabidopsis and Hybrid Poplars. PLANTS 2020; 9:plants9040451. [PMID: 32260242 PMCID: PMC7238252 DOI: 10.3390/plants9040451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022]
Abstract
Lipid acyl hydrolase are a diverse group of enzymes that hydrolyze the ester or amide bonds of fatty acid in plant lipids. Patatin-related phospholipase AIIIs (pPLAIIIs) are one of major lipid acyl hydrolases that are less closely related to potato tuber patatins and are plant-specific. Recently, overexpression of ginseng-derived PgpPLAIIIβ was reported to be involved in the reduced level of lignin content in Arabidopsis and the mature xylem layer of poplar. The presence of lignin-polysaccharides renders cell walls recalcitrant for pulping and biofuel production. The tissue-specific regulation of lignin biosynthesis, without altering all xylem in plants, can be utilized usefully by keeping mechanical strength and resistance to various environmental stimuli. To identify another pPLAIII homolog from Arabidopsis, constitutively overexpressed AtpPLAIIIα was characterized for xylem lignification in two well-studied model plants, Arabidopsis and poplar. The characterization of gene function in annual and perennial plants with respect to lignin biosynthesis revealed the functional redundancy of less lignification via downregulation of lignin biosynthesis-related genes.
Collapse
|
35
|
Dervisi I, Valassakis C, Agalou A, Papandreou N, Podia V, Haralampidis K, Iconomidou VA, Kouvelis VN, Spaink HP, Roussis A. Investigation of the interaction of DAD1-LIKE LIPASE 3 (DALL3) with Selenium Binding Protein 1 (SBP1) in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110357. [PMID: 31928671 DOI: 10.1016/j.plantsci.2019.110357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Phospholipase PLA1-Iγ2 or otherwise DAD1-LIKE LIPASE 3 (DALL3) is a member of class I phospholipases and has a role in JA biosynthesis. AtDALL3 was previously identified in a yeast two-hybrid screening as an interacting protein of the Arabidopsis Selenium Binding Protein 1 (SBP1). In this work, we have studied AtDALL3 as an interacting partner of the Arabidopsis Selenium Binding Protein 1 (SBP1). Phylogenetic analysis showed that DALL3 appears in the PLA1-Igamma1, 2 group, paired with PLA1-Igammma1. The highest level of expression of AtDALL3 was observed in 10-day-old roots and in flowers, while constitutive levels were maintained in seedlings, cotyledons, shoots and leaves. In response to abiotic stress, DALL3 was shown to participate in the network of genes regulated by cadmium, selenite and selenate compounds. DALL3 promoter driven GUS assays revealed that the expression patterns defined were overlapping with the patterns reported for AtSBP1 gene, indicating that DALL3 and SBP1 transcripts co-localize. Furthermore, quantitative GUS assays showed that these compounds elicited changes in activity in specific cells files, indicating the differential response of DALL3 promoter. GFP::DALL3 studies by confocal microscopy demonstrated the localization of DALL3 in the plastids of the root apex, the plastids of the central root and the apex of emerging lateral root primordia. Additionally, we confirmed by yeast two hybrid assays the physical interaction of DALL3 with SBP1 and defined a minimal SBP1 fragment that DALL3 binds to. Finally, by employing bimolecular fluorescent complementation we demonstrated the in planta interaction of the two proteins.
Collapse
Affiliation(s)
- Irene Dervisi
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Chrysanthi Valassakis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Adamantia Agalou
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Nikolaos Papandreou
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University, 15784, Athens, Greece
| | - Varvara Podia
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Kosmas Haralampidis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Vassiliki A Iconomidou
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University, 15784, Athens, Greece
| | - Vassili N Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Andreas Roussis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece.
| |
Collapse
|
36
|
Iqbal S, Ali U, Fadlalla T, Li Q, Liu H, Lu S, Guo L. Genome wide characterization of phospholipase A & C families and pattern of lysolipids and diacylglycerol changes under abiotic stresses in Brassica napus L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:101-112. [PMID: 31855816 DOI: 10.1016/j.plaphy.2019.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Plant phospholipase A (PLA) and C (PLC) families are least explored in terms of structure, diversity and their roles in membrane lipid remodeling under stress conditions. In this study, we performed gene family analysis, determined gene expression in different tissues and monitored transcriptional regulation of patatin-related PLA family and PLC family in oil crop Brassica napus under dehydration, salt, abscisic acid and cold stress. The identified 29 BnapPLA genes and 40 BnaPLC genes shared high similarities with Arabidopsis pPLAs and PLCs, respectively. This study highlighted the expression pattern of BnapPLAs and BnaPLCs in different tissues and their expression in response to abiotic stresses in Brassica napus. The results revealed that several members of BnapPLA3, PI-PLC1/2 and NPC1 were actively regulated by abiotic stresses. Lipid changes at different time points under stress conditions were also measured. Lipid profiling revealed that the level of lysophospholipids and diacylglycerol (DAG) showed a varied pattern of changes under different abiotic stress treatments. The change of lipids correlated with the transcriptional regulation of a few specific members of pPLA and PLC families. Our study suggested that A and C-type phospholipases in Brassica napus may have diverse physiological and regulatory roles in abiotic stress response and tolerance.
Collapse
Affiliation(s)
- Sidra Iqbal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Department of Agriculture, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tarig Fadlalla
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
37
|
Jang JH, Bae EK, Choi YI, Lee OR. Ginseng-derived patatin-related phospholipase PgpPLAIIIβ alters plant growth and lignification of xylem in hybrid poplars. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110224. [PMID: 31521213 DOI: 10.1016/j.plantsci.2019.110224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Patatin-liked phospholipase A (pPLAs) are major lipid acyl hydrolases that participate in various biological functions in plant growth and development. Previously, a ginseng-derived pPLAIII homolog was reported to reduce lignin content in Arabidopsis. This led us to evaluate its possible usefulness as a biomass source in wood plant. Herein, we report that there are six members in the pPLAIII gene family in poplar. Overexpression of pPLAIIIβ derived from ginseng resulted in a reduced plant height with radially expanded stem growth in hybrid poplars. Compared with the wild type (WT), the chlorophyll content was increased in the overexpression poplar lines, whereas the leaf size was smaller. The secondary cell wall structure in overexpression lines was also altered, exhibiting reduced lignification in the xylem. Two transcription factors, MYB92 and MYB152, which control lignin biosynthesis, were downregulated in the overexpression lines. The middle xylem of the overexpression line showed heavy thickening, making it thicker than the other xylem parts and the WT xylem, which rather could have been contributed by the presence of more cellulose in the selected surface area. Taken together, the results suggest that PgpPLAIIIβ plays a role not only in cell elongation patterns, but also in determining the secondary cell wall composition.
Collapse
Affiliation(s)
- Jin Hoon Jang
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Eun-Kyung Bae
- Division of Forest Biotechnology, National Institute of Forest Science, Suwon, 441-847, Republic of Korea.
| | - Young-Im Choi
- Division of Forest Biotechnology, National Institute of Forest Science, Suwon, 441-847, Republic of Korea.
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
38
|
Mariani ME, Fidelio GD. Secretory Phospholipases A 2 in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:861. [PMID: 31354755 PMCID: PMC6635587 DOI: 10.3389/fpls.2019.00861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/14/2019] [Indexed: 05/17/2023]
Abstract
Secreted phospholipases (sPLA2s) in plants are a growing group of enzymes that catalyze the hydrolysis of sn-2 glycerophospholipids to lysophospholipids and free fatty acids. Until today, around only 20 sPLA2s were reported from plants. This review discusses the newly acquired information on plant sPLA2s including molecular, biochemical, catalytic, and functional aspects. The comparative analysis also includes phylogenetic, evolutionary, and tridimensional structure. The observations with emphasis in Glycine max sPLA2 are compared with the available data reported for all plants sPLA2s and with those described for animals (mainly from pancreatic juice and venoms sources).
Collapse
Affiliation(s)
- María Elisa Mariani
- Departamento de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Fundamentación Biológica, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gerardo Daniel Fidelio
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
39
|
Deng X, Yuan S, Cao H, Lam SM, Shui G, Hong Y, Wang X. Phosphatidylinositol-hydrolyzing phospholipase C4 modulates rice response to salt and drought. PLANT, CELL & ENVIRONMENT 2019; 42:536-548. [PMID: 30175516 DOI: 10.1111/pce.13437] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 05/04/2023]
Abstract
Phosphatidylinositol-specific phospholipase C (PI-PLC) is involved in stress signalling but its signalling function remains largely unknown in crop plants. Here, we report that the PI-PLC4 from rice (Oryza sativa cv), OsPLC4, plays a positive role in osmotic stress response. Two independent knockout mutants, plc4-1 and plc4-2, exhibited decreased seedling growth and survival rate whereas overexpression of OsPLC4 improved survival rate under high salinity and water deficiency, compared with wild type (WT). OsPLC4 hydrolyses PI, phosphatidylinositol 4-phosphate (PI4P), and phosphatidylinositol-4,5-bisphosphate (PIP2 ) to generate diacylglycerol (DAG) in vitro. Knockout of OsPLC4 attenuated salt-induced increase of phosphatidic acid (PA) whereas overexpression of OsPLC4 decreased the level of PI4P and PIP2 under salt treatment. Applications of DAG or PA restored the growth defect of plc4-1 to WT but DAG kinase inhibitor 1 blocked the complementary effect of DAG in plc4-1 under salt stress. In addition, the loss of OsPLC4 compromised the increase of inositol triphosphate and free cytoplasmic Ca2+ ([Ca2+ ]cyt ) and inhibited the induction of genes involved in Ca2+ sensor and osmotic stress response to salt stress. The results indicate that OsPLC4 modulates the activity of two signalling pathways, PA and Ca2+ , to affect rice seedling response to osmotic stress.
Collapse
Affiliation(s)
- Xianjun Deng
- National Key Laboratory of Crop Genetic Improvement, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shu Yuan
- National Key Laboratory of Crop Genetic Improvement, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huasheng Cao
- National Key Laboratory of Crop Genetic Improvement, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sin Man Lam
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| |
Collapse
|
40
|
Jang JH, Lee OR. Overexpression of ginseng patatin-related phospholipase pPLAIIIβ alters the polarity of cell growth and decreases lignin content in Arabidopsis. J Ginseng Res 2019; 44:321-331. [PMID: 32148415 PMCID: PMC7031755 DOI: 10.1016/j.jgr.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 12/31/2022] Open
Abstract
Background The patatin-related phospholipase AIII family (pPLAIIIs) genes alter cell elongation and cell wall composition in Arabidopsis and rice plant, suggesting diverse commercial purposes of the economically important medicinal ginseng plant. Herein, we show the functional characterization of a ginseng pPLAIII gene for the first time and discuss its potential applications. Methods pPLAIIIs were identified from ginseng expressed sequence tag clones and further confirmed by search against ginseng database and polymerase chain reaction. A clone showing the highest homology with pPLAIIIβ was shown to be overexpressed in Arabidopsis using Agrobacterium. Quantitative polymerase chain reaction was performed to analyze ginseng pPLAIIIβ expression. Phenotypes were observed using a low-vacuum scanning electron microscope. Lignin was stained using phloroglucinol and quantified using acetyl bromide. Results The PgpPLAIIIβ transcripts were observed in all organs of 2-year-old ginseng. Overexpression of ginseng pPLAIIIβ (PgpPLAIIIβ-OE) in Arabidopsis resulted in small and stunted plants. It shortened the trichomes and decreased trichome number, indicating defects in cell polarity. Furthermore, OE lines exhibited enlarged seeds with less number per silique. The YUCCA9 gene was downregulated in the OE lines, which is reported to be associated with lignification. Accordingly, lignin was stained less in the OE lines, and the expression of two transcription factors related to lignin biosynthesis was also decreased significantly. Conclusion Overexpression of pPLAIIIβ retarded cell elongation in all the tested organs except seeds, which were longer and thicker than those of the controls. Shorter root length is related to auxin-responsive genes, and its stunted phenotype showed decreased lignin content.
Collapse
Affiliation(s)
- Jin Hoon Jang
- Department of Plant Biotechnology, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Ok Ran Lee
- Department of Plant Biotechnology, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
41
|
Zhang G, Bahn SC, Wang G, Zhang Y, Chen B, Zhang Y, Wang X, Zhao J. PLDα1-knockdown soybean seeds display higher unsaturated glycerolipid contents and seed vigor in high temperature and humidity environments. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:9. [PMID: 30622651 PMCID: PMC6319013 DOI: 10.1186/s13068-018-1340-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/13/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Soybean oil constitutes an important source of vegetable oil and biofuel. However, high temperature and humidity adversely impacts soybean seed development, yield, and quality during plant development and after harvest. Genetic improvement of soybean tolerance to stress environments is highly desirable. RESULTS Transgenic soybean lines with knockdown of phospholipase Dα1 (PLDα1KD) were generated to study PLDα1's effects on lipid metabolism and seed vigor under high temperature and humidity conditions. Under such stress, as compared with normal growth conditions, PLDα1KD lines showed an attenuated stress-induced deterioration during soybean seed development, which was associated with elevated expression of reactive oxygen species-scavenging genes when compared with wild-type control. The developing seeds of PLDα1KD had higher levels of unsaturation in triacylglycerol (TAG) and major membrane phospholipids, but lower levels of phosphatidic acid and lysophospholipids compared with control cultivar. Lipid metabolite and gene expression profiling indicates that the increased unsaturation on phosphatidylcholine (PC) and enhanced conversion between PC and diacylglycerol (DAG) by PC:DAG acyltransferase underlie a basis for increased TAG unsaturation in PLDα1KD seeds. Meanwhile, the turnover of PC and phosphatidylethanolamine (PE) into lysoPC and lysoPE was suppressed in PLDα1KD seeds under high temperature and humidity conditions. PLDα1KD developing seeds suffered lighter oxidative stresses than did wild-type developing seeds in the stressful environments. PLDα1KD seeds contain higher oil contents and maintained higher germination rates than the wild-type seeds. CONCLUSIONS The study provides insights into the roles of PLDα1 in developing soybean seeds under high temperature and humidity stress. PLDα1KD decreases pre-harvest deterioration and enhances acyl editing in phospholipids and TAGs. The results indicate a way towards improving production of quality soybean seeds as foods and biofuels under increasing environmental stress.
Collapse
Affiliation(s)
- Gaoyang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Sung-Chul Bahn
- University of Missouri at St Louis, Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Geliang Wang
- University of Missouri at St Louis, Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Yanrui Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Beibei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430075 China
| | - Yuliang Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops. Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101 China
| | - Xuemin Wang
- University of Missouri at St Louis, Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
42
|
Wang S, Jin W, Wang K. Centromere histone H3- and phospholipase-mediated haploid induction in plants. PLANT METHODS 2019; 15:42. [PMID: 31057661 PMCID: PMC6485145 DOI: 10.1186/s13007-019-0429-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/24/2019] [Indexed: 05/14/2023]
Abstract
Simple and consistent production of haploid is always an appealing pursuit for both crop breeders and researchers. Although diverse strategies have been developed to produce haploids over the past decades, most of them are applicable in only a limited number of plant species. In 2010, Ravi and Chan reported that haploid Arabidopsis thaliana plants can be efficiently induced through the introduction of a single genetic alteration in centromere histone H3 (CENH3). Subsequent studies demonstrated that haploids can be efficiently induced either through genetic engineering of CENH3 N-terminal tail or histone fold domain or by replacing CENH3 with an ortholog. The mutation of a pollen-specific phospholipase gene, MATRILINEAL (MTL) has been revealed to trigger the haploid induction (HI) in maize, which present another promising HI approach by the editing of MTL in plant. Here, we review the progress of the CENH3-medialed HI and propose a revised centromere-size model by suggesting a competitive loading process between wild-type and mutant CENH3 during HI. This model can explain both the findings of HI failure when wild-type and mutant CENH3 genes are coexpressed and the alien centromere loading of CENH3 in stable hybrids. In addition, we review the current understanding of MTL-mediated HI in plant. The conservation of CENH3 and MTL in plants indicates wide potential application for HI. We discuss the utility and potential of these two methods in crops by comparing their mechanisms and applications to date in plants. This review will promote the study and application of both CENH3- and MTL-mediated haploid induction in plants.
Collapse
Affiliation(s)
- Song Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Weiwei Jin
- College of Agriculture, China Agricultural University, No. 2, Yuan Ming Yuan West Road, Haidian District, Beijing, 100193 China
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
43
|
Lung SC, Liao P, Yeung EC, Hsiao AS, Xue Y, Chye ML. Arabidopsis ACYL-COA-BINDING PROTEIN1 interacts with STEROL C4-METHYL OXIDASE1-2 to modulate gene expression of homeodomain-leucine zipper IV transcription factors. THE NEW PHYTOLOGIST 2018; 218:183-200. [PMID: 29288621 DOI: 10.1111/nph.14965] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 05/18/2023]
Abstract
Fatty acids (FAs) and sterols constitute building blocks of eukaryotic membranes and lipid signals. Co-regulation of FA and sterol synthesis is mediated by sterol regulatory element-binding proteins in animals but remains elusive in plants. We reported recently that Arabidopsis ACYL-COA-BINDING PROTEIN1 (ACBP1) modulates sterol synthesis via protein-protein interaction with STEROL C4-METHYL OXIDASE1-1 (SMO1-1). Herein, ACBP1 was demonstrated to co-express and interact with SMO1-2 by yeast two-hybrid, co-localization, pull-down, co-immunoprecipitation and β-glucuronidase assays. SMO1-2 silenced in acbp1 was used in phenotyping, GC-MS and expression profiling. ACBP1 co-expressed with SMO1-2 in embryo sacs, pollen and trichomes, corroborating with cooperative tissue-specific functions unseen with SMO1-1. SMO1-2 silencing in acbp1 impaired seed development, male and female gamete transmission, and pollen function. Genes encoding homeodomain-leucine zipper IV transcription factors (HDG5, HDG10, HDG11 and GLABRA2), which potentially bind phospholipids/sterols, were transcribed aberrantly. GLABRA2 targets (MYB23, MUM4 and PLDα1) were misregulated, causing glabra2-resembling trichome, seed coat mucilage and oil-accumulating phenotypes. Together with altered sterol and FA compositions upon ACBP1 mutation and/or SMO1-2 silencing, ACBP1-SMO1 interaction appears to mediate homeostatic co-regulation of FAs and sterols, which serve as lipid modulators for gene expression of homeodomain-leucine zipper IV transcription factors.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Edward C Yeung
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - An-Shan Hsiao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yan Xue
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
44
|
Belayneh HD, Wehling RL, Cahoon E, Ciftci ON. Lipid composition and emulsifying properties of Camelina sativa seed lecithin. Food Chem 2018; 242:139-146. [DOI: 10.1016/j.foodchem.2017.08.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/17/2017] [Accepted: 08/23/2017] [Indexed: 11/28/2022]
|
45
|
Xu Y, Huang B. Transcriptomic analysis reveals unique molecular factors for lipid hydrolysis, secondary cell-walls and oxidative protection associated with thermotolerance in perennial grass. BMC Genomics 2018; 19:70. [PMID: 29357827 PMCID: PMC5778672 DOI: 10.1186/s12864-018-4437-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/04/2018] [Indexed: 11/11/2022] Open
Abstract
Background Heat stress is the primary abiotic stress limiting growth of cool-season grass species. The objective of this study was to determine molecular factors and metabolic pathways associated with superior heat tolerance in thermal bentgrass (Agrostis scabra) by comparative analysis of transcriptomic profiles with its co-generic heat-sensitive species creeping bentgrass (A. stolonifera). Results Transcriptomic profiling by RNA-seq in both heat-sensitive A. stolonifera (cv. ‘Penncross’) and heat-tolerant A. scabra exposed to heat stress found 1393 (675 up- and 718 down-regulated) and 1508 (777 up- and 731 down-regulated) differentially-expressed genes, respectively. The superior heat tolerance in A. scabra was associated with more up-regulation of genes in oxidative protection, proline biosynthesis, lipid hydrolysis, hemicellulose and lignin biosynthesis, compared to heat-sensitive A. stolonifera. Several transcriptional factors (TFs), such as high mobility group B protein 7 (HMGB7), dehydration-responsive element-binding factor 1a (DREB1a), multiprotein-bridging factor 1c (MBF1c), CCCH-domain containing protein 47 (CCCH47), were also found to be up-regulated in A. scabra under heat stress. Conclusions The unique TFs and genes identified in thermal A. scabra could be potential candidate genes for genetic modification of cultivated grass species for improving heat tolerance, and the associated pathways could contribute to the transcriptional regulation for superior heat tolerance in bentgrass species. Electronic supplementary material The online version of this article (10.1186/s12864-018-4437-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Xu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Bingru Huang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
46
|
Aryal N, Lu C. A Phospholipase C-Like Protein From Ricinus communis Increases Hydroxy Fatty Acids Accumulation in Transgenic Seeds of Camelina sativa. FRONTIERS IN PLANT SCIENCE 2018; 9:1576. [PMID: 30443260 PMCID: PMC6221933 DOI: 10.3389/fpls.2018.01576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/09/2018] [Indexed: 05/23/2023]
Abstract
There have been strong interests in producing unusual fatty acids in oilseed crops to provide renewable industrial feedstock. Results are so far largely disappointing since much lower amounts of such fatty acids accumulate in genetically engineered seeds than in their original natural sources. It has been suggested that the flux of unusual fatty acids through phosphatidylcholine (PC) represents a major bottleneck for high accumulation of such fatty acids in triacylglycerol (TAG). We show here that a phospholipase C-like protein (RcPLCL1) from castor bean, which accumulates nearly 90% of the hydroxylated ricinoleic acid in its seed TAG, increases the amount of hydroxy fatty acids (HFAs) when co-expresses with the fatty acid hydroxylase (RcFAH12) in transgenic seed of Camelina sativa. RcPLCL1 shows hydrolyzing activities on both PC and phosphatidylinositol substrates in our in vitro assay conditions. The PC-PLC activity of the RcPLCL1 may have increased the efficiency of HFA-PC to diacylglycerol conversion, which explains our observation of increased HFA contents in TAG concomitant with decreased HFA in the membrane lipid PC during seed development. Consequently, this may also alleviate the potential detrimental effect of HFA on germination of the engineered camelina seeds. Our results provide new knowledge that will help design effective strategies to engineer high levels of HFAs in transgenic oilseeds.
Collapse
|
47
|
Gupta P, Saini R, Dash PK. Origin and evolution of group XI secretory phospholipase A 2 from flax (Linum usitatissimum) based on phylogenetic analysis of conserved domains. 3 Biotech 2017; 7:216. [PMID: 28669075 DOI: 10.1007/s13205-017-0790-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/12/2017] [Indexed: 01/10/2023] Open
Abstract
Phospholipase A2 (PLA2) belongs to class of lipolytic enzymes (EC 3.1.1.4). Lysophosphatidic acid (LPA) and free fatty acids (FFAs) are the products of PLA2 catalyzed hydrolysis of phosphoglycerides at sn-2 position. LPA and FFA that act as second mediators involved in the development and maturation of plants and animals. Mining of flax genome identified two phospholipase A2 encoding genes, viz., LusPLA 2 I and LusPLA 2 II (Linum usitatissimum secretory phospholipase A2). Molecular simulation of LusPLA2s with already characterized plant sPLA2s revealed the presence of conserved motifs and signature domains necessary to classify them as secretory phospholipase A2. Phylogenetic analysis of flax sPLA2 with representative sPLA2s from other organisms revealed that they evolved rapidly via gene duplication/deletion events and shares a common ancestor. Our study is the first report of detailed phylogenetic analysis for secretory phospholipase A2 in flax. Comparative genomic analysis of two LusPLA2s with earlier reported plant sPLA2s, based on their gene architectures, sequence similarities, and domain structures are presented elucidating the uniqueness of flax sPLA2.
Collapse
|
48
|
Han EH, Petrella DP, Blakeslee JJ. 'Bending' models of halotropism: incorporating protein phosphatase 2A, ABCB transporters, and auxin metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3071-3089. [PMID: 28899081 DOI: 10.1093/jxb/erx127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Salt stress causes worldwide reductions in agricultural yields, a problem that is exacerbated by the depletion of global freshwater reserves and the use of contaminated or recycled water (i.e. effluent water). Additionally, salt stress can occur as cultivated areas are subjected to frequent rounds of irrigation followed by periods of moderate to severe evapotranspiration, which can result in the heterogeneous aggregation of salts in agricultural soils. Our understanding of the later stages of salt stress and the mechanisms by which salt is transported out of cells and roots has greatly improved over the last decade. The precise mechanisms by which plant roots perceive salt stress and translate this perception into adaptive, directional growth away from increased salt concentrations (i.e. halotropism), however, are not well understood. Here, we provide a review of the current knowledge surrounding the early responses to salt stress and the initiation of halotropism, including lipid signaling, protein phosphorylation cascades, and changes in auxin metabolism and/or transport. Current models of halotropism have focused on the role of PIN2- and PIN1-mediated auxin efflux in initiating and controlling halotropism. Recent studies, however, suggest that additional factors such as ABCB transporters, protein phosphatase 2A activity, and auxin metabolism should be included in the model of halotropic growth.
Collapse
Affiliation(s)
- Eun Hyang Han
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
| | - Dominic P Petrella
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
| | - Joshua J Blakeslee
- Department of Horticulture and Crop Science, OARDC Metabolite Analysis Cluster (OMAC), The Ohio State University/OARDC, Wooster, OH, USA
| |
Collapse
|
49
|
Passamani LZ, Barbosa RR, Reis RS, Heringer AS, Rangel PL, Santa-Catarina C, Grativol C, Veiga CFM, Souza-Filho GA, Silveira V. Salt stress induces changes in the proteomic profile of micropropagated sugarcane shoots. PLoS One 2017; 12:e0176076. [PMID: 28419154 PMCID: PMC5395195 DOI: 10.1371/journal.pone.0176076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/05/2017] [Indexed: 01/09/2023] Open
Abstract
Salt stress is one of the most common stresses in agricultural regions worldwide. In particular, sugarcane is affected by salt stress conditions, and no sugarcane cultivar presently show high productivity accompanied by a tolerance to salt stress. Proteomic analysis allows elucidation of the important pathways involved in responses to various abiotic stresses at the biochemical and molecular levels. Thus, this study aimed to analyse the proteomic effects of salt stress in micropropagated shoots of two sugarcane cultivars (CB38-22 and RB855536) using a label-free proteomic approach. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD006075. The RB855536 cultivar is more tolerant to salt stress than CB38-22. A quantitative label-free shotgun proteomic analysis identified 1172 non-redundant proteins, and 1160 of these were observed in both cultivars in the presence or absence of NaCl. Compared with CB38-22, the RB855536 cultivar showed a greater abundance of proteins involved in non-enzymatic antioxidant mechanisms, ion transport, and photosynthesis. Some proteins, such as calcium-dependent protein kinase, photosystem I, phospholipase D, and glyceraldehyde-3-phosphate dehydrogenase, were more abundant in the RB855536 cultivar under salt stress. Our results provide new insights into the response of sugarcane to salt stress, and the changes in the abundance of these proteins might be important for the acquisition of ionic and osmotic homeostasis during exposure to salt stress.
Collapse
Affiliation(s)
- Lucas Z. Passamani
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Roberta R. Barbosa
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Ricardo S. Reis
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Angelo S. Heringer
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Patricia L. Rangel
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | | | - Clícia Grativol
- Laboratório de Química e Função de Proteínas e Peptídeos, CBB, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Carlos F. M. Veiga
- Laboratório de Cultura de Tecidos Vegetais (Biofábrica), Universidade Federal Rural do Rio de Janeiro Campus Campos dos Goytacazes, Campos dos Goytacazes, RJ, Brazil
| | - Gonçalo A. Souza-Filho
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
- * E-mail:
| |
Collapse
|
50
|
Gilles LM, Khaled A, Laffaire JB, Chaignon S, Gendrot G, Laplaige J, Bergès H, Beydon G, Bayle V, Barret P, Comadran J, Martinant JP, Rogowsky PM, Widiez T. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 2017; 36:707-717. [PMID: 28228439 PMCID: PMC5350562 DOI: 10.15252/embj.201796603] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/27/2022] Open
Abstract
Gynogenesis is an asexual mode of reproduction common to animals and plants, in which stimuli from the sperm cell trigger the development of the unfertilized egg cell into a haploid embryo. Fine mapping restricted a major maize QTL (quantitative trait locus) responsible for the aptitude of inducer lines to trigger gynogenesis to a zone containing a single gene NOT LIKE DAD (NLD) coding for a patatin-like phospholipase A. In all surveyed inducer lines, NLD carries a 4-bp insertion leading to a predicted truncated protein. This frameshift mutation is responsible for haploid induction because complementation with wild-type NLD abolishes the haploid induction capacity. Activity of the NLD promoter is restricted to mature pollen and pollen tube. The translational NLD::citrine fusion protein likely localizes to the sperm cell plasma membrane. In Arabidopsis roots, the truncated protein is no longer localized to the plasma membrane, contrary to the wild-type NLD protein. In conclusion, an intact pollen-specific phospholipase is required for successful sexual reproduction and its targeted disruption may allow establishing powerful haploid breeding tools in numerous crops.
Collapse
Affiliation(s)
- Laurine M Gilles
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA, Lyon, France
- Limagrain Europe SAS, Research Centre, Chappes, France
| | - Abdelsabour Khaled
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA, Lyon, France
- Department of Genetics, Faculty of Agriculture, Sohag University, Sohag, Egypt
| | | | - Sandrine Chaignon
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA, Lyon, France
| | - Ghislaine Gendrot
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA, Lyon, France
| | - Jérôme Laplaige
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA, Lyon, France
| | - Hélène Bergès
- INRA, US1258 Centre National des Ressources Génomiques Végétales, Auzeville, France
| | - Genséric Beydon
- INRA, US1258 Centre National des Ressources Génomiques Végétales, Auzeville, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA, Lyon, France
| | - Pierre Barret
- INRA, UMR1095 Génétique, Diversité, Ecophysiologie des Céréales, Clermont-Ferrand, France
| | | | | | - Peter M Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA, Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA, Lyon, France
| |
Collapse
|