1
|
Sakib MM, Islam MS, Bhuya AR, Shuvo MRK, Abdullah-Al-Shoeb M, Azad MAK, Ghosh A. Genomic identification, evolutionary analysis, and transcript profiling of protein phosphatase 2C in Solanum lycopersicum. Sci Rep 2024; 14:31742. [PMID: 39738553 PMCID: PMC11685476 DOI: 10.1038/s41598-024-82337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/04/2024] [Indexed: 01/02/2025] Open
Abstract
Protein phosphatases (PPs) are a class of enzymes that play a critical role in cellular regulation by catalyzing the removal of phosphate groups from proteins. This dephosphorylation process is essential for controlling and modulating various cellular functions, including signal transduction, cell cycle progression, metabolic regulation, and stress responses. This study focuses on the comprehensive genomic identification, evolutionary analysis, and transcript profiling of the PP2C gene family within Solanum lycopersicum, an economically significant crop with substantial agricultural and nutritional importance. A total of 95 PP2C members have been identified in tomato, which was divided into 12 subgroups. An evolutionary comparison of the tomato PP2C members with other plant species demonstrated that they shared a common ancestor. A total of 14 SlPP2Cs have arisen from segmental duplication events, while no tandem duplication was detected. Certain SlPP2C genes exhibited unique expression patterns in specific tissues, with only a limited number of SlPP2C genes being expressed in all tissues, while almost all SlPP2Cs are upregulated during the flowering stage. Gene expression analysis revealed elevated transcript levels of SlPP2C22, SlPP2C30, and SlPP2C52 during drought stress. An increase in total PP2C enzyme activity was also observed which indicates their significance in drought stress. These findings add to the comprehension of the evolutionary history and significance of tomato PP2C in managing abiotic stress and pave the way for additional verification of the functional aspect of these PP2C genes in tomato.
Collapse
Affiliation(s)
- Miah Mohammad Sakib
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Sifatul Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
- Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| | - Asifur Rob Bhuya
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Rihan Kabir Shuvo
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammad Abdullah-Al-Shoeb
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Muhammad Abul Kalam Azad
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 N. University Drive, Pine Bluff, AR, 71601, USA
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
2
|
Zeng A, Song Y, Wan X, Shen B, Fang R, Zhao J, Zhou Y. Characterization of two phosphatase 2 C domain-containing proteins PPM2A and PPM2B in Toxoplasma gondii. Mol Biochem Parasitol 2024; 260:111654. [PMID: 39461506 DOI: 10.1016/j.molbiopara.2024.111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Protein phosphatases Mg2+/Mn2+ dependent (PPMs), serine/threonine phosphatases, are widely distributed in apicomplexan parasites, and Toxoplasma gondii possesses the largest number of PPMs in the apicomplexan parasites. Though the function of some PPMs has been characterized in T. gondii, much less is known about two phosphatase 2 C domain-containing proteins, PPM2A and PPM2B. PPM2A was identified as one of Toxoplasma Calmodulin's interacting proteins through proximity-based protein interaction BioID technology in the previous study, and PPM2B was the homolog of PPM2A in T. gondii. In this study, PPM2A was distributed in the whole tachyzoite of T. gondii, and PPM2B was mainly distributed in the cytoplasm by inserting a 10HA tag in the C-terminus of the two genes in the RH∆ku80 strain. PPM2A knockout (Δppm2a), PPM2B knockout (Δppm2b), and double knockout (ΔΔ) in RHΔhxgprt type I strain under CRISPR-Cas9 system did not result in intracellular replication defect. Besides, mouse experiments demonstrated that PPM2A, PPM2B, and double knockout did not reduce the pathogenicity of T. gondii compared with the RH∆hxgprt strain. However, the plaque size of these single knockout and double knockout strains were smaller than that in the control RH∆hxgprt strain. Our results provide new insight into the function of PPMs in the pathogenesis of T. gondii.
Collapse
Affiliation(s)
- Ao Zeng
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yongle Song
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaoting Wan
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bang Shen
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junlong Zhao
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanqin Zhou
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
3
|
Heckathorn SA, Muller CT, Thomas MD, Vining EP, Bigioni S, Elsie C, Franklin JT, New ER, Boldt JK. Cyanobacterial Cultures, Cell Extracts, and Individual Toxins Decrease Photosynthesis in the Terrestrial Plants Lactuca sativa and Zea mays. PLANTS (BASEL, SWITZERLAND) 2024; 13:3190. [PMID: 39599398 PMCID: PMC11597909 DOI: 10.3390/plants13223190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Cyanobacterial harmful algal blooms (cHABs) are increasing due to eutrophication and climate change, as is irrigation of crops with freshwater contaminated with cHAB toxins. A few studies, mostly in aquatic protists and plants, have investigated the effects of cHAB toxins or cell extracts on various aspects of photosynthesis, with variable effects reported (negative to neutral to positive). We examined the effects of cyanobacterial live cultures and cell extracts (Microcystis aeruginosa or Anabaena flos-aquae) and individual cHAB toxins (anatoxin-a, ANA; beta-methyl-amino-L-alanine, BMAA; lipopolysaccharide, LPS; microcystin-LR, MC-LR) on photosynthesis in intact plants and leaf pieces in corn (Zea mays) and lettuce (Lactuca sativa). In intact plants grown in soil or hydroponically, overall net photosynthesis (Pn), but not Photosystem-II (PSII) electron-transport yield (ΦPSII), decreased when roots were exposed to cyanobacterial culture (whether with intact cells, cells removed, or cells lysed and removed) or individual toxins in solution (especially ANA, which also decreased rubisco activity); cyanobacterial culture also decreased leaf chlorophyll concentration. In contrast, ΦPSII decreased in leaf tissue vacuum-infiltrated with cyanobacterial culture or the individual toxins, LPS and MC-LR, though only in illuminated (vs. dark-adapted) leaves, and none of the toxins caused significant decreases in in vitro photosynthesis in thylakoids. Principal component analysis indicated unique overall effects of cyanobacterial culture and each toxin on photosynthesis. Hence, while cHAB toxins consistently impacted plant photosynthesis at ecologically relevant concentrations, the effects varied depending on the toxins and the mode of exposure.
Collapse
Affiliation(s)
- Scott A. Heckathorn
- Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA; (C.T.M.); (M.D.T.); (E.P.V.); (E.R.N.)
| | - Clare T. Muller
- Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA; (C.T.M.); (M.D.T.); (E.P.V.); (E.R.N.)
| | - Michael D. Thomas
- Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA; (C.T.M.); (M.D.T.); (E.P.V.); (E.R.N.)
| | - Emily P. Vining
- Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA; (C.T.M.); (M.D.T.); (E.P.V.); (E.R.N.)
| | - Samantha Bigioni
- Ottawa Hills High School, Ottawa Hills, OH 43606, USA; (S.B.); (J.T.F.)
| | - Clair Elsie
- Sylvania High School, Sylvania, OH 43560, USA;
| | | | - Emily R. New
- Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA; (C.T.M.); (M.D.T.); (E.P.V.); (E.R.N.)
| | - Jennifer K. Boldt
- Agricultural Research Service, United States Department of Agriculture, Toledo, OH 43606, USA;
| |
Collapse
|
4
|
Xin J, Li C, Liu X, Shi X, Sun Y, Shang JX. Emerging Functions of Protein Tyrosine Phosphatases in Plants. Int J Mol Sci 2024; 25:12050. [PMID: 39596119 PMCID: PMC11593807 DOI: 10.3390/ijms252212050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Reversible protein phosphorylation, known as the "switch" of the cell, is controlled by protein kinases (PKs) and protein phosphatases (PPs). Based on substrate specificity, PPs are classified into protein serine/threonine phosphatases and protein tyrosine phosphatases (PTPs). PTPs can dephosphorylate phosphotyrosine and phosphoserine/phosphothreonine. In plants, PTPs monitor plant physiology, growth, and development. This review summarizes an overview of the PTPs' classification and describes how PTPs regulate various plant processes, including plant growth and development, plant hormone responses, and responses to abiotic and biotic stresses. Then, future research directions on the PTP family in plants are discussed. This summary will serve as a reference for researchers studying PTPs in plants.
Collapse
Affiliation(s)
- Jing Xin
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (X.L.); (X.S.); (Y.S.)
| | - Chuanling Li
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China;
| | - Xiaoqian Liu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (X.L.); (X.S.); (Y.S.)
| | - Xueke Shi
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (X.L.); (X.S.); (Y.S.)
| | - Yu Sun
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (X.L.); (X.S.); (Y.S.)
| | - Jian-Xiu Shang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (X.L.); (X.S.); (Y.S.)
| |
Collapse
|
5
|
Cai X, Lee S, Gómez Jaime AP, Tang W, Sun Y, Huq E. PHOSPHATASE 2A dephosphorylates PHYTOCHROME-INTERACTING FACTOR3 to modulate photomorphogenesis in Arabidopsis. THE PLANT CELL 2024; 36:4457-4471. [PMID: 38996075 PMCID: PMC11449053 DOI: 10.1093/plcell/koae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
The phytochrome (phy) family of sensory photoreceptors modulates developmental programs in response to ambient light. Phys also control gene expression in part by directly interacting with the bHLH class of transcription factors, PHYTOCHROME-INTERACTING FACTORS (PIFs), and inducing their rapid phosphorylation and degradation. Several kinases have been shown to phosphorylate PIFs and promote their degradation. However, the phosphatases that dephosphorylate PIFs are less understood. In this study, we describe 4 regulatory subunits of the Arabidopsis (Arabidopsis thaliana) protein PHOSPHATASE 2A (PP2A) family (B'α, B'β, B″α, and B″β) that interact with PIF3 in yeast 2-hybrid, in vitro and in vivo assays. The pp2ab″αβ and b″αβ/b'αβ mutants display short hypocotyls, while the overexpression of the B subunits induces longer hypocotyls compared with the wild type (WT) under red light. The light-induced degradation of PIF3 is faster in the b″αβ/b'αβ quadruple mutant compared with that in the WT. Consistently, immunoprecipitated PP2A A and B subunits directly dephosphorylate PIF3-MYC in vitro. An RNA-sequencing analysis shows that B″α and B″β alter global gene expression in response to red light. PIFs (PIF1, PIF3, PIF4, and PIF5) are epistatic to these B subunits in regulating hypocotyl elongation under red light. Collectively, these data show an essential function of PP2A in dephosphorylating PIF3 to modulate photomorphogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Xingbo Cai
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sanghwa Lee
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea Paola Gómez Jaime
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Wenqiang Tang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yu Sun
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Enamul Huq
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
6
|
Guzmán LF, Tirado B, Cruz-Cárdenas CI, Rojas-Anaya E, Aragón-Magadán MA. De Novo Transcriptome Assembly of Cedar ( Cedrela odorata L.) and Differential Gene Expression Involved in Herbivore Resistance. Curr Issues Mol Biol 2024; 46:8794-8806. [PMID: 39194737 DOI: 10.3390/cimb46080520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Timber trees are targets of herbivorous attacks. The identification of genes associated with pest resistance can be accomplished through differential expression analysis using transcriptomes. We reported the de novo assembly of cedar (Cedrela odorata L.) transcriptome and the differential expression of genes involved in herbivore resistance. The assembly and annotation of the transcriptome were obtained using RNAseq from healthy cedar plants and those infested with Chrysobothris yucatanensis. A total of 325.6 million reads were obtained, and 127,031 (97.47%) sequences were successfully assembled. A total of 220 herbivory-related genes were detected, of which 170 genes were annotated using GO terms, and 161 genes with 245 functions were identified-165, 75, and 5 were molecular functions, biological processes, and cellular components, respectively. To protect against herbivorous infestation, trees produce toxins and volatile compounds which are modulated by signaling pathways and gene expression related to molecular functions and biological processes. The limited number of genes identified as cellular components suggests that there are minimal alterations in cellular structure in response to borer attack. The chitin recognition protein, jasmonate ZIM-domain (JAZ) motifs, and response regulator receiver domain were found to be overexpressed, whereas the terpene synthase, cytochrome P450, and protein kinase domain gene families were underexpressed. This is the first report of a cedar transcriptome focusing on genes that are overexpressed in healthy plants and underexpressed in infested plants. This method may be a viable option for identifying genes associated with herbivore resistance.
Collapse
Affiliation(s)
- Luis Felipe Guzmán
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| | - Bibiana Tirado
- Centro Universitario de los Altos, University of Guadalajara, Tepatitlán 47600, Jalisco, Mexico
| | - Carlos Iván Cruz-Cárdenas
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| | - Edith Rojas-Anaya
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| | - Marco Aurelio Aragón-Magadán
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| |
Collapse
|
7
|
Kelemen A, Garda T, Kónya Z, Erdődi F, Ujlaky-Nagy L, Juhász GP, Freytag C, M-Hamvas M, Máthé C. Treatments with Diquat Reveal the Relationship between Protein Phosphatases (PP2A) and Oxidative Stress during Mitosis in Arabidopsis thaliana Root Meristems. PLANTS (BASEL, SWITZERLAND) 2024; 13:1896. [PMID: 39065423 PMCID: PMC11279869 DOI: 10.3390/plants13141896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Reversible protein phosphorylation regulates various cellular mechanisms in eukaryotes by altering the conformation, activity, localization, and stability of substrate proteins. In Arabidopsis thaliana root meristems, histone post-translational modifications are crucial for proper cell division, and they are also involved in oxidative stress signaling. To investigate the link between reactive oxygen species (ROS) and mitosis, we treated various Arabidopsis genotypes, including wild-types and mutants showing dysfunctional PP2A, with the ROS-inducing herbicide diquat (DQ). Studying the c3c4 double catalytic subunit mutant and fass regulatory subunit mutants of PP2A provided insights into phosphorylation-dependent mitotic processes. DQ treatment reduced mitotic activity in all genotypes and caused early mitotic arrest in PP2A mutants, likely due to oxidative stress-induced damage to essential mitotic processes. DQ had a minimal effect on reversible histone H3 phosphorylation in wild-type plants but significantly decreased phospho-histone H3 levels in PP2A mutants. Following drug treatment, the phosphatase activity decreased only in the stronger phenotype mutant plants (fass-5 and c3c4). Our findings demonstrate that (i) the studied PP2A loss-of-function mutants are more sensitive to increased intracellular ROS and (ii) DQ has indirect altering effects of mitotic activities and histone H3 phosphorylation. All these findings underscore the importance of PP2A in stress responses.
Collapse
Affiliation(s)
- Adrienn Kelemen
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Tamás Garda
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (Z.K.); (F.E.)
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (Z.K.); (F.E.)
| | - László Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary;
| | - Gabriella Petra Juhász
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Csongor Freytag
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
- “One Health” Institute, Faculty of Health Science, University of Debrecen, Nagyerdei Blvd. 98, 4032 Debrecen, Hungary
| | - Márta M-Hamvas
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Csaba Máthé
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| |
Collapse
|
8
|
Chen J, Wang Y, Wu Y, Huang X, Qiu X, Chen J, Lin Q, Zhao H, Chen F, Gao G. Genome-wide identification and expression analysis of the PP2C gene family in Apocynum venetum and Apocynum hendersonii. BMC PLANT BIOLOGY 2024; 24:652. [PMID: 38982365 PMCID: PMC11232223 DOI: 10.1186/s12870-024-05328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Protein phosphatase class 2 C (PP2C) is the largest protein phosphatase family in plants. Members of the PP2C gene family are involved in a variety of physiological pathways in plants, including the abscisic acid signalling pathway, the regulation of plant growth and development, etc., and are capable of responding to a wide range of biotic and abiotic stresses, and play an important role in plant growth, development, and response to stress. Apocynum is a perennial persistent herb, divided into Apocynum venetum and Apocynum hendersonii. It mainly grows in saline soil, deserts and other harsh environments, and is widely used in saline soil improvement, ecological restoration, textiles and medicine. A. hendersonii was found to be more tolerant to adverse conditions. The main purpose of this study was to investigate the PP2C gene family and its expression pattern under salt stress and to identify important candidate genes related to salt tolerance. RESULTS In this study, 68 AvPP2C genes and 68 AhPP2C genes were identified from the genomes of A. venetum and A. hendersonii, respectively. They were classified into 13 subgroups based on their phylogenetic relationships and were further analyzed for their subcellular locations, gene structures, conserved structural domains, and cis-acting elements. The results of qRT-PCR analyses of seven AvPP2C genes and seven AhPP2C genes proved that they differed significantly in gene expression under salt stress. It has been observed that the PP2C genes in A. venetum and A. hendersonii exhibit different expression patterns. Specifically, AvPP2C2, 6, 24, 27, 41 and AhPP2C2, 6, 24, 27, 42 have shown significant differences in expression under salt stress. This indicates that these genes may play a crucial role in the salt tolerance mechanism of A. venetum and A. hendersonii. CONCLUSIONS In this study, we conducted a genome-wide analysis of the AvPP2C and AhPP2C gene families in Apocynum, which provided a reference for further understanding the functional characteristics of these genes.
Collapse
Affiliation(s)
- Jiayi Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China
| | - Yue Wang
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Yongmei Wu
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China
| | - Xiaoyu Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Xiaojun Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
- Yuelushan Laboratory, Changsha, 410082, P.R. China
| | - Qian Lin
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
- Yuelushan Laboratory, Changsha, 410082, P.R. China
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China.
| | - Gang Gao
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China.
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| |
Collapse
|
9
|
Gan P, Tang C, Lu Y, Ren C, Nasab HR, Kun X, Wang X, Li L, Kang Z, Wang X, Wang J. Quantitative phosphoproteomics reveals molecular pathway network in wheat resistance to stripe rust. STRESS BIOLOGY 2024; 4:32. [PMID: 38945963 PMCID: PMC11214938 DOI: 10.1007/s44154-024-00170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/24/2024] [Indexed: 07/02/2024]
Abstract
Protein phosphorylation plays an important role in immune signaling transduction in plant resistance to pathogens. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), severely devastates wheat production. Nonetheless, the molecular mechanism of wheat resistance to stripe rust remains limited. In this study, quantitative phosphoproteomics was employed to investigate the protein phosphorylation changes in wheat challenged by Pst. A total of 1537 and 2470 differentially accumulated phosphoproteins (DAPs) were identified from four early infection stage (6, 12, 18 and 24 h post-inoculation) in incompatible and compatible wheat-Pst interactions respectively. KEGG analysis revealed that Oxidative Phosphorylation, Phosphatidylinositol Signaling, and MAPK signaling processes are distinctively enriched in incompatible interaction, while Biosynthesis of secondary metabolites and RNA degradation process were significantly enriched in compatible interactions. In particular, abundant changes in phosphorylation levels of chloroplast proteins were identified, suggesting the regulatory role of photosynthesis in wheat-Pst interaction, which is further emphasized by protein-protein interaction (PPI) network analysis. Motif-x analysis identified [xxxxSPxxxx] motif, likely phosphorylation sites for defensive response-related kinases, and a new [xxxxSSxxxx] motif significantly enriched in incompatible interaction. The results shed light on the early phosphorylation events contributing to wheat resistance against Pst. Moreover, our study demonstrated that the phosphorylation levels of Nucleoside diphosphate kinase TaNAPK1 are upregulated at 12 hpi with CYR23 and at 24 hpi with CYR31. Transient silencing of TaNAPK1 was able to attenuate wheat resistance to CYR23 and CYR31. Our study provides new insights into the mechanisms underlying Pst-wheat interactions and may provide database to find potential targets for the development of new resistant varieties.
Collapse
Affiliation(s)
- Pengfei Gan
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yi Lu
- Plant Protection Station of Xinjiang Uygur Autonomous Region, Urumqi, 830049, Xinjiang, China
| | - Chenrong Ren
- Plant Protection Station of Xinjiang Uygur Autonomous Region, Urumqi, 830049, Xinjiang, China
| | - Hojjatollah Rabbani Nasab
- Plant Protection Research Department,Agricultural and Natural Resource Research and Education Center of Golestan, Agricultural Research,Education and Extension Organization (AREEO), Gorgan, Iran
| | - Xufeng Kun
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Liangzhuang Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Thibault E, Brandizzi F. Post-translational modifications: emerging directors of cell-fate decisions during endoplasmic reticulum stress in Arabidopsis thaliana. Biochem Soc Trans 2024; 52:831-848. [PMID: 38600022 PMCID: PMC11088923 DOI: 10.1042/bst20231025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Homeostasis of the endoplasmic reticulum (ER) is critical for growth, development, and stress responses. Perturbations causing an imbalance in ER proteostasis lead to a potentially lethal condition known as ER stress. In ER stress situations, cell-fate decisions either activate pro-life pathways that reestablish homeostasis or initiate pro-death pathways to prevent further damage to the organism. Understanding the mechanisms underpinning cell-fate decisions in ER stress is critical for crop development and has the potential to enable translation of conserved components to ER stress-related diseases in metazoans. Post-translational modifications (PTMs) of proteins are emerging as key players in cell-fate decisions in situations of imbalanced ER proteostasis. In this review, we address PTMs orchestrating cell-fate decisions in ER stress in plants and provide evidence-based perspectives for where future studies may focus to identify additional PTMs involved in ER stress management.
Collapse
Affiliation(s)
- Ethan Thibault
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
| | - Federica Brandizzi
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
11
|
Akter N, Islam MSU, Rahman MS, Zohra FT, Rahman SM, Manirujjaman M, Sarkar MAR. Genome-wide identification and characterization of protein phosphatase 2C (PP2C) gene family in sunflower (Helianthus annuus L.) and their expression profiles in response to multiple abiotic stresses. PLoS One 2024; 19:e0298543. [PMID: 38507444 PMCID: PMC10954154 DOI: 10.1371/journal.pone.0298543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/25/2024] [Indexed: 03/22/2024] Open
Abstract
Plant protein phosphatase 2C (PP2C) plays vital roles in responding to various stresses, stimulating growth factors, phytohormones, and metabolic activities in many important plant species. However, the PP2C gene family has not been investigated in the economically valuable plant species sunflower (Helianthus annuus L.). This study used comprehensive bioinformatics tools to identify and characterize the PP2C gene family members in the sunflower genome (H. annuus r1.2). Additionally, we analyzed the expression profiles of these genes using RNA-seq data under four different stress conditions in both leaf and root tissues. A total of 121 PP2C genes were identified in the sunflower genome distributed unevenly across the 17 chromosomes, all containing the Type-2C phosphatase domain. HanPP2C genes are divided into 15 subgroups (A-L) based on phylogenetic tree analysis. Analyses of conserved domains, gene structures, and motifs revealed higher structural and functional similarities within various subgroups. Gene duplication and collinearity analysis showed that among the 53 HanPP2C gene pairs, 48 demonstrated segmental duplications under strong purifying selection pressure, with only five gene pairs showing tandem duplications. The abundant segmental duplication was observed compared to tandem duplication, which was the major factor underlying the dispersion of the PP2C gene family in sunflowers. Most HanPP2C proteins were localized in the nucleus, cytoplasm, and chloroplast. Among the 121 HanPP2C genes, we identified 71 miRNAs targeting 86 HanPP2C genes involved in plant developmental processes and response to abiotic stresses. By analyzing cis-elements, we identified 63 cis-regulatory elements in the promoter regions of HanPP2C genes associated with light responsiveness, tissue-specificity, phytohormone, and stress responses. Based on RNA-seq data from two sunflower tissues (leaf and root), 47 HanPP2C genes exhibited varying expression levels in leaf tissue, while 49 HanPP2C genes showed differential expression patterns in root tissue across all stress conditions. Transcriptome profiling revealed that nine HanPP2C genes (HanPP2C12, HanPP2C36, HanPP2C38, HanPP2C47, HanPP2C48, HanPP2C53, HanPP2C54, HanPP2C59, and HanPP2C73) exhibited higher expression in leaf tissue, and five HanPP2C genes (HanPP2C13, HanPP2C47, HanPP2C48, HanPP2C54, and HanPP2C95) showed enhanced expression in root tissue in response to the four stress treatments, compared to the control conditions. These results suggest that these HanPP2C genes may be potential candidates for conferring tolerance to multiple stresses and further detailed characterization to elucidate their functions. From these candidates, 3D structures were predicted for six HanPP2C proteins (HanPP2C47, HanPP2C48, HanPP2C53, HanPP2C54, HanPP2C59, and HanPP2C73), which provided satisfactory models. Our findings provide valuable insights into the PP2C gene family in the sunflower genome, which could play a crucial role in responding to various stresses. This information can be exploited in sunflower breeding programs to develop improved cultivars with increased abiotic stress tolerance.
Collapse
Affiliation(s)
- Nasrin Akter
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Shohel Ul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shaikh Mizanur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - M. Manirujjaman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States of America
| | - Md. Abdur Rauf Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
12
|
Chandran AEJ, Finkler A, Hait TA, Kiere Y, David S, Pasmanik-Chor M, Shkolnik D. Calcium regulation of the Arabidopsis Na+/K+ transporter HKT1;1 improves seed germination under salt stress. PLANT PHYSIOLOGY 2024; 194:1834-1852. [PMID: 38057162 PMCID: PMC10904324 DOI: 10.1093/plphys/kiad651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
Calcium is known to improve seed-germination rates under salt stress. We investigated the involvement of calcium ions (Ca2+) in regulating HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1; 1), which encodes a Na+/K+ transporter, and its post-translational regulator TYPE 2C PROTEIN PHOSPHATASE 49 (PP2C49), in germinating Arabidopsis (Arabidopsis thaliana) seedlings. Germination rates of hkt1 mutant seeds under salt stress remained unchanged by CaCl2 treatment in wild-type Arabidopsis, whereas pp2c49 mutant seeds displayed improved salt-stress tolerance in the absence of CaCl2 supplementation. Analysis of HKT1;1 and PP2C49 promoter activity revealed that CaCl2 treatment results in radicle-focused expression of HKT1;1 and reduction of the native radicle-exclusive expression of PP2C49. Ion-content analysis indicated that CaCl2 treatment improves K+ retention in germinating wild-type seedlings under salt stress, but not in hkt1 seedlings. Transgenic seedlings designed to exclusively express HKT1;1 in the radicle during germination displayed higher germination rates under salt stress than the wild type in the absence of CaCl2 treatment. Transcriptome analysis of germinating seedlings treated with CaCl2, NaCl, or both revealed 118 upregulated and 94 downregulated genes as responsive to the combined treatment. Bioinformatics analysis of the upstream sequences of CaCl2-NaCl-treatment-responsive upregulated genes revealed the abscisic acid response element CACGTGTC, a potential CaM-binding transcription activator-binding motif, as most prominent. Our findings suggest a key role for Ca2+ in mediating salt-stress responses during germination by regulating genes that function to maintain Na+ and K+ homeostasis, which is vital for seed germination under salt stress.
Collapse
Affiliation(s)
- Ancy E J Chandran
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Aliza Finkler
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tom Aharon Hait
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yvonne Kiere
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Sivan David
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Metsada Pasmanik-Chor
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Doron Shkolnik
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
13
|
Zhang P, Liu D, Ma J, Sun C, Wang Z, Zhu Y, Zhang X, Liu Y. Genome-wide analysis and expression pattern of the ZoPP2C gene family in Zingiber officinale Roscoe. BMC Genomics 2024; 25:83. [PMID: 38245685 PMCID: PMC10799369 DOI: 10.1186/s12864-024-09966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Protein phosphatases type 2C (PP2C) are heavily involved in plant growth and development, hormone-related signaling pathways and the response of various biotic and abiotic stresses. However, a comprehensive report identifying the genome-scale of PP2C gene family in ginger is yet to be published. RESULTS In this study, 97 ZoPP2C genes were identified based on the ginger genome. These genes were classified into 15 branches (A-O) according to the phylogenetic analysis and distributed unevenly on 11 ginger chromosomes. The proteins mainly functioned in the nucleus. Similar motif patterns and exon/intron arrangement structures were identified in the same subfamily of ZoPP2Cs. Collinearity analysis indicated that ZoPP2Cs had 33 pairs of fragment duplicated events uniformly distributed on the corresponding chromosomes. Furthermore, ZoPP2Cs showed greater evolutionary proximity to banana's PP2Cs. The forecast of cis-regulatory elements and transcription factor binding sites demonstrated that ZoPP2Cs participate in ginger growth, development, and responses to hormones and stresses. ZoERFs have plenty of binding sites of ZoPP2Cs, suggesting a potential synergistic contribution between ZoERFs and ZoPP2Cs towards regulating growth/development and adverse conditions. The protein-protein interaction network displayed that five ZoPP2Cs (9/23/26/49/92) proteins have robust interaction relationship and potential function as hub proteins. Furthermore, the RNA-Seq and qRT-PCR analyses have shown that ZoPP2Cs exhibit various expression patterns during ginger maturation and responses to environmental stresses such as chilling, drought, flooding, salt, and Fusarium solani. Notably, exogenous application of melatonin led to notable up-regulation of ZoPP2Cs (17/59/11/72/43) under chilling stress. CONCLUSIONS Taken together, our investigation provides significant insights of the ginger PP2C gene family and establishes the groundwork for its functional validation and genetic engineering applications.
Collapse
Affiliation(s)
- Pan Zhang
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Deqi Liu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiawei Ma
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Chong Sun
- Special Plants Institute, College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zhaofei Wang
- Special Plants Institute, College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Yongxing Zhu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xuemei Zhang
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Yiqing Liu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China.
- Special Plants Institute, College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
14
|
Lee S, Huq E. Characterization of PIF4 Phosphorylation by SPA1. Methods Mol Biol 2024; 2795:161-167. [PMID: 38594537 DOI: 10.1007/978-1-0716-3814-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The PHYTOCHROME INTERACTING FACTORs (PIFs) play pivotal roles in regulating thermo- and photo-morphogenesis in Arabidopsis. One of the main hubs in thermomorphogenesis is PIF4, which regulates plant development under high ambient temperature along with other PIFs. PIF4 enhances its own transcription and PIF4 protein is stabilized under high ambient temperature. However, the mechanisms of thermo-stabilization of PIF4 are less understood. Recently, it was shown that SUPPRESSOR OF PHYA-105 1 (SPA1) can function as a serine/threonine kinase to phosphorylate PIF4 in vitro, and the phosphorylated form of PIF4 is more stable under high ambient temperature conditions. In this chapter, we describe the in vitro kinase assay of PIF4 by SPA1. In principle, this protocol can be applied for other putative substrates and kinases.
Collapse
Affiliation(s)
- Sanghwa Lee
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
15
|
Zafar UB, Shahzaib M, Atif RM, Khan SH, Niaz MZ, Shahzad K, Chughtai N, Awan FS, Azhar MT, Rana IA. De novo transcriptome assembly of Dalbergia sissoo Roxb. (Fabaceae) under Botryodiplodia theobromae-induced dieback disease. Sci Rep 2023; 13:20503. [PMID: 37993468 PMCID: PMC10665356 DOI: 10.1038/s41598-023-45982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023] Open
Abstract
Dalbergia sissoo Roxb. (Shisham) is a timber-producing species of economic, cultural, and medicinal importance in the Indian subcontinent. In the past few decades, Shisham's dieback disease caused by the fungus Botryodiplodia theobromae has become an evolving issue in the subcontinent endangering its survival. To gain insights into this issue, a standard transcriptome assembly was deployed to assess the response of D. sissoo at the transcriptomic level under the stress of B. theobromae infection. For RNA isolation, the control and infected leaf tissue samples were taken from 1-year-old greenhouse-grown D. sissoo plants after 20 days of stem-base spore inoculation. cDNA synthesis was performed from these freshly isolated RNA samples that were then sent for sequencing. About 18.14 Gb (Giga base) of data was generated using the BGISEQ-500 sequencing platform. In terms of Unigenes, 513,821 were identified after a combined assembly of all samples and then filtering the abundance. The total length of Unigenes, their average length, N50, and GC-content were 310,523,693 bp, 604 bp, 1,101 bp, and 39.95% respectively. The Unigenes were annotated using 7 functional databases i.e., 200,355 (NR: 38.99%), 164,973 (NT: 32.11%), 123,733 (Swissprot: 24.08%), 142,580 (KOG: 27.75%), 139,588 (KEGG: 27.17%), 99,752 (GO: 19.41%), and 137,281 (InterPro: 26.72%). Furthermore, the Transdecoder detected 115,762 CDS. In terms of SSR (Simple Sequence Repeat) markers, 62,863 of them were distributed on 51,508 Unigenes and on the predicted 4673 TF (Transcription Factor) coding Unigenes. A total of 16,018 up- and 19,530 down-regulated Differentially Expressed Genes (DEGs) were also identified. Moreover, the Plant Resistance Genes (PRGs) had a count of 9230. We are hopeful that in the future, these identified Unigenes, SSR markers, DEGs and PRGs will provide the prerequisites for managing Shisham dieback disease, its breeding, and in tree improvement programs.
Collapse
Affiliation(s)
- Ummul Buneen Zafar
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Shahzaib
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Rana Muhammad Atif
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Sultan Habibullah Khan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- National Center for Genome Editing (Gene Editing of Biological Agents for Nutritional, Biochemicals and Therapeutic Purposes), University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Muhammad Zeeshan Niaz
- Plant Pathology Research Institute, Ayub Agriculture Research Institute, Faisalabad, 38850, Punjab, Pakistan
| | - Khalid Shahzad
- Punjab Forestry Research Institute, Faisalabad, 37620, Punjab, Pakistan
| | - Nighat Chughtai
- Punjab Forestry Research Institute, Faisalabad, 37620, Punjab, Pakistan
| | - Faisal Saeed Awan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Iqrar Ahmad Rana
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan.
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan.
- National Center for Genome Editing (Gene Editing of Biological Agents for Nutritional, Biochemicals and Therapeutic Purposes), University of Agriculture, Faisalabad, Punjab, Pakistan.
| |
Collapse
|
16
|
Huang Y, Yang R, Luo H, Yuan Y, Diao Z, Li J, Gong S, Yu G, Yao H, Zhang H, Cai Y. Arabidopsis Protein Phosphatase PIA1 Impairs Plant Drought Tolerance by Serving as a Common Negative Regulator in ABA Signaling Pathway. PLANTS (BASEL, SWITZERLAND) 2023; 12:2716. [PMID: 37514328 PMCID: PMC10384177 DOI: 10.3390/plants12142716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Reversible phosphorylation of proteins is a ubiquitous regulatory mechanism in vivo that can respond to external changes, and plays an extremely important role in cell signal transduction. Protein phosphatase 2C is the largest protein phosphatase family in higher plants. Recently, it has been found that some clade A members can negatively regulate ABA signaling pathways. However, the functions of several subgroups of Arabidopsis PP2C other than clade A have not been reported, and whether other members of the PP2C family also participate in the regulation of ABA signaling pathways remains to be studied. In this study, based on the previous screening and identification work of PP2C involved in the ABA pathway, the clade F member PIA1 encoding a gene of the PP2C family, which was down-regulated after ABA treatment during the screening, was selected as the target. Overexpression of PIA1 significantly down-regulated the expression of ABA marker gene RD29A in Arabidopsis protoplasts, and ABA-responsive elements have been found in the cis-regulatory elements of PIA1 by promoter analysis. When compared to Col-0, transgenic plants overexpressing PIA1 were less sensitive to ABA, whereas pia1 showed the opposite trait in seed germination, root growth, and stomatal opening experiments. Under drought stress, SOD, POD, CAT, and APX activities of PIA1 overexpression lines were lower than Col-0 and pia1, while the content of H2O2 was higher, leading to its lowest survival rate in test plants, which were consistent with the significant inhibition of the expression of ABA-dependent stress-responsive genes RD29B, ABI5, ABF3, and ABF4 in the PIA1 transgenic background after ABA treatment. Using yeast two-hybrid and luciferase complementation assays, PIA1 was found to interact with multiple ABA key signaling elements, including 2 RCARs and 6 SnRK2s. Our results indicate that PIA1 may reduce plant drought tolerance by functioning as a common negative regulator involved in ABA signaling pathway.
Collapse
Affiliation(s)
- Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Rongqian Yang
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Huiling Luo
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Yuan Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Zhihong Diao
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Junhao Li
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Shihe Gong
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Guozhi Yu
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Huaiyu Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| |
Collapse
|
17
|
Huang X, Liang Y, Zhang R, Zhang B, Song X, Liu J, Lu M, Qin Z, Li D, Li S, Li Y. Genome-Wide Identification of the PP2C Gene Family and Analyses with Their Expression Profiling in Response to Cold Stress in Wild Sugarcane. PLANTS (BASEL, SWITZERLAND) 2023; 12:2418. [PMID: 37446979 DOI: 10.3390/plants12132418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Type 2C protein phosphatases (PP2Cs) represent a major group of protein phosphatases in plants, some of which have already been confirmed to play important roles in diverse plant processes. In this study, analyses of the phylogenetics, gene structure, protein domain, chromosome localization, and collinearity, as well as an identification of the expression profile, protein-protein interaction, and subcellular location, were carried out on the PP2C family in wild sugarcane (Saccharum spontaneum). The results showed that 145 PP2C proteins were classified into 13 clades. Phylogenetic analysis suggested that SsPP2Cs are evolutionarily closer to those of sorghum, and the number of SsPP2Cs is the highest. There were 124 pairs of SsPP2C genes expanding via segmental duplications. Half of the SsPP2C proteins were predicted to be localized in the chloroplast (73), with the next most common predicted localizations being in the cytoplasm (37) and nucleus (17). Analysis of the promoter revealed that SsPP2Cs might be photosensitive, responsive to abiotic stresses, and hormone-stimulated. A total of 27 SsPP2Cs showed cold-stress-induced expressions, and SsPP2C27 (Sspon.01G0007840-2D) and SsPP2C64 (Sspon.03G0002800-3D) were the potential hubs involved in ABA signal transduction. Our study presents a comprehensive analysis of the SsPP2C gene family, which can play a vital role in the further study of phosphatases in wild sugarcane. The results suggest that the PP2C family is evolutionarily conserved, and that it functions in various developmental processes in wild sugarcane.
Collapse
Affiliation(s)
- Xing Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Yongsheng Liang
- Nanning Institute of Agricultural Sciences, Nanning 530021, China
| | - Ronghua Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Baoqing Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Xiupeng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Junxian Liu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Manman Lu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Zhenqiang Qin
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Dewei Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Song Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Yangrui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| |
Collapse
|
18
|
Máthé C, Freytag C, Kelemen A, M-Hamvas M, Garda T. "B" Regulatory Subunits of PP2A: Their Roles in Plant Development and Stress Reactions. Int J Mol Sci 2023; 24:ijms24065147. [PMID: 36982222 PMCID: PMC10049431 DOI: 10.3390/ijms24065147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Protein phosphatase PP2A is an enzyme complex consisting of C (catalytic), A (scaffold) and B (regulatory) subunits. B subunits are a large family of proteins that regulate activity, substrate specificity and subcellular localization of the holoenzyme. Knowledge on the molecular functions of PP2A in plants is less than for protein kinases, but it is rapidly increasing. B subunits are responsible for the large diversity of PP2A functioning. This paper intends to give a survey on their multiple regulatory mechanisms. Firstly, we give a short description on our current knowledge in terms of "B"-mediated regulation of metabolic pathways. Next, we present their subcellular localizations, which extend from the nucleus to the cytosol and membrane compartments. The next sections show how B subunits regulate cellular processes from mitotic division to signal transduction pathways, including hormone signaling, and then the emerging evidence for their regulatory (mostly modulatory) roles in both abiotic and biotic stress responses in plants. Knowledge on these issues should be increased in the near future, since it contributes to a better understanding of how plant cells work, it may have agricultural applications, and it may have new insights into how vascular plants including crops face diverse environmental challenges.
Collapse
Affiliation(s)
- Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csongor Freytag
- Department of Botany, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Adrienn Kelemen
- Department of Botany, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tamás Garda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
19
|
Li F, Chen X, Yang R, Zhang K, Shan W, Joosten MHAJ, Du Y. Potato protein tyrosine phosphatase StPTP1a is activated by StMKK1 to negatively regulate plant immunity. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:646-661. [PMID: 36519513 PMCID: PMC9946141 DOI: 10.1111/pbi.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/25/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Phytophthora infestans causes severe losses in potato production. The MAPK kinase StMKK1 was previously found to negatively regulate potato immunity to P. infestans. Our results showed that StMKK1 interacts with a protein tyrosine phosphatase, referred to as StPTP1a, and StMKK1 directly phosphorylates StPTP1a at residues Ser-99, Tyr-223 and Thr-290. StPTP1a is a functional phosphatase and the phosphorylation of StPTP1a at these three residues enhances its stability and catalytic activity. StPTP1a negatively regulates potato immunity and represses SA-related gene expression. Furthermore, StPTP1a interacts with, and dephosphorylates, the StMKK1 downstream signalling targets StMPK4 and -7 at their Tyr-203 residue resulting in the repression of salicylic acid (SA)-related immunity. Silencing of NbPTP1a + NbMPK4 or NbPTP1a + NbMPK7 abolished the plant immunity to P. infestans caused by NbPTP1a silencing, indicating that PTP1a functions upstream of NbMPK4 and NbMPK7. StMKK1 requires StPTP1a to negatively regulate SA-related immunity and StPTP1a is phosphorylated and stabilized during immune activation to promote the de-phosphorylation of StMPK4 and -7. Our results reveal that potato StMKK1 activates and stabilizes the tyrosine phosphatase StPTP1a that in its turn de-phosphorylates StMPK4 and -7, thereby repressing plant SA-related immunity.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaokang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Ruixin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Kun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | | | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
20
|
Beye A, Billot C, Ronfort J, McNally KL, Diouf D, Glaszmann JC. Traces of Introgression from cAus into Tropical Japonica Observed in African Upland Rice Varieties. RICE (NEW YORK, N.Y.) 2023; 16:12. [PMID: 36853402 PMCID: PMC9975138 DOI: 10.1186/s12284-023-00625-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Asian rice Oryza sativa, first domesticated in East Asia, has considerable success in African fields. When and where this introduction occurred is unclear. Rice varieties of Asian origin may have evolved locally during and after migration to Africa, resulting in unique adaptations, particularly in relation to upland cultivation as frequently practiced in Africa. METHODS We investigated the genetic differentiation between Asian and African varieties using the 3000 Rice Genomes SNP dataset. African upland cultivars were first characterized using principal component analysis among 292 tropical Japonica accessions from Africa and Asia. The particularities of African accessions were then explored using two inference techniques, PCA-KDE for supervised classification and chromosome painting, and ELAI for individual allelic dosage monitoring. KEY RESULTS Ambiguities of local differentiation between Japonica and other groups pointed at genomic segments that potentially resulted from genetic exchange. Those specific to West African upland accessions were concentrated on chromosome 6 and featured several cAus introgression signals, including a large one between 17.9 and 21.7 Mb. We found iHS statistics in support of positive selection in this region and we provide a list of candidate genes enriched in GO terms that have regulatory functions involved in stress responses that could have facilitated adaptation to harsh upland growing conditions.
Collapse
Affiliation(s)
- Abdoulaye Beye
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, Université de Montpellier, 34398, Montpellier, France
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté Des Sciences Et Techniques, Université Cheikh Anta Diop, 10700, Dakar-Fann, Dakar, Senegal
| | - Claire Billot
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, Université de Montpellier, 34398, Montpellier, France
| | - Joëlle Ronfort
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, Université de Montpellier, 34398, Montpellier, France
| | - Kenneth L McNally
- International Rice Research Institute, DAPO Box 7777, Metro Manila, 1301, The Philippines
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté Des Sciences Et Techniques, Université Cheikh Anta Diop, 10700, Dakar-Fann, Dakar, Senegal
| | - Jean Christophe Glaszmann
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France.
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, Université de Montpellier, 34398, Montpellier, France.
| |
Collapse
|
21
|
Saini LK, Bheri M, Pandey GK. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:307-370. [PMID: 36858740 DOI: 10.1016/bs.apcsb.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein phosphorylation is a vital reversible post-translational modification. This process is established by two classes of enzymes: protein kinases and protein phosphatases. Protein kinases phosphorylate proteins while protein phosphatases dephosphorylate phosphorylated proteins, thus, functioning as 'critical regulators' in signaling pathways. The eukaryotic protein phosphatases are classified as phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine (Ser)/threonine (Thr) specific phosphatases (STPs) that dephosphorylate Ser and Thr residues. The PTP family dephosphorylates Tyr residues while dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. The composition of these enzymes as well as their substrate specificity are important determinants of their functional significance in a number of cellular processes and stress responses. Their role in animal systems is well-understood and characterized. The functional characterization of protein phosphatases has been extensively covered in plants, although the comprehension of their mechanistic basis is an ongoing pursuit. The nature of their interactions with other key players in the signaling process is vital to our understanding. The substrates or targets determine their potential as well as magnitude of the impact they have on signaling pathways. In this article, we exclusively overview the various substrates of protein phosphatases in plant signaling pathways, which are a critical determinant of the outcome of various developmental and stress stimuli.
Collapse
Affiliation(s)
- Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
22
|
Jadoon S, Qin Q, Shi W, Longfeng Y, Hou S. Rice protein phosphatase 1 regulatory subunits OsINH2 and OsINH3 participate actively in growth and adaptive responses under abscisic acid. FRONTIERS IN PLANT SCIENCE 2022; 13:990575. [PMID: 36186070 PMCID: PMC9521630 DOI: 10.3389/fpls.2022.990575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Rice (Oryza sativa L.), a worldwide staple food crop, is affected by various environmental stressors that ultimately reduce yield. However, diversified physiological and molecular responses enable it to cope with adverse factors. It includes the integration of numerous signaling in which protein phosphatase 1 (PP1) plays a pivotal role. Research on PP1 has been mostly limited to the PP1 catalytic subunit in numerous cellular progressions. Therefore, we focused on the role of PP1 regulatory subunits (PP1r), OsINH2 and OsINH3, homologs of AtINH2 and AtINH3 in Arabidopsis, in rice growth and stress adaptations. Our observations revealed that these are ubiquitously expressed regulatory subunits that interacted and colocalized with their counter partners, type 1 protein phosphatase (OsTOPPs) but could not change their subcellular localization. The mutation in OsINH2 and OsINH3 reduced pollen viability, thereby affected rice fertility. They were involved in abscisic acid (ABA)-mediated inhibition of seed germination, perhaps by interacting with osmotic stress/ABA-activated protein kinases (OsSAPKs). Meanwhile, they positively participated in osmotic adjustment by proline biosynthesis, detoxifying reactive oxygen species (ROS) through peroxidases (POD), reducing malondialdehyde formation (MDA), and regulating stress-responsive genes. Moreover, their co-interaction proposed they might mediate cellular processes together or by co-regulation; however, the special behavior of two different PP1r is needed to explore. In a nutshell, this research enlightened the involvement of OsINH2 and OsINH3 in the reproductive growth of rice and adaptive strategies under stress. Hence, their genetic interaction with ABA components and deep mechanisms underlying osmotic regulation and ROS adjustment would explain their role in complex signaling. This research offers the basis for introducing stress-resistant crops.
Collapse
|
23
|
Zhang G, Zhang Z, Luo S, Li X, Lyu J, Liu Z, Wan Z, Yu J. Genome-wide identification and expression analysis of the cucumber PP2C gene family. BMC Genomics 2022; 23:563. [PMID: 35933381 PMCID: PMC9356470 DOI: 10.1186/s12864-022-08734-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Type 2C protein phosphatase (PP2C) is a negative regulator of ABA signaling pathway, which plays important roles in stress signal transduction in plants. However, little research on the PP2C genes family of cucumber (Cucumis sativus L.), as an important economic vegetable, has been conducted. Results This study conducted a genome-wide investigation of the CsPP2C gene family. Through bioinformatics analysis, 56 CsPP2C genes were identified in cucumber. Based on phylogenetic analysis, the PP2C genes of cucumber and Arabidopsis were divided into 13 groups. Gene structure and conserved motif analysis showed that CsPP2C genes in the same group had similar gene structure and conserved domains. Collinearity analysis showed that segmental duplication events played a key role in the expansion of the cucumber PP2C genes family. In addition, the expression of CsPP2Cs under different abiotic treatments was analyzed by qRT-PCR. The results reveal that CsPP2C family genes showed different expression patterns under ABA, drought, salt, and cold treatment, and that CsPP2C3, 11–17, 23, 45, 54 and 55 responded significantly to the four stresses. By predicting the cis-elements in the promoter, we found that all CsPP2C members contained ABA response elements and drought response elements. Additionally, the expression patterns of CsPP2C genes were specific in different tissues. Conclusions The results of this study provide a reference for the genome-wide identification of the PP2C gene family in other species and provide a basis for future studies on the function of PP2C genes in cucumber. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08734-y.
Collapse
Affiliation(s)
- Guobin Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.,College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zeyu Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shilei Luo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.,College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xia Li
- Gansu Institute of Geological and Natural Disaster Prevention, Lanzhou, 730000, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zilong Wan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jihua Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China. .,College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
24
|
Cai Y, Liu X, Shen L, Wang N, He Y, Zhang H, Wang P, Zhang Z. Homeostasis of cell wall integrity pathway phosphorylation is required for the growth and pathogenicity of Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2022; 23:1214-1225. [PMID: 35506374 PMCID: PMC9276948 DOI: 10.1111/mpp.13225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 05/21/2023]
Abstract
The cell wall provides a crucial barrier to stress imposed by the external environment. In the rice blast fungus Magnaporthe oryzae, this stress response is mediated by the cell wall integrity (CWI) pathway, consisting of a well-characterized protein phosphorylation cascade. However, other regulators that maintain CWI phosphorylation homeostasis, such as protein phosphatases (PPases), remain unclear. Here, we identified two PPases, MoPtc1 and MoPtc2, that function as negative regulators of the CWI pathway. MoPtc1 and MoPtc2 interact with MoMkk1, one of the key components of the CWI pathway, and are crucial for the vegetative growth, conidial formation, and virulence of M. oryzae. We also demonstrate that both MoPtc1 and MoPtc2 dephosphorylate MoMkk1 in vivo and in vitro, and that CWI stress leads to enhanced interaction between MoPtc1 and MoMkk1. CWI stress abolishes the interaction between MoPtc2 and MoMkk1, providing a means of deactivation for CWI signalling. Our studies reveal that CWI signalling in M. oryzae is a highly coordinated regulatory mechanism vital for stress response and pathogenicity.
Collapse
Affiliation(s)
- Yongchao Cai
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Xinyu Liu
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Lingbo Shen
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjingChina
| | - Nian Wang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Yangjie He
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Haifeng Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Ping Wang
- Department of Microbiology, Immunology, and ParasitologyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Zhengguang Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
25
|
Zheng X, Fang A, Qiu S, Zhao G, Wang J, Wang S, Wei J, Gao H, Yang J, Mou B, Cui F, Zhang J, Liu J, Sun W. Ustilaginoidea virens secretes a family of phosphatases that stabilize the negative immune regulator OsMPK6 and suppress plant immunity. THE PLANT CELL 2022; 34:3088-3109. [PMID: 35639755 PMCID: PMC9338817 DOI: 10.1093/plcell/koac154] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 05/16/2023]
Abstract
Rice false smut caused by Ustilaginoidea virens is emerging as a devastating disease of rice (Oryza sativa) worldwide; however, the molecular mechanisms underlying U. virens virulence and pathogenicity remain largely unknown. Here we demonstrate that the small cysteine-rich secreted protein SCRE6 in U. virens is translocated into host cells during infection as a virulence factor. Knockout of SCRE6 leads to attenuated U. virens virulence to rice. SCRE6 and its homologs in U. virens function as a novel family of mitogen-activated protein kinase phosphatases harboring no canonical phosphatase motif. SCRE6 interacts with and dephosphorylates the negative immune regulator OsMPK6 in rice, thus enhancing its stability and suppressing plant immunity. Ectopic expression of SCRE6 in transgenic rice promotes pathogen infection by suppressing the host immune responses. Our results reveal a previously unidentified fungal infection strategy in which the pathogen deploys a family of tyrosine phosphatases to stabilize a negative immune regulator in the host plant to facilitate its infection.
Collapse
Affiliation(s)
- Xinhang Zheng
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Anfei Fang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
- College of Plant Protection, Southwest University, Chongqing, China
| | - Shanshan Qiu
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Guosheng Zhao
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiyang Wang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Shanzhi Wang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Junjun Wei
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Han Gao
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiyun Yang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Baohui Mou
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Fuhao Cui
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jie Zhang
- Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Jun Liu
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | | |
Collapse
|
26
|
Liu Q, Ding J, Huang W, Yu H, Wu S, Li W, Mao X, Chen W, Xing J, Li C, Yan S. OsPP65 Negatively Regulates Osmotic and Salt Stress Responses Through Regulating Phytohormone and Raffinose Family Oligosaccharide Metabolic Pathways in Rice. RICE (NEW YORK, N.Y.) 2022; 15:34. [PMID: 35779169 PMCID: PMC9250576 DOI: 10.1186/s12284-022-00581-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Although type 2C protein phosphatases (PP2Cs) have been demonstrated to play important roles in regulating plant development and various stress responses, their specific roles in rice abiotic stress tolerance are still largely unknown. In this study, the functions of OsPP65 in rice osmotic and salt stress tolerance were investigated. Here, we report that OsPP65 is responsive to multiple stresses and is remarkably induced by osmotic and salt stress treatments. OsPP65 was highly expressed in rice seedlings and leaves and localized in the nucleus and cytoplasm. OsPP65 knockout rice plants showed enhanced tolerance to osmotic and salt stresses. Significantly higher induction of genes involved in jasmonic acid (JA) and abscisic acid (ABA) biosynthesis or signaling, as well as higher contents of endogenous JA and ABA, were observed in the OsPP65 knockout plants compared with the wild-type plants after osmotic stress treatment. Further analysis indicated that JA and ABA function independently in osmotic stress tolerance conferred by loss of OsPP65. Moreover, metabolomics analysis revealed higher endogenous levels of galactose and galactinol but a lower content of raffinose in the OsPP65 knockout plants than in the wild-type plants after osmotic stress treatment. These results together suggest that OsPP65 negatively regulates osmotic and salt stress tolerance through regulation of the JA and ABA signaling pathways and modulation of the raffinose family oligosaccharide metabolism pathway in rice. OsPP65 is a promising target for improvement of rice stress tolerance using gene editing.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Jierong Ding
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Hang Yu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Shaowen Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Wenyan Li
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Xingxue Mao
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Wenfeng Chen
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Junlian Xing
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Chen Li
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| |
Collapse
|
27
|
Shin NR, Shin YH, Kim HS, Park YD. Function Analysis of the PR55/ B Gene Related to Self-Incompatibility in Chinese Cabbage Using CRISPR/Cas9. Int J Mol Sci 2022; 23:ijms23095062. [PMID: 35563453 PMCID: PMC9102814 DOI: 10.3390/ijms23095062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
Chinese cabbage, a major crop in Korea, shows self-incompatibility (SI). SI is controlled by the type 2A serine/threonine protein phosphatases (PP2As). The PP2A gene is controlled by regulatory subunits that comprise a 36 kDa catalyst C subunit, a 65 kDa regulatory A subunit, and a variety of regulatory B subunits (50–70 kDa). Among them, the PP2A 55 kDa B regulatory subunit (PR55/B) gene located in the A05 chromosome has 13 exons spanning 2.9 kb, and two homologous genes, Bra018924 and Bra014296, were found to be present on the A06 and A08 chromosome, respectively. In this study, we performed a functional analysis of the PR55/B gene using clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9 (CRISPR/Cas9)-mediated gene mutagenesis. CRISPR/Cas9 technology can be used to easily introduce mutations in the target gene. Tentative gene-edited lines were generated by the Agrobacterium-mediated transfer and were selected by PCR and Southern hybridization analysis. Furthermore, pods were confirmed to be formed in flower pollination (FP) as well as bud pollination (BP) in some gene-edited lines. Seed fertility of gene-edited lines indicated that the PR55/B gene plays a key role in SI. Finally, self-compatible T-DNA-free T2 gene-edited plants and edited sequences of target genes were secured. The self-compatible Chinese cabbage developed in this study is expected to contribute to Chinese cabbage breeding.
Collapse
|
28
|
Post-translational modification: a strategic response to high temperature in plants. ABIOTECH 2022; 3:49-64. [PMID: 36304199 PMCID: PMC9590526 DOI: 10.1007/s42994-021-00067-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022]
Abstract
With the increasing global warming, high-temperature stress is affecting plant growth and development with greater frequency. Therefore, an increasing number of studies examining the mechanism of temperature response contribute to a more optimal understanding of plant growth under environmental pressure. Post-translational modification (PTM) provides the rapid reconnection of transcriptional programs including transcription factors and signaling proteins. It is vital that plants quickly respond to changes in the environment in order to survive under stressful situations. Herein, we discuss several types of PTMs that occur in response to warm-temperature and high-temperature stress, including ubiquitination, SUMOylation, phosphorylation, histone methylation, and acetylation. This review provides a valuable resolution to this issue to enable increased crop productivity at high temperatures.
Collapse
|
29
|
Nicolas-Francès V, Rossi J, Rosnoblet C, Pichereaux C, Hichami S, Astier J, Klinguer A, Wendehenne D, Besson-Bard A. S-Nitrosation of Arabidopsis thaliana Protein Tyrosine Phosphatase 1 Prevents Its Irreversible Oxidation by Hydrogen Peroxide. FRONTIERS IN PLANT SCIENCE 2022; 13:807249. [PMID: 35222471 PMCID: PMC8867174 DOI: 10.3389/fpls.2022.807249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/19/2022] [Indexed: 06/01/2023]
Abstract
Tyrosine-specific protein tyrosine phosphatases (Tyr-specific PTPases) are key signaling enzymes catalyzing the removal of the phosphate group from phosphorylated tyrosine residues on target proteins. This post-translational modification notably allows the regulation of mitogen-activated protein kinase (MAPK) cascades during defense reactions. Arabidopsis thaliana protein tyrosine phosphatase 1 (AtPTP1), the only Tyr-specific PTPase present in this plant, acts as a repressor of H2O2 production and regulates the activity of MPK3/MPK6 MAPKs by direct dephosphorylation. Here, we report that recombinant histidine (His)-AtPTP1 protein activity is directly inhibited by H2O2 and nitric oxide (NO) exogenous treatments. The effects of NO are exerted by S-nitrosation, i.e., the formation of a covalent bond between NO and a reduced cysteine residue. This post-translational modification targets the catalytic cysteine C265 and could protect the AtPTP1 protein from its irreversible oxidation by H2O2. This mechanism of protection could be a conserved mechanism in plant PTPases.
Collapse
Affiliation(s)
- Valérie Nicolas-Francès
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Jordan Rossi
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Claire Rosnoblet
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Carole Pichereaux
- Fédération de Recherche (FR3450), Agrobiosciences, Interactions et Biodiversité (FRAIB), CNRS, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, Toulouse, France
| | - Siham Hichami
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Jeremy Astier
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Agnès Klinguer
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - David Wendehenne
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Angélique Besson-Bard
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
30
|
Zhang P, Yuan Z, Wei L, Qiu X, Wang G, Liu Z, Fu J, Cao L, Wang T. Overexpression of ZmPP2C55 positively enhances tolerance to drought stress in transgenic maize plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111127. [PMID: 34895535 DOI: 10.1016/j.plantsci.2021.111127] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
Serine/threonine protein phosphatases play essential roles in plants. PP2C has diverse functions related to development and stress response, while little is known about the functions of PP2C genes with respect to a variety of stresses in maize. In the present study, three ZmPP2C genes, ZmPP2C55, ZmPP2C28, and ZmPP2C71, were identified. Subcellular localization demonstrated that ZmPP2C28 and ZmPP2C71 were nuclear proteins, and ZmPP2C55 was located in both the nucleus and cytoplasm. qRT-PCR analysis showed that ZmPP2C55, ZmPP2C28, and ZmPP2C71 were expressed in roots, leaves and stems, and the three genes were responsive to drought, salt, high-temperature stress and exogenous ABA treatment. To explore the function of the ZmPP2C gene, ZmPP2C55-overexpressing transgenic lines were generated. The transgenic plants exhibited higher RWC, proline content, POD and SOD activities, GSH content and GSH/GSSG ratio and lower MDA content, electrolyte leakage and GSSG content compared with WT plants under natural stress treatment when seedlings were at the three-leaf. Our results illustrated that the overexpression of ZmPP2C55 positively enhanced tolerance to drought stress.
Collapse
Affiliation(s)
- Pengyu Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Zhen Yuan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Li Wei
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Xiao Qiu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Guorui Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Zhixue Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Jiaxu Fu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Liru Cao
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Tongchao Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
31
|
Xin J, Guo S, Zhang X, Tian J, Sun Y, Shang JX. AtPFA-DSP5 interacts with MPK3/MPK6 and negatively regulates plant salt responses. PLANT SIGNALING & BEHAVIOR 2021; 16:2000808. [PMID: 34839796 PMCID: PMC9208770 DOI: 10.1080/15592324.2021.2000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Protein tyrosine phosphatases play essential roles in plant growth and development and in plant responses to biotic or abiotic stresses. We recently demonstrated that an atypical dual-specificity protein tyrosine phosphatase in plants, AtPFA-DSP3 (DSP3), negatively regulates plant salt tolerance. Here, we report that a homolog of DSP3, AtPFA-DSP5 (DSP5), affects the response of plants to high-salt conditions. A loss-of-function mutant of DSP5 showed reduced sensitivity to salt treatment at the seed germination and vegetative stages of development while a gain-of-function mutant of DSP5 showed increased sensitivity to salt stress. The salt responses of dsp3dsp5 double-mutant plants were similar to those of dsp3 and dsp5 single-mutant plants. Gel overlay and firefly luciferase complementation assays showed that DSP5 interacts with MPK3 and MPK6 in vitro and in vivo. These results indicate that DSP5 is a novel negative regulator of salt responses in Arabidopsis that interacts directly with MPK3 and MPK6.
Collapse
Affiliation(s)
- Jing Xin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shanshan Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaolei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiahui Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yu Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jian-Xiu Shang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
32
|
Qu L, Wei Z, Chen HH, Liu T, Liao K, Xue HW. Plant casein kinases phosphorylate and destabilize a cyclin-dependent kinase inhibitor to promote cell division. PLANT PHYSIOLOGY 2021; 187:917-930. [PMID: 34608955 PMCID: PMC8491028 DOI: 10.1093/plphys/kiab284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 05/04/2023]
Abstract
Cell cycle is one of the most fundamentally conserved biological processes of plants and mammals. Casein kinase1s (CK1s) are critical for cell proliferation in mammalian cells; however, how CK1s coordinate cell division in plants remains unknown. Through genetic and biochemical studies, here we demonstrated that plant CK1, Arabidopsis (Arabidopsis thaliana) EL1-like (AELs), regulate cell cycle/division by modulating the stability and inhibitory effects of Kip-related protein6 (KRP6) through phosphorylation. Cytological analysis showed that AELs deficiency results in suppressed cell-cycle progression mainly due to the decreased DNA replication rate at S phase and increased period of G2 phase. AELs interact with and phosphorylate KRP6 at serines 75 and 109 to stimulate KRP6's interaction with E3 ligases, thus facilitating the KRP6 degradation through the proteasome. These results demonstrate the crucial roles of CK1s/AELs in regulating cell division through modulating cell-cycle rates and elucidate how CK1s/AELs regulate cell division by destabilizing the stability of cyclin-dependent kinase inhibitor KRP6 through phosphorylation, providing insights into the plant cell-cycle regulation through CK1s-mediated posttranslational modification.
Collapse
Affiliation(s)
- Li Qu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhuang Wei
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hu-Hui Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Liu
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kan Liao
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong-Wei Xue
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
33
|
Wang W, Dai Z, Li J, Ouyang J, Li T, Zeng B, Kang L, Jia K, Xi Z, Jia W. A Method for Assaying of Protein Kinase Activity In Vivo and Its Use in Studies of Signal Transduction in Strawberry Fruit Ripening. Int J Mol Sci 2021; 22:ijms221910495. [PMID: 34638834 PMCID: PMC8508642 DOI: 10.3390/ijms221910495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Strawberry (Fragaria × ananassa) fruit ripening is regulated by a complex of cellular signal transduction networks, in which protein kinases are key components. Here, we report a relatively simple method for assaying protein kinase activity in vivo and specifically its application to study the kinase, FaMPK6, signaling in strawberry fruit. Green fluorescent protein (GFP)-tagged FaMPK6 was transiently expressed in strawberry fruit and after stimuli were applied to the fruit it was precipitated using an anti-GFP antibody. The precipitated kinase activity was measured in vitro using 32P-ATP and myelin basic protein (MBP) as substrates. We also report that FaMPK6 is not involved in the abscisic acid (ABA) signaling cascade, which is closely associated with FaMPK6 signaling in other plant species. However, methyl jasmonate (MeJA), low temperature, and high salt treatments were all found to activate FaMPK6. Transient manipulation of FaMPK6 expression was observed to cause significant changes in the expression patterns of 2749 genes, of which 264 were associated with MeJA signaling. The data also suggest a role for FaMPK6 in modulating cell wall metabolism during fruit ripening. Taken together, the presented method is powerful and its use will contribute to a profound exploration to the signaling mechanism of strawberry fruit ripening.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Zhengrong Dai
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Jie Li
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Jinyao Ouyang
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Tianyu Li
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Baozhen Zeng
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Li Kang
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Kenan Jia
- College of International Education, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Zhiyuan Xi
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Wensuo Jia
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
- Correspondence:
| |
Collapse
|
34
|
Wang S, Guo J, Zhang Y, Guo Y, Ji W. Genome-wide characterization and expression analysis of TOPP-type protein phosphatases in soybean (Glycine max L.) reveal the role of GmTOPP13 in drought tolerance. Genes Genomics 2021; 43:783-796. [PMID: 33864615 DOI: 10.1007/s13258-021-01075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND In response to various abiotic stressors such as drought, many plants engage different protein phosphatases linked to several physiological and developmental processes. However, comprehensive analysis of this gene family is lacking for soybean. OBJECTIVE This study was performed to identify the TOPP-type protein phosphatase family in soybean and investigate the gene's role under drought stress. METHODS Soybean genome sequences and transcriptome data were downloaded from the Phytozome v.12, and the microarray data were downloaded from NCBI GEO datasets GSE49537. Expression profiles of GmTOPP13 were obtained based on qRT-PCR results. GmTOPP13 gene was transformed into tobacco plants via Agrobacterium mediated method, and the drought tolerance was analyzed by water deficit assay. RESULTS 15 GmTOPP genes were identified in the soybean genome database (GmTOPP1-15). GmTOPP genes were distributed on 9 of 20 chromosomes, with similar exon-intron structure and motifs arrangement. All GmTOPPs contained Metallophos and STPPase_N domains as well as the core catalytic sites. Cis-regulatory element analysis predicted that GmTOPPs were widely involved in plant development, stress and hormone response in soybean. Expression profiles showed that GmTOPPs expressed in different tissues and exhibited divergent expression patterns in leaf and root in response to drought stimulus. Moreover, GmTOPP13 gene was isolated and expression pattern analysis indicated that this gene was highly expressed in seed, root, leaf and other tissues detected, and intensively induced upon PEG6000 treatment. In addition, overexpression of GmTOPP13 gene enhanced the drought tolerance in tobacco plants. The transgenic tobacco plants showed regulation of stress-responsive genes including CAT, SOD, ERD10B and TIP during drought stress. CONCLUSIONS This study provides valuable information for the study of GmTOPP gene family in soybean, and lays a foundation for further functional studies of GmTOPP13 gene under drought and other abiotic stresses.
Collapse
Affiliation(s)
- Sibo Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jingsong Guo
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yushuang Guo
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, 550083, China
| | - Wei Ji
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
35
|
Muthusamy M, Kim JH, Kim SH, Park SY, Lee SI. BrPP5.2 Overexpression Confers Heat Shock Tolerance in Transgenic Brassica rapa through Inherent Chaperone Activity, Induced Glucosinolate Biosynthesis, and Differential Regulation of Abiotic Stress Response Genes. Int J Mol Sci 2021; 22:ijms22126437. [PMID: 34208567 PMCID: PMC8234546 DOI: 10.3390/ijms22126437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Plant phosphoprotein phosphatases are ubiquitous and multifarious enzymes that respond to developmental requirements and stress signals through reversible dephosphorylation of target proteins. In this study, we investigated the hitherto unknown functions of Brassica rapa protein phosphatase 5.2 (BrPP5.2) by transgenic overexpression of B. rapa lines. The overexpression of BrPP5.2 in transgenic lines conferred heat shock tolerance in 65–89% of the young transgenic seedlings exposed to 46 °C for 25 min. The examination of purified recombinant BrPP5.2 at different molar ratios efficiently prevented the thermal aggregation of malate dehydrogenase at 42 °C, thus suggesting that BrPP5.2 has inherent chaperone activities. The transcriptomic dynamics of transgenic lines, as determined using RNA-seq, revealed that 997 and 1206 (FDR < 0.05, logFC ≥ 2) genes were up- and down-regulated, as compared to non-transgenic controls. Statistical enrichment analyses revealed abiotic stress response genes, including heat stress response (HSR), showed reduced expression in transgenic lines under optimal growth conditions. However, most of the HSR DEGs were upregulated under high temperature stress (37 °C/1 h) conditions. In addition, the glucosinolate biosynthesis gene expression and total glucosinolate content increased in the transgenic lines. These findings provide a new avenue related to BrPP5.2 downstream genes and their crucial metabolic and heat stress responses in plants.
Collapse
Affiliation(s)
- Muthusamy Muthusamy
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Rural Development Administration, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (S.Y.P.)
| | - Jong Hee Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Rural Development Administration, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (S.Y.P.)
- Division of Horticultural Biotechnology, Hankyung National University, Anseong 17579, Korea
| | - Suk Hee Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Rural Development Administration, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (S.Y.P.)
| | - So Young Park
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Rural Development Administration, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (S.Y.P.)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Rural Development Administration, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (S.Y.P.)
- Correspondence: ; Tel.: +82-63-238-4618; Fax: +82-63-238-4604
| |
Collapse
|
36
|
Kumar V, Singh D, Majee A, Singh S, Asif MH, Sane AP, Sane VA. Identification of tomato root growth regulatory genes and transcription factors through comparative transcriptomic profiling of different tissues. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1173-1189. [PMID: 34177143 PMCID: PMC8212336 DOI: 10.1007/s12298-021-01015-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Tomato is an economically important vegetable crop and a model for development and stress response studies. Although studied extensively for understanding fruit ripening and pathogen responses, its role as a model for root development remains less explored. In this study, an Illumina-based comparative differential transcriptomic analysis of tomato root with different aerial tissues was carried out to identify genes that are predominantly expressed during root growth. Sequential comparisons revealed ~ 15,000 commonly expressed genes and ~ 3000 genes of several classes that were mainly expressed or regulated in roots. These included 1069 transcription factors (TFs) of which 100 were differentially regulated. Prominent amongst these were members of families encoding Zn finger, MYB, ARM, bHLH, AP2/ERF, WRKY and NAC proteins. A large number of kinases, phosphatases and F-box proteins were also expressed in the root transcriptome. The major hormones regulating root growth were represented by the auxin, ethylene, JA, ABA and GA pathways with root-specific expression of certain components. Genes encoding carbon metabolism and photosynthetic components showed reduced expression while several protease inhibitors were amongst the most highly expressed. Overall, the study sheds light on genes governing root growth in tomato and provides a resource for manipulation of root growth for plant improvement. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01015-0.
Collapse
Affiliation(s)
- Vinod Kumar
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Deepika Singh
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Integral University, Lucknow, 226026 India
| | - Adity Majee
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Shikha Singh
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Mehar Hasan Asif
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Aniruddha P. Sane
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Vidhu A. Sane
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
37
|
Verma D, Bhagat PK, Sinha AK. A dual-specificity phosphatase, MAP kinase phosphatase 1, positively regulates blue light-mediated seedling development in Arabidopsis. PLANTA 2021; 253:131. [PMID: 34057637 DOI: 10.1007/s00425-021-03649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
A dual-specificity phosphatase MKP1 negatively regulates the activity of MPK6 by dephosphorylating it and acts as a positive regulator of blue light (BL)-mediated photomorphogenic development in Arabidopsis. Reversible phosphorylation of proteins is one of the major post-translational modifications in nearly all signaling pathways in plants. MAP kinase phosphatases are very crucial in the regulation of MAPKs as they dephosphorylate both threonine (Thr) and tyrosine (Tyr) residues within the T-X-Y motif of active MAPKs. Therefore, to gain insight of involvement of MAP kinase phosphatases in the regulation of light signaling, we searched for the potential phosphatase which may regulate the function of MPK6, a negative regulator of blue light (BL)-mediated photomorphogenic development. We report here the identification of a dual-specificity phosphatase, MAP kinase phosphatase 1 (MKP1) as a positive regulator of BL-mediated seedling development. Overexpression of MKP1 enhances the BL-induced inhibition of hypocotyl elongation and displays more opened cotyledons. We also show that MKP1OE accumulates more pigments and positively affects the expression of downstream light-related genes in response to BL. In vitro and in vivo evidences also demonstrate that MKP1 not only interacts with but also dephosphorylates MPK6 in BL. In addition, MKP1 regulates stability as well as activity of MPK6 upon BL. Taken together our study highlights the important role of phosphatases in the regulation of a signaling pathway and identifies the role of MKP1 in the negative regulation of MPK6 activity leading to a change in BL-induced photomorphogenic responses.
Collapse
Affiliation(s)
- Deepanjali Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prakash Kumar Bhagat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
38
|
Selvaraj K, Katare DP, Chand S, Chaudhary N. Trachyspermum ammi and Cinnamomum verum as nutraceuticals: Spices rich in therapeutically significant protein tyrosine phosphatases. J Food Biochem 2021; 45:e13750. [PMID: 33954990 DOI: 10.1111/jfbc.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 11/29/2022]
Abstract
Nutraceuticals need special attention as preventive molecules to create a natural barrier against various dreadful diseases like cancer and to regulate metabolism. In the present study, two spices, Trachyspermum ammi and Cinnamomum verum, been identified as excellent Protein Tyrosine Phosphatases (PTPases) sources that play significant role in the regulation of cell signal transduction and developmental processes in plants as well as animals, being lucrative and potential targets for pharmacological modulation. PTPases from both cases were partially purified into 0%-40% and 40%-80% fractions based on ammonium sulfate saturation levels. Fraction (40%-80%) exhibited a purification level of 4.44-fold and 2.86-fold with specific activity of 44.06 and 23.33 U/mg for PTPases from T. ammi and C. verum, respectively. PTPases being found to be thermally stable up to 70°C imply their industrial significance. Kinetic studies showed Km values to be 7.14 and 8.33 mM, whereas the activation energy (Ea ) values were 25.89 and 29.13 kJ/mol, respectively. Divalent cations: Cu2+ , Zn2+ , and Mn2+ acted as inhibitors of PTPases, from both sources. The Ki values of inhibitors varied from 0.014-0.125 mM in the descending order Cu2+ > Zn2+ > Mn2+ and Mn2+ > Cu2+ > Zn2+ for PTPases from T. ammi and C. verum, respectively. The inhibitory effect of sodium metavanadate aligns with prominent PTPase characteristics. In addition to these properties, the thermostability of PTPases from two spices enhances their significance in industries with therapeutically vital products. Although the source of PTPases is culinary spices, further studies are required to establish the utilization of PTPases as nutraceuticals and in therapeutic formulations. PRACTICAL APPLICATIONS: For a healthy lifestyle, awareness needs to be created by humankind towards food habits to minimize illnesses. Numerous studies have explored the consumption of nutraceutical products acts as a natural barrier and immune booster for various human ailments including SARS-COV-2. PTPases play important roles in regulating intracellular signaling and, ultimately, biological function along with their structural features. The importance of PTPases and their inhibitors has been implicated in various diseases like cancer, diabetes, and obesity. Further investigations need to be undertaken to explore the therapeutic properties of PTPases in both in vivo and in vitro for their clinical significance.
Collapse
Affiliation(s)
- Kanagarethinam Selvaraj
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Deepshikha Pande Katare
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Subhash Chand
- Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Nidhee Chaudhary
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
39
|
Xin J, Li C, Ning K, Qin Y, Shang JX, Sun Y. AtPFA-DSP3, an atypical dual-specificity protein tyrosine phosphatase, affects salt stress response by modulating MPK3 and MPK6 activity. PLANT, CELL & ENVIRONMENT 2021; 44:1534-1548. [PMID: 33464564 DOI: 10.1111/pce.14002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Protein phosphorylation, especially serine/threonine and tyrosine phosphorylation, plays significant roles in signalling during plant growth and development as well as plant responses to biotic or abiotic stresses. Dual-specificity protein tyrosine phosphatases dephosphorylate components of these signalling pathways. Here, we report that an atypical dual-specificity protein tyrosine phosphatase, AtPFA-DSP3 (DSP3), negatively affects the response of plants to high-salt conditions. A DSP3 loss-of-function mutant showed reduced sensitivity to salt treatment. DSP3 was primarily localized in nuclei and was degraded during salt treatment. Compared to wild type, the level of ROS was lower in the dsp3 mutant and higher in plants ectopically expressing DSP3, indicating that higher DSP3 level was associated with increased ROS production. DSP3 interacted with and dephosphorylated MPK3 and MPK6. Genetic analyses of a dsp3mpk3 double mutant revealed that DSP3's effect on salt stress depends on MPK3. Moreover, the phosphatase activity of DSP3 was required for its role in salt signalling. These results indicate that DSP3 is a negative regulator of salt responses in Arabidopsis by directly modulating the accumulation of phosphorylated MPK3 and MPK6.
Collapse
Affiliation(s)
- Jing Xin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chuanling Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Kexin Ning
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yuan Qin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jian-Xiu Shang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yu Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
40
|
Chu M, Chen P, Meng S, Xu P, Lan W. The Arabidopsis phosphatase PP2C49 negatively regulates salt tolerance through inhibition of AtHKT1;1. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:528-542. [PMID: 32877013 DOI: 10.1111/jipb.13008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/31/2020] [Indexed: 05/08/2023]
Abstract
Type 2C protein phosphatases (PP2Cs) are the largest protein phosphatase family. PP2Cs dephosphorylate substrates for signaling in Arabidopsis, but the functions of most PP2Cs remain unknown. Here, we characterized PP2C49 (AT3G62260, a Group G PP2C), which regulates Na+ distribution under salt stress and is localized to the cytoplasm and nucleus. PP2C49 was highly expressed in root vascular tissues and its disruption enhanced plant tolerance to salt stress. Compared with wild type, the pp2c49 mutant contained more Na+ in roots but less Na+ in shoots and xylem sap, suggesting that PP2C49 regulates shoot Na+ extrusion. Reciprocal grafting revealed a root-based mechanism underlying the salt tolerance of pp2c49. Systemic Na+ distribution largely depends on AtHKT1;1 and loss of function of AtHKT1;1 in the pp2c49 background overrode the salt tolerance of pp2c49, resulting in salt sensitivity. Furthermore, compared with plants overexpressing PP2C49 in the wild-type background, plants overexpressing PP2C49 in the athtk1;1 mutant background were sensitive to salt, like the athtk1;1 mutants. Moreover, protein-protein interaction and two-voltage clamping assays demonstrated that PP2C49 physically interacts with AtHKT1;1 and inhibits the Na+ permeability of AtHKT1;1. This study reveals that PP2C49 negatively regulates AtHKT1;1 activity and thus determines systemic Na+ allocation during salt stress.
Collapse
Affiliation(s)
- Moli Chu
- State Key Laboratory for Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Pengwang Chen
- State Key Laboratory for Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Sufang Meng
- State Key Laboratory for Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Peng Xu
- State Key Laboratory for Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wenzhi Lan
- State Key Laboratory for Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
41
|
Abbasi-Vineh MA, Sabet MS, Karimzadeh G. Identification and Functional Analysis of Two Purple Acid Phosphatases AtPAP17 and AtPAP26 Involved in Salt Tolerance in Arabidopsis thaliana Plant. FRONTIERS IN PLANT SCIENCE 2021; 11:618716. [PMID: 33679819 PMCID: PMC7928345 DOI: 10.3389/fpls.2020.618716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/31/2020] [Indexed: 05/06/2023]
Abstract
Tolerance to salinity is a complex genetic trait including numerous physiological processes, such as metabolic pathways and gene networks; thereby, identification of genes indirectly affecting, as well as those directly influencing, is of utmost importance. In this study, we identified and elucidated the functional characterization of AtPAP17 and AtPAP26 genes, as two novel purple acid phosphatases associated with high-salt tolerance in NaCl-stressed conditions. Here, the overexpression of both genes enhanced the expression level of AtSOS1, AtSOS2, AtSOS3, AtHKT1, AtVPV1, and AtNHX1 genes, involving in the K+/Na+ homeostasis pathway. The improved expression of the genes led to facilitating intracellular Na+ homeostasis and decreasing the ion-specific damages occurred in overexpressed genotypes (OEs). An increase in potassium content and K+/Na+ ratio was observed in OE17 and OE26 genotypes as well; however, lower content of sodium accumulated in these plants at 150 mM NaCl. The overexpression of these two genes resulted in the upregulation of the activity of the catalase, guaiacol peroxidase, and ascorbate peroxidase. Consequently, the overexpressed plants showed the lower levels of hydrogen peroxide where the lowest amount of lipid peroxidation occurred in these lines. Besides the oxidation resistance, the boost of the osmotic regulation through the increased proline and glycine-betaine coupled with a higher content of pigments and carbohydrates resulted in significantly enhancing biomass production and yield in the OEs under 150 mM NaCl. High-salt stress was also responsible for a sharp induction on the expression of both PAP17 and PAP26 genes. Our results support the hypothesis that these two phosphatases are involved in plant responses to salt stress by APase activity and/or non-APase activity thereof. The overexpression of PAP17 and PAP26 could result in increasing the intracellular APase activity in both OEs, which exhibited significant increases in the total phosphate and free Pi content compared to the wild-type plants. Opposite results witnessed in mutant genotypes (Mu17, Mu26, and DM), associating with the loss of AtPAP17 and AtPAP26 functions, clearly confirmed the role of these two genes in salt tolerance. Hence, these genes can be used as candidate genes in molecular breeding approaches to improve the salinity tolerance of crop plants.
Collapse
Affiliation(s)
- Mohammad Ali Abbasi-Vineh
- Department of Agricultural Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sadegh Sabet
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ghasem Karimzadeh
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
42
|
Banikamali M, Soltanloo H, Ramezanpour SS, Yamchi A, Sorahinobar M. Identification of salinity responsive genes in lavender through cDNA-AFLP. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00520. [PMID: 32963973 PMCID: PMC7490537 DOI: 10.1016/j.btre.2020.e00520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/13/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023]
Abstract
Currently, a global demand exists forlavender as a significant medicinal plant and source of essential oils. Freshwater and arable lands are two major factors that inhibit extensive farming of medicinal plants in Iran. Saline water from seas and salty soil may be new resources for agricultural use, especially for medicinal plants. We sought to extend our knowledge of the Lavandula angustifolia genome and molecular basis of its salinity tolerance by using cDNA amplified fragment length polymorphism (cDNA-AFLP) to investigate the changes in plant transcriptomes in response to NaCl. All identified transcript derived fragments (TDF) were assigned as novel L. angustifolia genes related to signal transduction, regulation of gene expression, alternative splicing, autophagy, and secondary metabolite biosynthesis. qRT-PCR analysis of the TDFs in response to different concentrations of NaCl revealed various levels of mRNA of the identified genes in this plant. Our findings provided primary insights into the molecular response of L. angustifolia to salinity.
Collapse
Affiliation(s)
- Mania Banikamali
- Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran
| | - Hassan Soltanloo
- Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran
| | - S Sanaz Ramezanpour
- Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran
| | - Ahad Yamchi
- Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran
| | - Mona Sorahinobar
- Department of Plant Biology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| |
Collapse
|
43
|
Lu F, Wang K, Yan L, Peng Y, Qu J, Wu J, Cao Y, Yang Q, Fu F, Yu H. Isolation and characterization of maize ZmPP2C26 gene promoter in drought-response. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2189-2197. [PMID: 33268922 PMCID: PMC7688808 DOI: 10.1007/s12298-020-00910-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 05/14/2023]
Abstract
The clade A members of serine/threonine protein phosphatase 2Cs (PP2Cs) play crucial roles in plant growth, development, and stress response via the ABA signaling pathway. But little is known about other PP2C clades in plants. Our previous study showed that maize the ZmPP2C26, a clade B member of ZmPP2Cs, negatively regulated drought tolerance in transgenic Arabidopsis. However, the upstream regulatory mechanism of ZmPP2C26 remains unclear. In the present study, the expression of ZmPP2C26 gene in maize was analyzed by quantitative real time PCR (qRT-PCR). The results showed that the expression of ZmPP2C26 in shoot and root was both significantly inhibited by drought stress. Subsequently, a 2175 bp promoter of ZmPP2C26 was isolated from maize genome (P 2175). To validate whether the promoter possess some key cis-element and negatively drive ZmPP2C26 expression in drought stress, three 5´-deletion fragments of 1505, 1084 and 215 bp was amplified from P 2175 and were fused to β-glucuronidase (GUS) and luciferase gene (LUC) to produce promoter::GUS and promoter::LUC constructs, and transformed into tobacco, respectively. Transient expression assays indicated that all promoters could drive GUS and LUC expression. The GUS and LUC activity were both significantly inhibited by PEG-6000 treatment. Notably, the - 1084 to - 215 bp promoter possess one MBS element and inhibits the expression of GUS and LUC under drought stress. Meanwhile, we found that the 215 bp length is enough to drive ZmPP2C26 expression. These findings will provide insights into understanding the transcription-regulatory mechanism of ZmPP2C26 negatively regulating drought tolerance.
Collapse
Affiliation(s)
- Fengzhong Lu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Kexin Wang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Lamei Yan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Yalin Peng
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Jingtao Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Jing Wu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Yang Cao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Qingqing Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Fengling Fu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Haoqiang Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| |
Collapse
|
44
|
Janicki M, Marczak M, Cieśla A, Ludwików A. Identification of Novel Inhibitors of a Plant Group A Protein Phosphatase Type 2C Using a Combined In Silico and Biochemical Approach. FRONTIERS IN PLANT SCIENCE 2020; 11:526460. [PMID: 33042170 PMCID: PMC7524867 DOI: 10.3389/fpls.2020.526460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Type 2C protein phosphatases (PP2Cs) of group A play a significant role in the regulation of various processes in plants including growth, development, ion transport, and stress acclimation. In this study, we selected potential PP2C group A inhibitors using a structure-based virtual screening method followed by biochemical and in vitro validation. Over twenty million chemical compounds from the ZINC database were used for docking studies. The precision of the calculations was increased by an induced-fit docking protocol and the molecular mechanics/generalized Born surface area (MM/GBSA) method, which yielded approximate values for the binding energy of the protein-ligand complex. After clustering and ranking their activity, the top-ranking compounds were tested against PP2C group A members in vitro and their in vivo activity was also explored. Phosphatase activity assays identified two compounds with significant inhibitory activity against ABI1 protein ranging from around 57 to 91% at a concentration of 100 μM. Importantly, this in vitro activity correlated well with in vivo inhibition of seed germination, as expected for PP2C inhibitors. The results should promote the design of novel inhibitors with improved potency against ABI1-like and other PP2Cs that might be used in agriculture for the protection of crops against stress.
Collapse
|
45
|
Zhang Y, Zeng L. Crosstalk between Ubiquitination and Other Post-translational Protein Modifications in Plant Immunity. PLANT COMMUNICATIONS 2020; 1:100041. [PMID: 33367245 PMCID: PMC7748009 DOI: 10.1016/j.xplc.2020.100041] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 05/05/2023]
Abstract
Post-translational modifications (PTMs) are central to the modulation of protein activity, stability, subcellular localization, and interaction with partners. They greatly expand the diversity and functionality of the proteome and have taken the center stage as key players in regulating numerous cellular and physiological processes. Increasing evidence indicates that in addition to a single regulatory PTM, many proteins are modified by multiple different types of PTMs in an orchestrated manner to collectively modulate the biological outcome. Such PTM crosstalk creates a combinatorial explosion in the number of proteoforms in a cell and greatly improves the ability of plants to rapidly mount and fine-tune responses to different external and internal cues. While PTM crosstalk has been investigated in depth in humans, animals, and yeast, the study of interplay between different PTMs in plants is still at its infant stage. In the past decade, investigations showed that PTMs are widely involved and play critical roles in the regulation of interactions between plants and pathogens. In particular, ubiquitination has emerged as a key regulator of plant immunity. This review discusses recent studies of the crosstalk between ubiquitination and six other PTMs, i.e., phosphorylation, SUMOylation, poly(ADP-ribosyl)ation, acetylation, redox modification, and glycosylation, in the regulation of plant immunity. The two basic ways by which PTMs communicate as well as the underlying mechanisms and diverse outcomes of the PTM crosstalk in plant immunity are highlighted.
Collapse
|
46
|
Bheri M, Mahiwal S, Sanyal SK, Pandey GK. Plant protein phosphatases: What do we know about their mechanism of action? FEBS J 2020; 288:756-785. [PMID: 32542989 DOI: 10.1111/febs.15454] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Protein phosphorylation is a major reversible post-translational modification. Protein phosphatases function as 'critical regulators' in signaling networks through dephosphorylation of proteins, which have been phosphorylated by protein kinases. A large understanding of their working has been sourced from animal systems rather than the plant or the prokaryotic systems. The eukaryotic protein phosphatases include phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine(Ser)/threonine(Thr)-specific phosphatases (STPs), while PTP family is Tyr specific. Dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. PTPs lack sequence homology with STPs, indicating a difference in catalytic mechanisms, while the PPP and PPM families share a similar structural fold indicating a common catalytic mechanism. The catalytic cysteine (Cys) residue in the conserved HCX5 R active site motif of the PTPs acts as a nucleophile during hydrolysis. The PPP members require metal ions, which coordinate the phosphate group of the substrate, followed by a nucleophilic attack by a water molecule and hydrolysis. The variable holoenzyme assembly of protein phosphatase(s) and the overlap with other post-translational modifications like acetylation and ubiquitination add to their complexity. Though their functional characterization is extensively reported in plants, the mechanistic nature of their action is still being explored by researchers. In this review, we exclusively overview the plant protein phosphatases with an emphasis on their mechanistic action as well as structural characteristics.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
47
|
Emami H, Kumar A, Kempken F. Transcriptomic analysis of poco1, a mitochondrial pentatricopeptide repeat protein mutant in Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:209. [PMID: 32397956 PMCID: PMC7216612 DOI: 10.1186/s12870-020-02418-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Flowering is a crucial stage during plant development. Plants may respond to unfavorable conditions by accelerating reproductive processes like flowering. In a recent study, we showed that PRECOCIOUS1 (POCO1) is a mitochondrial pentatricopeptide repeat (PPR) protein involved in flowering time and abscisic acid (ABA) signaling in Arabidopsis thaliana. Here, we use RNA-seq data to investigate global gene expression alteration in the poco1 mutant. RESULTS RNA-seq analysis was performed during different developmental stages for wild-type and poco1 plants. The most profound differences in gene expression were found when wild-type and poco1 plants of the same developmental stage were compared. Coverage analysis confirmed the T-DNA insertion in POCO1, which was concomitant with truncated transcripts. Many biological processes were found to be enriched. Several flowering-related genes such as FLOWERING LOCUS T (FT), which may be involved in the early-flowering phenotype of poco1, were differentially regulated. Numerous ABA-associated genes, including the core components of ABA signaling such as ABA receptors, protein phosphatases, protein kinases, and ABA-responsive element (ABRE) binding proteins (AREBs)/ABRE-binding factors (ABFs) as well as important genes for stomatal function, were mostly down-regulated in poco1. Drought and oxidative stress-related genes, including ABA-induced stress genes, were differentially regulated. RNA-seq analysis also uncovered differentially regulated genes encoding various classes of transcription factors and genes involved in cellular signaling. Furthermore, the expression of stress-associated nuclear genes encoding mitochondrial proteins (NGEMPs) was found to be altered in poco1. Redox-related genes were affected, suggesting that the redox state in poco1 might be altered. CONCLUSION The identification of various enriched biological processes indicates that complex regulatory mechanisms underlie poco1 development. Differentially regulated genes associated with flowering may contribute to the early-flowering phenotype of poco1. Our data suggest the involvement of POCO1 in the early ABA signaling process. The down-regulation of many ABA-related genes suggests an association of poco1 mutation with the ABA signaling deficiency. This condition further affects the expression of many stress-related, especially drought-associated genes in poco1, consistent with the drought sensitivity of poco1. poco1 mutation also affects the expression of genes associated with the cellular regulation, redox, and mitochondrial perturbation.
Collapse
Affiliation(s)
- Hossein Emami
- Department of Botany, Christian-Albrechts-University, Olshausenstr. 40, 24098, Kiel, Germany
| | - Abhishek Kumar
- Present address: Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Present address: Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Frank Kempken
- Department of Botany, Christian-Albrechts-University, Olshausenstr. 40, 24098, Kiel, Germany.
| |
Collapse
|
48
|
Liu Y, Yan J, Qin Q, Zhang J, Chen Y, Zhao L, He K, Hou S. Type one protein phosphatases (TOPPs) contribute to the plant defense response in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:360-377. [PMID: 31125159 DOI: 10.1111/jipb.12845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/22/2019] [Indexed: 05/27/2023]
Abstract
Plant immunity must be tightly controlled to avoid activation of defense mechanisms in the absence of pathogen attack. Protein phosphorylation is a common mechanism regulating immune signaling. In Arabidopsis thaliana, nine members of the type one protein phosphatase (TOPP) family (also known as protein phosphatase 1, PP1) have been identified. Here, we characterized the autoimmune phenotype of topp4-1, a previously identified dominant-negative mutant of TOPP4. Epistasis analysis showed that defense activation in topp4-1 depended on NON-RACE-SPECIFIC DISEASE RESISTANCE1, PHYTOALEXIN DEFICIENT4, and the salicylic acid pathway. We generated topp1/4/5/6/7/8/9 septuple mutants to investigate the function of TOPPs in plant immunity. Elevated defense gene expression and enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 in the septuple mutant indicate that TOPPs function in plant defense responses. Furthermore, TOPPs physically interacted with mitogen-activated protein kinases (MAPKs) and affected the MAPK-mediated downstream defense pathway. Thus, our study reveals that TOPPs are important regulators of plant immunity.
Collapse
Affiliation(s)
- Yaqiong Liu
- MOE Key Laboratoryof Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jia Yan
- MOE Key Laboratoryof Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qianqian Qin
- MOE Key Laboratoryof Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jing Zhang
- MOE Key Laboratoryof Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yan Chen
- MOE Key Laboratoryof Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lulu Zhao
- MOE Key Laboratoryof Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kai He
- MOE Key Laboratoryof Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suiwen Hou
- MOE Key Laboratoryof Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
49
|
Poplar PdPTP1 Gene Negatively Regulates Salt Tolerance by Affecting Ion and ROS Homeostasis in Populus. Int J Mol Sci 2020; 21:ijms21031065. [PMID: 32033494 PMCID: PMC7037657 DOI: 10.3390/ijms21031065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
High concentrations of Na+ in saline soil impair plant growth and agricultural production. Protein tyrosine phosphorylation is crucial in many cellular regulatory mechanisms. However, regulatory mechanisms of plant protein tyrosine phosphatases (PTPs) in controlling responses to abiotic stress remain limited. We report here the identification of a Tyrosine (Tyr)-specific phosphatase, PdPTP1, from NE19 (Populus nigra × (P. deltoides × P. nigra). Transcript levels of PdPTP1 were upregulated significantly by NaCl treatment and oxidative stress. PdPTP1 was found both in the nucleus and cytoplasm. Under NaCl treatment, transgenic plants overexpressing PdPTP1 (OxPdPTP1) accumulated more Na+ and less K+. In addition, OxPdPTP1 poplars accumulated more H2O2 and O2·-, which is consistent with the downregulation of enzymatic ROS-scavengers activity. Furthermore, PdPTP1 interacted with PdMAPK3/6 in vivo and in vitro. In conclusion, our findings demonstrate that PdPTP1 functions as a negative regulator of salt tolerance via a mechanism of affecting Na+/K+ and ROS homeostasis.
Collapse
|
50
|
Ahsan N, Wilson RS, Rao RSP, Salvato F, Sabila M, Ullah H, Miernyk JA. Mass Spectrometry-Based Identification of Phospho-Tyr in Plant Proteomics. J Proteome Res 2020; 19:561-571. [PMID: 31967836 DOI: 10.1021/acs.jproteome.9b00550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
O-Phosphorylation (phosphorylation of the hydroxyl-group of S, T, and Y residues) is among the first described and most thoroughly studied posttranslational modification (PTM). Y-Phosphorylation, catalyzed by Y-kinases, is a key step in both signal transduction and regulation of enzymatic activity in mammalian systems. Canonical Y-kinase sequences are absent from plant genomes/kinomes, often leading to the assumption that plant cells lack O-phospho-l-tyrosine (pY). However, recent improvements in sample preparation, coupled with advances in instrument sensitivity and accessibility, have led to results that unequivocally disproved this assumption. Identification of hundreds of pY-peptides/proteins, followed by validation using genomic, molecular, and biochemical approaches, implies previously unappreciated roles for this "animal PTM" in plants. Herein, we review extant results from studies of pY in plants and propose a strategy for preparation and analysis of pY-peptides that will allow a depth of coverage of the plant pY-proteome comparable to that achieved in mammalian systems.
Collapse
Affiliation(s)
- Nagib Ahsan
- Division of Biology and Medicine , Brown University , Providence , Rhode Island 02903 , United States.,Center for Cancer Research Development, Proteomics Core Facility , Rhode Island Hospital , Providence , Rhode Island 02903 , United States
| | - Rashaun S Wilson
- Keck Mass Spectrometry & Proteomics Resource , Yale University , New Haven , Connecticut 06511 , United States
| | - R Shyama Prasad Rao
- Biostatistics and Bioinformatics Division, Yenepoya Research Center , Yenepoya University , Mangalore 575018 , India
| | - Fernanda Salvato
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Mercy Sabila
- Department of Biology , Howard University , Washington , D.C. 20059 , United States
| | - Hemayet Ullah
- Department of Biology , Howard University , Washington , D.C. 20059 , United States
| | - Ján A Miernyk
- Division of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| |
Collapse
|