1
|
Rolhauser AG, Isaac ME, Violle C, Martin AR, Vasseur F, Lemoine T, Mahaut L, Fort F, Rotundo JL, Vile D. Phenotypic limits of crop diversity: a data exploration of functional trait space. THE NEW PHYTOLOGIST 2024; 244:708-718. [PMID: 39183372 DOI: 10.1111/nph.20050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024]
Abstract
Relationships between crop genetic and functional diversity are key to addressing contemporary agricultural challenges. Yet, there are few approaches for quantifying the relationship between genetic diversity and crop functional trait expression. Here, we introduce 'functional space accumulation curves' to analyze how trait space increases with the number of crop genotypes within a species. We explore the potential for functional space accumulating curves to quantify genotype-trait space relationships in four common annual crop species: barley (Hordeum vulgare), rice (Oryza sativa), soybean (Glycine max), and durum wheat (Triticum durum). We also employ these curves to describe genotype-trait space relationships in the wild annual Arabidopsis thaliana, which has not been subjected to artificial selection. All five species exhibited asymptotic functional space accumulation curves, suggesting a limit to intraspecific functional crop diversity, likely due to: dominant phenotypes represented by several genotypes; or functional redundancy that might exist among genotypes. Our findings indicate that there is a diminishing return of functional diversity with increasing number of genotypes. Our analysis demonstrates the efficacy of functional space accumulation curves in quantifying trait space occupancy of crops, with implications for managing crop diversity in agroecosystems, and genetic diversity in crop breeding programs.
Collapse
Affiliation(s)
- Andrés G Rolhauser
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
- Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, C1417DSE, Argentina
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, C1417DSE, Argentina
| | - Marney E Isaac
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
- Department of Global Development Studies, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Adam R Martin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
| | - François Vasseur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Taina Lemoine
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Lucie Mahaut
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Florian Fort
- CEFE, Univ Montpellier, Institut Agro, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - José L Rotundo
- Corteva Agriscience, 7250 NW 62nd Ave., Johnston, 50310, IA, USA
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, 34000, France
| |
Collapse
|
2
|
Ihnatowicz A, Siwinska J, Perkowska I, Grosjean J, Hehn A, Bourgaud F, Lojkowska E, Olry A. Genes to specialized metabolites: accumulation of scopoletin, umbelliferone and their glycosides in natural populations of Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:806. [PMID: 39187756 PMCID: PMC11348552 DOI: 10.1186/s12870-024-05491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Scopoletin and umbelliferone belong to coumarins, which are plant specialized metabolites with potent and wide biological activities, the accumulation of which is induced by various environmental stresses. Coumarins have been detected in various plant species, including medicinal plants and the model organism Arabidopsis thaliana. In recent years, key role of coumarins in maintaining iron (Fe) homeostasis in plants has been demonstrated, as well as their significant impact on the rhizosphere microbiome through exudates secreted into the soil environment. Several mechanisms underlying these processes require clarification. Previously, we demonstrated that Arabidopsis is an excellent model for studying genetic variation and molecular basis of coumarin accumulation in plants. RESULTS Here, through targeted metabolic profiling and gene expression analysis, the gene-metabolite network of scopoletin and umbelliferone accumulation was examined in more detail in selected Arabidopsis accessions (Col-0, Est-1, Tsu-1) undergoing different culture conditions and characterized by variation in coumarin content. The highest accumulation of coumarins was detected in roots grown in vitro liquid culture. The expression of 10 phenylpropanoid genes (4CL1, 4CL2, 4CL3, CCoAOMT1, C3'H, HCT, F6'H1, F6'H2,CCR1 and CCR2) was assessed by qPCR in three genetic backgrounds, cultured in vitro and in soil, and in two types of tissues (leaves and roots). We not only detected the expected variability in gene expression and coumarin accumulation among Arabidopsis accessions, but also found interesting polymorphisms in the coding sequences of the selected genes through in silico analysis and resequencing. CONCLUSIONS To the best of our knowledge, this is the first study comparing accumulation of simple coumarins and expression of phenylpropanoid-related genes in Arabidopsis accessions grown in soil and in liquid cultures. The large variations we detected in the content of coumarins and gene expression are genetically determined, but also tissue and culture dependent. It is particularly important considering that growing plants in liquid media is a widely used technology that provides a large amount of root tissue suitable for metabolomics. Research on differential accumulation of coumarins and related gene expression will be useful in future studies aimed at better understanding the physiological role of coumarins in roots and the surrounding environments.
Collapse
Affiliation(s)
- Anna Ihnatowicz
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, Gdansk, 80-307, Poland.
| | - Joanna Siwinska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, Gdansk, 80-307, Poland
| | - Izabela Perkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, Gdansk, 80-307, Poland
| | | | - Alain Hehn
- Université de Lorraine-INRAE, LAE, Nancy, F-54000, France
| | | | - Ewa Lojkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, Gdansk, 80-307, Poland
| | - Alexandre Olry
- Université de Lorraine-INRAE, LAE, Nancy, F-54000, France.
| |
Collapse
|
3
|
Kileeg Z, Wang P, Mott GA. Chromosome-Scale Assembly and Annotation of Eight Arabidopsis thaliana Ecotypes. Genome Biol Evol 2024; 16:evae169. [PMID: 39101619 PMCID: PMC11327923 DOI: 10.1093/gbe/evae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024] Open
Abstract
The plant Arabidopsis thaliana is a model system used by researchers through much of plant research. Recent efforts have focused on discovering the genomic variation found in naturally occurring ecotypes isolated from around the world. These ecotypes have come from diverse climates and therefore have faced and adapted to a variety of abiotic and biotic stressors. The sequencing and comparative analysis of these genomes can offer insight into the adaptive strategies of plants. While there are a large number of ecotype genome sequences available, the majority were created using short-read technology. Mapping of short-reads containing structural variation to a reference genome bereft of that variation leads to incorrect mapping of those reads, resulting in a loss of genetic information and introduction of false heterozygosity. For this reason, long-read de novo sequencing of genomes is required to resolve structural variation events. In this article, we sequenced the genomes of eight natural variants of A. thaliana using nanopore sequencing. This resulted in highly contiguous assemblies with >95% of the genome contained within five contigs. The sequencing results from this study include five ecotypes from relict and African populations, an area of untapped genetic diversity. With this study, we increase the knowledge of diversity we have across A. thaliana ecotypes and contribute to ongoing production of an A. thaliana pan-genome.
Collapse
Affiliation(s)
- Zachary Kileeg
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Pauline Wang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| | - G Adam Mott
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Jiang S, Jin X, Liu Z, Xu R, Hou C, Zhang F, Fan C, Wu H, Chen T, Shi J, Hu Z, Wang G, Teng S, Li L, Li Y. Natural variation in SSW1 coordinates seed growth and nitrogen use efficiency in Arabidopsis. Cell Rep 2024; 43:114150. [PMID: 38678565 DOI: 10.1016/j.celrep.2024.114150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/02/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
Seed size is controlled not only by intrinsic genetic factors but also by external environmental signals. Here, we report a major quantitative trait locus (QTL) gene for seed size and weight on chromosome 1 (SSW1) in Arabidopsis, and we found SSW1 acts maternally to positively regulate seed size. Natural variation in SSW1 contains three types of alleles. The SSW1Cvi allele produces larger seeds with more amino acid and storage protein contents than the SSW1Ler allele. SSW1Cvi displays higher capacity for amino acid transport than SSW1Ler due to the differences in transport efficiency. Under low nitrogen supply, the SSW1Cvi allele exhibits increased seed yield and nitrogen use efficiency (NUE). Locations of natural variation alleles of SSW1 are associated with local soil nitrogen contents, suggesting that SSW1 might contribute to geographical adaptation in Arabidopsis. Thus, our findings reveal a mechanism that coordinates seed growth and NUE, suggesting a potential target for improving seed yield and NUE in crops.
Collapse
Affiliation(s)
- Shan Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ximing Jin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zebin Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ran Xu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Congcong Hou
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fengxia Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengming Fan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huilan Wu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianyan Chen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Yunnan University, Kunming 650500, China
| | - Jianghua Shi
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Zanmin Hu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guodong Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Sheng Teng
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Legong Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yunhai Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
5
|
Poethig RS. Ca 2+ regulates developmental timing in Arabidopsis. THE NEW PHYTOLOGIST 2024; 242:829-831. [PMID: 38379438 DOI: 10.1111/nph.19613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
This article is a Commentary on Wang et al. (2024), 242: 1043–1054.
Collapse
Affiliation(s)
- R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
Lee G, Sanderson BJ, Ellis TJ, Dilkes BP, McKay JK, Ågren J, Oakley CG. A large-effect fitness trade-off across environments is explained by a single mutation affecting cold acclimation. Proc Natl Acad Sci U S A 2024; 121:e2317461121. [PMID: 38289961 PMCID: PMC10861903 DOI: 10.1073/pnas.2317461121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Identifying the genetic basis of local adaptation and fitness trade-offs across environments is a central goal of evolutionary biology. Cold acclimation is an adaptive plastic response for surviving seasonal freezing, and costs of acclimation may be a general mechanism for fitness trade-offs across environments in temperate zone species. Starting with locally adapted ecotypes of Arabidopsis thaliana from Italy and Sweden, we examined the fitness consequences of a naturally occurring functional polymorphism in CBF2. This gene encodes a transcription factor that is a major regulator of cold-acclimated freezing tolerance and resides within a locus responsible for a genetic trade-off for long-term mean fitness. We estimated the consequences of alternate genotypes of CBF2 on 5-y mean fitness and fitness components at the native field sites by comparing near-isogenic lines with alternate genotypes of CBF2 to their genetic background ecotypes. The effects of CBF2 were validated at the nucleotide level using gene-edited lines in the native genetic backgrounds grown in simulated parental environments. The foreign CBF2 genotype in the local genetic background reduced long-term mean fitness in Sweden by more than 10%, primarily via effects on survival. In Italy, fitness was reduced by more than 20%, primarily via effects on fecundity. At both sites, the effects were temporally variable and much stronger in some years. The gene-edited lines confirmed that CBF2 encodes the causal variant underlying this genetic trade-off. Additionally, we demonstrated a substantial fitness cost of cold acclimation, which has broad implications for potential maladaptive responses to climate change.
Collapse
Affiliation(s)
- Gwonjin Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | - Brian J. Sanderson
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | - Thomas J. Ellis
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, UppsalaSE-752 36, Sweden
| | - Brian P. Dilkes
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
- Department of Biochemistry, Purdue University, West Lafayette, IN47907
| | - John K. McKay
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO80523
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, UppsalaSE-752 36, Sweden
| | - Christopher G. Oakley
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| |
Collapse
|
7
|
de Jager N, Shukla V, Koprivova A, Lyčka M, Bilalli L, You Y, Zeier J, Kopriva S, Ristova D. Traits linked to natural variation of sulfur content in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1036-1050. [PMID: 37831920 PMCID: PMC10837017 DOI: 10.1093/jxb/erad401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
Sulfur (S) is an essential mineral nutrient for plant growth and development; it is important for primary and specialized plant metabolites that are crucial for biotic and abiotic interactions. Foliar S content varies up to 6-fold under a controlled environment, suggesting an adaptive value under certain natural environmental conditions. However, a major quantitative regulator of S content in Arabidopsis thaliana has not been identified yet, pointing to the existence of either additional genetic factors controlling sulfate/S content or of many minor quantitative regulators. Here, we use overlapping information of two separate ionomics studies to select groups of accessions with low, mid, and high foliar S content. We quantify series of metabolites, including anions (sulfate, phosphate, and nitrate), thiols (cysteine and glutathione), and seven glucosinolates, gene expression of 20 genes, sulfate uptake, and three biotic traits. Our results suggest that S content is tightly connected with sulfate uptake, the concentration of sulfate and phosphate anions, and glucosinolate and glutathione synthesis. Additionally, our results indicate that the growth of pathogenic bacteria is enhanced in the A. thaliana accessions containing higher S in their leaves, suggesting a complex regulation between S homeostasis, primary and secondary metabolism, and biotic pressures.
Collapse
Affiliation(s)
- Nicholas de Jager
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Varsa Shukla
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Anna Koprivova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lorina Bilalli
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Yanrong You
- Institute for Molecular Ecophysiology of Plants, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Daniela Ristova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
8
|
Mukhaimar M, Pfalz M, Shykoff J, Kroymann J. Natural genetic variation and negative density effects in plant-nematode interactions. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10133. [PMID: 38323129 PMCID: PMC10840372 DOI: 10.1002/pei3.10133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 02/08/2024]
Abstract
Arabidopsis thaliana is a suitable host for phytoparasitic nematodes of the genus Meloidogyne. Successful nematode infection leads to the formation of root galls. We tested for natural genetic variation and inoculation density effects on nematode reproductive success in the interaction between A. thaliana and Meloidogyne javanica. We inoculated different Arabidopsis genotypes with two sources of nematodes at two different doses, using a mild protocol for inoculum preparation. We counted root galls and egg masses 2 months after inoculation. We obtained a high number of successful nematode infections. Infection success differed among Arabidopsis genotypes in interaction with the nematode source. Overall, infection success and reproductive success of nematodes were lower at a higher inoculum dose of nematodes. Our results indicate that natural genetic variation in both host plants and nematodes, as well as short- and long-term negative density effects, shape nematode reproductive success.
Collapse
Affiliation(s)
- Maisara Mukhaimar
- Ecologie Systématique EvolutionCNRS/Université Paris‐Saclay/AgroParisTechGif‐sur‐YvetteFrance
- Palestinian National Agricultural Research Center – Ministry of AgricultureJeninPalestine
| | - Marina Pfalz
- Ecologie Systématique EvolutionCNRS/Université Paris‐Saclay/AgroParisTechGif‐sur‐YvetteFrance
| | - Jacqui Shykoff
- Ecologie Systématique EvolutionCNRS/Université Paris‐Saclay/AgroParisTechGif‐sur‐YvetteFrance
| | - Juergen Kroymann
- Ecologie Systématique EvolutionCNRS/Université Paris‐Saclay/AgroParisTechGif‐sur‐YvetteFrance
| |
Collapse
|
9
|
Fukunaga K, Kawase M. Crop Evolution of Foxtail Millet. PLANTS (BASEL, SWITZERLAND) 2024; 13:218. [PMID: 38256771 PMCID: PMC10819197 DOI: 10.3390/plants13020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Studies on the domestication, genetic differentiation, and crop evolution of foxtail millet are reviewed in this paper. Several genetic studies were carried out to elucidate the genetic relationships among foxtail millet accessions originating mainly from Eurasia based on intraspecific hybrid pollen semi-sterility, isozymes, DNA markers, and single-nucleotide polymorphisms. Most studies suggest that China is the center of diversity of foxtail millet, and landraces were categorized into geographical groups. These results indicate that this millet was domesticated in China and spread over Eurasia, but independent origin in other regions cannot be ruled out. Furthermore, the evolution of genes was reviewed (i.e., the Waxy gene conferring amylose content in the endosperm, the Si7PPO gene controlling polyphenol oxidase, the HD1 and SiPRR37 genes controlling heading time, the Sh1 and SvLes1 genes involved in grain shattering, and the C gene controlling leaf sheath pigmentation), and the variation and distribution of these genes suggested complex patterns of evolution under human and/or natural selection.
Collapse
Affiliation(s)
- Kenji Fukunaga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara 727-0023, Japan
| | - Makoto Kawase
- Faculty of Agriculture, Tokyo University of Agriculture, Atsugi 243-0034, Japan
| |
Collapse
|
10
|
Walker BJ, Driever SM, Kromdijk J, Lawson T, Busch FA. Tools for Measuring Photosynthesis at Different Scales. Methods Mol Biol 2024; 2790:1-26. [PMID: 38649563 DOI: 10.1007/978-1-0716-3790-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Measurements of in vivo photosynthesis are powerful tools that probe the largest fluxes of carbon and energy in an illuminated leaf, but often the specific techniques used are so varied and specialized that it is difficult for researchers outside the field to select and perform the most useful assays for their research questions. The goal of this chapter is to provide a broad overview of the current tools available for the study of photosynthesis, both in vivo and in vitro, so as to provide a foundation for selecting appropriate techniques, many of which are presented in detail in subsequent chapters. This chapter will also organize current methods into a comparative framework and provide examples of how they have been applied to research questions of broad agronomical, ecological, or biological importance. This chapter closes with an argument that the future of in vivo measurements of photosynthesis lies in the ability to use multiple methods simultaneously and discusses the benefits of this approach to currently open physiological questions. This chapter, combined with the relevant methods chapters, could serve as a laboratory course in methods in photosynthesis research or as part of a more comprehensive laboratory course in general plant physiology methods.
Collapse
Affiliation(s)
- Berkley J Walker
- Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Florian A Busch
- School of Biosciences and The Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
11
|
Nadi R, Juan-Vicente L, Mateo-Bonmatí E, Micol JL. The unequal functional redundancy of Arabidopsis INCURVATA11 and CUPULIFORMIS2 is not dependent on genetic background. FRONTIERS IN PLANT SCIENCE 2023; 14:1239093. [PMID: 38034561 PMCID: PMC10684699 DOI: 10.3389/fpls.2023.1239093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
The paralogous genes INCURVATA11 (ICU11) and CUPULIFORMIS2 (CP2) encode components of the epigenetic machinery in Arabidopsis and belong to the 2-oxoglutarate and Fe (II)-dependent dioxygenase superfamily. We previously inferred unequal functional redundancy between ICU11 and CP2 from a study of the synergistic phenotypes of the double mutant and sesquimutant combinations of icu11 and cp2 mutations, although they represented mixed genetic backgrounds. To avoid potential confounding effects arising from different genetic backgrounds, we generated the icu11-5 and icu11-6 mutants via CRISPR/Cas genome editing in the Col-0 background and crossed them to cp2 mutants in Col-0. The resulting mutants exhibited a postembryonic-lethal phenotype reminiscent of strong embryonic flower (emf) mutants. Double mutants involving icu11-5 and mutations affecting epigenetic machinery components displayed synergistic phenotypes, whereas cp2-3 did not besides icu11-5. Our results confirmed the unequal functional redundancy between ICU11 and CP2 and demonstrated that it is not allele or genetic background specific. An increase in sucrose content in the culture medium partially rescued the post-germinative lethality of icu11 cp2 double mutants and sesquimutants, facilitating the study of their morphological phenotypes throughout their life cycle, which include floral organ homeotic transformations. We thus established that the ICU11-CP2 module is required for proper flower organ identity.
Collapse
Affiliation(s)
| | | | | | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
12
|
Zhao M, Li M, Huang M, Liang C, Chen D, Hwang I, Zhang W, Wang M. The cysteine-rich receptor-like kinase CRK4 contributes to the different drought stress response between Columbia and Landsberg erecta. PLANT, CELL & ENVIRONMENT 2023; 46:3258-3272. [PMID: 37427814 DOI: 10.1111/pce.14665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
The natural variation between Arabidopsis (Arabidopsis thaliana) ecotypes Columbia (Col) and Landsberg erecta (Ler) strongly affects abscisic acid (ABA) signalling and drought tolerance. Here, we report that the cysteine-rich receptor-like protein kinase CRK4 is involved in regulating ABA signalling, which contributes to the differences in drought stress tolerance between Col-0 and Ler-0. Loss-of-function crk4 mutants in the Col-0 background were less drought tolerant than Col-0, whereas overexpressing CRK4 in the Ler-0 background partially to completely restored the drought-sensitive phenotype of Ler-0. F1 plants derived from a cross between the crk4 mutant and Ler-0 showed an ABA-insensitive phenotype with respect to stomatal movement, along with reduced drought tolerance like Ler-0. We demonstrate that CRK4 interacts with the U-box E3 ligase PUB13 and enhances its abundance, thus promoting the degradation of ABA-INSENSITIVE 1 (ABI1), a negative regulator of ABA signalling. Together, these findings reveal an important regulatory mechanism for modulating ABI1 levels by the CRK4-PUB13 module to fine-tune drought tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Min Zhao
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Mengdan Li
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Meng Huang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chaochao Liang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Donghua Chen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Wei Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Mei Wang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
13
|
Weiszmann J, Walther D, Clauw P, Back G, Gunis J, Reichardt I, Koemeda S, Jez J, Nordborg M, Schwarzerova J, Pierides I, Nägele T, Weckwerth W. Metabolome plasticity in 241 Arabidopsis thaliana accessions reveals evolutionary cold adaptation processes. PLANT PHYSIOLOGY 2023; 193:980-1000. [PMID: 37220420 PMCID: PMC10517190 DOI: 10.1093/plphys/kiad298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Acclimation and adaptation of metabolism to a changing environment are key processes for plant survival and reproductive success. In the present study, 241 natural accessions of Arabidopsis (Arabidopsis thaliana) were grown under two different temperature regimes, 16 °C and 6 °C, and growth parameters were recorded, together with metabolite profiles, to investigate the natural genome × environment effects on metabolome variation. The plasticity of metabolism, which was captured by metabolic distance measures, varied considerably between accessions. Both relative growth rates and metabolic distances were predictable by the underlying natural genetic variation of accessions. Applying machine learning methods, climatic variables of the original growth habitats were tested for their predictive power of natural metabolic variation among accessions. We found specifically habitat temperature during the first quarter of the year to be the best predictor of the plasticity of primary metabolism, indicating habitat temperature as the causal driver of evolutionary cold adaptation processes. Analyses of epigenome- and genome-wide associations revealed accession-specific differential DNA-methylation levels as potentially linked to the metabolome and identified FUMARASE2 as strongly associated with cold adaptation in Arabidopsis accessions. These findings were supported by calculations of the biochemical Jacobian matrix based on variance and covariance of metabolomics data, which revealed that growth under low temperatures most substantially affects the accession-specific plasticity of fumarate and sugar metabolism. Our findings indicate that the plasticity of metabolic regulation is predictable from the genome and epigenome and driven evolutionarily by Arabidopsis growth habitats.
Collapse
Affiliation(s)
- Jakob Weiszmann
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, 1030 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, 1030 Vienna, Austria
| | - Dirk Walther
- Bioinformatics, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Pieter Clauw
- Austrian Academy of Sciences, Gregor Mendel Institute (GMI), 1030 Vienna, Austria
| | - Georg Back
- Bioinformatics, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Joanna Gunis
- Austrian Academy of Sciences, Gregor Mendel Institute (GMI), 1030 Vienna, Austria
| | - Ilka Reichardt
- Genome Engineering Facility, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Stefanie Koemeda
- Plant Sciences Facility, Vienna BioCenter Core Facilities GmbH (VBCF), 1030 Vienna, Austria
| | - Jakub Jez
- Plant Sciences Facility, Vienna BioCenter Core Facilities GmbH (VBCF), 1030 Vienna, Austria
| | - Magnus Nordborg
- Austrian Academy of Sciences, Gregor Mendel Institute (GMI), 1030 Vienna, Austria
| | - Jana Schwarzerova
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, 1030 Vienna, Austria
- Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Technická 12, 616 00 Brno, Czech Republic
| | - Iro Pierides
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, 1030 Vienna, Austria
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152 Planegg, Germany
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, 1030 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
14
|
Alseekh S, Karakas E, Zhu F, Wijesingha Ahchige M, Fernie AR. Plant biochemical genetics in the multiomics era. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4293-4307. [PMID: 37170864 PMCID: PMC10433942 DOI: 10.1093/jxb/erad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Our understanding of plant biology has been revolutionized by modern genetics and biochemistry. However, biochemical genetics can be traced back to the foundation of Mendelian genetics; indeed, one of Mendel's milestone discoveries of seven characteristics of pea plants later came to be ascribed to a mutation in a starch branching enzyme. Here, we review both current and historical strategies for the elucidation of plant metabolic pathways and the genes that encode their component enzymes and regulators. We use this historical review to discuss a range of classical genetic phenomena including epistasis, canalization, and heterosis as viewed through the lens of contemporary high-throughput data obtained via the array of approaches currently adopted in multiomics studies.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Esra Karakas
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070 Wuhan, China
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
15
|
Oakley CG, Schemske DW, McKay JK, Ågren J. Ecological genetics of local adaptation in Arabidopsis: An 8-year field experiment. Mol Ecol 2023; 32:4570-4583. [PMID: 37317048 DOI: 10.1111/mec.17045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
There is considerable evidence for local adaptation in nature, yet important questions remain regarding its genetic basis. How many loci are involved? What are their effect sizes? What is the relative importance of conditional neutrality versus genetic trade-offs? Here we address these questions in the self-pollinating, annual plant Arabidopsis thaliana. We used 400 recombinant inbred lines (RILs) derived from two locally adapted populations in Italy and Sweden, grew the RILs and parents at the parental locations, and mapped quantitative trait loci (QTL) for mean fitness (fruits/seedling planted). We previously published results from the first 3 years of the study, and here add five additional years, providing a unique opportunity to assess how temporal variation in selection might affect QTL detection and classification. We found 10 adaptive and one maladaptive QTL in Italy, and six adaptive and four maladaptive QTL in Sweden. The discovery of maladaptive QTL at both sites suggests that even locally adapted populations are not always at their genotypic optimum. Mean effect sizes for adaptive QTL, 0.97 and 0.55 fruits in Italy and Sweden, respectively, were large relative to the mean fitness of the RILs (approximately 8 fruits/seedling planted at both sites). Both genetic trade-offs (four cases) and conditional neutrality (seven cases) contribute to local adaptation in this system. The 8-year dataset provided greater power to detect QTL and to estimate their locations compared to our previous 3-year study, identifying one new genetic trade-off and resolving one genetic trade-off into two conditionally adaptive QTL.
Collapse
Affiliation(s)
- Christopher G Oakley
- Department of Botany and Plant Pathology, and the Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Douglas W Schemske
- Department of Plant Biology and W. K. Kellogg Biological Station, Michigan State University, East Lansing, Michigan, USA
| | - John K McKay
- College of Agricultural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Wijnen CL, Becker FFM, Okkersen AA, de Snoo CB, Boer MP, van Eeuwijk FA, Wijnker E, Keurentjes JJB. Genetic Mapping of Genotype-by-Ploidy Effects in Arabidopsis thaliana. Genes (Basel) 2023; 14:1161. [PMID: 37372341 DOI: 10.3390/genes14061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Plants can express different phenotypic responses following polyploidization, but ploidy-dependent phenotypic variation has so far not been assigned to specific genetic factors. To map such effects, segregating populations at different ploidy levels are required. The availability of an efficient haploid inducer line in Arabidopsis thaliana allows for the rapid development of large populations of segregating haploid offspring. Because Arabidopsis haploids can be self-fertilised to give rise to homozygous doubled haploids, the same genotypes can be phenotyped at both the haploid and diploid ploidy level. Here, we compared the phenotypes of recombinant haploid and diploid offspring derived from a cross between two late flowering accessions to map genotype × ploidy (G × P) interactions. Ploidy-specific quantitative trait loci (QTLs) were detected at both ploidy levels. This implies that mapping power will increase when phenotypic measurements of monoploids are included in QTL analyses. A multi-trait analysis further revealed pleiotropic effects for a number of the ploidy-specific QTLs as well as opposite effects at different ploidy levels for general QTLs. Taken together, we provide evidence of genetic variation between different Arabidopsis accessions being causal for dissimilarities in phenotypic responses to altered ploidy levels, revealing a G × P effect. Additionally, by investigating a population derived from late flowering accessions, we revealed a major vernalisation-specific QTL for variation in flowering time, countering the historical bias of research in early flowering accessions.
Collapse
Affiliation(s)
- Cris L Wijnen
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Biometris, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Andries A Okkersen
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - C Bastiaan de Snoo
- Rijk Zwaan R&D Fijnaart, Eerste Kruisweg 9, 4793 RS Fijnaart, The Netherlands
| | - Martin P Boer
- Biometris, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Fred A van Eeuwijk
- Biometris, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
17
|
Saradadevi GP, Fultz D, Ramgopal MK, Subramanian AT, Prince G, Thakur V, Mohannath G. Structural variation among assembled genomes facilitates development of rapid and low-cost NOR-linked markers and NOR-telomere junction mapping in Arabidopsis. PLANT CELL REPORTS 2023; 42:1059-1069. [PMID: 37074465 DOI: 10.1007/s00299-023-03012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Genome-wide structural variants we identified and new NOR-linked markers we developed would be useful for future genome-wide association studies (GWAS), and for new gene/trait mapping purposes. Bioinformatic alignment of the assembled genomes of Col-0 and Sha ecotypes of Arabidopsis thaliana revealed ~ 13,000 genome-wide structural variants involving simple insertions or deletions and repeat contractions or expansions. Using some of these structural variants, we developed new, rapid, and low-cost PCR-based molecular markers that are genetically linked to the nucleolus organizer regions (NORs). A. thaliana has two NORs, one each on chromosome 2 (NOR2) and chromosome 4 (NOR4). Both NORs are ~ 4 Mb each, and hundreds of 45S ribosomal RNA (rRNA) genes are tandemly arrayed at these loci. Using previously characterized recombinant inbred lines (RILs) derived from Sha x Col-0 crosses, we validated the utility of the newly developed NOR-linked markers in genetically mapping rRNA genes and the associated telomeres to either NOR2 or NOR4. Lastly, we sequenced Sha genome using Oxford Nanopore Technology (ONT) and used the data to obtain sequences of NOR-telomere junctions, and with the help of RILs, we mapped them as new genetic markers to their respective NORs (NOR2-TEL2N and NOR4-TEL4N). The structural variants obtained from this study would serve as valuable data for genome-wide association studies (GWAS), and to rapidly design more genome-wide genetic (molecular) markers for new gene/trait mapping purposes.
Collapse
Affiliation(s)
- Gargi Prasad Saradadevi
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Dalen Fultz
- Department of Biology and Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN, 47405, USA
| | - Murali Krishna Ramgopal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Abirami T Subramanian
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Gerin Prince
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Vivek Thakur
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
18
|
Rosado-Souza L, Yokoyama R, Sonnewald U, Fernie AR. Understanding source-sink interactions: Progress in model plants and translational research to crops. MOLECULAR PLANT 2023; 16:96-121. [PMID: 36447435 DOI: 10.1016/j.molp.2022.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
Agriculture is facing a massive increase in demand per hectare as a result of an ever-expanding population and environmental deterioration. While we have learned much about how environmental conditions and diseases impact crop yield, until recently considerably less was known concerning endogenous factors, including within-plant nutrient allocation. In this review, we discuss studies of source-sink interactions covering both fundamental research in model systems under controlled growth conditions and how the findings are being translated to crop plants in the field. In this respect we detail efforts aimed at improving and/or combining C3, C4, and CAM modes of photosynthesis, altering the chloroplastic electron transport chain, modulating photorespiration, adopting bacterial/algal carbon-concentrating mechanisms, and enhancing nitrogen- and water-use efficiencies. Moreover, we discuss how modulating TCA cycle activities and primary metabolism can result in increased rates of photosynthesis and outline the opportunities that evaluating natural variation in photosynthesis may afford. Although source, transport, and sink functions are all covered in this review, we focus on discussing source functions because the majority of research has been conducted in this field. Nevertheless, considerable recent evidence, alongside the evidence from classical studies, demonstrates that both transport and sink functions are also incredibly important determinants of yield. We thus describe recent evidence supporting this notion and suggest that future strategies for yield improvement should focus on combining improvements in each of these steps to approach yield optimization.
Collapse
Affiliation(s)
- Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Ryo Yokoyama
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Uwe Sonnewald
- Department of Biochemistry, University of Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
19
|
Chen L, Lei W, He W, Wang Y, Tian J, Gong J, Hao B, Cheng X, Shu Y, Fan Z. Mapping of Two Major QTLs Controlling Flowering Time in Brassica napus Using a High-Density Genetic Map. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192635. [PMID: 36235500 PMCID: PMC9571212 DOI: 10.3390/plants11192635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 05/31/2023]
Abstract
Research on the flowering habit of rapeseed is important for the selection of varieties adapted to specific ecological environments. Here, quantitative trait loci (QTL) for the days-to-flowering trait were identified using a doubled haploid population of 178 lines derived from a cross between the winter type SGDH284 and the semi-winter type 158A. A linkage map encompassing 3268.01 cM was constructed using 2777 bin markers obtained from next-generation sequencing. The preliminary mapping results revealed 56 QTLs for the days to flowering in the six replicates in the three environments. Twelve consensus QTLs were identified by a QTL meta-analysis, two of which (cqDTF-C02 and cqDTF-C06) were designated as major QTLs. Based on the micro-collinearity of the target regions between B. napus and Arabidopsis, four genes possibly related to flowering time were identified in the cqDTF-C02 interval, and only one gene possibly related to flowering time was identified in the cqDTF-C06 interval. A tightly linked insertion-deletion marker for the cqFT-C02 locus was developed. These findings will aid the breeding of early maturing B. napus varieties.
Collapse
Affiliation(s)
- Lei Chen
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Weixia Lei
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Wangfei He
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Yifan Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Jie Tian
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Jihui Gong
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Bing Hao
- Bengbu Ludu Crop Residue Biotechnology Co., Ltd., Bengbu 233000, China
| | - Xinxin Cheng
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Yingjie Shu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Zhixiong Fan
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
20
|
Dong Y, Aref R, Forieri I, Schiel D, Leemhuis W, Meyer C, Hell R, Wirtz M. The plant TOR kinase tunes autophagy and meristem activity for nutrient stress-induced developmental plasticity. THE PLANT CELL 2022; 34:3814-3829. [PMID: 35792878 PMCID: PMC9516127 DOI: 10.1093/plcell/koac201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/29/2022] [Indexed: 05/26/2023]
Abstract
Plants, unlike animals, respond to environmental challenges with comprehensive developmental transitions that allow them to cope with these stresses. Here we discovered that antagonistic activation of the Target of Rapamycin (TOR) kinase in Arabidopsis thaliana roots and shoots is essential for the nutrient deprivation-induced increase in the root-to-shoot ratio to improve foraging for mineral ions. We demonstrate that sulfate limitation-induced downregulation of TOR in shoots activates autophagy, resulting in enhanced carbon allocation to the root. The allocation of carbon to the roots is facilitated by the specific upregulation of the sucrose-transporter genes SWEET11/12 in shoots. SWEET11/12 activation is indispensable for enabling sucrose to act as a carbon source for growth and as a signal for tuning root apical meristem activity via glucose-TOR signaling. The sugar-stimulated TOR activity in the root suppresses autophagy and maintains root apical meristem activity to support root growth to enhance mining for new sulfate resources in the soil. We provide direct evidence that the organ-specific regulation of autophagy is essential for the increased root-to-shoot ratio in response to sulfur limitation. These findings uncover how sulfur limitation controls the central sensor kinase TOR to enable nutrient recycling for stress-induced morphological adaptation of the plant body.
Collapse
Affiliation(s)
- Yihan Dong
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Rasha Aref
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ilaria Forieri
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - David Schiel
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Wiebke Leemhuis
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | | | | |
Collapse
|
21
|
Atanasov KE, Díaz-Narváez LC, Alcázar R. Ammonium and nitric oxide condition the establishment of Arabidopsis Ler/Kas-2 immune-related hybrid incompatibility. PLANTA 2022; 256:76. [PMID: 36087170 PMCID: PMC9464153 DOI: 10.1007/s00425-022-03990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
High ammonium suppresses hybrid incompatibility between Ler and Kas-2 accessions through lowering nitric oxide levels and nitrate reductase activity required for autoimmunity. The immune-related hybrid incompatibility (HI) between Landsberg erecta (Ler) and Kashmir-2 (Kas-2) accessions is due to a deleterious genetic interaction between the RPP1 (RECOGNITION OF PERONOSPORA PARASITICA1)-like Ler locus and Kas-2 alleles of the receptor-like kinase SRF3 (STRUBBELIG RECEPTOR FAMILY 3). The genetic incompatibility is temperature-dependent and leads to constitutive activation of the salicylic acid (SA) pathway, dwarfism and cell death at 14-16 °C. Here we investigated the effect of nutrition on the occurrence of Ler/Kas-2 HI and found that high ammonium suppresses Ler/Kas-2 incompatible phenotypes independently of the ammonium/nitrate ratio. Ammonium feeding leads to compromised disease resistance to Pseudomonas syringae pv. tomato DC3000, lower total SA, nitric oxide and nitrate reductase activity in Ler/Kas-2 incompatible hybrids. In addition, we find that Ler/Kas-2 incompatibility is dependent on NPR1 (NONEXPRESSER OF PR GENES 1) and nitric oxide production. Overall, this work highlights the effect of nutrition on the expression of incompatible phenotypes independently of temperature.
Collapse
Affiliation(s)
- Kostadin Evgeniev Atanasov
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Lucía C Díaz-Narváez
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Rubén Alcázar
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
22
|
Shakirov EV, Chen JJL, Shippen DE. Plant telomere biology: The green solution to the end-replication problem. THE PLANT CELL 2022; 34:2492-2504. [PMID: 35511166 PMCID: PMC9252485 DOI: 10.1093/plcell/koac122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/14/2022] [Indexed: 05/04/2023]
Abstract
Telomere maintenance is a fundamental cellular process conserved across all eukaryotic lineages. Although plants and animals diverged over 1.5 billion years ago, lessons learned from plants continue to push the boundaries of science, revealing detailed molecular mechanisms in telomere biology with broad implications for human health, aging biology, and stress responses. Recent studies of plant telomeres have unveiled unexpected divergence in telomere sequence and architecture, and the proteins that engage telomeric DNA and telomerase. The discovery of telomerase RNA components in the plant kingdom and some algae groups revealed new insight into the divergent evolution and the universal core of telomerase across major eukaryotic kingdoms. In addition, resources cataloging the abundant natural variation in Arabidopsis thaliana, maize (Zea mays), and other plants are providing unparalleled opportunities to understand the genetic networks that govern telomere length polymorphism and, as a result, are uncovering unanticipated crosstalk between telomeres, environmental factors, organismal fitness, and plant physiology. Here we recap current advances in plant telomere biology and put this field in perspective relative to telomere and telomerase research in other eukaryotic lineages.
Collapse
Affiliation(s)
- Eugene V Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia 25701, USA
| | - Julian J -L Chen
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | | |
Collapse
|
23
|
Li C, Duan C, Zhang H, Zhao Y, Meng Z, Zhao Y, Zhang Q. Adaptative Mechanisms of Halophytic Eutrema salsugineum Encountering Saline Environment. FRONTIERS IN PLANT SCIENCE 2022; 13:909527. [PMID: 35837468 PMCID: PMC9274170 DOI: 10.3389/fpls.2022.909527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Salt cress (Eutrema salsugineum), an Arabidopsis-related halophyte, can naturally adapt to various harsh climates and soil conditions; thus, it is considered a desirable model plant for deciphering mechanisms of salt and other abiotic stresses. Accumulating evidence has revealed that compared with Arabidopsis, salt cress possesses stomata that close more tightly and more succulent leaves during extreme salt stress, a noticeably higher level of proline, inositols, sugars, and organic acids, as well as stress-associated transcripts in unstressed plants, and they are induced rapidly under stress. In this review, we systematically summarize the research on the morphology, physiology, genome, gene expression and regulation, and protein and metabolite profile of salt cress under salt stress. We emphasize the latest advances in research on the genome adaptive evolution encountering saline environments, and epigenetic regulation, and discuss the mechanisms underlying salt tolerance in salt cress. Finally, we discuss the existing questions and opportunities for future research in halophytic Eutrema. Together, the review fosters a better understanding of the mechanism of plant salt tolerance and provides a reference for the research and utilization of Eutrema as a model extremophile in the future. Furthermore, the prospects for salt cress applied to explore the mechanism of salt tolerance provide a theoretical basis to develop new strategies for agricultural biotechnology.
Collapse
Affiliation(s)
- Chuanshun Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Chonghao Duan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Hengyang Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yaoyao Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Zhe Meng
- Research Team of Plant Pathogen Microbiology and Immunology, College of Life Science, Shandong Normal University, Jinan, China
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Quan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
24
|
Fournier-Level A, Taylor MA, Paril JF, Martínez-Berdeja A, Stitzer MC, Cooper MD, Roe JL, Wilczek AM, Schmitt J. Adaptive significance of flowering time variation across natural seasonal environments in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2022; 234:719-734. [PMID: 35090191 DOI: 10.1111/nph.17999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The relevance of flowering time variation and plasticity to climate adaptation requires a comprehensive empirical assessment. We investigated natural selection and the genetic architecture of flowering time in Arabidopsis through field experiments in Europe across multiple sites and seasons. We estimated selection for flowering time, plasticity and canalization. Loci associated with flowering time, plasticity and canalization by genome-wide association studies were tested for a geographic signature of climate adaptation. Selection favored early flowering and increased canalization, except at the northernmost site, but was rarely detected for plasticity. Genome-wide association studies revealed significant associations with flowering traits and supported a substantial polygenic inheritance. Alleles associated with late flowering, including functional FRIGIDA variants, were more common in regions experiencing high annual temperature variation. Flowering time plasticity to fall vs spring and summer environments was associated with GIGANTEA SUPPRESSOR 5, which promotes early flowering under decreasing day length and temperature. The finding that late flowering genotypes and alleles are associated with climate is evidence for past adaptation. Real-time phenotypic selection analysis, however, reveals pervasive contemporary selection for rapid flowering in agricultural settings across most of the species range. The response to this selection may involve genetic shifts in environmental cuing compared to the ancestral state.
Collapse
Affiliation(s)
| | - Mark A Taylor
- Department of Evolution and Ecology, University of California at Davis, Davis, CA, 95616, USA
| | - Jefferson F Paril
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | | | - Michelle C Stitzer
- Department of Evolution and Ecology, University of California at Davis, Davis, CA, 95616, USA
| | - Martha D Cooper
- Department of Ecology and Evolution, Brown University, Providence, RI, 02912, USA
| | - Judith L Roe
- College of Arts and Sciences, Biology, Agricultural Science & Agribusiness, University of Maine at Presque Isle, Presque Isle, ME, 04769, USA
| | | | - Johanna Schmitt
- Department of Evolution and Ecology, University of California at Davis, Davis, CA, 95616, USA
| |
Collapse
|
25
|
Reddy K, Stander MA, Stafford GI, Makunga NP. Mass Spectrometry Metabolomics and Feature-Based Molecular Networking Reveals Population-Specific Chemistry in Some Species of the Sceletium Genus. Front Nutr 2022; 9:819753. [PMID: 35425789 PMCID: PMC9001948 DOI: 10.3389/fnut.2022.819753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
The Sceletium genus has been of medicinal importance in southern Africa for millennia and Sceletium tortuosum (Aizoaceae), one of eight species in the genus has gained pharmaceutical importance as an anxiolytic and anti-depressant due to the presence of mesembrine alkaloids. S. tortuosum is used for the manufacture of herbal teas, dietary supplements and other phytopharmaceutical products. This study aimed to provide a metabolomic characterization of S. tortuosum and its sister species as these are not easy to distinguish using morphology alone. Plant samples were thus collected from various locations in the succulent Karoo (South Africa) and analyzed through liquid chromatography-mass spectrometry (LC-MS), using MSE fragmentation as a putative tool for chemical identities. Metabolomics-based analyses in combination with molecular networking were able to distinguish between the four species of Sceletium based on the presence of 4-(3,4-dimethyoxyphenyl)-4-[2-acetylmethlamino)ethyl]cyclohexanone (m/z 334.2020; RT 6.60 min), mesembrine (m/z 290.1757; RT 5.10 min) and 4'-O-demethylmesembrenol (m/z 276.1597; RT 4.17 min). Metabolomic profiles varied according to the different localities and metabolites occurred at variable quantitative levels in Sceletium ecotypes. Molecular networking provided the added advantage of being able to observe mesembrine alkaloid isomers and coeluting metabolites (from the joubertiamine group) that were difficult to discern without this application. By combining high-throughput metabolomics together with global and feature based-molecular networking, a powerful metabolite profiling platform that is able to discern chemical patterns within and between populations was established. These techniques were able to reveal chemotaxonomic relationships and allowed for the discovery of chemical markers that may be used as part of monitoring protocols during the manufacture of phytopharmaceutical and dietary products based on Sceletium.
Collapse
Affiliation(s)
- Kaylan Reddy
- Department of Botany and Zoology, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Marietjie A. Stander
- Department of Biochemistry, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Gary I. Stafford
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Nokwanda P. Makunga
| |
Collapse
|
26
|
Gawarecka K, Siwinska J, Poznanski J, Onysk A, Surowiecki P, Sztompka K, Surmacz L, Ahn JH, Korte A, Swiezewska E, Ihnatowicz A. cis-prenyltransferase 3 and α/β-hydrolase are new determinants of dolichol accumulation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:479-495. [PMID: 34778961 PMCID: PMC9300173 DOI: 10.1111/pce.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Dolichols (Dols), ubiquitous components of living organisms, are indispensable for cell survival. In plants, as well as other eukaryotes, Dols are crucial for post-translational protein glycosylation, aberration of which leads to fatal metabolic disorders in humans and male sterility in plants. Until now, the mechanisms underlying Dol accumulation remain elusive. In this study, we have analysed the natural variation of the accumulation of Dols and six other isoprenoids among more than 120 Arabidopsis thaliana accessions. Subsequently, by combining QTL and GWAS approaches, we have identified several candidate genes involved in the accumulation of Dols, polyprenols, plastoquinone and phytosterols. The role of two genes implicated in the accumulation of major Dols in Arabidopsis-the AT2G17570 gene encoding a long searched for cis-prenyltransferase (CPT3) and the AT1G52460 gene encoding an α/β-hydrolase-is experimentally confirmed. These data will help to generate Dol-enriched plants which might serve as a remedy for Dol-deficiency in humans.
Collapse
Affiliation(s)
- Katarzyna Gawarecka
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
- Department of Life SciencesKorea UniversitySeoulKorea
| | - Joanna Siwinska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of GdanskUniversity of GdanskGdanskPoland
| | - Jaroslaw Poznanski
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
| | - Agnieszka Onysk
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
| | | | - Karolina Sztompka
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
| | - Liliana Surmacz
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
| | - Ji Hoon Ahn
- Department of Life SciencesKorea UniversitySeoulKorea
| | - Arthur Korte
- Center for Computational and Theoretical BiologyUniversity of WurzburgWurzburgGermany
| | - Ewa Swiezewska
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
| | - Anna Ihnatowicz
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of GdanskUniversity of GdanskGdanskPoland
| |
Collapse
|
27
|
Kameniarová M, Černý M, Novák J, Ondrisková V, Hrušková L, Berka M, Vankova R, Brzobohatý B. Light Quality Modulates Plant Cold Response and Freezing Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:887103. [PMID: 35755673 PMCID: PMC9221075 DOI: 10.3389/fpls.2022.887103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 05/04/2023]
Abstract
The cold acclimation process is regulated by many factors like ambient temperature, day length, light intensity, or hormonal status. Experiments with plants grown under different light quality conditions indicate that the plant response to cold is also a light-quality-dependent process. Here, the role of light quality in the cold response was studied in 1-month-old Arabidopsis thaliana (Col-0) plants exposed for 1 week to 4°C at short-day conditions under white (100 and 20 μmol m-2s-1), blue, or red (20 μmol m-2s-1) light conditions. An upregulated expression of CBF1, inhibition of photosynthesis, and an increase in membrane damage showed that blue light enhanced the effect of low temperature. Interestingly, cold-treated plants under blue and red light showed only limited freezing tolerance compared to white light cold-treated plants. Next, the specificity of the light quality signal in cold response was evaluated in Arabidopsis accessions originating from different and contrasting latitudes. In all but one Arabidopsis accession, blue light increased the effect of cold on photosynthetic parameters and electrolyte leakage. This effect was not found for Ws-0, which lacks functional CRY2 protein, indicating its role in the cold response. Proteomics data confirmed significant differences between red and blue light-treated plants at low temperatures and showed that the cold response is highly accession-specific. In general, blue light increased mainly the cold-stress-related proteins and red light-induced higher expression of chloroplast-related proteins, which correlated with higher photosynthetic parameters in red light cold-treated plants. Altogether, our data suggest that light modulates two distinct mechanisms during the cold treatment - red light-driven cell function maintaining program and blue light-activated specific cold response. The importance of mutual complementarity of these mechanisms was demonstrated by significantly higher freezing tolerance of cold-treated plants under white light.
Collapse
Affiliation(s)
- Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- *Correspondence: Jan Novák
| | - Vladěna Ondrisková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Lenka Hrušková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czechia
| | - Bretislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
28
|
Cai K, Zhou X, Li X, Kang Y, Yang X, Cui Y, Li G, Pei X, Zhao X. Insight Into the Multiple Branches Traits of a Mutant in Larix olgensis by Morphological, Cytological, and Transcriptional Analyses. FRONTIERS IN PLANT SCIENCE 2021; 12:787661. [PMID: 34992622 PMCID: PMC8724527 DOI: 10.3389/fpls.2021.787661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Larix olgensis is a tall deciduous tree species that has many applications in the wood fiber industry. Bud mutations are somatic mutations in plants and are considered an ideal material to identify and describe the molecular mechanism of plant mutation. However, the molecular regulatory mechanisms of bud mutations in L. olgensis remain unknown. In this study, dwarfed (or stunted), short-leaved, and multi-branched mutants of L. olgensis were found and utilized to identify crucial genes and regulatory networks controlling the multiple branch structure of L. olgensis. The physiological data showed that the branch number, bud number, fresh and dry weight, tracheid length, tracheid length-width ratio, inner tracheid diameter, and epidermal cell area of mutant plants were higher than that of wild-type plants. Hormone concentration measurements found that auxin, gibberellin, and abscisic acid in the mutant leaves were higher than that in wild-type plants. Moreover, the transcriptome sequencing of all samples using the Illumina Hiseq sequencing platform. Transcriptome analysis identified, respectively, 632, 157, and 199 differentially expressed genes (DEGs) in buds, leaves, and stems between mutant plants and wild type. DEGs were found to be involved in cell division and differentiation, shoot apical meristem activity, plant hormone biosynthesis, and sugar metabolism. Furthermore, bZIP, WRKY, and AP2/ERF family transcription factors play a role in bud formation. This study provides new insights into the molecular mechanisms of L. olgensis bud and branch formation and establishes a fundamental understanding of the breeding of new varieties in L. olgensis.
Collapse
Affiliation(s)
- Kewei Cai
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xueyan Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ye Kang
- Seed Orchard of Siping, Siping, China
| | | | | | | | - Xiaona Pei
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| |
Collapse
|
29
|
Jenkitkonchai J, Marriott P, Yang W, Sriden N, Jung J, Wigge PA, Charoensawan V. Exploring PIF4 's contribution to early flowering in plants under daily variable temperature and its tissue-specific flowering gene network. PLANT DIRECT 2021; 5:e339. [PMID: 34355114 PMCID: PMC8320686 DOI: 10.1002/pld3.339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 05/22/2023]
Abstract
Molecular mechanisms of how constant temperatures affect flowering time have been largely characterized in the model plant Arabidopsis thaliana; however, the effect of natural daily variable temperature outside laboratories is only partly explored. Several flowering genes have been shown to play important roles in temperature responses, including PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) and FLOWERING LOCUS C (FLC), the two genes encoding for the transcription factors (TFs) that act antagonistically to regulate flowering time by activating and repressing floral integrator FLOWERING LOCUS T (FT), respectively. In this study, we have taken a multidisciplinary approach to explore the contribution of PIF4 to the early flowering observed in the daily variable temperature (VAR) and to broaden its transcriptional network using publicly available transcriptomic data. We observed early flowering in the natural accessions Col-0, C24 and their late flowering hybrid C24xCol grown under VAR, as compared with a constant temperature (CON). The loss-of-function mutation of PIF4 exhibits later flowering in VAR in both the Col-0 parent and the C24xCol hybrid, suggesting that PIF4, at least in part, contributes to acceleration of flowering in the VAR condition. To investigate the interplay between PIF4 and its flowering regulator counterparts, FLC and FT, we performed transcriptional analyses and found that VAR increased PIF4 transcription at the end of the day when temperature peaked at 32°C, when FT transcription was also elevated. On the other hand, we observed a decrease in FLC transcription in the 4-week-old plants grown in VAR, as well as in the plants with PIF4 overexpression grown in CON. These results raise a possibility that PIF4 might also regulate FT indirectly through the repression of FLC, in addition to the well-characterized direct control of PIF4 over FT. To further expand our view on the PIF4-orientated flowering gene network in response to temperature changes, we have constructed a coexpression-transcriptional regulatory network by combining publicly available transcriptomic data and gene regulatory interactions of PIF4 and its closely related flowering genes, PIF5, FLC, and ELF3. The network model reveals conserved and tissue-specific regulatory functions, which are useful for confirming as well as predicting the functions and regulatory interactions between these key flowering genes.
Collapse
Affiliation(s)
| | - Poppy Marriott
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | - Weibing Yang
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | - Napaporn Sriden
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Jae‐Hoon Jung
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
- Department of Biological SciencesSungkyunkwan UniversitySuwonSouth Korea
| | - Philip A. Wigge
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
- Leibniz‐Institut für Gemüse‐ und ZierpflanzenbauGroßbeerenGermany
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
- Integrative Computational BioScience (ICBS) CenterMahidol UniversityNakhon PathomThailand
- Systems Biology of Diseases Research Unit, Faculty of ScienceMahidol UniversityBangkokThailand
| |
Collapse
|
30
|
Wu C, Sun Y, Yang G, Li L, Sun W, Wang Z, Zhang H, Li Y. Natural variation in stress response induced by low CO 2 in Arabidopsis thaliana. Open Life Sci 2021; 15:923-938. [PMID: 33817279 PMCID: PMC7874586 DOI: 10.1515/biol-2020-0095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/19/2020] [Accepted: 08/29/2020] [Indexed: 11/19/2022] Open
Abstract
Variation in atmospheric carbon dioxide (CO2) concentration can dictate plant growth and development and shape plant evolution. For paired populations of 31 Arabidopsis accessions, respectively, grown under 100 or 380 ppm CO2, we compared phenotypic traits related to vegetative growth and flowering time. Four accessions showed the least variation in measured growth traits between 100 ppm CO2 and 380 ppm CO2 conditions, though all accessions exhibited a dwarf stature with reduced biomass under low CO2. Our comparison of accessions also incorporated the altitude (indicated in meters) above sea level at which they were originally collected. Notably, An-1 (50 m), Est (50 m), Ws-0 (150 m), and Ler-0 (600 m) showed the least differences (lower decrease or increase) between treatments in flowering time, rosette leaf number, specific leaf weight, stomatal density, and less negative δ13C values. When variations for all traits and seedset were considered together, Ws-0 exhibited the least change between treatments. Our results showed that physiological and phenotypic responses to low CO2 varied among these accessions and did not correlate linearly with altitude, thus suggesting that slower growth or smaller stature under ambient CO2 may potentially belie a fitness advantage for sustainable growth under low CO2 availability.
Collapse
Affiliation(s)
- Chunxia Wu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, 250014, Shandong, People’s Republic of China
| | - Yulou Sun
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, 250014, Shandong, People’s Republic of China
| | - Guang Yang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, 250014, Shandong, People’s Republic of China
| | - Li Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, 250014, Shandong, People’s Republic of China
| | - Wei Sun
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, 250014, Shandong, People’s Republic of China
| | - Zenglan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, 250014, Shandong, People’s Republic of China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, 250014, Shandong, People’s Republic of China
| | - Yuanyuan Li
- Key Laboratory of Systems Biology, College of Life Science, Shandong Normal University, Ji’nan, 250014, Shandong, People’s Republic of China
| |
Collapse
|
31
|
Perkowska I, Siwinska J, Olry A, Grosjean J, Hehn A, Bourgaud F, Lojkowska E, Ihnatowicz A. Identification and Quantification of Coumarins by UHPLC-MS in Arabidopsis thaliana Natural Populations. Molecules 2021; 26:1804. [PMID: 33806877 PMCID: PMC8005220 DOI: 10.3390/molecules26061804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Coumarins are phytochemicals occurring in the plant kingdom, which biosynthesis is induced under various stress factors. They belong to the wide class of specialized metabolites well known for their beneficial properties. Due to their high and wide biological activities, coumarins are important not only for the survival of plants in changing environmental conditions, but are of great importance in the pharmaceutical industry and are an active source for drug development. The identification of coumarins from natural sources has been reported for different plant species including a model plant Arabidopsis thaliana. In our previous work, we demonstrated a presence of naturally occurring intraspecies variation in the concentrations of scopoletin and its glycoside, scopolin, the major coumarins accumulating in Arabidopsis roots. Here, we expanded this work by examining a larger group of 28 Arabidopsis natural populations (called accessions) and by extracting and analysing coumarins from two different types of tissues-roots and leaves. In the current work, by quantifying the coumarin content in plant extracts with ultra-high-performance liquid chromatography coupled with a mass spectrometry analysis (UHPLC-MS), we detected a significant natural variation in the content of simple coumarins like scopoletin, umbelliferone and esculetin together with their glycosides: scopolin, skimmin and esculin, respectively. Increasing our knowledge of coumarin accumulation in Arabidopsis natural populations, might be beneficial for the future discovery of physiological mechanisms of action of various alleles involved in their biosynthesis. A better understanding of biosynthetic pathways of biologically active compounds is the prerequisite step in undertaking a metabolic engineering research.
Collapse
Affiliation(s)
- Izabela Perkowska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (J.S.); (E.L.)
| | - Joanna Siwinska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (J.S.); (E.L.)
| | - Alexandre Olry
- Université de Lorraine-INRAE, LAE, 54000 Nancy, France; (A.O.); (J.G.); (A.H.)
| | - Jérémy Grosjean
- Université de Lorraine-INRAE, LAE, 54000 Nancy, France; (A.O.); (J.G.); (A.H.)
| | - Alain Hehn
- Université de Lorraine-INRAE, LAE, 54000 Nancy, France; (A.O.); (J.G.); (A.H.)
| | | | - Ewa Lojkowska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (J.S.); (E.L.)
| | - Anna Ihnatowicz
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (J.S.); (E.L.)
| |
Collapse
|
32
|
Arias T, Niederhuth CE, McSteen P, Pires JC. The Molecular Basis of Kale Domestication: Transcriptional Profiling of Developing Leaves Provides New Insights Into the Evolution of a Brassica oleracea Vegetative Morphotype. FRONTIERS IN PLANT SCIENCE 2021; 12:637115. [PMID: 33747016 PMCID: PMC7973465 DOI: 10.3389/fpls.2021.637115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Morphotypes of Brassica oleracea are the result of a dynamic interaction between genes that regulate the transition between vegetative and reproductive stages and those that regulate leaf morphology and plant architecture. In kales, ornate leaves, extended vegetative phase, and nutritional quality are some of the characters potentially selected by humans during domestication. We used a combination of developmental studies and transcriptomics to understand the vegetative domestication syndrome of kale. To identify candidate genes that are responsible for the evolution of domestic kale, we searched for transcriptome-wide differences among three vegetative B. oleracea morphotypes. RNA-seq experiments were used to understand the global pattern of expressed genes during a mixture of stages at one time in kale, cabbage, and the rapid cycling kale line TO1000. We identified gene expression patterns that differ among morphotypes and estimate the contribution of morphotype-specific gene expression that sets kale apart (3958 differentially expressed genes). Differentially expressed genes that regulate the vegetative to reproductive transition were abundant in all morphotypes. Genes involved in leaf morphology, plant architecture, defense, and nutrition were differentially expressed in kale. This allowed us to identify a set of candidate genes we suggest may be important in the kale domestication syndrome. Understanding candidate genes responsible for kale domestication is of importance to ultimately improve Cole crop production.
Collapse
|
33
|
Pabuayon ICM, Kitazumi A, Cushman KR, Singh RK, Gregorio GB, Dhatt B, Zabet-Moghaddam M, Walia H, de los Reyes BG. Novel and Transgressive Salinity Tolerance in Recombinant Inbred Lines of Rice Created by Physiological Coupling-Uncoupling and Network Rewiring Effects. FRONTIERS IN PLANT SCIENCE 2021; 12:615277. [PMID: 33708229 PMCID: PMC7940525 DOI: 10.3389/fpls.2021.615277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/03/2021] [Indexed: 06/01/2023]
Abstract
The phenomenon of transgressive segregation, where a small minority of recombinants are outliers relative to the range of parental phenotypes, is commonly observed in plant breeding populations. While this phenomenon has been attributed to complementation and epistatic effects, the physiological and developmental synergism involved have not been fully illuminated by the QTL mapping approach alone, especially for stress-adaptive traits involving highly complex interactions. By systems-level profiling of the IR29 × Pokkali recombinant inbred population of rice, we addressed the hypothesis that novel salinity tolerance phenotypes are created by reconfigured physiological networks due to positive or negative coupling-uncoupling of developmental and physiological attributes of each parent. Real-time growth and hyperspectral profiling distinguished the transgressive individuals in terms of stress penalty to growth. Non-parental network signatures that led to either optimal or non-optimal integration of developmental with stress-related mechanisms were evident at the macro-physiological, biochemical, metabolic, and transcriptomic levels. Large positive net gain in super-tolerant progeny was due to ideal complementation of beneficial traits while shedding antagonistic traits. Super-sensitivity was explained by the stacking of multiple antagonistic traits and loss of major beneficial traits. The synergism uncovered by the phenomics approach in this study supports the modern views of the Omnigenic Theory, emphasizing the synergy or lack thereof between core and peripheral components. This study also supports a breeding paradigm rooted on genomic modeling from multi-dimensional genetic, physiological, and phenotypic profiles to create novel adaptive traits for new crop varieties of the 21st century.
Collapse
Affiliation(s)
- Isaiah C. M. Pabuayon
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Ai Kitazumi
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Kevin R. Cushman
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | | | | | - Balpreet Dhatt
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Masoud Zabet-Moghaddam
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | |
Collapse
|
34
|
Akhatar J, Goyal A, Kaur N, Atri C, Mittal M, Singh MP, Kaur R, Rialch I, Banga SS. Genome wide association analyses to understand genetic basis of flowering and plant height under three levels of nitrogen application in Brassica juncea (L.) Czern & Coss. Sci Rep 2021; 11:4278. [PMID: 33608616 PMCID: PMC7896068 DOI: 10.1038/s41598-021-83689-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022] Open
Abstract
Timely transition to flowering, maturity and plant height are important for agronomic adaptation and productivity of Indian mustard (B. juncea), which is a major edible oilseed crop of low input ecologies in Indian subcontinent. Breeding manipulation for these traits is difficult because of the involvement of multiple interacting genetic and environmental factors. Here, we report a genetic analysis of these traits using a population comprising 92 diverse genotypes of mustard. These genotypes were evaluated under deficient (N75), normal (N100) or excess (N125) conditions of nitrogen (N) application. Lower N availability induced early flowering and maturity in most genotypes, while high N conditions delayed both. A genotyping-by-sequencing approach helped to identify 406,888 SNP markers and undertake genome wide association studies (GWAS). 282 significant marker-trait associations (MTA's) were identified. We detected strong interactions between GWAS loci and nitrogen levels. Though some trait associated SNPs were detected repeatedly across fertility gradients, majority were identified under deficient or normal levels of N applications. Annotation of the genomic region (s) within ± 50 kb of the peak SNPs facilitated prediction of 30 candidate genes belonging to light perception, circadian, floral meristem identity, flowering regulation, gibberellic acid pathways and plant development. These included over one copy each of AGL24, AP1, FVE, FRI, GID1A and GNC. FLC and CO were predicted on chromosomes A02 and B08 respectively. CDF1, CO, FLC, AGL24, GNC and FAF2 appeared to influence the variation for plant height. Our findings may help in improving phenotypic plasticity of mustard across fertility gradients through marker-assisted breeding strategies.
Collapse
Affiliation(s)
- Javed Akhatar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Anna Goyal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Navneet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Chhaya Atri
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Meenakshi Mittal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Mohini Prabha Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Rimaljeet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Indu Rialch
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Surinder S Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India.
| |
Collapse
|
35
|
Matsusaka D, Filiault D, Sanchez DH, Botto JF. Ultra-High-Density QTL Marker Mapping for Seedling Photomorphogenesis Mediating Arabidopsis Establishment in Southern Patagonia. FRONTIERS IN PLANT SCIENCE 2021; 12:677728. [PMID: 34367202 PMCID: PMC8343176 DOI: 10.3389/fpls.2021.677728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/22/2021] [Indexed: 05/15/2023]
Abstract
Arabidopsis thaliana shows a wide range of genetic and trait variation among wild accessions. Because of its unparalleled biological and genomic resources, Arabidopsis has a high potential for the identification of genes underlying ecologically important complex traits, thus providing new insights on genome evolution. Previous research suggested that distinct light responses were crucial for Arabidopsis establishment in a peculiar ecological niche of southern Patagonia. The aim of this study was to explore the genetic basis of contrasting light-associated physiological traits that may have mediated the rapid adaptation to this new environment. From a biparental cross between the photomorphogenic contrasting accessions Patagonia (Pat) and Columbia (Col-0), we generated a novel recombinant inbred line (RIL) population, which was entirely next-generation sequenced to achieve ultra-high-density saturating molecular markers resulting in supreme mapping sensitivity. We validated the quality of the RIL population by quantitative trait loci (QTL) mapping for seedling de-etiolation, finding seven QTLs for hypocotyl length in the dark and continuous blue light (Bc), continuous red light (Rc), and continuous far-red light (FRc). The most relevant QTLs, Rc1 and Bc1, were mapped close together to chromosome V; the former for Rc and Rc/dark, and the latter for Bc, FRc, and dark treatments. The additive effects of both QTLs were confirmed by independent heterogeneous inbred families (HIFs), and we explored TZP and ABA1 as potential candidate genes for Rc1 and Bc1QTLs, respectively. We conclude that the Pat × Col-0 RIL population is a valuable novel genetic resource to explore other adaptive traits in Arabidopsis.
Collapse
Affiliation(s)
- Daniel Matsusaka
- IFEVA, UBA, CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniele Filiault
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Diego H. Sanchez
- IFEVA, UBA, CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier F. Botto
- IFEVA, UBA, CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Javier F. Botto,
| |
Collapse
|
36
|
Dong Y, Sonawane P, Cohen H, Polturak G, Feldberg L, Avivi SH, Rogachev I, Aharoni A. High mass resolution, spatial metabolite mapping enhances the current plant gene and pathway discovery toolbox. THE NEW PHYTOLOGIST 2020; 228:1986-2002. [PMID: 32654288 DOI: 10.1111/nph.16809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/06/2020] [Indexed: 05/21/2023]
Abstract
Understanding when and where metabolites accumulate provides important cues to the gene function. Mass spectrometry imaging (MSI) enables in situ temporal and spatial measurement of a large assortment of metabolites, providing mapping information regarding their cellular distribution. To describe the current state and technical advances using MSI in plant sciences, we employed MSI to demonstrate its significant contribution to the study of plant specialised metabolism. We show that coupling MSI with: (1) RNA interference (RNAi), (2) virus induced gene silencing (VIGS), (3) agroinfiltration or (4) samples derived from plant natural variation provides great opportunities to understand the accurate gene-metabolite relationship and discover novel gene-associated metabolites. This was exemplified in three plant species (i.e. tomato, tobacco and wheat) by mapping the distribution of metabolites possessing a range of polarities. In particular, we demonstrated that MSI is able to spatially map an entire metabolic pathway, including intermediates and final products, in the intricate biosynthetic route to tomato fruit steroidal glycoalkaloids. We therefore envisage MSI as a key component of the metabolome analysis arsenal employed in plant gene discovery strategies.
Collapse
Affiliation(s)
- Yonghui Dong
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Prashant Sonawane
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Hagai Cohen
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Guy Polturak
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Liron Feldberg
- Department of Analytical Chemistry, Israel Institute for Biological Research, Ness Ziona, 7410001, Israel
| | - Shelly Hen Avivi
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Ilana Rogachev
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel
| |
Collapse
|
37
|
Afrin T, Seok M, Terry BC, Pajerowska-Mukhtar KM. Probing natural variation of IRE1 expression and endoplasmic reticulum stress responses in Arabidopsis accessions. Sci Rep 2020; 10:19154. [PMID: 33154475 PMCID: PMC7645728 DOI: 10.1038/s41598-020-76114-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
The environmental effects shape genetic changes in the individuals within plant populations, which in turn contribute to the enhanced genetic diversity of the population as a whole. Thus, individuals within the same species can acquire and accumulate genetic differences in their genomes depending on their local environment and evolutionary history. IRE1 is a universal endoplasmic reticulum (ER) stress sensor that activates an evolutionarily conserved signalling cascade in response to biotic and abiotic stresses. Here, we selected nine different Arabidopsis accessions along with the reference ecotype Columbia-0, based on their geographical origins and differential endogenous IRE1 expression under steady-state conditions to investigate the natural variation of ER stress responses. We cloned and analysed selected upstream regulatory regions of IRE1a and IRE1b, which revealed differential levels of their inducibility. We also subjected these accessions to an array of biotic and abiotic stresses including heat, ER stress-inducing chemical tunicamycin, phytohormone salicylic acid, and pathogen infection. We measured IRE1-mediated splicing of its evolutionarily conserved downstream client as well as transcript accumulation of ER-resident chaperones and co-chaperones. Collectively, our results illustrate the expression polymorphism of a major plant stress receptor and its relationship with molecular and physiological ER stress sensitivity.
Collapse
Affiliation(s)
- Taiaba Afrin
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Minye Seok
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Brenna C Terry
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | | |
Collapse
|
38
|
Chen G, Klinkhamer PGL, Escobar-Bravo R. Constitutive and Inducible Resistance to Thrips Do Not Correlate With Differences in Trichome Density or Enzymatic-Related Defenses in Chrysanthemum. J Chem Ecol 2020; 46:1105-1116. [PMID: 33089352 PMCID: PMC7677159 DOI: 10.1007/s10886-020-01222-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Western flower thrips (WFT), Frankliniella occidentalis, is a serious insect pest of Chrysanthemum [Chrysanthemum × morifolium Ramat. (Asteraceae)]. Here we have investigated whether genotypic variation in constitutive and inducible resistance to WFT correlates with phenotypic differences in leaf trichome density and the activity of the defense-related enzyme polyphenol oxidase (PPO) in chrysanthemum. Non-glandular and glandular leaf trichome densities significantly varied among ninety-five chrysanthemum cultivars. Additional analyses in a subset of these cultivars, differing in leaf trichome density, revealed significant variation in PPO activities and resistance to WFT as well. Constitutive levels of trichome densities and PPO activity, however, did not correlate with chrysanthemum resistance to WFT. Further tests showed that exogenous application of the phytohormone jasmonic acid (JA) increased non-glandular trichome densities, PPO activity and chrysanthemum resistance to WFT, and that these effects were cultivar dependent. In addition, no tradeoff between constitutive and inducible resistance to WFT was observed. JA-mediated induction of WFT resistance, however, did not correlate with changes in leaf trichome densities nor PPO activity levels. Taken together, our results suggest that chrysanthemum can display both high levels of constitutive and inducible resistance to WFT, and that leaf trichome density and PPO activity may not play a relevant role in chrysanthemum defenses against WFT.
Collapse
Affiliation(s)
- Gang Chen
- Research Group Plant Ecology and Phytochemistry, Cluster Plant Sciences and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands.
- College of Forestry, Sichuan Agricultural University, Chengdu, China.
| | - Peter G L Klinkhamer
- Research Group Plant Ecology and Phytochemistry, Cluster Plant Sciences and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Rocío Escobar-Bravo
- Research Group Plant Ecology and Phytochemistry, Cluster Plant Sciences and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| |
Collapse
|
39
|
Miller CN, Dumenil J, Lu FH, Smith C, McKenzie N, Chapman V, Ball J, Box M, Bevan M. Variation in the expression of a transmembrane protein influences cell growth in Arabidopsis thaliana petals by altering auxin responses. BMC PLANT BIOLOGY 2020; 20:482. [PMID: 33092536 PMCID: PMC7584087 DOI: 10.1186/s12870-020-02698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The same species of plant can exhibit very diverse sizes and shapes of organs that are genetically determined. Characterising genetic variation underlying this morphological diversity is an important objective in evolutionary studies and it also helps identify the functions of genes influencing plant growth and development. Extensive screens of mutagenised Arabidopsis populations have identified multiple genes and mechanisms affecting organ size and shape, but relatively few studies have exploited the rich diversity of natural populations to identify genes involved in growth control. RESULTS We screened a relatively well characterised collection of Arabidopsis thaliana accessions for variation in petal size. Association analyses identified sequence and gene expression variation on chromosome 4 that made a substantial contribution to differences in petal area. Variation in the expression of a previously uncharacterised gene At4g16850 (named as KSK) had a substantial role on variation in organ size by influencing cell size. Over-expression of KSK led to larger petals with larger cells and promoted the formation of stamenoid features. The expression of auxin-responsive genes known to limit cell growth was reduced in response to KSK over-expression. ANT expression was also reduced in KSK over-expression lines, consistent with altered floral identities. Auxin responses were reduced in KSK over-expressing cells, consistent with changes in auxin-responsive gene expression. KSK may therefore influence auxin responses during petal development. CONCLUSIONS Understanding how genetic variation influences plant growth is important for both evolutionary and mechanistic studies. We used natural populations of Arabidopsis thaliana to identify sequence variation in a promoter region of Arabidopsis accessions that mediated differences in the expression of a previously uncharacterised membrane protein. This variation contributed to altered auxin responses and cell size during petal growth.
Collapse
Affiliation(s)
- Charlotte N Miller
- Cell and Developmental Biology Department John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jack Dumenil
- Cell and Developmental Biology Department John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Fu Hao Lu
- Cell and Developmental Biology Department John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Caroline Smith
- Cell and Developmental Biology Department John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Neil McKenzie
- Cell and Developmental Biology Department John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Volodymyr Chapman
- Cell and Developmental Biology Department John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Joshua Ball
- Cell and Developmental Biology Department John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mathew Box
- Cell and Developmental Biology Department John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Michael Bevan
- Cell and Developmental Biology Department John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
40
|
González R, Butković A, Rivarez MPS, Elena SF. Natural variation in Arabidopsis thaliana rosette area unveils new genes involved in plant development. Sci Rep 2020; 10:17600. [PMID: 33077802 PMCID: PMC7788084 DOI: 10.1038/s41598-020-74723-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/06/2020] [Indexed: 11/08/2022] Open
Abstract
Growth is a complex trait influenced by multiple genes that act at different moments during the development of an organism. This makes it difficult to spot its underlying genetic mechanisms. Since plant growth is intimately related to the effective leaf surface area (ELSA), identifying genes controlling this trait will shed light on our understanding of plant growth. To find new genes with a significant contribution to plant growth, here we used the natural variation in Arabidopsis thaliana to perform a genome-wide association study of ELSA. To do this, the projected rosette area of 710 worldwide distributed natural accessions was measured and analyzed using the genome-wide efficient mixed model association algorithm. From this analysis, ten genes were identified having SNPs with a significant association with ELSA. To validate the implication of these genes into A. thaliana growth, six of them were further studied by phenotyping knock-out mutant plants. It was observed that rem1.2, orc1a, ppd1, and mcm4 mutants showed different degrees of reduction in rosette size, thus confirming the role of these genes in plant growth. Our study identified genes already known to be involved in plant growth but also assigned this role, for the first time, to other genes.
Collapse
Affiliation(s)
- Rubén González
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain.
| | - Anamarija Butković
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain
| | - Mark Paul Selda Rivarez
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| |
Collapse
|
41
|
Kawamoto N, Del Carpio DP, Hofmann A, Mizuta Y, Kurihara D, Higashiyama T, Uchida N, Torii KU, Colombo L, Groth G, Simon R. A Peptide Pair Coordinates Regular Ovule Initiation Patterns with Seed Number and Fruit Size. Curr Biol 2020; 30:4352-4361.e4. [PMID: 32916111 DOI: 10.1016/j.cub.2020.08.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 08/01/2020] [Accepted: 08/13/2020] [Indexed: 01/11/2023]
Abstract
Ovule development in Arabidopsis thaliana involves pattern formation, which ensures that ovules are regularly arranged in the pistils to reduce competition for nutrients and space. Mechanisms underlying pattern formation in plants, such as phyllotaxis, flower morphogenesis, or lateral root initiation, have been extensively studied, and genes controlling the initiation of ovules have been identified. However, the fundamental patterning mechanism that determines the spacing of ovule anlagen within the placenta remained unexplored. Using natural variation analysis combined with quantitative trait locus analysis, we found that the spacing of ovules in the developing gynoecium and fruits is controlled by two secreted peptides, EPFL2 and EPFL9 (also known as Stomagen), and their receptors from the ERECTA (ER) family that act from the carpel wall and the placental tissue. We found that a signaling pathway controlled by EPFL9 acting from the carpel wall through the LRR-receptor kinases ER, ERL1, and ERL2 promotes fruit growth. Regular spacing of ovules depends on EPFL2 expression in the carpel wall and in the inter-ovule spaces, where it acts through ERL1 and ERL2. Loss of EPFL2 signaling results in shorter gynoecia and fruits and irregular spacing of ovules or even ovule twinning. We propose that the EPFL2 signaling module evolved to control the initiation and regular, equidistant spacing of ovule primordia, which may serve to minimize competition between seeds or facilitate equal resource allocation. Together, EPFL2 and EPFL9 help to coordinate ovule patterning and thereby seed number with gynoecium and fruit growth through a set of shared receptors.
Collapse
Affiliation(s)
- Nozomi Kawamoto
- Institute for Developmental Genetics, Heinrich-Heine University, University Street 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University Street 1, D-40225 Düsseldorf, Germany
| | - Dunia Pino Del Carpio
- Institute for Developmental Genetics, Heinrich-Heine University, University Street 1, D-40225 Düsseldorf, Germany; Agriculture Research Division, Agriculture Victoria, Level 43 Rialto South 525 Collins Street, Melbourne, VIC 3000, Australia
| | - Alexander Hofmann
- Institute of Biochemical Plant Physiology, Heinrich-Heine University, University Street 1, D-40225 Düsseldorf, Germany
| | - Yoko Mizuta
- Institute for Advanced Research (IAR), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; JST, PRESTO, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Naoyuki Uchida
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; Department of Biology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Lucia Colombo
- Universita degli studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Georg Groth
- Cluster of Excellence on Plant Sciences (CEPLAS), University Street 1, D-40225 Düsseldorf, Germany; Agriculture Research Division, Agriculture Victoria, Level 43 Rialto South 525 Collins Street, Melbourne, VIC 3000, Australia
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich-Heine University, University Street 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University Street 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
42
|
Phantom Epistasis in Genomic Selection: On the Predictive Ability of Epistatic Models. G3-GENES GENOMES GENETICS 2020; 10:3137-3145. [PMID: 32709618 PMCID: PMC7466977 DOI: 10.1534/g3.120.401300] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Genomic selection uses whole-genome marker models to predict phenotypes or genetic values for complex traits. Some of these models fit interaction terms between markers, and are therefore called epistatic. The biological interpretation of the corresponding fitted effects is not straightforward and there is the threat of overinterpreting their functional meaning. Here we show that the predictive ability of epistatic models relative to additive models can change with the density of the marker panel. In more detail, we show that for publicly available Arabidopsis and rice datasets, an initial superiority of epistatic models over additive models, which can be observed at a lower marker density, vanishes when the number of markers increases. We relate these observations to earlier results reported in the context of association studies which showed that detecting statistical epistatic effects may not only be related to interactions in the underlying genetic architecture, but also to incomplete linkage disequilibrium at low marker density ("Phantom Epistasis"). Finally, we illustrate in a simulation study that due to phantom epistasis, epistatic models may also predict the genetic value of an underlying purely additive genetic architecture better than additive models, when the marker density is low. Our observations can encourage the use of genomic epistatic models with low density panels, and discourage their biological over-interpretation.
Collapse
|
43
|
Prinzenberg AE, Campos‐Dominguez L, Kruijer W, Harbinson J, Aarts MGM. Natural variation of photosynthetic efficiency in Arabidopsis thaliana accessions under low temperature conditions. PLANT, CELL & ENVIRONMENT 2020; 43:2000-2013. [PMID: 32495939 PMCID: PMC7497054 DOI: 10.1111/pce.13811] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 03/29/2020] [Accepted: 05/18/2020] [Indexed: 05/18/2023]
Abstract
Low, but non-freezing, temperatures have negative effects on plant growth and development. Despite some molecular signalling pathways being known, the mechanisms causing different responses among genotypes are still poorly understood. Photosynthesis is one of the processes that are affected by low temperatures. Using an automated phenotyping platform for chlorophyll fluorescence imaging the steady state quantum yield of photosystem II (PSII) electron transport (ΦPSII ) was measured and used to quantify the effect of moderately low temperature on a population of Arabidopsis thaliana natural accessions. Observations were made over the course of several weeks in standard and low temperature conditions and a strong decrease in ΦPSII upon the cold treatment was found. A genome wide association study identified several quantitative trait loci (QTLs) that are associated with changes in ΦPSII in low temperature. One candidate for a cold specific QTL was validated with a mutant analysis to be one of the genes that is likely involved in the PSII response to the cold treatment. The gene encodes the PSII associated protein PSB27 which has already been implicated in the adaptation to fluctuating light.
Collapse
Affiliation(s)
- Aina E. Prinzenberg
- Horticulture and Product PhysiologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
- Plant BreedingWageningen University and ResearchPO Box 386Wageningen6700 AJThe Netherlands
| | - Lucia Campos‐Dominguez
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghEH3 5LRUnited Kingdom
| | - Willem Kruijer
- BiometrisWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
| | - Jeremy Harbinson
- Horticulture and Product PhysiologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
- Laboratory of BiophysicsWageningen University and ResearchWageningenThe Netherlands
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
| |
Collapse
|
44
|
Gage JL, Monier B, Giri A, Buckler ES. Ten Years of the Maize Nested Association Mapping Population: Impact, Limitations, and Future Directions. THE PLANT CELL 2020; 32:2083-2093. [PMID: 32398275 PMCID: PMC7346555 DOI: 10.1105/tpc.19.00951] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/02/2020] [Accepted: 05/11/2020] [Indexed: 05/21/2023]
Abstract
It has been just over a decade since the release of the maize (Zea mays) Nested Association Mapping (NAM) population. The NAM population has been and continues to be an invaluable resource for the maize genetics community and has yielded insights into the genetic architecture of complex traits. The parental lines have become some of the most well-characterized maize germplasm, and their de novo assemblies were recently made publicly available. As we enter an exciting new stage in maize genomics, this retrospective will summarize the design and intentions behind the NAM population; its application, the discoveries it has enabled, and its influence in other systems; and use the past decade of hindsight to consider whether and how it will remain useful in a new age of genomics.
Collapse
Affiliation(s)
- Joseph L Gage
- U.S. Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Brandon Monier
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Anju Giri
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Edward S Buckler
- U.S. Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| |
Collapse
|
45
|
Zhang L, Jiménez-Gómez JM. Functional analysis of FRIGIDA using naturally occurring variation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:154-165. [PMID: 32022960 DOI: 10.1111/tpj.14716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/16/2020] [Accepted: 01/29/2020] [Indexed: 05/23/2023]
Abstract
The FRIGIDA locus (FRI, AT4G00650) has been extensively studied in Arabidopsis thaliana because of its role creating flowering time diversity. The FRI protein regulates flowering induction by binding partner proteins on its N-terminus and C-terminus domains and creating a supercomplex that promotes transcription of the floral repressor FLOWERING LOCUS C (FLC). Despite the knowledge accumulated on FRIGIDA (FRI), the function of the highly conserved central domain of the protein is still unknown. Functional characterization of naturally occurring DNA polymorphisms can provide useful information about the role of a protein and the localization of its operative domains. For FRI, loss-of-function mutations are positively selected and widespread in nature, making them a powerful tool to study the function of the different domains of the protein. Here we explore natural sequence variation in the FRI locus in more than 1000 Arabidopsis accessions. We identify 127 mutations that alter the FRI protein, including 60 that had never been described before. We defined 103 different alleles of FRI and study their association with variation in flowering time. We confirmed these associations by cloning 22 different alleles and expressing them in a common null genetic background. Our analysis pinpoints two single amino acid changes in the central domain that render the protein non-functional. We show that these two mutations determine the stability and cellular localization of the FRI protein. In summary, our work makes use of natural variants at the FRI locus to help understanding the function of the central domain of the FRI protein.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Center for Applied Genetic Technologies, University of Georgia, 30605, Athens, GA, USA
| | - José M Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
46
|
Chong VK, Stinchcombe JR. Evaluating Population Genomic Candidate Genes Underlying Flowering Time in Arabidopsis thaliana Using T-DNA Insertion Lines. J Hered 2020; 110:445-454. [PMID: 31158286 DOI: 10.1093/jhered/esz026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
Population genomic scans have emerged as a powerful tool to detect regions of the genome that are potential targets of selection. Despite the success of genomic scans in identifying novel lists of loci potentially underlying adaptation, few studies proceed to validate the function of these candidate genes. In this study, we used transfer-DNA (T-DNA) insertion lines to evaluate the effects of 27 candidate genes on flowering time in North American accessions of Arabidopsis thaliana. We compared the flowering time of T-DNA insertion lines that knock out the function of a candidate gene obtained from population genomic studies to a wild type under long- and short-day conditions. We also did the same for a collection of randomly chosen genes that had not been identified as candidates. We validated the well-known effect of long-day conditions in accelerating flowering time and found that gene disruption caused by insertional mutagenesis tends to delay flowering. Surprisingly, we found that knockouts in random genes were just as likely to produce significant phenotypic effects as knockouts in candidate genes. T-DNA insertions at a handful of candidate genes that had previously been identified as outlier loci showed significant delays in flowering time under both long and short days, suggesting that they are promising candidates for future investigation.
Collapse
Affiliation(s)
- Veronica K Chong
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Dong X, Yan Y, Jiang B, Shi Y, Jia Y, Cheng J, Shi Y, Kang J, Li H, Zhang D, Qi L, Han R, Zhang S, Zhou Y, Wang X, Terzaghi W, Gu H, Kang D, Yang S, Li J. The cold response regulator CBF1 promotes Arabidopsis hypocotyl growth at ambient temperatures. EMBO J 2020; 39:e103630. [PMID: 32449547 DOI: 10.15252/embj.2019103630] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/05/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
Light and temperature are two core environmental factors that coordinately regulate plant growth and survival throughout their entire life cycle. However, the mechanisms integrating light and temperature signaling pathways in plants remain poorly understood. Here, we report that CBF1, an AP2/ERF-family transcription factor essential for plant cold acclimation, promotes hypocotyl growth under ambient temperatures in Arabidopsis. We show that CBF1 increases the protein abundance of PIF4 and PIF5, two phytochrome-interacting bHLH-family transcription factors that play pivotal roles in modulating plant growth and development, by directly binding to their promoters to induce their gene expression, and by inhibiting their interaction with phyB in the light. Moreover, our data demonstrate that CBF1 promotes PIF4/PIF5 protein accumulation and hypocotyl growth at both 22°C and 17°C, but not at 4°C, with a more prominent role at 17°C than at 22°C. Together, our study reveals that CBF1 integrates light and temperature control of hypocotyl growth by promoting PIF4 and PIF5 protein abundance in the light, thus providing insights into the integration mechanisms of light and temperature signaling pathways in plants.
Collapse
Affiliation(s)
- Xiaojing Dong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China.,MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yan Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Bochen Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuxin Jia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yihao Shi
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Juqing Kang
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Hong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dun Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China.,MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Lijuan Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Run Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shaoman Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China.,MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yangyang Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoji Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Dingming Kang
- MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
48
|
Brosseau C, Bolaji A, Roussin-Léveillée C, Zhao Z, Biga S, Moffett P. Natural variation in the Arabidopsis AGO2 gene is associated with susceptibility to potato virus X. THE NEW PHYTOLOGIST 2020; 226:866-878. [PMID: 31880814 DOI: 10.1111/nph.16397] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
RNA silencing functions as an anti-viral defence in plants through the action of DICER-like (DCL) and ARGONAUTE (AGO) proteins. Despite the importance of this mechanism, little is known about the functional consequences of variation in genes encoding RNA silencing components. The AGO2 protein has been shown to be important for defense against multiple viruses, and we investigated how naturally occurring differences in AGO2 between and within species affects its antiviral activities. We find that the AGO2 protein from Arabidopsis thaliana, but not Nicotiana benthamiana, effectively limits potato virus X (PVX). Consistent with this, we find that the A. thaliana AGO2 gene shows a high incidence of polymorphisms between accessions, with evidence of selective pressure. Using functional analyses, we identify polymorphisms that specifically affect AGO2 antiviral activity, without interfering with other AGO2-associated functions such as anti-bacterial resistance or DNA methylation. Our results suggest that viruses adapt to overcome RNA silencing in their hosts. Furthermore, they indicate that plant-virus interactions have influenced natural variation in RNA-silencing components and that the latter may be a source of genetically encoded virus resistance.
Collapse
Affiliation(s)
- Chantal Brosseau
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Ayooluwa Bolaji
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | | | - Zhenxing Zhao
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Sébastien Biga
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Peter Moffett
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
49
|
Bergès SE, Vasseur F, Bediée A, Rolland G, Masclef D, Dauzat M, van Munster M, Vile D. Natural variation of Arabidopsis thaliana responses to Cauliflower mosaic virus infection upon water deficit. PLoS Pathog 2020; 16:e1008557. [PMID: 32413076 PMCID: PMC7255604 DOI: 10.1371/journal.ppat.1008557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/28/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Plant virus pathogenicity is expected to vary with changes in the abiotic environment that affect plant physiology. Conversely, viruses can alter the host plant response to additional stimuli from antagonism to mutualism depending on the virus, the host plant and the environment. Ecological theory, specifically the CSR framework of plant strategies developed by Grime and collaborators, states that plants cannot simultaneously optimize resistance to both water deficit and pathogens. Here, we investigated the vegetative and reproductive performance of 44 natural accessions of A. thaliana originating from the Iberian Peninsula upon simultaneous exposure to soil water deficit and viral infection by the Cauliflower mosaic virus (CaMV). Following the predictions of Grime's CSR theory, we tested the hypothesis that the ruderal character of a plant genotype is positively related to its tolerance to virus infection regardless of soil water availability. Our results showed that CaMV infection decreased plant vegetative performance and annihilated reproductive success of all accessions. In general, water deficit decreased plant performance, but, despite differences in behavior, ranking of accessions tolerance to CaMV was conserved under water deficit. Ruderality, quantified from leaf traits following a previously published procedure, varied significantly among accessions, and was positively correlated with tolerance to viral infection under both well-watered and water deficit conditions, although the latter to a lesser extent. Also, in accordance with the ruderal character of the accession and previous findings, our results suggest that accession tolerance to CaMV infection is positively correlated with early flowering. Finally, plant survival to CaMV infection increased under water deficit. The complex interactions between plant, virus and abiotic environment are discussed in terms of the variation in plant ecological strategies at the intraspecific level.
Collapse
Affiliation(s)
- Sandy E. Bergès
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
- BGPI, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - François Vasseur
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
- CEFE, CNRS, EPHE, IRD, Univ Montpellier, Univ Paul Valéry Montpellier, Montpellier, France
| | - Alexis Bediée
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Gaëlle Rolland
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Diane Masclef
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Myriam Dauzat
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | | | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
50
|
Böckelmann J, Tremetsberger K, Šumberová K, Kohl G, Grausgruber H, Bernhardt K. Genetic variation in an ephemeral mudflat species: The role of the soil seed bank and dispersal in river and secondary anthropogenic habitats. Ecol Evol 2020; 10:3620-3635. [PMID: 32313622 PMCID: PMC7160169 DOI: 10.1002/ece3.6109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 11/05/2019] [Accepted: 01/20/2020] [Indexed: 01/27/2023] Open
Abstract
Many ephemeral mudflat species, which rely on a soil seed bank to build up the next generation, are endangered in their natural habitat due to the widespread regulation of rivers. The aim of the present study was to elucidate the role of the soil seed bank and dispersal for the maintenance of genetic diversity in populations of near-natural river habitats and anthropogenic habitats created by traditional fish farming practices using Cyperus fuscus as a model. Using microsatellite markers, we found no difference in genetic diversity levels between soil seed bank and above-ground population and only moderate differentiation between the two fractions. One possible interpretation is the difference in short-term selection during germination under specific conditions (glasshouse versus field) resulting in an ecological filtering of genotypes out of the reservoir in the soil. River populations harbored significantly more genetic diversity than populations from the anthropogenic pond types. We suggest that altered levels and patterns of dispersal together with stronger selection pressures and historical bottlenecks in anthropogenic habitats are responsible for the observed reduction in genetic diversity. Dispersal is also supposed to largely prohibit genetic structure across Europe, although there is a gradient in private allelic richness from southern Europe (high values) to northern, especially north-western, Europe (low values), which probably relates to postglacial expansion out of southern and/or eastern refugia.
Collapse
Affiliation(s)
- Jörg Böckelmann
- Department of Integrative Biology and Biodiversity ResearchInstitute of BotanyUniversity of Natural Resources and Life SciencesViennaAustria
- Present address:
Division of Tropical Ecology and Animal BiodiversityDepartment of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Karin Tremetsberger
- Department of Integrative Biology and Biodiversity ResearchInstitute of BotanyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Kateřina Šumberová
- Department of Vegetation EcologyInstitute of BotanyThe Czech Academy of SciencesBrnoCzech Republic
| | - Gudrun Kohl
- Department of Integrative Biology and Biodiversity ResearchInstitute of BotanyUniversity of Natural Resources and Life SciencesViennaAustria
- Present address:
Division of Microbial EcologyDepartment of Microbiology and Ecosystem ScienceUniversity of ViennaViennaAustria
| | - Heinrich Grausgruber
- Division of Plant BreedingDepartment of Crop SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Karl‐Georg Bernhardt
- Department of Integrative Biology and Biodiversity ResearchInstitute of BotanyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|