1
|
Guo M, Liang C, Cui M, Luo L, Gao Z, Chen H, Xie Q, Cui J, Liu L, Mo B, Gao L. Diversification and evolution of serine/arginine-rich splicing factors in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70004. [PMID: 39982815 DOI: 10.1111/tpj.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/05/2024] [Accepted: 01/08/2025] [Indexed: 02/23/2025]
Abstract
In plants, serine/arginine-rich splicing factors (SRSFs) play an essential role in pre-mRNA splicing, influencing growth and stress response. The present study investigated the evolution and diversification of SR proteins in plants by phylogenetic analysis. First, we identified 1650 SR proteins from 132 plant species. Large-scale phylogenetic analysis divided these SR proteins into nine subfamilies: SR, RS, SC, SCL, RSZ, RS2Z, SR45, SR45a, and a newly discovered RSZ-like subfamily. The analysis also suggested that SR proteins of animals and plants originated from an ancient SR gene of a common ancestor of eukaryotes and showed that RSZ-like subfamily diverged in fern. We also found the presence of the newly discovered RSZ-like subfamily in ferns, gymnosperms, and angiosperms as a sister group of SR45 and SR45a, indicating a common ancestor. In addition, we detected deletion of the N-terminal RS domain in a few members of SR45 and SR45a of plants. These findings provide novel insights into the phylogeny of the SR gene family in plants, emphasizing their crucial function as a splicing factor.
Collapse
Affiliation(s)
- Mingxi Guo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Chao Liang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Mingyang Cui
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Linlin Luo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Hongshan Middle Schoool, Shenzhen, 518060, China
| | - Zhongtian Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Haolang Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Qi Xie
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Jie Cui
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
2
|
Liu J, Li X, Wang K, Wang T, Meng Y, Peng Z, Huang J, Huo J, Zhu X, Yang J, Fan Y, Xu F, Zhang Q, Wang Z, Wang Y, Chen H, Xu W. The splicing auxiliary factor OsU2AF35a enhances thermotolerance via protein separation and promoting proper splicing of OsHSA32 pre-mRNA in rice. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 39844526 DOI: 10.1111/pbi.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025]
Abstract
Heat stress significantly impacts global rice production, highlighting the critical need to understand the genetic basis of heat resistance in rice. U2AF (U2 snRNP auxiliary factor) is an essential splicing complex with critical roles in recognizing the 3'-splice site of precursor messenger RNAs (pre-mRNAs). The U2AF small subunit (U2AF35) can bind to the 3'-AG intron border and promote U2 snRNP binding to the branch-point sequences of introns through interaction with the U2AF large subunit (U2AF65). However, the functions of U2AF35 in plants are poorly understood. In this study, we discovered that the OsU2AF35a gene was vigorously induced by heat stress and could positively regulate rice thermotolerance during both the seedling and reproductive growth stages. OsU2AF35a interacts with OsU2AF65a within the nucleus, and both of them can form condensates through liquid-liquid phase separation (LLPS) following heat stress. The intrinsically disordered regions (IDR) are accountable for their LLPS. OsU2AF35a condensation is indispensable for thermotolerance. RNA-seq analysis disclosed that, subsequent to heat treatment, the expression levels of several genes associated with water deficiency and oxidative stress in osu2af35a-1 were markedly lower than those in ZH11. In accordance with this, OsU2AF35a is capable of positively regulating the oxidative stress resistance of rice. The pre-mRNAs of a considerable number of genes in the osu2af35a-1 mutant exhibited defective splicing, among which was the OsHSA32 gene. Knocking out OsHSA32 significantly reduced the thermotolerance of rice, while overexpressing OsHSA32 could partially rescue the heat sensitivity of osu2af35a-1. Together, our findings uncovered the essential role of OsU2AF35a in rice heat stress response through protein separation and regulating alternative pre-mRNA splicing.
Collapse
Affiliation(s)
- Jianping Liu
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Li
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ke Wang
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Tao Wang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Meng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi Peng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinli Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaohan Huo
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqi Zhu
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinyong Yang
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongxi Fan
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feiyun Xu
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhengrui Wang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya Wang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hao Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Liu H, Wang S, Zhang Z, Yan H, He T, Wei X, Shi Y, Chen Y, Wang W, Li X. Nanopore-based full-length transcriptome sequencing of the skin in Pseudopleuronectes yokohamae identifies novel antimicrobial peptide genes. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109957. [PMID: 39393612 DOI: 10.1016/j.fsi.2024.109957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
The marbled flounder (Pseudopleuronectes yokohamae) is highly esteemed for its exceptional nutritional value and delicious taste. However, this species has extremely limited transcriptome data, which can offer priceless information for disease protection. In the study, the skin transcriptomic sequencing of P. yokohamae revealed 7.72 GB of clean data using the Nanopore sequencing platform. The results revealed 30,498 transcripts of functional annotations in the P. yokohamae transcriptome. All transcripts were searched in eight functional databases. A total of 10,337 ORFs were obtained, of which 6081 complete ORFs accounted for 58.83% of all predicted CDS. Moreover, 10,195 SSRs were detected. Meanwhile, the non-pecific immunity pathways were investigated for better understanding of the immunological reaction in P. yokohamae, and seven innate immune pathways were identified. The innate-immune related genes were highly expressed in the NOD-like receptor signaling pathway, followed by the C-type lectin receptor signaling pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and Cytosolic DNA-sensing pathway. In this study, four families of antimicrobial peptides (AMPs) in P. yokohamae were analysed for the first time, including piscidins, hepcidins, liver-expressed antimicrobial peptide and defensins. Seven AMPs, including Pypleurocidin-like WF3, Pypleurocidin-like WFX, Pyhepcidin 1, Pyhepcidin-like 1, PyLEAP-2, Pybeta-defensin and Pybeta-defensin-like 1, were further identified. The seven AMPs showed a highly identity in their cDNA and genomic structures and an inducible expression pattern preferable to skin in response to pathogens. The transcriptomic data and investigation of AMPs from P. yokohamae promote a deeper awareness of fish mucosal immunity and provide information in the prevention of fish diseases.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Shuai Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Zheng Zhang
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian, China
| | - Huixiang Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Tingting He
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xiaoyan Wei
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yanyan Shi
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yan Chen
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| | - Xuejie Li
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| |
Collapse
|
4
|
Wang Y, Wang X, Zhang R, Chen T, Xiao J, Li Q, Ding X, Sun X. Genome-Scale Identification of Wild Soybean Serine/Arginine-Rich Protein Family Genes and Their Responses to Abiotic Stresses. Int J Mol Sci 2024; 25:11175. [PMID: 39456959 PMCID: PMC11508973 DOI: 10.3390/ijms252011175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Serine/arginine-rich (SR) proteins mostly function as splicing factors for pre-mRNA splicing in spliceosomes and play critical roles in plant development and adaptation to environments. However, detailed study about SR proteins in legume plants is still lacking. In this report, we performed a genome-wide investigation of SR protein genes in wild soybean (Glycine soja) and identified a total of 31 GsSR genes from the wild soybean genome. The analyses of chromosome location and synteny show that the GsSRs are unevenly distributed on 15 chromosomes and are mainly under the purifying selection. The GsSR proteins can be phylogenetically classified into six sub-families and are conserved in evolution. Prediction of protein phosphorylation sites indicates that GsSR proteins are highly phosphorylated proteins. The protein-protein interaction network implies that there exist numerous interactions between GsSR proteins. We experimentally confirmed their physical interactions with the representative SR proteins of spliceosome-associated components such as U1-70K or U2AF35 by yeast two-hybrid assays. In addition, we identified various stress-/hormone-responsive cis-acting elements in the promoter regions of these GsSR genes and verified their expression patterns by RT-qPCR analyses. The results show most GsSR genes are highly expressed in root and stem tissues and are responsive to salt and alkali stresses. Splicing analysis showed that the splicing patterns of GsSRs were in a tissue- and stress-dependent manner. Overall, these results will help us to further investigate the biological functions of leguminous plant SR proteins and shed new light on uncovering the regulatory mechanisms of plant SR proteins in growth, development, and stress responses.
Collapse
Affiliation(s)
- Yanping Wang
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (Y.W.); (X.W.)
| | - Xiaomei Wang
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (Y.W.); (X.W.)
| | - Rui Zhang
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (R.Z.); (T.C.); (J.X.); (Q.L.)
| | - Tong Chen
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (R.Z.); (T.C.); (J.X.); (Q.L.)
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (R.Z.); (T.C.); (J.X.); (Q.L.)
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (R.Z.); (T.C.); (J.X.); (Q.L.)
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (R.Z.); (T.C.); (J.X.); (Q.L.)
| | - Xiaohuan Sun
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (Y.W.); (X.W.)
| |
Collapse
|
5
|
Liu X, Li M, Chen T, Zhang R, Wang Y, Xiao J, Ding X, Zhang S, Li Q. A global survey of bicarbonate stress-induced pre-mRNA alternative splicing in soybean via integrative analysis of Iso-seq and RNA-seq. Int J Biol Macromol 2024; 278:135067. [PMID: 39191343 DOI: 10.1016/j.ijbiomac.2024.135067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Alternative splicing (AS) plays important roles in modulating environmental stress responses in plants. However, little is known about the functions of bicarbonate-induced AS in cultivated soybean (Glycine max L. Merr.). In this study, we combined PacBio isoform sequencing (Iso-seq) and Illumina RNA sequencing (RNA-seq) to elucidate the bicarbonate-induced AS events in soybean root and leaf tissues. Compared to RNA-seq, Iso-seq identified more novel genes and transcripts, as well as more AS events, indicating that Iso-seq is more efficient in AS detection. Combining these two technologies, we found that intron retention (IR) is the most frequent AS event type. We identified a total of 913 and 1974 bicarbonate stress-responsive differentially alternative spliced genes (DAGs) in soybean leaves and roots respectively, from our RNA-seq results. Additionally, we determined a transcription factor (GmNTL9) and a splicing factor (GmRSZ22), and validated their roles in bicarbonate stress response by AS. Overall, our study opens an avenue for evaluating plant AS regulatory networks, and the obtained global landscape of alternative splicing provides valuable insights into the AS-mediated bicarbonate-responsive mechanisms in plant species.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Minglong Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Tong Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Rui Zhang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Yuye Wang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China; Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Sanjaya A, Nishijima R, Fujii Y, Asano M, Ishii K, Kazama Y, Abe T, Fujiwara MT. Rare occurrence of cryptic 5' splice sites by downstream 3' splice site/exon boundary mutations in a heavy-ion-induced egy1-4 allele of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1388040. [PMID: 39319001 PMCID: PMC11420051 DOI: 10.3389/fpls.2024.1388040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
Pre-mRNA splicing is a fundamental process in eukaryotic gene expression, and the mechanism of intron definition, involving the recognition of the canonical GU (5'-splice site) and AG (3'-splice site) dinucleotides by splicing factors, has been postulated for most cases of splicing initiation in plants. Splice site mutations have played crucial roles in unraveling the mechanism of pre-mRNA splicing in planta. Typically, splice site mutations abolish splicing events or activate one or more cryptic splice sites surrounding the mutated region. In this report, we investigated the splicing pattern of the EGY1 gene in an Ar-ion-induced egy1-4 allele of Arabidopsis thaliana. egy1-4 has an AG-to-AC mutation in the 3'-end of intron 3, along with 4-bp substitutions and a 5-bp deletion in adjacent exon 4. RT-PCR, cDNA cloning, and amplicon sequencing analyses of EGY1 revealed that while most wild-type EGY1 mRNAs had a single splicing pattern, egy1-4 mRNAs had multiple splicing defects. Almost half of EGY1 transcripts showed 'intron retention' at intron 3, while the other half exhibited activation of 3' cryptic splice sites either upstream or downstream of the original 3'-splice site. Unexpectedly, around 8% of EGY1 transcripts in egy1-4 exhibited activation of cryptic 5'-splice sites positioned upstream of the authentic 5'-splice site of intron 3. Whole genome resequencing of egy1-4 indicated that it has no other known impactful mutations. These results may provide a rare, but real case of activation of cryptic 5'-splice sites by downstream 3'-splice site/exon mutations in planta.
Collapse
Affiliation(s)
- Alvin Sanjaya
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, Japan
- Graduate School of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
| | - Ryo Nishijima
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, Japan
| | - Yuki Fujii
- Graduate School of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
| | - Makoto Asano
- Graduate School of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
| | - Kotaro Ishii
- Ion Beam Breeding Group, RIKEN Nishina Center, Wako, Saitama, Japan
| | - Yusuke Kazama
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, Japan
- Ion Beam Breeding Group, RIKEN Nishina Center, Wako, Saitama, Japan
| | - Tomoko Abe
- Ion Beam Breeding Group, RIKEN Nishina Center, Wako, Saitama, Japan
| | - Makoto T. Fujiwara
- Graduate School of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
- Ion Beam Breeding Group, RIKEN Nishina Center, Wako, Saitama, Japan
| |
Collapse
|
7
|
Sun B, Huang J, Kong L, Gao C, Zhao F, Shen J, Wang T, Li K, Wang L, Wang Y, Halterman DA, Dong S. Alternative splicing of a potato disease resistance gene maintains homeostasis between growth and immunity. THE PLANT CELL 2024; 36:3729-3750. [PMID: 38941447 PMCID: PMC11371151 DOI: 10.1093/plcell/koae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Plants possess a robust and sophisticated innate immune system against pathogens and must balance growth with rapid pathogen detection and defense. The intracellular receptors with nucleotide-binding leucine-rich repeat (NLR) motifs recognize pathogen-derived effector proteins and thereby trigger the immune response. The expression of genes encoding NLR receptors is precisely controlled in multifaceted ways. The alternative splicing (AS) of introns in response to infection is recurrently observed but poorly understood. Here we report that the potato (Solanum tuberosum) NLR gene RB undergoes AS of its intron, resulting in 2 transcriptional isoforms, which coordinately regulate plant immunity and growth homeostasis. During normal growth, RB predominantly exists as an intron-retained isoform RB_IR, encoding a truncated protein containing only the N-terminus of the NLR. Upon late blight infection, the pathogen induces intron splicing of RB, increasing the abundance of RB_CDS, which encodes a full-length and active R protein. By deploying the RB splicing isoforms fused with a luciferase reporter system, we identified IPI-O1 (also known as Avrblb1), the RB cognate effector, as a facilitator of RB AS. IPI-O1 directly interacts with potato splicing factor StCWC15, resulting in altered localization of StCWC15 from the nucleoplasm to the nucleolus and nuclear speckles. Mutations in IPI-O1 that eliminate StCWC15 binding also disrupt StCWC15 re-localization and RB intron splicing. Thus, our study reveals that StCWC15 serves as a surveillance facilitator that senses the pathogen-secreted effector and regulates the trade-off between RB-mediated plant immunity and growth, expanding our understanding of molecular plant-microbe interactions.
Collapse
Affiliation(s)
- Biying Sun
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Huang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Liang Kong
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuyun Gao
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Zhao
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayong Shen
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Wang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Kangping Li
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Luyao Wang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen Branch, Shenzhen, Guangdong 518120, China
| | - Yuanchao Wang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Dennis A Halterman
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
- US Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706-1514, USA
| | - Suomeng Dong
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Xu Z, Xiao Y, Guo J, Lv Z, Chen W. Relevance and regulation of alternative splicing in plant secondary metabolism: current understanding and future directions. HORTICULTURE RESEARCH 2024; 11:uhae173. [PMID: 39135731 PMCID: PMC11317897 DOI: 10.1093/hr/uhae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024]
Abstract
The secondary metabolism of plants is an essential life process enabling organisms to navigate various stages of plant development and cope with ever-changing environmental stresses. Secondary metabolites, abundantly found in nature, possess significant medicinal value. Among the regulatory mechanisms governing these metabolic processes, alternative splicing stands out as a widely observed post-transcriptional mechanism present in multicellular organisms. It facilitates the generation of multiple mRNA transcripts from a single gene by selecting different splicing sites. Selective splicing events in plants are widely induced by various signals, including external environmental stress and hormone signals. These events ultimately regulate the secondary metabolic processes and the accumulation of essential secondary metabolites in plants by influencing the synthesis of primary metabolites, hormone metabolism, biomass accumulation, and capillary density. Simultaneously, alternative splicing plays a crucial role in enhancing protein diversity and the abundance of the transcriptome. This paper provides a summary of the factors inducing alternative splicing events in plants and systematically describes the progress in regulating alternative splicing with respect to different secondary metabolites, including terpenoid, phenolic compounds, and nitrogen-containing compounds. Such elucidation offers critical foundational insights for understanding the role of alternative splicing in regulating plant metabolism and presents novel avenues and perspectives for bioengineering.
Collapse
Affiliation(s)
- Zihan Xu
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinlin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611103, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611103, China
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
9
|
Jiang Y, Yue Y, Lu C, Latif MZ, Liu H, Wang Z, Yin Z, Li Y, Ding X. AtSNU13 modulates pre-mRNA splicing of RBOHD and ALD1 to regulate plant immunity. BMC Biol 2024; 22:153. [PMID: 38982460 PMCID: PMC11234627 DOI: 10.1186/s12915-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.
Collapse
Affiliation(s)
- Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Muhammad Zunair Latif
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhaoxu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China.
| |
Collapse
|
10
|
Liu F, Cai S, Dai L, Ai N, Feng G, Wang N, Zhang W, Liu K, Zhou B. SR45a plays a key role in enhancing cotton resistance to Verticillium dahliae by alternative splicing of immunity genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:137-152. [PMID: 38569053 DOI: 10.1111/tpj.16750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Alternative splicing (AS) of pre-mRNAs increases the diversity of transcriptome and proteome and plays fundamental roles in plant development and stress responses. However, the prevalent changes in AS events and the regulating mechanisms of plants in response to pathogens remain largely unknown. Here, we show that AS changes are an important mechanism conferring cotton immunity to Verticillium dahliae (Vd). GauSR45a, encoding a serine/arginine-rich RNA binding protein, was upregulated expression and underwent AS in response to Vd infection in Gossypium australe, a wild diploid cotton species highly resistant to Vd. Silencing GauSR45a substantially reduced the splicing ratio of Vd-induced immune-associated genes, including GauBAK1 (BRI1-associated kinase 1) and GauCERK1 (chitin elicitor receptor kinase 1). GauSR45a binds to the GAAGA motif that is commonly found in the pre-mRNA of genes essential for PTI, ETI, and defense. The binding between GauSR45a and the GAAGA motif in the pre-mRNA of BAK1 was enhanced by two splicing factors of GauU2AF35B and GauU1-70 K, thereby facilitating exon splicing; silencing either AtU2AF35B or AtU1-70 K decreased the resistance to Vd in transgenic GauSR45a Arabidopsis. Overexpressing the short splicing variant of BAK1GauBAK1.1 resulted in enhanced Verticillium wilt resistance rather than the long one GauBAK1.2. Vd-induced far more AS events were in G. barbadense (resistant tetraploid cotton) than those in G. hirsutum (susceptible tetraploid cotton) during Vd infection, indicating resistance divergence in immune responses at a genome-wide scale. We provided evidence showing a fundamental mechanism by which GauSR45a enhances cotton resistance to Vd through global regulation of AS of immunity genes.
Collapse
Affiliation(s)
- Fujie Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- Institue of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50#, Nanjing, 210014, China
| | - Sheng Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- Nanjing Forestry University, 159 Longpan Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lingjun Dai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Nijiang Ai
- Xinjiang Production and Construction Corps, Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Guoli Feng
- Xinjiang Production and Construction Corps, Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Ningshan Wang
- Xinjiang Production and Construction Corps, Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kang Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| |
Collapse
|
11
|
Lv J, Zhou F, Wei Q, Long X, Tian W, Zhai J, Wang J, Zhang Q, Wan D. An alternative 3' splice site of PeuHKT1;3 improves the response to salt stress through enhancing affinity to K + in Populus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108776. [PMID: 38843683 DOI: 10.1016/j.plaphy.2024.108776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/30/2024] [Accepted: 05/25/2024] [Indexed: 06/17/2024]
Abstract
Alternative splicing (AS) serves as a crucial post-transcriptional regulator in plants that contributes to the resistance to salt stress. However, the underlying mechanism is largely unknown. In this research, we identified an important AS transcript in Populus euphratica, PeuHKT1:3a, generated by alternative 3' splice site splicing mode that resulted in the removal of 252 bases at the 5' end of the first exon in PeuHKT1:3. Protein sequence comparison showed that the site of AS occurred in PeuHKT1:3 is located at a crucial Ser residue within the first pore-loop domain, which leads to inefficient K+ transport in HKT I-type transporters. Expressing PeuHKT1;3a in an axt3 mutant yeast strain can effectively compensate for the lack of intracellular K+, whereas the expression of PeuHKT1;3 cannot yield the effect. Furthermore, in transgenic Arabidopsis and poplar plants, it was observed that lines expressing PeuHKT1;3a exhibited greater salt tolerance compared to those expressing the PeuHKT1;3 strain. Analysis of ion content and flux demonstrated that the transgenic PeuHKT1;3a line exhibited significantly higher K+ content compared to the PeuHKT1;3 line, while there was no significant difference in Na+ content. In conclusion, our findings revealed that AS can give rise to novel variants of HKT I-type proteins in P. euphratica with modified K+ selectivity to keep a higher K+/Na+ ratio to enhanced salt tolerance.
Collapse
Affiliation(s)
- Jiaojiao Lv
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Fangfang Zhou
- College of Life and Health, Zhengzhou Technical College, Zhengzhou 450121, China.
| | - Qianqian Wei
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Xiaoqin Long
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Wenjing Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Jiajia Zhai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Junjie Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Qi Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Dongshi Wan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
12
|
Burgardt R, Lambert D, Heuwieser C, Sack M, Wagner G, Weinberg Z, Wachter A. Positioning of pyrimidine motifs around cassette exons defines their PTB-dependent splicing in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2202-2218. [PMID: 38578875 DOI: 10.1111/tpj.16739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Alternative splicing (AS) is a complex process that generates transcript variants from a single pre-mRNA and is involved in numerous biological functions. Many RNA-binding proteins are known to regulate AS; however, little is known about the underlying mechanisms, especially outside the mammalian clade. Here, we show that polypyrimidine tract binding proteins (PTBs) from Arabidopsis thaliana regulate AS of cassette exons via pyrimidine (Py)-rich motifs close to the alternative splice sites. Mutational studies on three PTB-dependent cassette exon events revealed that only some of the Py motifs in this region are critical for AS. Moreover, in vitro binding of PTBs did not reflect a motif's impact on AS in vivo. Our mutational studies and bioinformatic investigation of all known PTB-regulated cassette exons from A. thaliana and human suggested that the binding position of PTBs relative to a cassette exon defines whether its inclusion or skipping is induced. Accordingly, exon skipping is associated with a higher frequency of Py stretches within the cassette exon, and in human also upstream of it, whereas exon inclusion is characterized by increased Py motif occurrence downstream of said exon. Enrichment of Py motifs downstream of PTB-activated 5' splice sites is also seen for PTB-dependent intron removal and alternative 5' splice site events from A. thaliana, suggesting this is a common step of exon definition. In conclusion, the position-dependent AS regulatory mechanism by PTB homologs has been conserved during the separate evolution of plants and mammals, while other critical features, in particular intron length, have considerably changed.
Collapse
Affiliation(s)
- Rica Burgardt
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Dorothee Lambert
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Christina Heuwieser
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Maximilian Sack
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Gabriele Wagner
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Andreas Wachter
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| |
Collapse
|
13
|
Nanni A, Titus-McQuillan J, Bankole KS, Pardo-Palacios F, Signor S, Vlaho S, Moskalenko O, Morse A, Rogers RL, Conesa A, McIntyre LM. Nucleotide-level distance metrics to quantify alternative splicing implemented in TranD. Nucleic Acids Res 2024; 52:e28. [PMID: 38340337 PMCID: PMC10954468 DOI: 10.1093/nar/gkae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/29/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Advances in affordable transcriptome sequencing combined with better exon and gene prediction has motivated many to compare transcription across the tree of life. We develop a mathematical framework to calculate complexity and compare transcript models. Structural features, i.e. intron retention (IR), donor/acceptor site variation, alternative exon cassettes, alternative 5'/3' UTRs, are compared and the distance between transcript models is calculated with nucleotide level precision. All metrics are implemented in a PyPi package, TranD and output can be used to summarize splicing patterns for a transcriptome (1GTF) and between transcriptomes (2GTF). TranD output enables quantitative comparisons between: annotations augmented by empirical RNA-seq data and the original transcript models; transcript model prediction tools for longread RNA-seq (e.g. FLAIR versus Isoseq3); alternate annotations for a species (e.g. RefSeq vs Ensembl); and between closely related species. In C. elegans, Z. mays, D. melanogaster, D. simulans and H. sapiens, alternative exons were observed more frequently in combination with an alternative donor/acceptor than alone. Transcript models in RefSeq and Ensembl are linked and both have unique transcript models with empirical support. D. melanogaster and D. simulans, share many transcript models and long-read RNAseq data suggests that both species are under-annotated. We recommend combined references.
Collapse
Affiliation(s)
- Adalena Nanni
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - James Titus-McQuillan
- University of North Carolina at Charlotte Department of Bioinformatics and Genomics Charlotte, NC, USA
| | - Kinfeosioluwa S Bankole
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | | | - Sarah Signor
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Srna Vlaho
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Oleksandr Moskalenko
- University of Florida Research Computing, University of Florida, Gainesville, FL 32611, USA
| | - Alison M Morse
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Rebekah L Rogers
- University of North Carolina at Charlotte Department of Bioinformatics and Genomics Charlotte, NC, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology. Spanish National Research Council, Paterna, Spain
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Yu Y, Liufu Y, Ren Y, Zhang J, Li M, Tian S, Wang J, Liao S, Gong G, Zhang H, Guo S. Comprehensive Profiling of Alternative Splicing and Alternative Polyadenylation during Fruit Ripening in Watermelon ( Citrullus lanatus). Int J Mol Sci 2023; 24:15333. [PMID: 37895011 PMCID: PMC10607834 DOI: 10.3390/ijms242015333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Fruit ripening is a highly complicated process that is accompanied by the formation of fruit quality. In recent years, a series of studies have demonstrated post-transcriptional control play important roles in fruit ripening and fruit quality formation. Till now, the post-transcriptional mechanisms for watermelon fruit ripening have not been comprehensively studied. In this study, we conducted PacBio single-molecule long-read sequencing to identify genome-wide alternative splicing (AS), alternative polyadenylation (APA) and long non-coding RNAs (lncRNAs) in watermelon fruit. In total, 6,921,295 error-corrected and mapped full-length non-chimeric (FLNC) reads were obtained. Notably, more than 42,285 distinct splicing isoforms were derived from 5,891,183 intron-containing full-length FLNC reads, including a large number of AS events associated with fruit ripening. In addition, we characterized 21,506 polyadenylation sites from 11,611 genes, 8703 of which have APA sites. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that fructose and mannose metabolism, starch and sucrose metabolism and carotenoid biosynthesis were both enriched in genes undergoing AS and APA. These results suggest that post-transcriptional regulation might potentially have a key role in regulation of fruit ripening in watermelon. Taken together, our comprehensive PacBio long-read sequencing results offer a valuable resource for watermelon research, and provide new insights into the molecular mechanisms underlying the complex regulatory networks of watermelon fruit ripening.
Collapse
Affiliation(s)
- Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Yuxiang Liufu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Jie Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Maoying Li
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Shouwei Tian
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Jinfang Wang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Shengjin Liao
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Guoyi Gong
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Haiying Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| |
Collapse
|
15
|
Dwivedi SL, Quiroz LF, Reddy ASN, Spillane C, Ortiz R. Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs. Int J Mol Sci 2023; 24:15205. [PMID: 37894886 PMCID: PMC10607462 DOI: 10.3390/ijms242015205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, SE, Sweden
| |
Collapse
|
16
|
Li Q, Li M, Ma H, Xue M, Chen T, Ding X, Zhang S, Xiao J. Quantitative Phosphoproteomic Analysis Provides Insights into the Sodium Bicarbonate Responsiveness of Glycine max. Biomolecules 2023; 13:1520. [PMID: 37892202 PMCID: PMC10605096 DOI: 10.3390/biom13101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Sodium bicarbonate stress caused by NaHCO3 is one of the most severe abiotic stresses affecting agricultural production worldwide. However, little attention has been given to the molecular mechanisms underlying plant responses to sodium bicarbonate stress. To understand phosphorylation events in signaling pathways triggered by sodium bicarbonate stress, TMT-labeling-based quantitative phosphoproteomic analyses were performed on soybean leaf and root tissues under 50 mM NaHCO3 treatment. In the present study, a total of 7856 phosphopeptides were identified from cultivated soybeans (Glycine max L. Merr.), representing 3468 phosphoprotein groups, in which 2427 phosphoprotein groups were newly identified. These phosphoprotein groups contained 6326 unique high-probability phosphosites (UHPs), of which 77.2% were newly identified, increasing the current soybean phosphosite database size by 43.4%. Among the phosphopeptides found in this study, we determined 67 phosphopeptides (representing 63 phosphoprotein groups) from leaf tissue and 554 phosphopeptides (representing 487 phosphoprotein groups) from root tissue that showed significant changes in phosphorylation levels under sodium bicarbonate stress (fold change >1.2 or <0.83, respectively; p < 0.05). Localization prediction showed that most phosphoproteins localized in the nucleus for both leaf and root tissues. GO and KEGG enrichment analyses showed quite different enriched functional terms between leaf and root tissues, and more pathways were enriched in the root tissue than in the leaf tissue. Moreover, a total of 53 different protein kinases and 7 protein phosphatases were identified from the differentially expressed phosphoproteins (DEPs). A protein kinase/phosphatase interactor analysis showed that the interacting proteins were mainly involved in/with transporters/membrane trafficking, transcriptional level regulation, protein level regulation, signaling/stress response, and miscellaneous functions. The results presented in this study reveal insights into the function of post-translational modification in plant responses to sodium bicarbonate stress.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (Q.L.)
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Minglong Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Huiying Ma
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Man Xue
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Tong Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodong Ding
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (Q.L.)
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (Q.L.)
| | - Jialei Xiao
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (Q.L.)
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
17
|
Yan X, Chen X, Li Y, Li Y, Wang F, Zhang J, Ning G, Bao M. The Abundant and Unique Transcripts and Alternative Splicing of the Artificially Autododecaploid London Plane ( Platanus × acerifolia). Int J Mol Sci 2023; 24:14486. [PMID: 37833935 PMCID: PMC10572260 DOI: 10.3390/ijms241914486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
Transcription and alternative splicing (AS) are now appreciated in plants, but few studies have examined the effects of changing ploidy on transcription and AS. In this study, we showed that artificially autododecaploid plants of London plane (Platanus × acerifolia (Aiton) Willd) had few flowers relative to their hexaploid progenitors. Transcriptome analysis based on full-length Oxford Nanopore Technologies (ONTs) and next-generation sequencing (NGS) revealed that the increased ploidy level in P. × acerifolia led to more transcribed isoforms, accompanied by an increase in the number of isoforms per gene. The functional enrichment of genes indicated that novel genes transcribed specifically in the dodecaploids may have been highly correlated with the ability to maintain genome stability. The dodecaploids showed a higher number of genes with upregulated differentially expressed genes (DEGs) compared with the hexaploid counterpart. The genome duplication of P. × acerifolia resulted mainly in the DEGs involved in basic biological pathways. It was noted that there was a greater abundance of alternative splicing (AS) events and AS genes in the dodecaploids compared with the hexaploids in P. × acerifolia. In addition, a significant difference between the structure and expression of AS events between the hexaploids and dodecaploids of Platanus was found. Of note, some DEGs and differentially spliced genes (DSGs) related to floral transition and flower development were consistent with the few flower traits in the dodecaploids of P. × acerifolia. Collectively, our findings explored the difference in transcription and AS regulation between the hexaploids and dodecaploids of P. × acerifolia and gained new insight into the molecular mechanisms underlying the few-flower phenotype of P. × acerifolia. These results contribute to uncovering the regulatory role of transcription and AS in polyploids and breeding few-flower germplasms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (J.Z.)
| |
Collapse
|
18
|
Cheng W, Hong C, Zeng F, Liu N, Gao H. Sequence variations affect the 5' splice site selection of plant introns. PLANT PHYSIOLOGY 2023; 193:1281-1296. [PMID: 37394939 DOI: 10.1093/plphys/kiad375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 07/04/2023]
Abstract
Introns are noncoding sequences spliced out of pre-mRNAs by the spliceosome to produce mature mRNAs. The 5' ends of introns mostly begin with GU and have a conserved sequence motif of AG/GUAAGU that could base-pair with the core sequence of U1 snRNA of the spliceosome. Intriguingly, ∼ 1% of introns in various eukaryotic species begin with GC. This occurrence could cause misannotation of genes; however, the underlying splicing mechanism is unclear. We analyzed the sequences around the intron 5' splice site (ss) in Arabidopsis (Arabidopsis thaliana) and found sequences at the GC intron ss are much more stringent than those of GT introns. Mutational analysis at various positions of the intron 5' ss revealed that although mutations impair base pairing, different mutations at the same site can have different effects, suggesting that steric hindrance also affects splicing. Moreover, mutations of 5' ss often activate a hidden ss nearby. Our data suggest that the 5' ss is selected via a competition between the major ss and the nearby minor ss. This work not only provides insights into the splicing mechanism of intron 5' ss but also improves the accuracy of gene annotation and the study of the evolution of intron 5' ss.
Collapse
Affiliation(s)
- Wenzhen Cheng
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Conghao Hong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Fang Zeng
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Nan Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
19
|
Palos K, Yu L, Railey CE, Nelson Dittrich AC, Nelson ADL. Linking discoveries, mechanisms, and technologies to develop a clearer perspective on plant long noncoding RNAs. THE PLANT CELL 2023; 35:1762-1786. [PMID: 36738093 PMCID: PMC10226578 DOI: 10.1093/plcell/koad027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 05/30/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a large and diverse class of genes in eukaryotic genomes that contribute to a variety of regulatory processes. Functionally characterized lncRNAs play critical roles in plants, ranging from regulating flowering to controlling lateral root formation. However, findings from the past decade have revealed that thousands of lncRNAs are present in plant transcriptomes, and characterization has lagged far behind identification. In this setting, distinguishing function from noise is challenging. However, the plant community has been at the forefront of discovery in lncRNA biology, providing many functional and mechanistic insights that have increased our understanding of this gene class. In this review, we examine the key discoveries and insights made in plant lncRNA biology over the past two and a half decades. We describe how discoveries made in the pregenomics era have informed efforts to identify and functionally characterize lncRNAs in the subsequent decades. We provide an overview of the functional archetypes into which characterized plant lncRNAs fit and speculate on new avenues of research that may uncover yet more archetypes. Finally, this review discusses the challenges facing the field and some exciting new molecular and computational approaches that may help inform lncRNA comparative and functional analyses.
Collapse
Affiliation(s)
- Kyle Palos
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Li’ang Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Caylyn E Railey
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- Plant Biology Graduate Field, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
20
|
Hazra A, Pal A, Kundu A. Alternative splicing shapes the transcriptome complexity in blackgram [Vigna mungo (L.) Hepper]. Funct Integr Genomics 2023; 23:144. [PMID: 37133618 DOI: 10.1007/s10142-023-01066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Vigna mungo, a highly consumed crop in the pan-Asian countries, is vulnerable to several biotic and abiotic stresses. Understanding the post-transcriptional gene regulatory cascades, especially alternative splicing (AS), may underpin large-scale genetic improvements to develop stress-resilient varieties. Herein, a transcriptome based approach was undertaken to decipher the genome-wide AS landscape and splicing dynamics in order to establish the intricacies of their functional interactions in various tissues and stresses. RNA sequencing followed by high-throughput computational analyses identified 54,526 AS events involving 15,506 AS genes that generated 57,405 transcripts isoforms. Enrichment analysis revealed their involvement in diverse regulatory functions and demonstrated that transcription factors are splicing-intensive, splice variants of which are expressed differentially across tissues and environmental cues. Increased expression of a splicing regulator NHP2L1/SNU13 was found to co-occur with lower intron retention events. The host transcriptome is significantly impacted by differential isoform expression of 1172 and 765 AS genes that resulted in 1227 (46.8% up and 53.2% downregulated) and 831 (47.5% up and 52.5% downregulated) transcript isoforms under viral pathogenesis and Fe2+ stressed condition, respectively. However, genes experiencing AS operate differently from the differentially expressed genes, suggesting AS is a unique and independent mode of regulatory mechanism. Therefore, it can be inferred that AS mediates a crucial regulatory role across tissues and stressful situations and the results would provide an invaluable resource for future endeavours in V. mungo genomics.
Collapse
Affiliation(s)
- Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata, 700091, India.
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India.
| |
Collapse
|
21
|
Timofeyenko K, Kanavalau D, Alexiou P, Kalyna M, Růžička K. Catsnap: a user-friendly algorithm for determining the conservation of protein variants reveals extensive parallelisms in the evolution of alternative splicing. THE NEW PHYTOLOGIST 2023; 238:1722-1732. [PMID: 36751910 PMCID: PMC10952736 DOI: 10.1111/nph.18799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Understanding the evolutionary conservation of complex eukaryotic transcriptomes significantly illuminates the physiological relevance of alternative splicing (AS). Examining the evolutionary depth of a given AS event with ordinary homology searches is generally challenging and time-consuming. Here, we present Catsnap, an algorithmic pipeline for assessing the conservation of putative protein isoforms generated by AS. It employs a machine learning approach following a database search with the provided pair of protein sequences. We used the Catsnap algorithm for analyzing the conservation of emerging experimentally characterized alternative proteins from plants and animals. Indeed, most of them are conserved among other species. Catsnap can detect the conserved functional protein isoforms regardless of the AS type by which they are generated. Notably, we found that while the primary amino acid sequence is maintained, the type of AS determining the inclusion or exclusion of protein regions varies throughout plant phylogenetic lineages in these proteins. We also document that this phenomenon is less seen among animals. In sum, our algorithm highlights the presence of unexpectedly frequent hotspots where protein isoforms recurrently arise to carry physiologically relevant functions. The user web interface is available at https://catsnap.cesnet.cz/.
Collapse
Affiliation(s)
- Ksenia Timofeyenko
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental BotanyCzech Academy of Sciences165 02Prague 6Czech Republic
- Functional Genomics and Proteomics of Plants and National Centre for Biomolecular ResearchMasaryk University625 00BrnoCzech Republic
| | | | - Panagiotis Alexiou
- Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant BiologyUniversity of Natural Resources and Life Sciences (BOKU)1190ViennaAustria
| | - Kamil Růžička
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental BotanyCzech Academy of Sciences165 02Prague 6Czech Republic
| |
Collapse
|
22
|
Yang F, Wang T, Guo Q, Zou Q, Yu S. The CmMYB3 transcription factors isolated from the Chrysanthemum morifolium regulate flavonol biosynthesis in Arabidopsis thaliana. PLANT CELL REPORTS 2023; 42:791-803. [PMID: 36840758 DOI: 10.1007/s00299-023-02991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Chrysanthemum morifolium MYB3 factors are transcriptional activators for the regulation of flavonol biosynthesis. Flavonol was not only the critical secondary metabolite participating in the growth and development of plants but also the main active ingredient in medicinal chrysanthemum. However, few pieces of research revealed the transcriptional regulation of flavonol biosynthesis in Chrysanthemum morifolium. Here, we isolated two CmMYB3 transcription factors (CmMYB3a and CmMYB3b) from the capitulum of Chrysanthemum morifolium cv 'Hangju'. According to the sequence characteristics, the CmMYB3a and CmMYB3b belonged to the R2R3-MYB subgroup 7, whose members were often reported to regulate flavonol biosynthesis positively. CmMYB3a and CmMYB3b factors were identified to localize in the nucleus by subcellular localization assay. Besides, both of them have obvious transcriptional self-activation activity in their C-terminal. After the overexpression of CmMYB3 genes in Nicotiana benthamiana and Arabidopsis thaliana, the flavonol contents in plants were increased, and the expression of AtCHS, AtCHI, AtF3H, and AtFLS genes in A. thaliana was also improved. Interestingly, the CmMYB3a factor had stronger functions in improving flavonol contents and related gene expression levels than CmMYB3b. The interaction analysis between transcription factors and promoters suggested that CmMYB3 could bind and activate the promoters of CmCHI and CmFLS genes in C. morifolium, and CmMYB3a also functioned more powerfully. Overall, these results indicated that CmMYB3a and CmMYB3b work as transcriptional activators in controlling flavonol biosynthesis.
Collapse
Affiliation(s)
- Feng Yang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tao Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Qingjun Zou
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shuyan Yu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
23
|
Ullah F, Jabeen S, Salton M, Reddy ASN, Ben-Hur A. Evidence for the role of transcription factors in the co-transcriptional regulation of intron retention. Genome Biol 2023; 24:53. [PMID: 36949544 PMCID: PMC10031921 DOI: 10.1186/s13059-023-02885-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/16/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Alternative splicing is a widespread regulatory phenomenon that enables a single gene to produce multiple transcripts. Among the different types of alternative splicing, intron retention is one of the least explored despite its high prevalence in both plants and animals. The recent discovery that the majority of splicing is co-transcriptional has led to the finding that chromatin state affects alternative splicing. Therefore, it is plausible that transcription factors can regulate splicing outcomes. RESULTS We provide evidence for the hypothesis that transcription factors are involved in the regulation of intron retention by studying regions of open chromatin in retained and excised introns. Using deep learning models designed to distinguish between regions of open chromatin in retained introns and non-retained introns, we identified motifs enriched in IR events with significant hits to known human transcription factors. Our model predicts that the majority of transcription factors that affect intron retention come from the zinc finger family. We demonstrate the validity of these predictions using ChIP-seq data for multiple zinc finger transcription factors and find strong over-representation for their peaks in intron retention events. CONCLUSIONS This work opens up opportunities for further studies that elucidate the mechanisms by which transcription factors affect intron retention and other forms of splicing. AVAILABILITY Source code available at https://github.com/fahadahaf/chromir.
Collapse
Affiliation(s)
- Fahad Ullah
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - Saira Jabeen
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - Maayan Salton
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Anireddy S N Reddy
- Biochemistry and Molecular Biology Department, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
24
|
Sybilska E, Daszkowska-Golec A. Alternative splicing in ABA signaling during seed germination. FRONTIERS IN PLANT SCIENCE 2023; 14:1144990. [PMID: 37008485 PMCID: PMC10060653 DOI: 10.3389/fpls.2023.1144990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Seed germination is an essential step in a plant's life cycle. It is controlled by complex physiological, biochemical, and molecular mechanisms and external factors. Alternative splicing (AS) is a co-transcriptional mechanism that regulates gene expression and produces multiple mRNA variants from a single gene to modulate transcriptome diversity. However, little is known about the effect of AS on the function of generated protein isoforms. The latest reports indicate that alternative splicing (AS), the relevant mechanism controlling gene expression, plays a significant role in abscisic acid (ABA) signaling. In this review, we present the current state of the art about the identified AS regulators and the ABA-related changes in AS during seed germination. We show how they are connected with the ABA signaling and the seed germination process. We also discuss changes in the structure of the generated AS isoforms and their impact on the functionality of the generated proteins. Also, we point out that the advances in sequencing technology allow for a better explanation of the role of AS in gene regulation by more accurate detection of AS events and identification of full-length splicing isoforms.
Collapse
Affiliation(s)
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
25
|
Lu X, Yang Z, Song W, Miao J, Zhao H, Ji P, Li T, Si J, Yin Z, Jing M, Shen D, Dou D. The Phytophthora sojae effector PsFYVE1 modulates immunity-related gene expression by targeting host RZ-1A protein. PLANT PHYSIOLOGY 2023; 191:925-945. [PMID: 36461945 PMCID: PMC9922423 DOI: 10.1093/plphys/kiac552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Oomycete pathogens secrete numerous effectors to manipulate plant immunity and promote infection. However, relatively few effector types have been well characterized. In this study, members of an FYVE domain-containing protein family that are highly expanded in oomycetes were systematically identified, and one secreted protein, PsFYVE1, was selected for further study. PsFYVE1 enhanced Phytophthora capsici infection in Nicotiana benthamiana and was necessary for Phytophthora sojae virulence. The FYVE domain of PsFYVE1 had PI3P-binding activity that depended on four conserved amino acid residues. Furthermore, PsFYVE1 targeted RNA-binding proteins RZ-1A/1B/1C in N. benthamiana and soybean (Glycine max), and silencing of NbRZ-1A/1B/1C genes attenuated plant immunity. NbRZ-1A was associated with the spliceosome complex that included three important components, glycine-rich RNA-binding protein 7 (NbGRP7), glycine-rich RNA-binding protein 8 (NbGRP8), and a specific component of the U1 small nuclear ribonucleoprotein complex (NbU1-70K). Notably, PsFYVE1 disrupted NbRZ-1A-NbGRP7 interaction. RNA-seq and subsequent experimental analysis demonstrated that PsFYVE1 and NbRZ-1A not only modulated pre-mRNA alternative splicing (AS) of the necrotic spotted lesions 1 (NbNSL1) gene, but also co-regulated transcription of hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (NbHCT), ethylene insensitive 2 (NbEIN2), and sucrose synthase 4 (NbSUS4) genes, which participate in plant immunity. Collectively, these findings indicate that the FYVE domain-containing protein family includes potential uncharacterized effector types and also highlight that plant pathogen effectors can regulate plant immunity-related genes at both AS and transcription levels to promote disease.
Collapse
Affiliation(s)
- Xinyu Lu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Zitong Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Song
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinlu Miao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hanqing Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiyun Ji
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianli Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jierui Si
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Yin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
26
|
Li T, Wang H, Zhang Y, Wang H, Zhang Z, Liu X, Zhang Z, Liu K, Yang D, Zhang H, Gu L. Comprehensive profiling of epigenetic modifications in fast-growing Moso bamboo shoots. PLANT PHYSIOLOGY 2023; 191:1017-1035. [PMID: 36417282 PMCID: PMC9922427 DOI: 10.1093/plphys/kiac525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/10/2022] [Accepted: 11/17/2022] [Indexed: 05/13/2023]
Abstract
The fast growth of Moso bamboo (Phyllostachys edulis) shoots is caused by the rapid elongation of each internode. However, the key underlying cellular processes and epigenetic mechanisms remain largely unexplored. We used microscopy and multi-omics approaches to investigate two regions (bottom and middle) of the 18th internode from shoots of two different heights (2 and 4 m). We observed that internode cells become longer, and that lignin biosynthesis and glycosyltransferase family 43 (GT43) genes are substantially upregulated with shoot height. Nanopore direct RNA sequencing (DRS) revealed a higher N6-methyladenine (m6A) modification rate in 2-m shoots than in 4-m shoots. In addition, different specific m6A modification sites were enriched at different growth stages. Global DNA methylation profiling indicated that DNA methylation levels are higher in 4-m shoots than in 2-m shoots. We also detected shorter poly(A) tail lengths (PALs) in 4-m shoots compared with 2-m shoots. Genes showing differential PAL were mainly enriched in the functional terms of protein translation and vesicle fusion. An association analysis between PALs and DNA methylation strongly suggested that gene body CG methylation levels are positively associated with PAL. This study provides valuable information to better understand post-transcriptional regulations responsible for fast-growing shoots in Moso bamboo.
Collapse
Affiliation(s)
- Tao Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huihui Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaxin Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huiyuan Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeyu Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuqing Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zekun Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Deming Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
27
|
Ma Z, Li M, Zhang H, Zhao B, Liu Z, Duan S, Meng X, Li G, Guo X. Alternative Splicing of TaHsfA2-7 Is Involved in the Improvement of Thermotolerance in Wheat. Int J Mol Sci 2023; 24:ijms24021014. [PMID: 36674529 PMCID: PMC9861123 DOI: 10.3390/ijms24021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
High temperature has severely affected plant growth and development, resulting in reduced production of crops worldwide, especially wheat. Alternative splicing (AS), a crucial post-transcriptional regulatory mechanism, is involved in the growth and development of eukaryotes and the adaptation to environmental changes. Previous transcriptome data suggested that heat shock transcription factor (Hsf) TaHsfA2-7 may form different transcripts by AS. However, it remains unclear whether this post-transcriptional regulatory mechanism of TaHsfA2-7 is related to thermotolerance in wheat (Triticum aestivum). Here, we identified a novel splice variant, TaHsfA2-7-AS, which was induced by high temperature and played a positive role in thermotolerance regulation in wheat. Moreover, TaHsfA2-7-AS is predicted to encode a small truncated TaHsfA2-7 isoform, retaining only part of the DNA-binding domain (DBD). TaHsfA2-7-AS is constitutively expressed in various tissues of wheat. Notably, the expression level of TaHsfA2-7-AS is significantly up-regulated by heat shock (HS) during flowering and grain-filling stages in wheat. Further studies showed that TaHsfA2-7-AS was localized in the nucleus but lacked transcriptional activation activity. Ectopic expression of TaHsfA2-7-AS in yeast exhibited improved thermotolerance. Compared to non-transgenic plants, overexpression of TaHsfA2-7-AS in Arabidopsis results in enhanced tolerance to heat stress. Simultaneously, we also found that TaHsfA1 is directly involved in the transcriptional regulation of TaHsfA2-7 and TaHsfA2-7-AS. In summary, our findings demonstrate the function of TaHsfA2-7-AS splicing variant in response to heat stress and establish a link between regulatory mechanisms of AS and the improvement of thermotolerance in wheat.
Collapse
Affiliation(s)
- Zhenyu Ma
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Mingyue Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Huaning Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Baihui Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zihui Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Shuonan Duan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Xiangzhao Meng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
- Correspondence: (X.M.); (G.L.)
| | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
- Correspondence: (X.M.); (G.L.)
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| |
Collapse
|
28
|
Zhou T, He Y, Zeng X, Cai B, Qu S, Wang S. Comparative Analysis of Alternative Splicing in Two Contrasting Apple Cultivars Defense against Alternaria alternata Apple Pathotype Infection. Int J Mol Sci 2022; 23:ijms232214202. [PMID: 36430679 PMCID: PMC9693243 DOI: 10.3390/ijms232214202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Alternaria blotch disease, caused by the Alternaria alternata apple pathotype (A. alternata AP), is one of the most serious fungal diseases in apples. Alternative splicing (AS), one of the pivotal post-transcriptional regulatory mechanisms, plays essential roles in various disease resistance responses. Here, we performed RNA-Seq for two apple cultivars (resistant cultivar 'Jonathan' (J) and susceptible cultivar 'Starking Delicious' (SD)) infected by A. alternata AP to further investigate their AS divergence. In total, 1454, 1780, 1367 and 1698 specifically regulated differential alternative splicing (DAS) events were detected in J36, J72, SD36 and SD72 groups, respectively. Retained intron (RI) was the dominant AS pattern. Conformably, 642, 764, 585 and 742 uniquely regulated differentially spliced genes (DSGs) were found during A. alternata AP infection. Comparative analysis of AS genes in differential splicing and expression levels suggested that only a small proportion of DSGs overlapped with differentially expressed genes (DEGs). Gene ontology (GO) enrichment analysis demonstrated that the DSGs were significantly enriched at multiple levels of gene expression regulation. Briefly, the specific AS was triggered in apple defense against A. alternata AP. Therefore, this study facilitates our understanding on the roles of AS regulation in response to A. alternata AP infection in apples.
Collapse
|
29
|
Li Y, Du Y, Huai J, Jing Y, Lin R. The RNA helicase UAP56 and the E3 ubiquitin ligase COP1 coordinately regulate alternative splicing to repress photomorphogenesis in Arabidopsis. THE PLANT CELL 2022; 34:4191-4212. [PMID: 35920787 PMCID: PMC9614450 DOI: 10.1093/plcell/koac235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Light is a key environmental signal that regulates plant growth and development. While posttranscriptional regulatory mechanisms of gene expression include alternative splicing (AS) of pre-messenger RNA (mRNA) in both plants and animals, how light signaling affects AS in plants is largely unknown. Here, we identify DExD/H RNA helicase U2AF65-associated protein (UAP56) as a negative regulator of photomorphogenesis in Arabidopsis thaliana. UAP56 is encoded by the homologs UAP56a and UAP56b. Knockdown of UAP56 led to enhanced photomorphogenic responses and diverse developmental defects during vegetative and reproductive growth. UAP56 physically interacts with the central light signaling repressor constitutive photomorphogenic 1 (COP1) and U2AF65. Global transcriptome analysis revealed that UAP56 and COP1 co-regulate the transcription of a subset of genes. Furthermore, deep RNA-sequencing analysis showed that UAP56 and COP1 control pre-mRNA AS in both overlapping and distinct manners. Ribonucleic acid immunoprecipitation assays showed that UAP56 and COP1 bind to common small nuclear RNAs and mRNAs of downstream targets. Our study reveals that both UAP56 and COP1 function as splicing factors that coordinately regulate AS during light-regulated plant growth and development.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxin Du
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Huai
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | |
Collapse
|
30
|
Park SY, Jung WJ, Bang G, Hwang H, Kim JY. Transcriptome and Proteome Co-Profiling Offers an Understanding of Pre-Harvest Sprouting (PHS) Molecular Mechanisms in Wheat ( Triticum aestivum). PLANTS (BASEL, SWITZERLAND) 2022; 11:2807. [PMID: 36365261 PMCID: PMC9657071 DOI: 10.3390/plants11212807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
While wheat (Triticum aestivum L.) is a widely grown and enjoyed crop, the diverse and complex global situation and climate are exacerbating the instability of its supply. In particular, pre-harvest sprouting (PHS) is one of the major abiotic stresses that frequently occurs due to irregular climate conditions, causing serious damage to wheat and its quality. In this study, transcriptomic analysis with RNA-seq and proteomic analysis with LC-MS/MS were performed in PHS-treated spikes from two wheat cultivars presenting PHS sensitivity and tolerance, respectively. A total of 13,154 differentially expressed genes (DEGs) and 706 differentially expressed proteins (DEPs) were identified in four comparison groups between the susceptible/tolerant cultivars. Gene function and correlation analysis were performed to determine the co-profiled genes and proteins affected by PHS treatment. In the functional annotation of each comparative group, similar functions were confirmed in each cultivar under PHS treatment; however, in Keumgang PHS+7 (K7) vs. Woori PHS+7 (W7), functional annotations presented clear differences in the "spliceosome" and "proteasome" pathways. In addition, our results indicate that alternative splicing and ubiquitin-proteasome support the regulation of germination and seed dormancy. This study provides an advanced understanding of the functions involved in transcription and translation related to PHS mechanisms, thus enabling specific proposals for the further analysis of germination and seed dormancy mechanisms and pathways in wheat.
Collapse
Affiliation(s)
- Sang Yong Park
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 32439, Korea
| | - Woo Joo Jung
- Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Korea
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Heeyoun Hwang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Jae Yoon Kim
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
31
|
Fu Q, Zhang P, Zhao S, Li Y, Li X, Cao M, Yang N, Li C. A novel full-length transcriptome resource from multiple immune-related tissues in turbot (Scophthalmus maximus) using Pacbio SMART sequencing. FISH & SHELLFISH IMMUNOLOGY 2022; 129:106-113. [PMID: 35995372 DOI: 10.1016/j.fsi.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Turbot (Scophthalmus maximus) is an important cold-water economic fish. However, the production and development of turbot industry has been constantly hindered by the frequent occurrence of some diseases. Lacking full-length transcriptome for turbot limits immune gene discoveries and gene structures analysis. Therefore, we generated a full-length transcriptome using mixed immune-related tissues of turbot with PacBio Sequel platform. In this study, a total of 31.7 Gb high quality data were generated with the average subreads length of 2618 bp. According to the presence of 5' and 3' primers as well as poly (A) tails, FL (Full-length) and NFL (Non-full-length) isoforms were obtained. Meanwhile, we identified 32,003 non-redundant transcripts, 76.02% of which was novel isoforms of known genes. In addition, 12,176 alternative splicing (AS) events, 6614 polyadenylation (APA) events, 1905 transcription factors, and 2703 lncRNAs were identified. This work is a comprehensive report on the full-length transcriptome of immune-related tissues of turbot, and it also provides valuable molecular resources for future research on the adaptation mechanisms and functional genomics of turbot.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shoucong Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xingchun Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
32
|
Guo J, Wang Z, Qu L, Hu Y, Lu D. Transcriptomic and alternative splicing analyses provide insights into the roles of exogenous salicylic acid ameliorating waxy maize seedling growth under heat stress. BMC PLANT BIOLOGY 2022; 22:432. [PMID: 36076169 PMCID: PMC9461148 DOI: 10.1186/s12870-022-03822-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Salicylic acid (SA) is a phytohormone which works to regulate the abiotic stress response of plants. However, the molecular mechanism by which SA mediates heat tolerance in waxy maize (Zea mays L. sinsensis Kulesh) remains unknown. RESULTS Two varieties of waxy maize seedlings, heat-tolerant 'Yunuo7' (Y7) and heat-sensitive 'Suyunuo5' (S5), were pretreated with SA prior to heat stress (HTS). After treatment, physiological and transcriptomic changes were analyzed. Compared with HTS, the exogenous application of SA enhanced the shoot dry weight, the activities of antioxidant enzymes (e.g., SOD, POD, CAT and APX), and the concentration of endogenous phytohormones (e.g., SA, ABA, IAA, GA3), while decreased the MDA content. Transcriptome analysis showed that the number of differentially expressed genes (DEGs) identified in the control (CK) vs HTS and HTS vs HTS + SA comparisons were more in S5 than in Y7. HTS induced the downregulation of genes involved in photosynthesis and the upregulation of genes encoding heat shock transcription factors (HSFs) and heat shock proteins (HSPs). Compared with HTS, SA pretreatment reversed the expression of 5 photosynthesis-related genes, 26 phytohormone-related genes, and all genes encoding HSFs and HSPs in S5. Furthermore, the number of alternative splicing (AS) events increased under HTS treatment for both varieties, while decreased under SA pretreatment of S5. Differentially spliced genes (DSGs) showed little overlap with DEGs, and DEGs and DSGs differed significantly in functional enrichment. CONCLUSIONS Physiological and transcriptional together indicated that HTS and SA pretreatment had a greater effect on S5 than Y7. Additionally, it appears that transcriptional regulation and AS work synergistically to enhance thermotolerance in heat-sensitive waxy maize. Our study revealed the regulatory effects and underlying molecular mechanisms of SA on waxy maize seedling under HTS.
Collapse
Affiliation(s)
- Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zitao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yifan Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
33
|
Linnenbrügger L, Doering L, Lansing H, Fischer K, Eirich J, Finkemeier I, von Schaewen A. Alternative splicing of Arabidopsis G6PD5 recruits NADPH-producing OPPP reactions to the endoplasmic reticulum. FRONTIERS IN PLANT SCIENCE 2022; 13:909624. [PMID: 36119606 PMCID: PMC9478949 DOI: 10.3389/fpls.2022.909624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Glucose-6-phosphate dehydrogenase is the rate-limiting enzyme of the oxidative pentose-phosphate pathway (OPPP). The OPPP mainly provides NADPH and sugar-phosphate building blocks for anabolic pathways and is present in all eukaryotes. In plant cells, the irreversible part of the OPPP is found in several compartments. Among the isoforms catalyzing the first OPPP step in Arabidopsis, G6PD1 to G6PD4 target plastids (with G6PD1 being also directed to peroxisomes), whereas G6PD5 and G6PD6 operate in the cytosol. We noticed that alternative splice forms G6PD5.4 and G6PD5.5 encode N-terminally extended proteoforms. Compared to G6PD5.1, RT-PCR signals differed and fluorescent reporter fusions expressed in Arabidopsis protoplasts accumulated in distinct intracellular sites. Co-expression with organelle-specific markers revealed that the G6PD5.4 and G6PD5.5 proteoforms label different subdomains of the endoplasmic reticulum (ER), and analysis of C-terminal roGFP fusions showed that their catalytic domains face the cytosol. In g6pd5-1 g6pd6-2 mutant protoplasts lacking cytosolic G6PDH activity, the ER-bound proteoforms were both active and thus able to form homomers. Among the Arabidopsis 6-phosphogluconolactonases (catalyzing the second OPPP step), we noticed that isoform PGL2 carries a C-terminal CaaX motif that may be prenylated for membrane attachment. Reporter-PGL2 fusions co-localized with G6PD5.4 in ER subdomains, which was abolished by Cys-to-Ser exchange in the 256CSIL motif. Among the Arabidopsis 6-phosphogluconate dehydrogenases (catalyzing the third OPPP step), S-acylated peptides were detected for all three isoforms in a recent palmitoylome, with dual cytosolic/peroxisomal PGD2 displaying three sites. Co-expression of GFP-PGD2 diminished crowding of OFP-G6PD5.4 at the ER, independent of PGL2's presence. Upon pull-down of GFP-G6PD5.4, not only unlabeled PGD2 and PGL2 were enriched, but also enzymes that depend on NADPH provision at the ER, indicative of physical interaction with the OPPP enzymes. When membrane-bound G6PD5.5 and 5.4 variants were co-expressed with KCR1 (ketoacyl-CoA reductase, involved in fatty acid elongation), ATR1 (NADPH:cytochrome-P450 oxidoreductase), or pulled C4H/CYP73A5 (cinnamate 4-hydroxylase) as indirectly (via ATR) NADPH-dependent cytochrome P450 enzyme, co-localization in ER subdomains was observed. Thus, alternative splicing of G6PD5 can direct the NADPH-producing OPPP reactions to the cytosolic face of the ER, where they may operate as membrane-bound metabolon to support several important biosynthetic pathways of plant cells.
Collapse
Affiliation(s)
- Loreen Linnenbrügger
- Department of Biology, Molecular Physiology of Plants, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| | - Lennart Doering
- Department of Biology, Molecular Physiology of Plants, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| | - Hannes Lansing
- Department of Biology, Molecular Physiology of Plants, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| | - Kerstin Fischer
- Department of Biology, Molecular Physiology of Plants, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| | - Jürgen Eirich
- Department of Biology, Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| | - Iris Finkemeier
- Department of Biology, Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| | - Antje von Schaewen
- Department of Biology, Molecular Physiology of Plants, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| |
Collapse
|
34
|
Yu D, McKinley L, Nien Y, Prall W, Zvarick A. RNA biology takes root in plant systems. PLANT DIRECT 2022; 6:e445. [PMID: 36091875 PMCID: PMC9448652 DOI: 10.1002/pld3.445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Advances in RNA biology such as RNAi, CRISPR, and the first mRNA vaccine represent the enormous potential of RNA research to address current problems. Additionally, plants are a diverse and undeniably essential resource for life threatened by climate change, loss of arable land, and pollution. Different aspects of RNA such as its processing, modification and structure are intertwined with plant development, physiology and stress response. This report details the findings of researchers around the world during the 23rd Penn State Symposium in Plant Biology with a focus in RNA biology.
Collapse
Affiliation(s)
- David Yu
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Lauren McKinley
- Department of ChemistryThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Yachi Nien
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Wil Prall
- Department of BiologyThe University of PennsylvaniaPhiladelphiaPAUSA
| | - Allison Zvarick
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
35
|
Kufel J, Diachenko N, Golisz A. Alternative splicing as a key player in the fine-tuning of the immunity response in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2022; 23:1226-1238. [PMID: 35567423 PMCID: PMC9276941 DOI: 10.1111/mpp.13228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/01/2023]
Abstract
Plants, like animals, are constantly exposed to abiotic and biotic stresses, which often inhibit plant growth and development, and cause tissue damage, disease, and even plant death. Efficient and timely response to stress requires appropriate co- and posttranscriptional reprogramming of gene expression. Alternative pre-mRNA splicing provides an important layer of this regulation by controlling the level of factors involved in stress response and generating additional protein isoforms with specific features. Recent high-throughput studies have revealed that several defence genes undergo alternative splicing that is often affected by pathogen infection. Despite extensive work, the exact mechanisms underlying these relationships are still unclear, but the contribution of alternative protein isoforms to the defence response and the role of regulatory factors, including components of the splicing machinery, have been established. Modulation of gene expression in response to stress includes alternative splicing, chromatin remodelling, histone modifications, and nucleosome occupancy. How these processes affect plant immunity is mostly unknown, but these facets open new regulatory possibilities. Here we provide an overview of the current state of knowledge and recent findings regarding the growing importance of alternative splicing in plant response to biotic stress.
Collapse
Affiliation(s)
- Joanna Kufel
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Nataliia Diachenko
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Anna Golisz
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| |
Collapse
|
36
|
Liu L, Wu D, Gu Y, Liu F, Liu B, Mao F, Yi X, Tang T, Zhao X. Comprehensive profiling of alternative splicing landscape during secondary dormancy in oilseed rape ( Brassica napus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:44. [PMID: 37313517 PMCID: PMC10248609 DOI: 10.1007/s11032-022-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Alternative splicing is a general mechanism that regulates gene expression at the post-transcriptional level, which increases the transcriptomic diversity. Oilseed rape (Brassica napus L.), one of the main oil crops worldwide, is prone to secondary dormancy. However, how alternative splicing landscape of oilseed rape seed changes in response to secondary dormancy is unknown. Here, we analyzed twelve RNA-seq libraries from varieties "Huaiyou-SSD-V1" and "Huaiyou-WSD-H2" which exhibited high (> 95%) and low (< 5%) secondary dormancy potential, respectively, and demonstrated that alternative splicing changes led to a significant increase with the diversity of the transcripts in response to secondary dormancy induction via polyethylene glycol 6000 (PEG6000) treatment. Among the four basic alternative splicing types, intron retention dominates, and exon skipping shows the rarest frequency. A total of 8% of expressed genes had two or more transcripts after PEG treatment. Further analysis revealed that global isoform expression percentage variations in alternative splicing in differently expressed genes (DEGs) is more than three times as much as those in non-DEGs, suggesting alternative splicing change is associated with the transcriptional activity change in response to secondary dormancy induction. Eventually, 342 differently spliced genes (DSGs) associated with secondary dormancy were identified, five of which were validated by RT-PCR. The number of the overlapped genes between DSGs and DEGs associated with secondary dormancy was much less than that of either DSGs or DEGs, suggesting that DSGs and DEGs may independently regulates secondary dormancy. Functional annotation analysis of DSGs revealed that spliceosome components are overrepresented among the DSGs, including small nuclear ribonucleoprotein particles (snRNPs), serine/arginine-rich (SR) proteins, and other splicing factors. Thus, it is proposed that the spliceosome components could be exploited to reduce secondary dormancy potential in oilseed rape. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01314-8.
Collapse
Affiliation(s)
- Lei Liu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Depeng Wu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Yujuan Gu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei 066600 China
| | - Fuxia Liu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Bin Liu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
| | - Feng Mao
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
| | - Xin Yi
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Tang Tang
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Xiangxiang Zhao
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| |
Collapse
|
37
|
Moderate Soil Drying-Induced Alternative Splicing Provides a Potential Novel Approach for the Regulation of Grain Filling in Rice Inferior Spikelets. Int J Mol Sci 2022; 23:ijms23147770. [PMID: 35887118 PMCID: PMC9318316 DOI: 10.3390/ijms23147770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Poor grain filling of inferior spikelets, especially in some large-panicle rice varieties, is becoming a major limitation in breaking the ceiling of rice production. In our previous studies, we proved that post-anthesis moderate soil drying (MD) was an effective way to promote starch synthesis and inferior grain filling. As one of the most important regulatory processes in response to environmental cues and at different developmental stages, the function of alternative splicing (AS) has not yet been revealed in regulating grain filling under MD conditions. In this study, AS events at the most active grain-filling stage were identified in inferior spikelets under well-watered control (CK) and MD treatments. Of 16,089 AS events, 1840 AS events involving 1392 genes occurred differentially between the CK and MD treatments, many of which function on spliceosome, ncRNA metabolic process, starch, and sucrose metabolism, and other functions. Some of the splicing factors and starch synthesis-related genes, such as SR protein, hnRNP protein, OsAGPL2, OsAPS2, OsSSIVa, OsSSIVb, OsGBSSII, and OsISA1 showed differential AS changes under MD treatment. The expression of miR439f and miR444b was reduced due to an AS event which occurred in the intron where miRNAs were located in the MD-treated inferior spikelets. On the contrary, OsAGPL2, an AGPase encoding gene, was alternatively spliced, resulting in different transcripts with or without the miR393b binding site, suggesting a potential mechanism for miRNA-mediated gene regulation on grain filling of inferior spikelets in response to MD treatment. This study provides some new insights into the function of AS on the MD-promoted grain filling of inferior spikelets, and potential application in agriculture to increase rice yields by genetic approaches.
Collapse
|
38
|
Alternative Splicing and Its Roles in Plant Metabolism. Int J Mol Sci 2022; 23:ijms23137355. [PMID: 35806361 PMCID: PMC9266299 DOI: 10.3390/ijms23137355] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/02/2023] Open
Abstract
Plant metabolism, including primary metabolism such as tricarboxylic acid cycle, glycolysis, shikimate and amino acid pathways as well as specialized metabolism such as biosynthesis of phenolics, alkaloids and saponins, contributes to plant survival, growth, development and interactions with the environment. To this end, these metabolic processes are tightly and finely regulated transcriptionally, post-transcriptionally, translationally and post-translationally in response to different growth and developmental stages as well as the constantly changing environment. In this review, we summarize and describe the current knowledge of the regulation of plant metabolism by alternative splicing, a post-transcriptional regulatory mechanism that generates multiple protein isoforms from a single gene by using alternative splice sites during splicing. Numerous genes in plant metabolism have been shown to be alternatively spliced under different developmental stages and stress conditions. In particular, alternative splicing serves as a regulatory mechanism to fine-tune plant metabolism by altering biochemical activities, interaction and subcellular localization of proteins encoded by splice isoforms of various genes.
Collapse
|
39
|
Wang H, Umer MJ, Liu F, Cai X, Zheng J, Xu Y, Hou Y, Zhou Z. Genome-Wide Identification and Characterization of CPR5 Genes in Gossypium Reveals Their Potential Role in Trichome Development. Front Genet 2022; 13:921096. [PMID: 35754813 PMCID: PMC9213653 DOI: 10.3389/fgene.2022.921096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
Trichomes protect plants against insects, microbes, herbivores, and abiotic damages and assist seed dispersal. The function of CPR5 genes have been found to be involved in the trichome development but the research on the underlying genetic and molecular mechanisms are extremely limited. Herein, genome wide identification and characterization of CPR5 genes was performed. In total, 26 CPR5 family members were identified in Gossypium species. Phylogenetic analysis, structural characteristics, and synteny analysis of CPR5s showed the conserved evolution relationships of CPR5. The promoter analysis of CPR5 genes revealed hormone, stress, and development-related cis-elements. Gene ontology (GO) enrichment analysis showed that the CPR5 genes were largely related to biological regulation, developmental process, multicellular organismal process. Protein-protein interaction analysis predicted several trichome development related proteins (SIM, LGO, and GRL) directly interacting with CPR5 genes. Further, nine putative Gossypium-miRNAs were also identified, targeting Gossypium CPR5 genes. RNA-Seq data of G. arboreum (with trichomes) and G. herbaceum (with no trichomes) was used to perform the co-expression network analysis. GheCPR5.1 was identified as a hub gene in a co-expression network analysis. RT-qPCR of GheCPR5.1 gene in different tissues suggests that this gene has higher expressions in the petiole and might be a key candidate involved in the trichome development. Virus induced gene silencing of GheCPR5.1 (Ghe02G17590) confirms its role in trichome development and elongation. Current results provide proofs of the possible role of CPR5 genes and provide preliminary information for further studies of GheCPR5.1 functions in trichome development.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Jie Zheng
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.,National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China.,Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| |
Collapse
|
40
|
Rosenkranz RRE, Ullrich S, Löchli K, Simm S, Fragkostefanakis S. Relevance and Regulation of Alternative Splicing in Plant Heat Stress Response: Current Understanding and Future Directions. FRONTIERS IN PLANT SCIENCE 2022; 13:911277. [PMID: 35812973 PMCID: PMC9260394 DOI: 10.3389/fpls.2022.911277] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/26/2022] [Indexed: 05/26/2023]
Abstract
Alternative splicing (AS) is a major mechanism for gene expression in eukaryotes, increasing proteome diversity but also regulating transcriptome abundance. High temperatures have a strong impact on the splicing profile of many genes and therefore AS is considered as an integral part of heat stress response. While many studies have established a detailed description of the diversity of the RNAome under heat stress in different plant species and stress regimes, little is known on the underlying mechanisms that control this temperature-sensitive process. AS is mainly regulated by the activity of splicing regulators. Changes in the abundance of these proteins through transcription and AS, post-translational modifications and interactions with exonic and intronic cis-elements and core elements of the spliceosomes modulate the outcome of pre-mRNA splicing. As a major part of pre-mRNAs are spliced co-transcriptionally, the chromatin environment along with the RNA polymerase II elongation play a major role in the regulation of pre-mRNA splicing under heat stress conditions. Despite its importance, our understanding on the regulation of heat stress sensitive AS in plants is scarce. In this review, we summarize the current status of knowledge on the regulation of AS in plants under heat stress conditions. We discuss possible implications of different pathways based on results from non-plant systems to provide a perspective for researchers who aim to elucidate the molecular basis of AS under high temperatures.
Collapse
Affiliation(s)
| | - Sarah Ullrich
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Karin Löchli
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
41
|
Tang C, Xu Q, Zhao J, Yue M, Wang J, Wang X, Kang Z, Wang X. A rust fungus effector directly binds plant pre-mRNA splice site to reprogram alternative splicing and suppress host immunity. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1167-1181. [PMID: 35247281 PMCID: PMC9129083 DOI: 10.1111/pbi.13800] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 05/26/2023]
Abstract
Alternative splicing (AS) is a crucial post-transcriptional regulatory mechanism in plant resistance. However, whether and how plant pathogens target splicing in their host remains mostly unknown. For example, although infection by Puccinia striiformis f. sp. tritici (Pst), a pathogenic fungus that severely affects the yield of wheat worldwide, has been shown to significantly influence the levels of alternatively spliced transcripts in the host, the mechanisms that govern this process, and its functional consequence have not been examined. Here, we identified Pst_A23 as a new Pst arginine-rich effector that localizes to host nuclear speckles, nuclear regions enriched in splicing factors. We demonstrated that transient expression of Pst_A23 suppresses plant basal defence dependent on the Pst_A23 nuclear speckle localization and that this protein plays an important role in virulence, stable silencing of which improves wheat stripe rust resistance. Remarkably, RNA-Seq data revealed that AS patterns of 588 wheat genes are altered in Pst_A23-overexpressing lines compared to control plants. To further examine the direct relationship between Pst_A23 and AS, we confirmed direct binding between two RNA motifs predicted from these altered splicing sites and Pst_A23 in vitro. The two RNA motifs we chose occur in the cis-element of TaXa21-H and TaWRKY53, and we validated that Pst_A23 overexpression results in decreased functional transcripts of TaXa21-H and TaWRKY53 while silencing of TaXa21-H and TaWRKY53 impairs wheat resistance to Pst. Overall, this represents formal evidence that plant pathogens produce 'splicing' effectors, which regulate host pre-mRNA splicing by direct engagement of the splicing sites, thereby interfering with host immunity.
Collapse
Affiliation(s)
- Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Qiang Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jinren Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Mingxing Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
42
|
Zhang Q, Zhang W, Wei J, Gao Z, Guan J, Cui Z, Wang X. SKIP Regulates ABA Signaling through Alternative Splicing in Arabidopsis. PLANT & CELL PHYSIOLOGY 2022; 63:494-507. [PMID: 35134199 DOI: 10.1093/pcp/pcac014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/10/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Abscisic acid (ABA) plays key roles in plant development and responses to abiotic stresses. A wide number of transcriptional and posttranslational regulatory mechanisms of ABA signaling are known; however, less is known about the regulatory roles of alternative splicing. In this work, we found that SKIP, a splicing factor, positively regulates ABA signaling. SKIP binds to the pre-mRNA of ABA signaling-related genes, such as PYL7, PYL8, ABI1, HAB1 and ABI5, to regulate their splicing. The precursor mRNA alternative splicing of several PYL receptors, PP2C phosphatases and ABF transcriptional factors is disrupted by the skip-1 mutation. The abnormal alternative splicing in skip-1 represses the expression of ABA-positive regulators, including PYLs and ABFs, and activates the expression of ABA-negative regulators, such as PP2Cs, which confers ABA hyposensitive phenotype of skip-1. We also found that ABA-mediated genome-wide alternative splicing and differential gene expression are changed by the skip-1 mutation. The number of the differential splicing events is increased by skip-1; however, the number of differential expressed genes in response to ABA is reduced by skip-1. Our results reveal a principle on how a splicing factor regulates ABA signaling and ABA-mediated genome-wide alternative splicing.
Collapse
Affiliation(s)
- Qi Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Wei Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Jianbo Wei
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhaoxu Gao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jianing Guan
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhibo Cui
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoxue Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
43
|
Cecchini NM, Torres JR, López IL, Cobo S, Nota F, Alvarez ME. Alternative splicing of an exitron determines the subnuclear localization of the Arabidopsis DNA glycosylase MBD4L under heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:377-388. [PMID: 35061303 DOI: 10.1111/tpj.15675] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Nicolás Miguel Cecchini
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - José Roberto Torres
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Ignacio Lescano López
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Santiago Cobo
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Florencia Nota
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - María Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
44
|
Zheng Y, Yang D, Rong J, Chen L, Zhu Q, He T, Chen L, Ye J, Fan L, Gao Y, Zhang H, Gu L. Allele-aware chromosome-scale assembly of the allopolyploid genome of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:649-670. [PMID: 34990066 DOI: 10.1111/jipb.13217] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/04/2022] [Indexed: 05/25/2023]
Abstract
Dendrocalamus latiflorus Munro is a woody clumping bamboo with rapid shoot growth. Both genetic transformation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing techniques are available for D. latiflorus, enabling reverse genetic approaches. Thus, D. latiflorus has the potential to be a model bamboo species. However, the genome sequence of D. latiflorus has remained unreported due to its polyploidy and large genome size. Here, we sequenced the D. latiflorus genome and assembled it into three allele-aware subgenomes (AABBCC), representing the largest genome of a major bamboo species. We assembled 70 allelic chromosomes (2, 737 Mb) for hexaploid D. latiflorus using both single-molecule sequencing from the Pacific Biosciences (PacBio) Sequel platform and chromosome conformation capture sequencing (Hi-C). Repetitive sequences comprised 52.65% of the D. latiflorus genome. We annotated 135 231 protein-coding genes in the genome based on transcriptomes from eight different tissues. Transcriptome sequencing using RNA-Seq and PacBio single-molecule real-time long-read isoform sequencing revealed highly differential alternative splicing (AS) between non-abortive and abortive shoots, suggesting that AS regulates the abortion rate of bamboo shoots. This high-quality hexaploid genome and comprehensive strand-specific transcriptome datasets for this Poaceae family member will pave the way for bamboo research using D. latiflorus as a model species.
Collapse
Affiliation(s)
- Yushan Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Deming Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jundong Rong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liguang Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Zhu
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianyou He
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lingyan Chen
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Ye
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lili Fan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yubang Gao
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
45
|
Liu L, Li X, Yuan L, Zhang G, Gao H, Xu X, Zhao H. XAP5 CIRCADIAN TIMEKEEPER specifically modulates 3' splice site recognition and is important for circadian clock regulation partly by alternative splicing of LHY and TIC. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:151-157. [PMID: 35065375 DOI: 10.1016/j.plaphy.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Pre-mRNA splicing is an essential step during gene expression, which takes place in the spliceosome, a large dynamic ribonucleoprotein complex assembled in a stepwise manner. During the last decade, several spliceosomal mutants were functionally identified to cause a lengthened circadian period by introducing intron retention defects into circadian clock genes in Arabidopsis. However, the spliceosomal components that play opposite roles in the circadian period via alternative 3' splice site (Alt 3'ss) are largely unknown. Here, we demonstrated that XCT (XAP5 CIRCADIAN TIMEKEEPER) is a key spliceosomal component associated with multiple splicing factors. Moreover, genome-wide analysis revealed that inactivation of XCT particularly results in defects in Alt 3'ss recognition by RNA sequencing. Further analysis indicated that a strong alteration in the 3' splice sites of LHY and TIC partly accounts for the shortened circadian period of the xct mutant. Therefore, our results demonstrated that mutations in XCT shortened the circadian period partly by alternative splicing of LHY and TIC particularly in 3' splice site recognition, which provides new insight into the link between alternative splicing and the circadian clock.
Collapse
Affiliation(s)
- Lei Liu
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai'an, 223300, China.
| | - Xiaoyun Li
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Li Yuan
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Guofang Zhang
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Hui Gao
- College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Xiaodong Xu
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Hongtao Zhao
- College of Life Science, Hebei Normal University, Hebei, 050024, China.
| |
Collapse
|
46
|
Pootakham W, Sonthirod C, Naktang C, Kongkachana W, Sangsrakru D, U‐thoomporn S, Maknual C, Meepol W, Promchoo W, Maprasop P, Phormsin N, Tangphatsornruang S. A chromosome‐scale reference genome assembly of yellow mangrove (
Bruguiera parviflora
) reveals a whole genome duplication event associated with the Rhizophoraceae lineage. Mol Ecol Resour 2022; 22:1939-1953. [DOI: 10.1111/1755-0998.13587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Wirulda Pootakham
- National Omics Center National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Chutima Sonthirod
- National Omics Center National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Chaiwat Naktang
- National Omics Center National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Wasitthee Kongkachana
- National Omics Center National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Duangjai Sangsrakru
- National Omics Center National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Sonicha U‐thoomporn
- National Omics Center National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Chatree Maknual
- Department of Marine and Coastal Resources 120 The Government Complex, Chaengwatthana Rd. Thung Song Hong, Bangkok 10210 Thailand
| | - Wijarn Meepol
- Department of Marine and Coastal Resources 120 The Government Complex, Chaengwatthana Rd. Thung Song Hong, Bangkok 10210 Thailand
| | - Waratthaya Promchoo
- Department of Marine and Coastal Resources 120 The Government Complex, Chaengwatthana Rd. Thung Song Hong, Bangkok 10210 Thailand
| | - Pasin Maprasop
- Department of Marine and Coastal Resources 120 The Government Complex, Chaengwatthana Rd. Thung Song Hong, Bangkok 10210 Thailand
| | - Nawin Phormsin
- Department of Marine and Coastal Resources 120 The Government Complex, Chaengwatthana Rd. Thung Song Hong, Bangkok 10210 Thailand
| | | |
Collapse
|
47
|
Li Y, Di P, Tan J, Chen W, Chen J, Chen W. Alternative Splicing Dynamics During the Lifecycle of Salvia miltiorrhiza Root Revealed the Fine Tuning in Root Development and Ingredients Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 12:797697. [PMID: 35126423 PMCID: PMC8813970 DOI: 10.3389/fpls.2021.797697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Alternative splicing (AS) is an essential post-transcriptional process that enhances the coding and regulatory potential of the genome, thereby strongly influencing multiple plant physiology processes, such as metabolic biosynthesis. To explore how AS affects the root development and synthesis of tanshinones and phenolic acid pathways in Salvia miltiorrhiza roots, we investigated the dynamic landscape of AS events in S. miltiorrhiza roots during an annual life history. Temporal profiling represented a distinct temporal variation of AS during the entire development stages, showing the most abundant AS events at the early seedling stage (ES stage) and troughs in 45 days after germination (DAG) and 120 DAG. Gene ontology (GO) analysis indicated that physiological and molecular events, such as lateral root formation, gravity response, RNA splicing regulation, and mitogen-activated protein kinase (MAPK) cascade, were greatly affected by AS at the ES stage. AS events were identified in the tanshinones and phenolic acids pathways as well, especially for the genes for the branch points of the pathways as SmRAS and SmKSL1. Fifteen Ser/Arg-rich (SR) proteins and eight phosphokinases (PKs) were identified with high transcription levels at the ES stage, showing their regulatory roles for the high frequency of AS in this stage. Simultaneously, a co-expression network that includes 521 highly expressed AS genes, SRs, and PKs, provides deeper insight into the mechanism for the variable programming of AS.
Collapse
Affiliation(s)
- Yajing Li
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peng Di
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Jingfu Tan
- Shangyao Huayu (Linyi) Traditional Chinese Resources Co. Ltd., Linyi, China
| | - Weixu Chen
- Shangyao Huayu (Linyi) Traditional Chinese Resources Co. Ltd., Linyi, China
| | - Junfeng Chen
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
48
|
Ma K, Luo X, Han L, Zhao Y, Mamat A, Li N, Mei C, Yan P, Zhang R, Hu J, Wang J. Transcriptome profiling based on Illumina- and SMRT-based RNA-seq reveals circadian regulation of key pathways in flower bud development in walnut. PLoS One 2021; 16:e0260017. [PMID: 34793486 PMCID: PMC8601540 DOI: 10.1371/journal.pone.0260017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022] Open
Abstract
Flower bud development is a defining feature of walnut, which contributes to the kernel yield, yield stability, fruit quality and commodity value. However, little is known about the mechanism of the flower bud development in walnut. Here, the stages of walnut female flower bud development were divided into five period (P01-05) by using histological observation. They were further studied through PacBio Iso-Seq and RNA-seq analysis. Accordingly, we obtained 52,875 full-length transcripts, where 4,579 were new transcripts, 3,065 were novel genes, 1,437 were consensus lncRNAs and 20,813 were alternatively spliced isoforms. These transcripts greatly improved the current genome annotation and enhanced our understanding of the walnut transcriptome. Next, RNA sequencing of female flower buds at five periods revealed that circadian rhythm-plant was commonly enriched along with the flower bud developmental gradient. A total of 14 differentially expressed genes (DEGs) were identified, and six of them were confirmed by real-time quantitative analysis. Additionally, six and two differentially expressed clock genes were detected to be regulated by AS events and lncRNAs, respectively. All these detected plant circadian genes form a complex interconnected network to regulate the flower bud development. Thus, investigation of key genes associated with the circadian clock could clarify the process of flower bud development in walnut.
Collapse
Affiliation(s)
- Kai Ma
- College of Horticulture, China Agricultural University, Beijing, China
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xiang Luo
- State Key Laboratory of Crop Stress Adaption and Improvement, Henan University, Kaifeng, China
| | - Liqun Han
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yu Zhao
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Aisajan Mamat
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Ning Li
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chuang Mei
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Peng Yan
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Rui Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, China
| | - Jianfang Hu
- College of Horticulture, China Agricultural University, Beijing, China
- * E-mail: (JH); (JW)
| | - Jixun Wang
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- * E-mail: (JH); (JW)
| |
Collapse
|
49
|
Zhao X, Tan L, Wang S, Shen Y, Guo L, Ye X, Liu S, Feng Y, Wu W. The SR Splicing Factors: Providing Perspectives on Their Evolution, Expression, Alternative Splicing, and Function in Populus trichocarpa. Int J Mol Sci 2021; 22:ijms222111369. [PMID: 34768799 PMCID: PMC8583155 DOI: 10.3390/ijms222111369] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Serine/arginine-rich (SR) proteins are important splicing factors in plant development and abiotic/hormone-related stresses. However, evidence that SR proteins contribute to the process in woody plants has been lacking. Using phylogenetics, gene synteny, transgenic experiments, and RNA-seq analysis, we identified 24 PtSR genes and explored their evolution, expression, and function in Popolus trichocarpa. The PtSR genes were divided into six subfamilies, generated by at least two events of genome triplication and duplication. Notably, they were constitutively expressed in roots, stems, and leaves, demonstrating their fundamental role in P. trichocarpa. Additionally, most PtSR genes (~83%) responded to at least one stress (cold, drought, salt, SA, MeJA, or ABA), and, especially, cold stress induced a dramatic perturbation in the expression and/or alternative splicing (AS) of 18 PtSR genes (~75%). Evidentially, the overexpression of PtSCL30 in Arabidopsis decreased freezing tolerance, which probably resulted from AS changes of the genes (e.g., ICE2 and COR15A) critical for cold tolerance. Moreover, the transgenic plants were salt-hypersensitive at the germination stage. These indicate that PtSCL30 may act as a negative regulator under cold and salt stress. Altogether, this study sheds light on the evolution, expression, and AS of PtSR genes, and the functional mechanisms of PtSCL30 in woody plants.
Collapse
Affiliation(s)
- Xijuan Zhao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.Z.); (L.T.); (S.W.); (Y.S.); (L.G.); (S.L.)
| | - Lingling Tan
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.Z.); (L.T.); (S.W.); (Y.S.); (L.G.); (S.L.)
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.Z.); (L.T.); (S.W.); (Y.S.); (L.G.); (S.L.)
| | - Yirong Shen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.Z.); (L.T.); (S.W.); (Y.S.); (L.G.); (S.L.)
| | - Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.Z.); (L.T.); (S.W.); (Y.S.); (L.G.); (S.L.)
| | - Xiaoxue Ye
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.Z.); (L.T.); (S.W.); (Y.S.); (L.G.); (S.L.)
| | - Ying Feng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.Z.); (L.T.); (S.W.); (Y.S.); (L.G.); (S.L.)
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- Correspondence: (Y.F.); (W.W.)
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.Z.); (L.T.); (S.W.); (Y.S.); (L.G.); (S.L.)
- Correspondence: (Y.F.); (W.W.)
| |
Collapse
|
50
|
John S, Olas JJ, Mueller-Roeber B. Regulation of alternative splicing in response to temperature variation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6150-6163. [PMID: 34028544 PMCID: PMC8483784 DOI: 10.1093/jxb/erab232] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 05/08/2023]
Abstract
Plants have evolved numerous molecular strategies to cope with perturbations in environmental temperature, and to adjust growth and physiology to limit the negative effects of extreme temperature. One of the strategies involves alternative splicing of primary transcripts to encode alternative protein products or transcript variants destined for degradation by nonsense-mediated decay. Here, we review how changes in environmental temperature-cold, heat, and moderate alterations in temperature-affect alternative splicing in plants, including crops. We present examples of the mode of action of various temperature-induced splice variants and discuss how these alternative splicing events enable favourable plant responses to altered temperatures. Finally, we point out unanswered questions that should be addressed to fully utilize the endogenous mechanisms in plants to adjust their growth to environmental temperature. We also indicate how this knowledge might be used to enhance crop productivity in the future.
Collapse
Affiliation(s)
- Sheeba John
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg, Potsdam, Germany
| | - Justyna Jadwiga Olas
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Correspondence: or
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
- Correspondence: or
| |
Collapse
|