1
|
Ferreira DT, Shen BQ, Mwirigi JM, Shiers S, Sankaranarayanan I, Kotamarti M, Inturi NN, Mazhar K, Ubogu EE, Thomas G, Lalli T, Wukich D, Price TJ. Deciphering the molecular landscape of human peripheral nerves: implications for diabetic peripheral neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599167. [PMID: 38915676 PMCID: PMC11195245 DOI: 10.1101/2024.06.15.599167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent complication of diabetes mellitus that is caused by metabolic toxicity to peripheral axons. We aimed to gain deep mechanistic insight into the disease process using bulk and spatial RNA sequencing on tibial and sural nerves recovered from lower leg amputations in a mostly diabetic population. First, our approach comparing mixed sensory and motor tibial and purely sensory sural nerves shows key pathway differences in affected nerves, with distinct immunological features observed in sural nerves. Second, spatial transcriptomics analysis of sural nerves reveals substantial shifts in endothelial and immune cell types associated with severe axonal loss. We also find clear evidence of neuronal gene transcript changes, like PRPH, in nerves with axonal loss suggesting perturbed RNA transport into distal sensory axons. This motivated further investigation into neuronal mRNA localization in peripheral nerve axons generating clear evidence of robust localization of mRNAs such as SCN9A and TRPV1 in human sensory axons. Our work gives new insight into the altered cellular and transcriptomic profiles in human nerves in DPN and highlights the importance of sensory axon mRNA transport as an unappreciated potential contributor to peripheral nerve degeneration.
Collapse
Affiliation(s)
- Diana Tavares Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Breanna Q Shen
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Juliet M Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Miriam Kotamarti
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Nikhil N Inturi
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Khadijah Mazhar
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Eroboghene E Ubogu
- Department of Neurology, Division of Neuromuscular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Geneva Thomas
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Trapper Lalli
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Dane Wukich
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
2
|
Yang ZC, Zhao LX, Sang YQ, Huang X, Lin XC, Yu ZM. Aggregation-Induced Emission Luminogens: A New Possibility for Efficient Visualization of RNA in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:743. [PMID: 38475589 DOI: 10.3390/plants13050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
RNAs play important roles in regulating biological growth and development. Advancements in RNA-imaging techniques are expanding our understanding of their function. Several common RNA-labeling methods in plants have pros and cons. Simultaneously, plants' spontaneously fluorescent substances interfere with the effectiveness of RNA bioimaging. New technologies need to be introduced into plant RNA luminescence. Aggregation-induced emission luminogens (AIEgens), due to their luminescent properties, tunable molecular size, high fluorescence intensity, good photostability, and low cell toxicity, have been widely applied in the animal and medical fields. The application of this technology in plants is still at an early stage. The development of AIEgens provides more options for RNA labeling. Click chemistry provides ideas for modifying AIEgens into RNA molecules. The CRISPR/Cas13a-mediated targeting system provides a guarantee of precise RNA modification. The liquid-liquid phase separation in plant cells creates conditions for the enrichment and luminescence of AIEgens. The only thing that needs to be looked for is a specific enzyme that uses AIEgens as a substrate and modifies AIEgens onto target RNA via a click chemical reaction. With the development and progress of artificial intelligence and synthetic biology, it may soon be possible to artificially synthesize or discover such an enzyme.
Collapse
Affiliation(s)
- Zheng-Chao Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Xiang Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yu-Qi Sang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuan-Chen Lin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhi-Ming Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
3
|
Li J, Zou Q, Yuan L. A review from biological mapping to computation-based subcellular localization. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:507-521. [PMID: 37215152 PMCID: PMC10192651 DOI: 10.1016/j.omtn.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Subcellular localization is crucial to the study of virus and diseases. Specifically, research on protein subcellular localization can help identify clues between virus and host cells that can aid in the design of targeted drugs. Research on RNA subcellular localization is significant for human diseases (such as Alzheimer's disease, colon cancer, etc.). To date, only reviews addressing subcellular localization of proteins have been published, which are outdated for reference, and reviews of RNA subcellular localization are not comprehensive. Therefore, we collated (the most up-to-date) literature on protein and RNA subcellular localization to help researchers understand changes in the field of protein and RNA subcellular localization. Extensive and complete methods for constructing subcellular localization models have also been summarized, which can help readers understand the changes in application of biotechnology and computer science in subcellular localization research and explore how to use biological data to construct improved subcellular localization models. This paper is the first review to cover both protein subcellular localization and RNA subcellular localization. We urge researchers from biology and computational biology to jointly pay attention to transformation patterns, interrelationships, differences, and causality of protein subcellular localization and RNA subcellular localization.
Collapse
Affiliation(s)
- Jing Li
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, 1 Chengdian Road, Quzhou, Zhejiang 324000, China
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, 1 Chengdian Road, Quzhou, Zhejiang 324000, China
| | - Lei Yuan
- Department of Hepatobiliary Surgery, Quzhou People's Hospital, 100 Minjiang Main Road, Quzhou, Zhejiang 324000, China
| |
Collapse
|
4
|
Fang Z, Ford AJ, Hu T, Zhang N, Mantalaris A, Coskun AF. Subcellular spatially resolved gene neighborhood networks in single cells. CELL REPORTS METHODS 2023; 3:100476. [PMID: 37323566 PMCID: PMC10261906 DOI: 10.1016/j.crmeth.2023.100476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/18/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
Image-based spatial omics methods such as fluorescence in situ hybridization (FISH) generate molecular profiles of single cells at single-molecule resolution. Current spatial transcriptomics methods focus on the distribution of single genes. However, the spatial proximity of RNA transcripts can play an important role in cellular function. We demonstrate a spatially resolved gene neighborhood network (spaGNN) pipeline for the analysis of subcellular gene proximity relationships. In spaGNN, machine-learning-based clustering of subcellular spatial transcriptomics data yields subcellular density classes of multiplexed transcript features. The nearest-neighbor analysis produces heterogeneous gene proximity maps in distinct subcellular regions. We illustrate the cell-type-distinguishing capability of spaGNN using multiplexed error-robust FISH data of fibroblast and U2-OS cells and sequential FISH data of mesenchymal stem cells (MSCs), revealing tissue-source-specific MSC transcriptomics and spatial distribution characteristics. Overall, the spaGNN approach expands the spatial features that can be used for cell-type classification tasks.
Collapse
Affiliation(s)
- Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Adam J. Ford
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Thomas Hu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Athanasios Mantalaris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F. Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Airs PM, Nazarchyk MJ, Tucker BJ, Bartholomay LC. Characterizing oogenesis and programmed cell death in the eastern tree hole mosquito Aedes (Protomacleaya) triseriatus. FRONTIERS IN INSECT SCIENCE 2023; 2:1073308. [PMID: 38468807 PMCID: PMC10926484 DOI: 10.3389/finsc.2022.1073308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/29/2022] [Indexed: 03/13/2024]
Abstract
Oogenesis in flies manifests as a carefully orchestrated cascade of developmental gates and growth events, punctuated by programmed cell death (PCD) and follicular resorption events. In anautogenous mosquitoes, a blood meal stimulates growth of primary follicles, but the timing of developmental stages is species-specific, and few species have been characterized. Here, we characterize the first gonotrophic cycle of oogenesis in Aedes triseriatus (Diptera: Culicidae), the principal vector of La Crosse Virus (LACV), a major cause of pediatric encephalitis in North America. We note significant differences in the timing and appearance of developmental stages from previous studies of other mosquito species, particularly Aedes aegypti. We also describe the appearance and timing of PCD events including atresia, nurse cell death, and follicular epithelium death and show that the majority of follicular epithelium cells do not undergo apoptosis during oogenesis but persist in the ovariole at least until the second gonotrophic cycle. This thorough characterization of oogenesis and PCD in Ae. triseriatus, through which LACV must persist in order to achieve filial infection, also serves as a baseline to study host-pathogen interactions during transovarial transmission.
Collapse
Affiliation(s)
- Paul M. Airs
- Department of Entomology, Iowa State University, Ames, IA, United States
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Bradley J. Tucker
- Department of Entomology, Iowa State University, Ames, IA, United States
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Midwest Center of Excellence for Vector-Borne Disease, University of Wisconsin-Madison, Madison, WI, United States
| | - Lyric C. Bartholomay
- Department of Entomology, Iowa State University, Ames, IA, United States
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Midwest Center of Excellence for Vector-Borne Disease, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
6
|
Hwang H, Yun S, Arcanjo RB, Divyanshi, Chen S, Mei W, Nowak RA, Kwon T, Yang J. Regulation of RNA localization during oocyte maturation by dynamic RNA-ER association and remodeling of the ER. Cell Rep 2022; 41:111802. [PMID: 36516762 PMCID: PMC9811979 DOI: 10.1016/j.celrep.2022.111802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/30/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Asymmetric localization of mRNAs is crucial for cell polarity and cell fate determination. By performing fractionation RNA-seq, we report here that a large number of maternal RNAs are associated with the ER in Xenopus oocytes but are released into the cytosol after oocyte maturation. We provide evidence that the majority of ER-associated RNA-binding proteins (RBPs) remain associated with the ER after oocyte maturation. However, all ER-associated RBPs analyzed exhibit reduced binding to some of their target RNAs after oocyte maturation. Our results further show that the ER is remodeled massively during oocyte maturation, leading to the formation of a widespread tubular ER network in the animal hemisphere that is required for the asymmetric localization of mRNAs in mature eggs. Thus, our findings demonstrate that dynamic regulation of RNA-ER association and remodeling of the ER are important for the asymmetric localization of RNAs during development.
Collapse
Affiliation(s)
- Hyojeong Hwang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Seongmin Yun
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Rachel Braz Arcanjo
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Divyanshi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Sijie Chen
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Wenyan Mei
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Romana A. Nowak
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea,Correspondence: (T.K.), (J.Y.)
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA,Lead contact,Correspondence: (T.K.), (J.Y.)
| |
Collapse
|
7
|
Kipryushina YO, Maiorova MA, Yakovlev KV. An approach to quantitate maternal transcripts localized in sea urchin egg cortex using RT-qPCR with accurate normalization. PLoS One 2022; 17:e0260831. [PMID: 35709154 PMCID: PMC9202947 DOI: 10.1371/journal.pone.0260831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
The sea urchin egg cortex is a peripheral region of eggs comprising a cell membrane and adjacent cytoplasm, which contains actin and tubulin cytoskeleton, cortical granules and some proteins required for early development. Method for isolation of cortices from sea urchin eggs and early embryos was developed in 1970s. Since then, this method has been reliable tool to study protein localization and cytoskeletal organization in cortex of unfertilized eggs and embryos during first cleavages. This study was aimed to estimate the reliability of RT-qPCR to analyze levels of maternal transcripts that are localized in egg cortex. Firstly, we selected seven potential reference genes, 28S, Cycb, Ebr1, GAPDH, Hmg1, Smtnl1 and Ubb, the transcripts of which are maternally deposited in sea urchin eggs. The candidate reference genes were ranked by five different algorithms (BestKeeper, CV, ΔCt, geNorm and NormFinder) based on calculated level of stability in both eggs as well as isolated cortices. Our results showed that gene ranking differs in total RNA and mRNA samples, though Ubb is most suitable reference gene in both cases. To validate feasibility of comparative analysis of eggs and isolated egg cortices, we selected Daglb-2 as a gene of interest, which transcripts are potentially localized in cortex according to transcriptome analysis, and observed increased level of Daglb-2 in egg cortices by RT-qPCR. This suggests that proposed RNA isolation method with subsequent quantitative RT-qPCR analysis can be used to determine cortical association of transcripts in sea urchin eggs.
Collapse
Affiliation(s)
- Yulia O. Kipryushina
- Laboratory of Cytotechnology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Mariia A. Maiorova
- Laboratory of Cytotechnology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Konstantin V. Yakovlev
- Laboratory of Cytotechnology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- * E-mail:
| |
Collapse
|
8
|
Houliston E, Leclère L, Munro C, Copley RR, Momose T. Past, present and future of Clytia hemisphaerica as a laboratory jellyfish. Curr Top Dev Biol 2022; 147:121-151. [PMID: 35337447 DOI: 10.1016/bs.ctdb.2021.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The hydrozoan species Clytia hemisphaerica was selected in the mid-2000s to address the cellular and molecular basis of body axis specification in a cnidarian, providing a reliable daily source of gametes and building on a rich foundation of experimental embryology. The many practical advantages of this species include genetic uniformity of laboratory jellyfish, derived clonally from easily-propagated polyp colonies. Phylogenetic distance from other laboratory models adds value in providing an evolutionary perspective on many biological questions. Here we outline the current state of the art regarding available experimental approaches and in silico resources, and illustrate the contributions of Clytia to understanding embryo patterning mechanisms, oogenesis and regeneration. Looking forward, the recent establishment of transgenesis methods is now allowing gene function and imaging studies at adult stages, making Clytia particularly attractive for whole organism biology studies across fields and extending its scientific impact far beyond the original question of interest.
Collapse
Affiliation(s)
- Evelyn Houliston
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France.
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| | - Catriona Munro
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France; Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, Paris, France
| | - Richard R Copley
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| | - Tsuyoshi Momose
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| |
Collapse
|
9
|
Abstract
Most of the transcribed human genome codes for noncoding RNAs (ncRNAs), and long noncoding RNAs (lncRNAs) make for the lion's share of the human ncRNA space. Despite growing interest in lncRNAs, because there are so many of them, and because of their tissue specialization and, often, lower abundance, their catalog remains incomplete and there are multiple ongoing efforts to improve it. Consequently, the number of human lncRNA genes may be lower than 10,000 or higher than 200,000. A key open challenge for lncRNA research, now that so many lncRNA species have been identified, is the characterization of lncRNA function and the interpretation of the roles of genetic and epigenetic alterations at their loci. After all, the most important human genes to catalog and study are those that contribute to important cellular functions-that affect development or cell differentiation and whose dysregulation may play a role in the genesis and progression of human diseases. Multiple efforts have used screens based on RNA-mediated interference (RNAi), antisense oligonucleotide (ASO), and CRISPR screens to identify the consequences of lncRNA dysregulation and predict lncRNA function in select contexts, but these approaches have unresolved scalability and accuracy challenges. Instead-as was the case for better-studied ncRNAs in the past-researchers often focus on characterizing lncRNA interactions and investigating their effects on genes and pathways with known functions. Here, we focus most of our review on computational methods to identify lncRNA interactions and to predict the effects of their alterations and dysregulation on human disease pathways.
Collapse
|
10
|
Savulescu AF, Bouilhol E, Beaume N, Nikolski M. Prediction of RNA subcellular localization: Learning from heterogeneous data sources. iScience 2021; 24:103298. [PMID: 34765919 PMCID: PMC8571491 DOI: 10.1016/j.isci.2021.103298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RNA subcellular localization has recently emerged as a widespread phenomenon, which may apply to the majority of RNAs. The two main sources of data for characterization of RNA localization are sequence features and microscopy images, such as obtained from single-molecule fluorescent in situ hybridization-based techniques. Although such imaging data are ideal for characterization of RNA distribution, these techniques remain costly, time-consuming, and technically challenging. Given these limitations, imaging data exist only for a limited number of RNAs. We argue that the field of RNA localization would greatly benefit from complementary techniques able to characterize location of RNA. Here we discuss the importance of RNA localization and the current methodology in the field, followed by an introduction on prediction of location of molecules. We then suggest a machine learning approach based on the integration between imaging localization data and sequence-based data to assist in characterization of RNA localization on a transcriptome level.
Collapse
Affiliation(s)
- Anca Flavia Savulescu
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
| | - Emmanuel Bouilhol
- Université de Bordeaux, Bordeaux Bioinformatics Center, Bordeaux, France
- Université de Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | - Nicolas Beaume
- Division of Medical Virology, Faculty of Health Sciences, University of Cape Town,7925 Cape Town, South Africa
| | - Macha Nikolski
- Université de Bordeaux, Bordeaux Bioinformatics Center, Bordeaux, France
- Université de Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| |
Collapse
|
11
|
Savulescu AF, Brackin R, Bouilhol E, Dartigues B, Warrell JH, Pimentel MR, Beaume N, Fortunato IC, Dallongeville S, Boulle M, Soueidan H, Agou F, Schmoranzer J, Olivo-Marin JC, Franco CA, Gomes ER, Nikolski M, Mhlanga MM. Interrogating RNA and protein spatial subcellular distribution in smFISH data with DypFISH. CELL REPORTS METHODS 2021; 1:100068. [PMID: 35474672 PMCID: PMC9017151 DOI: 10.1016/j.crmeth.2021.100068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/15/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Advances in single-cell RNA sequencing have allowed for the identification of cellular subtypes on the basis of quantification of the number of transcripts in each cell. However, cells might also differ in the spatial distribution of molecules, including RNAs. Here, we present DypFISH, an approach to quantitatively investigate the subcellular localization of RNA and protein. We introduce a range of analytical techniques to interrogate single-molecule RNA fluorescence in situ hybridization (smFISH) data in combination with protein immunolabeling. DypFISH is suited to study patterns of clustering of molecules, the association of mRNA-protein subcellular localization with microtubule organizing center orientation, and interdependence of mRNA-protein spatial distributions. We showcase how our analytical tools can achieve biological insights by utilizing cell micropatterning to constrain cellular architecture, which leads to reduction in subcellular mRNA distribution variation, allowing for the characterization of their localization patterns. Furthermore, we show that our method can be applied to physiological systems such as skeletal muscle fibers.
Collapse
Affiliation(s)
- Anca F. Savulescu
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7295 Cape Town, South Africa
| | - Robyn Brackin
- Advanced Medical Bioimaging, Charité – Universitätsmedizin, 10-117 Berlin, Germany
| | - Emmanuel Bouilhol
- Université de Bordeaux, Bordeaux Bioinformatics Center, 33000 Bordeaux, France
- Université de Bordeaux, CNRS, IBGC, UMR 5095, 33077 Bordeaux, France
| | - Benjamin Dartigues
- Université de Bordeaux, Bordeaux Bioinformatics Center, 33000 Bordeaux, France
| | - Jonathan H. Warrell
- Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mafalda R. Pimentel
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Nicolas Beaume
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7295 Cape Town, South Africa
| | - Isabela C. Fortunato
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | | | - Mikaël Boulle
- Chemogenomic and Biological Screening Core Facility, C2RT, Department of Structural Biology and Chemistry, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Hayssam Soueidan
- Université de Bordeaux, Bordeaux Bioinformatics Center, 33000 Bordeaux, France
| | - Fabrice Agou
- Chemogenomic and Biological Screening Core Facility, C2RT, Department of Structural Biology and Chemistry, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
- Department of Structural Biology and Chemistry, URA 2185, Pasteur Institute, Paris, France
| | - Jan Schmoranzer
- Advanced Medical Bioimaging, Charité – Universitätsmedizin, 10-117 Berlin, Germany
| | | | - Claudio A. Franco
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Edgar R. Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Macha Nikolski
- Université de Bordeaux, Bordeaux Bioinformatics Center, 33000 Bordeaux, France
- Université de Bordeaux, CNRS, IBGC, UMR 5095, 33077 Bordeaux, France
| | - Musa M. Mhlanga
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, FNWI, Radboud University, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
12
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
13
|
Adekunle DA, Wang ET. Transcriptome-wide organization of subcellular microenvironments revealed by ATLAS-Seq. Nucleic Acids Res 2020; 48:5859-5872. [PMID: 32421779 PMCID: PMC7293051 DOI: 10.1093/nar/gkaa334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Subcellular organization of RNAs and proteins is critical for cell function, but we still lack global maps and conceptual frameworks for how these molecules are localized in cells and tissues. Here, we introduce ATLAS-Seq, which generates transcriptomes and proteomes from detergent-free tissue lysates fractionated across a sucrose gradient. Proteomic analysis of fractions confirmed separation of subcellular compartments. Unexpectedly, RNAs tended to co-sediment with other RNAs in similar protein complexes, cellular compartments, or with similar biological functions. With the exception of those encoding secreted proteins, most RNAs sedimented differently than their encoded protein counterparts. To identify RNA binding proteins potentially driving these patterns, we correlated their sedimentation profiles to all RNAs, confirming known interactions and predicting new associations. Hundreds of alternative RNA isoforms exhibited distinct sedimentation patterns across the gradient, despite sharing most of their coding sequence. These observations suggest that transcriptomes can be organized into networks of co-segregating mRNAs encoding functionally related proteins and provide insights into the establishment and maintenance of subcellular organization.
Collapse
Affiliation(s)
- Danielle A Adekunle
- Department of Molecular Genetics & Microbiology, UF Genetics Institute, Center for NeuroGenetics, University of Florida, USA.,Department of Biology, Massachusetts Institute of Technology, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, UF Genetics Institute, Center for NeuroGenetics, University of Florida, USA
| |
Collapse
|
14
|
Zeng C, Hamada M. RNA-Seq Analysis Reveals Localization-Associated Alternative Splicing across 13 Cell Lines. Genes (Basel) 2020; 11:E820. [PMID: 32708427 PMCID: PMC7397181 DOI: 10.3390/genes11070820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing, a ubiquitous phenomenon in eukaryotes, is a regulatory mechanism for the biological diversity of individual genes. Most studies have focused on the effects of alternative splicing for protein synthesis. However, the transcriptome-wide influence of alternative splicing on RNA subcellular localization has rarely been studied. By analyzing RNA-seq data obtained from subcellular fractions across 13 human cell lines, we identified 8720 switching genes between the cytoplasm and the nucleus. Consistent with previous reports, intron retention was observed to be enriched in the nuclear transcript variants. Interestingly, we found that short and structurally stable introns were positively correlated with nuclear localization. Motif analysis reveals that fourteen RNA-binding protein (RBPs) are prone to be preferentially bound with such introns. To our knowledge, this is the first transcriptome-wide study to analyze and evaluate the effect of alternative splicing on RNA subcellular localization. Our findings reveal that alternative splicing plays a promising role in regulating RNA subcellular localization.
Collapse
Affiliation(s)
- Chao Zeng
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo 169-8555, Japan
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo 169-8555, Japan
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Institute for Medical-oriented Structural Biology, Waseda University, Tokyo 162-8480, Japan
- Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
15
|
Tung A, Levin M. Extra-genomic instructive influences in morphogenesis: A review of external signals that regulate growth and form. Dev Biol 2020; 461:1-12. [PMID: 31981561 DOI: 10.1016/j.ydbio.2020.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
Embryonic development and regeneration accomplish a remarkable feat: individual cells work together to create or repair complex anatomical structures. What is the source of the instructive signals that specify these invariant and robust organ-level outcomes? The most frequently studied source of morphogenetic control is the host genome and its transcriptional circuits. However, it is now apparent that significant information affecting patterning also arrives from outside of the body. Both biotic and physical factors, including temperature and various molecular signals emanating from pathogens, commensals, and conspecific organisms, affect developmental outcomes. Here, we review examples in which anatomical patterning decisions are strongly impacted by lateral signals that originate from outside of the zygotic genome. The endogenous pathways targeted by these influences often show transgenerational effects, enabling them to shape the evolution of anatomies even faster than traditional Baldwin-type assimilation. We also discuss recent advances in the biophysics of morphogenetic controls and speculate on additional sources of important patterning information which could be exploited to better understand the evolution of bodies and to design novel approaches for regenerative medicine.
Collapse
Affiliation(s)
- Angela Tung
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Michael Levin
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
16
|
Chou HL, Tian L, Washida H, Fukuda M, Kumamaru T, Okita TW. The rice storage protein mRNAs as a model system for RNA localization in higher plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:203-211. [PMID: 31084873 DOI: 10.1016/j.plantsci.2019.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
The transport and targeting of mRNAs to specific intracellular locations is a ubiquitous process in prokaryotic and eukaryotic organisms. Despite the prevalent nature of RNA localization in guiding development, differentiation, cellular movement and intracellular organization of biochemical activities, only a few examples exist in higher plants. Here, we summarize past studies on mRNA-based protein targeting to specific subdomains of the cortical endoplasmic reticulum (ER) using the rice storage protein mRNAs as a model. Such studies have demonstrated that there are multiple pathways of RNA localization to the cortical ER that are controlled by cis-determinants (zipcodes) on the mRNA. These zipcode sequences are recognized by specific RNA binding proteins organized into multi-protein complexes. The available evidence suggests mRNAs are transported to their destination sites by co-opting membrane trafficking factors. Lastly, we discuss the major gaps in our knowledge on RNA localization and how information on the targeting of storage protein mRNAs can be used to further our understanding on how plant mRNAs are organized into regulons to facilitate protein localization and formation of multi-protein complexes.
Collapse
Affiliation(s)
- Hong-Li Chou
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, United States
| | - Li Tian
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, United States
| | - Haruhiko Washida
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, United States
| | - Masako Fukuda
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, United States; Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshihiro Kumamaru
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, United States.
| |
Collapse
|
17
|
Carlevaro-Fita J, Johnson R. Global Positioning System: Understanding Long Noncoding RNAs through Subcellular Localization. Mol Cell 2019; 73:869-883. [PMID: 30849394 DOI: 10.1016/j.molcel.2019.02.008] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 02/09/2023]
Abstract
The localization of long noncoding RNAs (lncRNAs) within the cell is the primary determinant of their molecular functions. LncRNAs are often thought of as chromatin-restricted regulators of gene transcription and chromatin structure. However, a rich population of cytoplasmic lncRNAs has come to light, with diverse roles including translational regulation, signaling, and respiration. RNA maps of increasing resolution and scope are revealing a subcellular world of highly specific localization patterns and hint at sequence-based address codes specifying lncRNA fates. We propose a new framework for analyzing sequencing-based data, which suggests that numbers of cytoplasmic lncRNA molecules rival those in the nucleus. New techniques promise to create high-resolution, transcriptome-wide maps associated with all organelles of the mammalian cell. Given its intimate link to molecular roles, subcellular localization provides a means of unlocking the mystery of lncRNA functions.
Collapse
Affiliation(s)
- Joana Carlevaro-Fita
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
18
|
Hamm DC, Harrison MM. Regulatory principles governing the maternal-to-zygotic transition: insights from Drosophila melanogaster. Open Biol 2018; 8:180183. [PMID: 30977698 PMCID: PMC6303782 DOI: 10.1098/rsob.180183] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
The onset of metazoan development requires that two terminally differentiated germ cells, a sperm and an oocyte, become reprogrammed to the totipotent embryo, which can subsequently give rise to all the cell types of the adult organism. In nearly all animals, maternal gene products regulate the initial events of embryogenesis while the zygotic genome remains transcriptionally silent. Developmental control is then passed from mother to zygote through a process known as the maternal-to-zygotic transition (MZT). The MZT comprises an intimately connected set of molecular events that mediate degradation of maternally deposited mRNAs and transcriptional activation of the zygotic genome. This essential developmental transition is conserved among metazoans but is perhaps best understood in the fruit fly, Drosophila melanogaster. In this article, we will review our understanding of the events that drive the MZT in Drosophila embryos and highlight parallel mechanisms driving this transition in other animals.
Collapse
Affiliation(s)
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
19
|
Bovaird S, Patel D, Padilla JCA, Lécuyer E. Biological functions, regulatory mechanisms, and disease relevance of RNA localization pathways. FEBS Lett 2018; 592:2948-2972. [PMID: 30132838 DOI: 10.1002/1873-3468.13228] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
The asymmetric subcellular distribution of RNA molecules from their sites of transcription to specific compartments of the cell is an important aspect of post-transcriptional gene regulation. This involves the interplay of intrinsic cis-regulatory elements within the RNA molecules with trans-acting RNA-binding proteins and associated factors. Together, these interactions dictate the intracellular localization route of RNAs, whose downstream impacts have wide-ranging implications in cellular physiology. In this review, we examine the mechanisms underlying RNA localization and discuss their biological significance. We also review the growing body of evidence pointing to aberrant RNA localization pathways in the development and progression of diseases.
Collapse
Affiliation(s)
- Samantha Bovaird
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Dhara Patel
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, QC, Canada
| | - Juan-Carlos Alberto Padilla
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Eric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, QC, Canada
| |
Collapse
|
20
|
Causes and evolutionary consequences of primordial germ-cell specification mode in metazoans. Proc Natl Acad Sci U S A 2018; 114:5784-5791. [PMID: 28584112 DOI: 10.1073/pnas.1610600114] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In animals, primordial germ cells (PGCs) give rise to the germ lines, the cell lineages that produce sperm and eggs. PGCs form in embryogenesis, typically by one of two modes: a likely ancestral mode wherein germ cells are induced during embryogenesis by cell-cell signaling (induction) or a derived mechanism whereby germ cells are specified by using germ plasm-that is, maternally specified germ-line determinants (inheritance). The causes of the shift to germ plasm for PGC specification in some animal clades remain largely unknown, but its repeated convergent evolution raises the question of whether it may result from or confer an innate selective advantage. It has been hypothesized that the acquisition of germ plasm confers enhanced evolvability, resulting from the release of selective constraint on somatic gene networks in embryogenesis, thus leading to acceleration of an organism's protein-sequence evolution, particularly for genes expressed at early developmental stages, and resulting in high speciation rates in germ plasm-containing lineages (denoted herein as the "PGC-specification hypothesis"). Although that hypothesis, if supported, could have major implications for animal evolution, our recent large-scale coding-sequence analyses from vertebrates and invertebrates provided important examples of genera that do not support the hypothesis of liberated constraint under germ plasm. Here, we consider reasons why germ plasm might be neither a direct target of selection nor causally linked to accelerated animal evolution. We explore alternate scenarios that could explain the repeated evolution of germ plasm and propose potential consequences of the inheritance and induction modes to animal evolutionary biology.
Collapse
|
21
|
Sepulveda G, Antkowiak M, Brust-Mascher I, Mahe K, Ou T, Castro NM, Christensen LN, Cheung L, Jiang X, Yoon D, Huang B, Jao LE. Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation in vertebrates. eLife 2018; 7:34959. [PMID: 29708497 PMCID: PMC5976437 DOI: 10.7554/elife.34959] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022] Open
Abstract
As microtubule-organizing centers of animal cells, centrosomes guide the formation of the bipolar spindle that segregates chromosomes during mitosis. At mitosis onset, centrosomes maximize microtubule-organizing activity by rapidly expanding the pericentriolar material (PCM). This process is in part driven by the large PCM protein pericentrin (PCNT), as its level increases at the PCM and helps recruit additional PCM components. However, the mechanism underlying the timely centrosomal enrichment of PCNT remains unclear. Here, we show that PCNT is delivered co-translationally to centrosomes during early mitosis by cytoplasmic dynein, as evidenced by centrosomal enrichment of PCNT mRNA, its translation near centrosomes, and requirement of intact polysomes for PCNT mRNA localization. Additionally, the microtubule minus-end regulator, ASPM, is also targeted co-translationally to mitotic spindle poles. Together, these findings suggest that co-translational targeting of cytoplasmic proteins to specific subcellular destinations may be a generalized protein targeting mechanism. Before a cell divides, it creates a copy of its genetic material (DNA) and evenly distributes it between the new ‘daughter’ cells with the help of a complex called the mitotic spindle. This complex is made of long cable-like protein chains called microtubules. To ensure that each daughter cell receives an equal amount of DNA, structures known as centrosomes organize the microtubules during the division process. Centrosomes have two rigid cores, called centrioles, which are surrounded by a matrix of proteins called the pericentriolar material. It is from this material that the microtubules are organized. The pericentriolar material is a dynamic structure and changes its size by assembling and disassembling its protein components. The larger the pericentriolar material, the more microtubules can form. Before a cell divides, it rapidly expands in a process called centrosome maturation. A protein called pericentrin initiates the maturation by helping to recruit other proteins to the centrosome. Pericentrin molecules are large, and it takes the cell between 10 and 20 minutes to make each one. Nevertheless, the cell can produce and deliver large quantities of pericentrin to the centrosome in a matter of minutes. We do not yet know how this happens. To investigate this further, Sepulveda, Antkowiak, Brust-Mascher et al. used advanced microscopy to study zebrafish embryos and human cells grown in the laboratory. The results showed that cells build and transport pericentrin at the same time. Cells use messenger RNA molecules as templates to build proteins. These feed into protein factories called ribosomes, which assemble the building blocks in the correct order. Rather than waiting for the pericentrin production to finish, the cell moves the active factories to the centrosome with the help of a molecular motor called dynein. By the time the pericentrin molecules are completely made by ribosomes, they are already at the centrosome, ready to help with the recruitment of other proteins during centrosome maturation. These findings improve our understanding of centrosome maturation. The next step is to find out how the cell coordinates this process with the recruitment of other proteins to the centrosome. It is also possible that the cell uses similar processes to deliver other proteins to different parts of the cell.
Collapse
Affiliation(s)
- Guadalupe Sepulveda
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Mark Antkowiak
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis School of Veterinary Medicine, Davis, United States
| | - Karan Mahe
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Tingyoung Ou
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Noemi M Castro
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Lana N Christensen
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Lee Cheung
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Xueer Jiang
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Daniel Yoon
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| |
Collapse
|
22
|
Velandia-Huerto CA, Brown FD, Gittenberger A, Stadler PF, Bermúdez-Santana CI. Nonprotein-Coding RNAs as Regulators of Development in Tunicates. Results Probl Cell Differ 2018; 65:197-225. [PMID: 30083922 DOI: 10.1007/978-3-319-92486-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tunicates, or urochordates, are a group of small marine organisms that are found widely throughout the seas of the world. As most plausible sister group of the vertebrates, they are of utmost importance for a comprehensive understanding of chordate evolution; hence, they have served as model organisms for many aspects of the developmental biology. Current genomic analysis of tunicates indicates that their genomes evolved with a fast rate not only at the level of nucleotide substitutions but also in terms of genomic organization. The latter involves genome reduction, rearrangements, as well as the loss of some important coding and noncoding RNA (ncRNAs) elements and even entire genomic regions that are otherwise well conserved. These observations are largely based on evidence from comparative genomics resulting from the analysis of well-studied gene families such as the Hox genes and their noncoding elements. In this chapter, the focus lies on the ncRNA complement of tunicates, with a particular emphasis on microRNAs, which have already been studied extensively for other animal clades. MicroRNAs are known as important regulators of key genes in animal development, and they are intimately related to the increase morphological complexity in higher metazoans. Here we review the discovery, evolution, and genome organization of the miRNA repertoire, which has been drastically reduced and restructured in tunicates compared to the chordate ancestor. Known functions of microRNAs as regulators of development in tunicates are a central topic. For instance, we consider the role of miRNAs as regulators of the muscle development and their importance in the regulation of the differential expression during the oral siphon regeneration. Beyond microRNAs, we touch upon the functions of some other ncRNAs such as yellow crescent RNA, moRNAs, RMST lncRNAs, or spliced-leader (SL) RNAs, which have diverse functions associated with the embryonic development, neurogenesis, and mediation of mRNA stability in general.
Collapse
Affiliation(s)
- Cristian A Velandia-Huerto
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Leipzig, Germany.
- Biology Department, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Federico D Brown
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratorio de Biología del Desarrollo Evolutiva, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Adriaan Gittenberger
- Institute of Biology, Leiden University, Leiden, Netherlands
- GiMaRIS, BioScience Park Leiden, Leiden, Netherlands
- Naturalis Biodiversity Center, Leiden, Netherlands
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Leipzig, Germany
| | | |
Collapse
|
23
|
Wilk R, Hu J, Blotsky D, Krause HM. Diverse and pervasive subcellular distributions for both coding and long noncoding RNAs. Genes Dev 2016; 30:594-609. [PMID: 26944682 PMCID: PMC4782052 DOI: 10.1101/gad.276931.115] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Here, Wilk et al. examined ∼8000 mRNA transcripts throughout Drosophila embryogenesis. They found that almost all RNAs, both coding and noncoding RNAs, are subcellularly localized at some stage of development, thus providing an important resource for functional gene analysis. In a previous analysis of 2300 mRNAs via whole-mount fluorescent in situ hybridization in cellularizing Drosophila embryos, we found that 70% of the transcripts exhibited some form of subcellular localization. To see whether this prevalence is unique to early Drosophila embryos, we examined ∼8000 transcripts over the full course of embryogenesis and ∼800 transcripts in late third instar larval tissues. The numbers and varieties of new subcellular localization patterns are both striking and revealing. In the much larger cells of the third instar larva, virtually all transcripts observed showed subcellular localization in at least one tissue. We also examined the prevalence and variety of localization mechanisms for >100 long noncoding RNAs. All of these were also found to be expressed and subcellularly localized. Thus, subcellular RNA localization appears to be the norm rather than the exception for both coding and noncoding RNAs. These results, which have been annotated and made available on a recompiled database, provide a rich and unique resource for functional gene analyses, some examples of which are provided.
Collapse
Affiliation(s)
- Ronit Wilk
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Jack Hu
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Dmitry Blotsky
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Henry M Krause
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
24
|
Kostenko VV, Kolot NV, Vorobyova LI. Research of embryonic mortality stages of Drosophila melanogaster depending on age and starvation of an imago. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415060065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Golubkova EV, Atsapkina AA, Mamon LA. The role of sbr/Dm nxf1 gene in syncytial development in Drosophila melanogaster. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s1990519x15040057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Hsu KF, Shen MR, Huang YF, Cheng YM, Lin SH, Chow NH, Cheng SW, Chou CY, Ho CL. Overexpression of the RNA-binding proteins Lin28B and IGF2BP3 (IMP3) is associated with chemoresistance and poor disease outcome in ovarian cancer. Br J Cancer 2015; 113:414-24. [PMID: 26158423 PMCID: PMC4522643 DOI: 10.1038/bjc.2015.254] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/22/2015] [Accepted: 06/04/2015] [Indexed: 01/18/2023] Open
Abstract
Background: RNA-binding proteins have an important role in messenger RNA (mRNA) regulation during tumour development and carcinogenesis. In the present study, we examined the insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs; hereafter refered to as IMPs) and Lin28 family expressions in epithelial ovarian carcinoma (EOC) patients and correlated their expression levels with the response to chemotherapy, hCTR1 expression and patient survival. Methods: Patients clinical information, real-time RT-PCR, immunohistochemistry, western blot, Transwell migration invasion assays, and cytotoxicity assays were used. Results: From 140 EOC patients, high expression of IMP3 or Lin28B was associated with poor survival, and women diagnosed at advanced stages with elevated IMP3 and Lin28B were at higher risk of developing chemoresistance. High IMP3 levels combined with high Lin28B levels significantly correlated with the poorest 5-year survival rates. Knockdown of IMP3 or Lin28B decreased cell proliferation, migration, and invasion, and increased the platinum sensitivity, but not taxol sensitivity, of ovarian cancer cells through increased expression of hCTR1, a copper transporter involved in platinum uptake. High expression of hCTR1 correlated with low expression of IMP3/Lin28B and better progression-free survival in advanced-stage EOC patients. Conclusion: Testing for a combination of elevated IMP3 and Lin28B levels could further facilitate the identification of a patient subgroup with the worst prognosis.
Collapse
Affiliation(s)
- K-F Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - M-R Shen
- Department of Pharmacology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Y-F Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Y-M Cheng
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - S-H Lin
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - N-H Chow
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - S-W Cheng
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - C-Y Chou
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - C-L Ho
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
27
|
Karlikow M, Goic B, Saleh MC. RNAi and antiviral defense in Drosophila: setting up a systemic immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:85-92. [PMID: 23684730 DOI: 10.1016/j.dci.2013.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 06/02/2023]
Abstract
RNA interference (RNAi) controls gene expression in eukaryotic cells and thus, cellular homeostasis. In addition, in plants, nematodes and arthropods it is a central antiviral effector mechanism. Antiviral RNAi has been well described as a cell autonomous response, which is triggered by double-stranded RNA (dsRNA) molecules. This dsRNA is the precursor for the silencing of viral RNA in a sequence-specific manner. In plants, systemic antiviral immunity has been demonstrated, however much less is known in animals. Recently, some evidence for a systemic antiviral response in arthropods has come to light. Cell autonomous RNAi may not be sufficient to reach an efficient antiviral response, and the organism might rely on the spread and uptake of an RNAi signal of unknown origin. In this review, we offer a perspective on how RNAi-mediated antiviral immunity could confer systemic protection in insects and we propose directions for future research to understand the mechanism of RNAi-immune signal sorting, spreading and amplification.
Collapse
Affiliation(s)
- Margot Karlikow
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR3569, Paris, France
| | | | | |
Collapse
|
28
|
Kannaiah S, Amster-Choder O. Protein targeting via mRNA in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1457-65. [PMID: 24263243 DOI: 10.1016/j.bbamcr.2013.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/09/2013] [Accepted: 11/11/2013] [Indexed: 01/10/2023]
Abstract
Proteins of all living organisms must reach their subcellular destination to sustain the cell structure and function. The proteins are transported to one of the cellular compartments, inserted into the membrane, or secreted across the membrane to the extracellular milieu. Cells have developed various mechanisms to transport proteins across membranes, among them localized translation. Evidence for targeting of Messenger RNA for the sake of translation of their respective protein products at specific subcellular sites in many eukaryotic model organisms have been accumulating in recent years. Cis-acting RNA localizing elements, termed RNA zip-codes, which are embedded within the mRNA sequence, are recognized by RNA-binding proteins, which in turn interact with motor proteins, thus coordinating the intracellular transport of the mRNA transcripts. Despite the rareness of conventional organelles, first and foremost a nucleus, pieces of evidence for mRNA localization to specific subcellular domains, where their protein products function, have also been obtained for prokaryotes. Although the underlying mechanisms for transcript localization in bacteria are yet to be unraveled, it is now obvious that intracellular localization of mRNA is a common mechanism to spatially localize proteins in both eukaryotes and prokaryotes. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Shanmugapriya Kannaiah
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University - Faculty of Medicine, P.O.Box 12272, Jerusalem 91120, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University - Faculty of Medicine, P.O.Box 12272, Jerusalem 91120, Israel.
| |
Collapse
|
29
|
Wilson MJ, Dearden PK. RNA localization in the honeybee (Apis mellifera) oocyte reveals insights about the evolution of RNA localization mechanisms. Dev Biol 2013; 375:193-201. [PMID: 23313731 DOI: 10.1016/j.ydbio.2013.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/21/2012] [Accepted: 01/02/2013] [Indexed: 11/28/2022]
Abstract
Subcellular localization of RNAs is a critical biological process for generation of cellular asymmetries for many cell types and a critical step in axis determination during the early development of animals. We have identified transcripts localized to the anterior and posterior of honeybee oocyte using laser capture microscopy and microarray analysis. Analysis of orthologous transcripts in Drosophila indicates that many do not show a conserved pattern of localization. By microinjecting fluorescently labeled honeybee transcripts into Drosophila egg chambers we show that these RNAs become localized in a similar manner to their localization in honeybee oocytes, indicating conservation of the localization machinery. Thus while the mechanisms for localizing RNA are conserved, the complement of localized RNAs are not. We propose that this complement of localized RNAs may change relatively rapidly through the loss or evolution of signal sequences detected by the conserved localization machinery, and show this has occurred in one transcript that is localized in a novel way in the honeybee. Our proposal, that the acquisition of novel RNA localization is relatively easy to evolve, has implications for the evolution of symmetry breaking mechanisms that trigger axis formation and development in animal embryos.
Collapse
Affiliation(s)
- Megan J Wilson
- Laboratory for Evolution and Development, Genetics Otago and Gravida, The National Centre for Growth and Development, Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | | |
Collapse
|
30
|
Blower MD. Molecular insights into intracellular RNA localization. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:1-39. [PMID: 23351709 DOI: 10.1016/b978-0-12-407699-0.00001-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Localization of mRNAs to specific destinations within a cell or an embryo is important for local control of protein synthesis. mRNA localization is well known to function in very large and polarized cells such as neurons, and to facilitate embryonic patterning during early development. However, recent genome-wide studies have revealed that mRNA localization is more widely utilized than previously thought to control gene expression. Not only can transcripts be localized asymmetrically within the cytoplasm, they are often also localized to symmetrically distributed organelles. Recent genetic, cytological, and biochemical studies have begun to provide molecular insight into how cells select RNAs for transport, move them to specific destinations, and control their translation. This chapter will summarize recent insights into the mechanisms and function of RNA localization with a specific emphasis on molecular insights into each step in the mRNA localization process.
Collapse
Affiliation(s)
- Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Lung SC, Yanagisawa M, Chuong SDX. Recent progress in the single-cell C4 photosynthesis in terrestrial plants. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-9248-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Medioni C, Mowry K, Besse F. Principles and roles of mRNA localization in animal development. Development 2012; 139:3263-76. [PMID: 22912410 DOI: 10.1242/dev.078626] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Intracellular targeting of mRNAs has long been recognized as a means to produce proteins locally, but has only recently emerged as a prevalent mechanism used by a wide variety of polarized cell types. Localization of mRNA molecules within the cytoplasm provides a basis for cell polarization, thus underlying developmental processes such as asymmetric cell division, cell migration, neuronal maturation and embryonic patterning. In this review, we describe and discuss recent advances in our understanding of both the regulation and functions of RNA localization during animal development.
Collapse
Affiliation(s)
- Caroline Medioni
- Institute of Biology Valrose, University of Nice-Sophia Antipolis/UMR7277 CNRS/UMR1091 INSERM, Parc Valrose, 06108 Nice Cedex 2, France
| | | | | |
Collapse
|
33
|
Wang HW, Fang JS, Kuang X, Miao LY, Wang C, Xia GL, King ML, Zhang J. Activity of long-chain acyl-CoA synthetase is required for maintaining meiotic arrest in Xenopus laevis. Biol Reprod 2012; 87:74. [PMID: 22786823 DOI: 10.1095/biolreprod.112.100511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In most vertebrates, fully grown oocytes are arrested in meiotic prophase I and only resume the cell cycle upon external stimuli, such as hormones. The proper arrest and resumption of the meiotic cycle is critical for reproduction. A Galpha(S) signaling pathway essential for the arrest is conserved in organisms from Xenopus to mouse and human. A previous gene association study implicated that mutations of human ACSL6 may be related to premature ovarian failure. However, functional roles of ACSL6 in human infertility have yet to be reported. In the present study, we found that triacsin C, a potent and specific inhibitor for ACSL, triggers maturation in Xenopus and mouse oocytes in the absence of hormone, suggesting ACSL activity is required for the oocyte arrest. In Xenopus, acsl1b may fulfill a major role in the process, because inhibition of acsl1b by knocking down its RNA results in abnormal acceleration of oocyte maturation. Such abnormally matured eggs cannot support early embryonic development. Moreover, direct inhibition of protein palmitoylation, which lies downstream of ACSLs, also causes oocyte maturation. Furthermore, palmitoylation of Galpha(s), which is essential for its function, is inhibited when the ACSL activity is blocked by triacsin C in Xenopus. Thus, disruption of ACSL activity causes inhibition of the Galpha(s) signaling pathway in the oocytes, which may result in premature ovarian failure in human.
Collapse
Affiliation(s)
- Hua-wei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Eberwine J, Lovatt D, Buckley P, Dueck H, Francis C, Kim TK, Lee J, Lee M, Miyashiro K, Morris J, Peritz T, Schochet T, Spaethling J, Sul JY, Kim J. Quantitative biology of single neurons. J R Soc Interface 2012; 9:3165-83. [PMID: 22915636 PMCID: PMC3481569 DOI: 10.1098/rsif.2012.0417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The building blocks of complex biological systems are single cells. Fundamental insights gained from single-cell analysis promise to provide the framework for understanding normal biological systems development as well as the limits on systems/cellular ability to respond to disease. The interplay of cells to create functional systems is not well understood. Until recently, the study of single cells has concentrated primarily on morphological and physiological characterization. With the application of new highly sensitive molecular and genomic technologies, the quantitative biochemistry of single cells is now accessible.
Collapse
Affiliation(s)
- James Eberwine
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, 36th and Hamilton Walk, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Seemann SE, Sunkin SM, Hawrylycz MJ, Ruzzo WL, Gorodkin J. Transcripts with in silico predicted RNA structure are enriched everywhere in the mouse brain. BMC Genomics 2012; 13:214. [PMID: 22651826 PMCID: PMC3464589 DOI: 10.1186/1471-2164-13-214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 05/31/2012] [Indexed: 01/24/2023] Open
Abstract
Background Post-transcriptional control of gene expression is mostly conducted by specific elements in untranslated regions (UTRs) of mRNAs, in collaboration with specific binding proteins and RNAs. In several well characterized cases, these RNA elements are known to form stable secondary structures. RNA secondary structures also may have major functional implications for long noncoding RNAs (lncRNAs). Recent transcriptional data has indicated the importance of lncRNAs in brain development and function. However, no methodical efforts to investigate this have been undertaken. Here, we aim to systematically analyze the potential for RNA structure in brain-expressed transcripts. Results By comprehensive spatial expression analysis of the adult mouse in situ hybridization data of the Allen Mouse Brain Atlas, we show that transcripts (coding as well as non-coding) associated with in silico predicted structured probes are highly and significantly enriched in almost all analyzed brain regions. Functional implications of these RNA structures and their role in the brain are discussed in detail along with specific examples. We observe that mRNAs with a structure prediction in their UTRs are enriched for binding, transport and localization gene ontology categories. In addition, after manual examination we observe agreement between RNA binding protein interaction sites near the 3’ UTR structures and correlated expression patterns. Conclusions Our results show a potential use for RNA structures in expressed coding as well as noncoding transcripts in the adult mouse brain, and describe the role of structured RNAs in the context of intracellular signaling pathways and regulatory networks. Based on this data we hypothesize that RNA structure is widely involved in transcriptional and translational regulatory mechanisms in the brain and ultimately plays a role in brain function.
Collapse
Affiliation(s)
- Stefan E Seemann
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
36
|
Distinct MicroRNA Subcellular Size and Expression Patterns in Human Cancer Cells. Int J Cell Biol 2012; 2012:672462. [PMID: 22505932 PMCID: PMC3296955 DOI: 10.1155/2012/672462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/09/2011] [Indexed: 12/25/2022] Open
Abstract
Introduction. Small noncoding RNAs have important regulatory functions in different cell pathways. It is believed that most of them mainly play role in gene post-transcriptional regulation in the cytoplasm. Recent evidence suggests miRNA and siRNA activity in the nucleus. Here, we show distinct genome-wide sub-cellular localization distribution profiles of small noncoding RNAs in human breast cancer cells. Methods. We separated breast cancer cell nuclei from cytoplasm, and identified small RNA sequences using a high-throughput sequencing platform. To determine the relationship between miRNA sub-cellular distribution and cancer progression, we used microarray analysis to examine the miRNA expression levels in nucleus and cytoplasm of three human cell lines, one normal breast cell line and two breast cancer cell lines. Logistic regression and SVM were used for further analysis. Results. The sub-cellular distribution of small noncoding RNAs shows that numerous miRNAs and their isoforms (isomiR) not only locate to the cytoplasm but also appeare in the nucleus. Subsequent microarray analyses indicated that the miRNA nuclear-cytoplasmic-ratio is a significant characteristic of different cancer cell lines. Conclusions. Our results indicate that the sub-cellular distribution is important for miRNA function, and that the characterization of the small RNAs sub-cellular localizome may contribute to cancer research and diagnosis.
Collapse
|
37
|
Human pathologies associated with defective RNA transport and localization in the nervous system. Biol Cell 2012; 99:649-61. [DOI: 10.1042/bc20070045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Le Goff C, Laurent V, Le Bon K, Tanguy G, Couturier A, Le Goff X, Le Guellec R. pEg6, a Spire family member, is a maternal gene encoding a vegetally localized mRNA in Xenopus embryos. Biol Cell 2012; 98:697-708. [PMID: 16789907 DOI: 10.1042/bc20050095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION In Xenopus, during oocyte maturation and the segmentation period, cell cycle progression is independent of new transcription, but requires de novo translation. This suggests that the completion of oocyte maturation and then the rapid cell division period is controlled exclusively at a post-transcriptional level by specific gene products. To isolate these maternal genes, a differential screening of a Xenopus egg cDNA library was performed. Several cDNAs were isolated which correspond to mRNA polyadenylated in eggs and deadenylated in embryos, and these constitute the founders members of the Eg family of mRNAs. RESULTS We report here the characterization of Eg6 mRNA as a novel maternal gene expressed in Xenopus egg until gastrula stage. The Eg6 transcript is initially concentrated in the vegetal cytoplasm of the egg, and later the distribution of the transcript marks the posterior vegetal end of developing embryos. pEg6 is a multidomain protein with a kinase non-catalytic C-lobe domain of unknown function, a cluster of four WH2 (Wiskott-Aldrich syndrome protein homology 2) domains and a modified FYVE zinc-finger motif. The amino acid sequence of pEg6 is related to PEM-5 (posterior end mark-5), from an ascidian maternal mRNA, and spire, a Drosophila protein required to establish dorsal-ventral and anterior-posterior axes of polarity and recently described as an actin nucleation factor. In Xenopus and Schizosaccharomyces pombe cells pEg6 expression induces filamentous actin clusters and is associated with vesicular structure. CONCLUSION These data suggest that pEg6 acts as a vegetally localized factor contributing to the actin nucleation process during Xenopus early development.
Collapse
Affiliation(s)
- Catherine Le Goff
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, Groupe Développement Précoce, IFR140 GFAS, Faculté de Médecine, 2 avenue du Pr Léon Bernard, CS 34317, 35043 Rennes cedex, France.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
beta-Actin mRNA is localized near the leading edge in several cell types where actin polymerization is actively promoting forward protrusion. The localization of the beta-actin mRNA near the leading edge is facilitated by a short sequence in the 3'UTR (untranslated region), the 'zipcode'. Localization of the mRNA at this region is important physiologically. Treatment of chicken embryo fibroblasts with antisense oligonucleotides complementary to the localization sequence (zipcode) in the 3'UTR leads to delocalization of beta-actin mRNA, alteration of cell phenotype and a decrease in cell motility. The dynamic image analysis system (DIAS) used to quantify movement of cells in the presence of sense and antisense oligonucleotides to the zipcode showed that net pathlength and average speed of antisense-treated cells were significantly lower than in sense-treated cells. This suggests that a decrease in persistence of direction of movement and not in velocity results from treatment of cells with zipcode-directed antisense oligonucleotides. We postulate that delocalization of beta-actin mRNA results in delocalization of nucleation sites and beta-actin protein from the leading edge followed by loss of cell polarity and directional movement. Hence the physiological consequences of beta-actin mRNA delocalization affect the stability of the cell phenotype.
Collapse
Affiliation(s)
- John Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
40
|
Visualizing endogenous mRNAs in living yeast using m-TAG, a PCR-based RNA aptamer integration method, and fluorescence microscopy. Methods Mol Biol 2011; 714:237-47. [PMID: 21431745 DOI: 10.1007/978-1-61779-005-8_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Localized mRNA translation is involved in cell-fate determination, polarization, and morphogenesis in eukaryotes. While various tools are available to examine mRNA localization, no easy and quick method has allowed for the visualization of endogenously expressed mRNAs in vivo. We describe a simple method (m-TAG) for PCR-based chromosomal gene tagging that uses homologous recombination to insert binding sites for the RNA-binding MS2 coat protein (MS2-CP) between the coding region and 3'-untranslated region of any yeast gene. Upon co-expression of MS2-CP fused with GFP, specific endogenously expressed mRNAs can be visualized in vivo for the first time. This method allows for the easy examination of mRNA localization using fluorescence microscopy and leaves the yeast cells amenable for further genetic analysis.
Collapse
|
41
|
Gagnon JA, Mowry KL. Molecular motors: directing traffic during RNA localization. Crit Rev Biochem Mol Biol 2011; 46:229-39. [PMID: 21476929 DOI: 10.3109/10409238.2011.572861] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA localization, the enrichment of RNA in a specific subcellular region, is a mechanism for the establishment and maintenance of cellular polarity in a variety of systems. Ultimately, this results in a universal method for spatially restricting gene expression. Although the consequences of RNA localization are well-appreciated, many of the mechanisms that are responsible for carrying out polarized transport remain elusive. Several recent studies have illuminated the roles that molecular motor proteins play in the process of RNA localization. These studies have revealed complex mechanisms in which the coordinated action of one or more motor proteins can act at different points in the localization process to direct RNAs to their final destination. In this review, we discuss recent findings from several different systems in an effort to clarify pathways and mechanisms that control the directed movement of RNA.
Collapse
Affiliation(s)
- James A Gagnon
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, USA
| | | |
Collapse
|
42
|
Li Y, Massey K, Witkiewicz H, Schnitzer JE. Systems analysis of endothelial cell plasma membrane proteome of rat lung microvasculature. Proteome Sci 2011; 9:15. [PMID: 21447187 PMCID: PMC3080792 DOI: 10.1186/1477-5956-9-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 03/29/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endothelial cells line all blood vessels to form the blood-tissue interface which is critical for maintaining organ homeostasis and facilitates molecular exchange. We recently used tissue subcellular fractionation combined with several multi-dimensional mass spectrometry-based techniques to enhance identification of lipid-embedded proteins for large-scale proteomic mapping of luminal endothelial cell plasma membranes isolated directly from rat lungs in vivo. The biological processes and functions of the proteins expressed at this important blood-tissue interface remain unexplored at a large scale. RESULTS We performed an unbiased systems analysis of the endothelial cell surface proteome containing over 1800 proteins to unravel the major functions and pathways apparent at this interface. As expected, many key functions of plasma membranes in general (i.e., cell surface signaling pathways, cytoskeletal organization, adhesion, membrane trafficking, metabolism, mechanotransduction, membrane fusion, and vesicle-mediated transport) and endothelial cells in particular (i.e., blood vessel development and maturation, angiogenesis, regulation of endothelial cell proliferation, protease activity, and endocytosis) were significantly overrepresented in this proteome. We found that endothelial cells express multiple proteins that mediate processes previously reported to be restricted to neuronal cells, such as neuronal survival and plasticity, axon growth and regeneration, synaptic vesicle trafficking and neurotransmitter metabolic process. Surprisingly, molecular machinery for protein synthesis was also detected as overrepresented, suggesting that endothelial cells, like neurons, can synthesize proteins locally at the cell surface. CONCLUSION Our unbiased systems analysis has led to the potential discovery of unexpected functions in normal endothelium. The discovery of the existence of protein synthesis at the plasma membrane in endothelial cells provides new insight into the blood-tissue interface and endothelial cell surface biology.
Collapse
Affiliation(s)
- Yan Li
- Proteogenomics Research Institute for Systems Medicine, 11107 Roselle Street, San Diego, California 92121, USA.
| | | | | | | |
Collapse
|
43
|
Zipor G, Brocard C, Gerst JE. Isolation of mRNAs encoding peroxisomal proteins from yeast using a combined cell fractionation and affinity purification procedure. Methods Mol Biol 2011; 714:323-33. [PMID: 21431750 DOI: 10.1007/978-1-61779-005-8_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Targeted mRNA localization to distinct subcellular sites occurs throughout the eukaryotes and presumably allows for the localized translation of proteins near their site of function. Specific mRNAs have been localized in cells using a variety of reliable methods, such as fluorescence in situ hybridization with labeled RNA probes, mRNA tagging using RNA aptamers and fluorescent proteins that recognize these aptamers, and quenched fluorescent RNA probes that become activated upon binding to mRNAs. However, fluorescence-based RNA localization studies can be strengthened when coupled with cell fractionation and membrane isolation techniques in order to identify mRNAs associated with specific organelles or other subcellular structures. Here we describe a novel method to isolate mRNAs associated with peroxisomes in the yeast, Saccharomyces cerevisiae. This method employs a combination of density gradient centrifugation and affinity purification to yield a highly enriched peroxisome fraction suitable for RNA isolation and reverse transcription-polymerase chain reaction detection of mRNAs bound to peroxisome membranes. The method is presented for the analysis of peroxisome-associated mRNAs; however it is applicable to studies on other subcellular compartments.
Collapse
Affiliation(s)
- Gadi Zipor
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
44
|
Chan XY, Lambert JD. Patterning a spiralian embryo: A segregated RNA for a Tis11 ortholog is required in the 3a and 3b cells of the Ilyanassa embryo. Dev Biol 2011; 349:102-12. [DOI: 10.1016/j.ydbio.2010.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 01/10/2023]
|
45
|
Lan L, Lin S, Zhang S, Cohen RS. Evidence for a transport-trap mode of Drosophila melanogaster gurken mRNA localization. PLoS One 2010; 5:e15448. [PMID: 21103393 PMCID: PMC2980492 DOI: 10.1371/journal.pone.0015448] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/22/2010] [Indexed: 11/24/2022] Open
Abstract
The Drosophila melanogaster gurken gene encodes a TGF alpha-like signaling molecule that is secreted from the oocyte during two distinct stages of oogenesis to define the coordinate axes of the follicle cell epithelium that surrounds the oocyte and its 15 anterior nurse cells. Because the gurken receptor is expressed throughout the epithelium, axial patterning requires region-specific secretion of Gurken protein, which in turn requires subcellular localization of gurken transcripts. The first stage of Gurken signaling induces anteroposterior pattern in the epithelium and requires the transport of gurken transcripts from nurse cells into the oocyte. The second stage of Gurken signaling induces dorsovental polarity in the epithelium and requires localization of gurken transcripts to the oocyte's anterodorsal corner. Previous studies, relying predominantly on real-time imaging of injected transcripts, indicated that anterodorsal localization involves transport of gurken transcripts to the oocyte's anterior cortex followed by transport to the anterodorsal corner, and anchoring. Such studies further indicated that a single RNA sequence element, the GLS, mediates both transport steps by facilitating association of gurken transcripts with a cytoplasmic dynein motor complex. Finally, it was proposed that the GLS somehow steers the motor complex toward that subset of microtubules that are nucleated around the oocyte nucleus, permitting directed transport to the anterodorsal corner. Here, we re-investigate the role of the GLS using a transgenic fly assay system that includes use of the endogenous gurken promoter and biological rescue as well as RNA localization assays. In contrast to previous reports, our studies indicate that the GLS is sufficient for anterior localization only. Our data support a model in which anterodorsal localization is brought about by repeated rounds of anterior transport, accompanied by specific trapping at the anterodorsal cortex. Our data further indicate that trapping at the anterodorsal corner requires at least one as-yet-unidentified gurken RLE.
Collapse
Affiliation(s)
- Lan Lan
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Shengyin Lin
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Sui Zhang
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Robert S. Cohen
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
46
|
Fuentes R, Fernández J. Ooplasmic segregation in the zebrafish zygote and early embryo: Pattern of ooplasmic movements and transport pathways. Dev Dyn 2010; 239:2172-89. [DOI: 10.1002/dvdy.22349] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
47
|
Soh S, Byrska M, Kandere-Grzybowska K, Grzybowski BA. Reaction-diffusion systems in intracellular molecular transport and control. Angew Chem Int Ed Engl 2010; 49:4170-98. [PMID: 20518023 PMCID: PMC3697936 DOI: 10.1002/anie.200905513] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemical reactions make cells work only if the participating chemicals are delivered to desired locations in a timely and precise fashion. Most research to date has focused on active-transport mechanisms, although passive diffusion is often equally rapid and energetically less costly. Capitalizing on these advantages, cells have developed sophisticated reaction-diffusion (RD) systems that control a wide range of cellular functions-from chemotaxis and cell division, through signaling cascades and oscillations, to cell motility. These apparently diverse systems share many common features and are "wired" according to "generic" motifs such as nonlinear kinetics, autocatalysis, and feedback loops. Understanding the operation of these complex (bio)chemical systems requires the analysis of pertinent transport-kinetic equations or, at least on a qualitative level, of the characteristic times of the constituent subprocesses. Therefore, in reviewing the manifestations of cellular RD, we also describe basic theory of reaction-diffusion phenomena.
Collapse
Affiliation(s)
- Siowling Soh
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208
| | - Marta Byrska
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208
| | - Kristiana Kandere-Grzybowska
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208
| | - Bartosz A. Grzybowski
- Department of Chemistry, Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, Homepage: http://www.dysa.northwestern.edu
| |
Collapse
|
48
|
Soh S, Byrska M, Kandere-Grzybowska K, Grzybowski B. Reaktions-Diffusions-Systeme für intrazellulären Transport und Kontrolle. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905513] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
49
|
Ivankova N, Tretyakova I, Lyozin GT, Avanesyan E, Zolotukhin A, Zatsepina OG, Evgen'ev MB, Mamon LA. Alternative transcripts expressed by small bristles, the Drosophila melanogaster nxf1 gene. Gene 2010; 458:11-9. [DOI: 10.1016/j.gene.2010.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 02/16/2010] [Accepted: 02/25/2010] [Indexed: 11/30/2022]
|
50
|
Crofts AJ, Crofts N, Whitelegge JP, Okita TW. Isolation and identification of cytoskeleton-associated prolamine mRNA binding proteins from developing rice seeds. PLANTA 2010; 231:1261-76. [PMID: 20217123 DOI: 10.1007/s00425-010-1125-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 02/10/2010] [Indexed: 05/08/2023]
Abstract
The messenger RNA of the rice seed storage protein prolamine is targeted to the endoplasmic reticulum (ER) membranes surrounding prolamine protein bodies via a mechanism, which is dependent upon both RNA sorting signals and the actin cytoskeleton. In this study we have used an RNA bait corresponding to the previously characterized 5'CDS prolamine cis-localization sequence for the capture of RNA binding proteins (RBPs) from cytoskeleton-enriched fractions of developing rice seed. In comparison to a control RNA, the cis-localization RNA bait sequence led to the capture of a much larger number of proteins, 18 of which have been identified by tandem mass spectrometry. Western blots demonstrate that several of the candidate proteins analyzed to date show good to excellent specificity for binding to cis-localization sequences over the control RNA bait. Temporal expression studies showed that steady state protein levels for one RNA binding protein, RBP-A, paralleled prolamine gene expression. Immunoprecipitation studies showed that RBP-A is bound to prolamine and glutelin RNAs in vivo, supporting a direct role in storage protein gene expression. Using confocal immunofluorescence microscopy, RBP-A was found to be distributed to multiple compartments in the cell. In addition to the nucleus, RBP-A co-localizes with microtubules and is associated with cortical ER membranes. Collectively, these results indicate that employing a combination of in vitro binding and in vivo binding and localization studies is a valid strategy for the identification of putative prolamine mRNA binding proteins, such as RBP-A, which play a role in controlling expression of storage protein mRNAs in the cytoplasm.
Collapse
Affiliation(s)
- Andrew J Crofts
- Institute of Biological Chemistry, Washington State University, Clark Hall, Room #299, 100 Dairy Road, Pullman, WA 99164-6340, USA.
| | | | | | | |
Collapse
|