1
|
Nolte DD. Coherent light scattering from cellular dynamics in living tissues. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:036601. [PMID: 38433567 DOI: 10.1088/1361-6633/ad2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
This review examines the biological physics of intracellular transport probed by the coherent optics of dynamic light scattering from optically thick living tissues. Cells and their constituents are in constant motion, composed of a broad range of speeds spanning many orders of magnitude that reflect the wide array of functions and mechanisms that maintain cellular health. From the organelle scale of tens of nanometers and upward in size, the motion inside living tissue is actively driven rather than thermal, propelled by the hydrolysis of bioenergetic molecules and the forces of molecular motors. Active transport can mimic the random walks of thermal Brownian motion, but mean-squared displacements are far from thermal equilibrium and can display anomalous diffusion through Lévy or fractional Brownian walks. Despite the average isotropic three-dimensional environment of cells and tissues, active cellular or intracellular transport of single light-scattering objects is often pseudo-one-dimensional, for instance as organelle displacement persists along cytoskeletal tracks or as membranes displace along the normal to cell surfaces, albeit isotropically oriented in three dimensions. Coherent light scattering is a natural tool to characterize such tissue dynamics because persistent directed transport induces Doppler shifts in the scattered light. The many frequency-shifted partial waves from the complex and dynamic media interfere to produce dynamic speckle that reveals tissue-scale processes through speckle contrast imaging and fluctuation spectroscopy. Low-coherence interferometry, dynamic optical coherence tomography, diffusing-wave spectroscopy, diffuse-correlation spectroscopy, differential dynamic microscopy and digital holography offer coherent detection methods that shed light on intracellular processes. In health-care applications, altered states of cellular health and disease display altered cellular motions that imprint on the statistical fluctuations of the scattered light. For instance, the efficacy of medical therapeutics can be monitored by measuring the changes they induce in the Doppler spectra of livingex vivocancer biopsies.
Collapse
Affiliation(s)
- David D Nolte
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, United States of America
| |
Collapse
|
2
|
Sunami H, Shimizu Y, Kishimoto H. Shape of scaffold controlling the direction of cell migration. Biophys Physicobiol 2023; 21:e210004. [PMID: 38803333 PMCID: PMC11128307 DOI: 10.2142/biophysico.bppb-v21.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/27/2023] [Indexed: 05/29/2024] Open
Abstract
Cell migration plays an important role in the development and maintenance of multicellular organisms. Factors that induce cell migration and mechanisms controlling their expression are important for determining the mechanisms of factor-induced cell migration. Despite progress in the study of factor-induced cytotaxis, including chemotaxis and haptotaxis, precise control of the direction of cell migration over a wide area has not yet been achieved. Success in this area would update the cell migration assays, superior cell separation technologies, and artificial organs with high biocompatibility. The present study therefore sought to control the direction of cell migration over a wide area by adjusting the three-dimensional shape of the cell scaffold. The direction of cell migration was influenced by the shape of the cell scaffold, thereby optimizing cell adhesion and protrusion. Anisotropic arrangement of these three-dimensional shapes into a periodic structure induced unidirectional cell migration. Three factors were required for unidirectional cell migration: 1) the sizes of the anisotropic periodic structures had to be equal to or lower than the size of the spreading cells, 2) cell migration was restricted to a runway approximately the width of the cell, and 3) cells had to be prone to extension of long protrusions in one direction. Because the first two factors had been identified previously in studies of cell migration in one direction using two-dimensional shaped patterns, these three factors are likely important for the mechanism by which cell scaffold shapes regulate cell migration.
Collapse
Affiliation(s)
- Hiroshi Sunami
- Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Yusuke Shimizu
- Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Hidehiro Kishimoto
- Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| |
Collapse
|
3
|
Giverso C, Jankowiak G, Preziosi L, Schmeiser C. The Influence of Nucleus Mechanics in Modelling Adhesion-independent Cell Migration in Structured and Confined Environments. Bull Math Biol 2023; 85:88. [PMID: 37626216 PMCID: PMC10457269 DOI: 10.1007/s11538-023-01187-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 07/17/2023] [Indexed: 08/27/2023]
Abstract
Recent biological experiments (Lämmermann et al. in Nature 453(7191):51-55, 2008; Reversat et al. in Nature 7813:582-585, 2020; Balzer et al. in ASEB J Off Publ Fed Am Soc Exp Biol 26(10):4045-4056, 2012) have shown that certain types of cells are able to move in structured and confined environments even without the activation of focal adhesion. Focusing on this particular phenomenon and based on previous works (Jankowiak et al. in Math Models Methods Appl Sci 30(03):513-537, 2020), we derive a novel two-dimensional mechanical model, which relies on the following physical ingredients: the asymmetrical renewal of the actin cortex supporting the membrane, resulting in a backward flow of material; the mechanical description of the nuclear membrane and the inner nuclear material; the microtubule network guiding nucleus location; the contact interactions between the cell and the external environment. The resulting fourth order system of partial differential equations is then solved numerically to conduct a study of the qualitative effects of the model parameters, mainly those governing the mechanical properties of the nucleus and the geometry of the confining structure. Coherently with biological observations, we find that cells characterized by a stiff nucleus are unable to migrate in channels that can be crossed by cells with a softer nucleus. Regarding the geometry, cell velocity and ability to migrate are influenced by the width of the channel and the wavelength of the external structure. Even though still preliminary, these results may be potentially useful in determining the physical limit of cell migration in confined environments and in designing scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Chiara Giverso
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Gaspard Jankowiak
- Department of Mathematics and Statistics, University of Konstanz, 78457 Constance, Germany
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Christian Schmeiser
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern Platz 1, 1090 Wien, Austria
| |
Collapse
|
4
|
Colin A, Kotila T, Guérin C, Orhant-Prioux M, Vianay B, Mogilner A, Lappalainen P, Théry M, Blanchoin L. Recycling of the actin monomer pool limits the lifetime of network turnover. EMBO J 2023; 42:e112717. [PMID: 36912152 PMCID: PMC10152149 DOI: 10.15252/embj.2022112717] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called "dynamic steady state," allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase-associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long-term network assembly with a limited amount of building blocks.
Collapse
Affiliation(s)
- Alexandra Colin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Tommi Kotila
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Christophe Guérin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Magali Orhant-Prioux
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Benoit Vianay
- CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA, Paris, France
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.,Department of Biology, New York University, New York, NY, USA
| | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Manuel Théry
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA, Paris, France
| | - Laurent Blanchoin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA, Paris, France
| |
Collapse
|
5
|
Rodríguez-Fernández JL, Criado-García O. A meta-analysis indicates that the regulation of cell motility is a non-intrinsic function of chemoattractant receptors that is governed independently of directional sensing. Front Immunol 2022; 13:1001086. [PMID: 36341452 PMCID: PMC9630654 DOI: 10.3389/fimmu.2022.1001086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Chemoattraction, defined as the migration of a cell toward a source of a chemical gradient, is controlled by chemoattractant receptors. Chemoattraction involves two basic activities, namely, directional sensing, a molecular mechanism that detects the direction of a source of chemoattractant, and actin-based motility, which allows the migration of a cell towards it. Current models assume first, that chemoattractant receptors govern both directional sensing and motility (most commonly inducing an increase in the migratory speed of the cells, i.e. chemokinesis), and, second, that the signaling pathways controlling both activities are intertwined. We performed a meta-analysis to reassess these two points. From this study emerge two main findings. First, although many chemoattractant receptors govern directional sensing, there are also receptors that do not regulate cell motility, suggesting that is the ability to control directional sensing, not motility, that best defines a chemoattractant receptor. Second, multiple experimental data suggest that receptor-controlled directional sensing and motility can be controlled independently. We hypothesize that this independence may be based on the existence of separated signalling modules that selectively govern directional sensing and motility in chemotactic cells. Together, the information gathered can be useful to update current models representing the signalling from chemoattractant receptors. The new models may facilitate the development of strategies for a more effective pharmacological modulation of chemoattractant receptor-controlled chemoattraction in health and disease.
Collapse
|
6
|
Garner RM, Theriot JA. Leading edge maintenance in migrating cells is an emergent property of branched actin network growth. eLife 2022; 11:74389. [PMID: 35275060 PMCID: PMC9033267 DOI: 10.7554/elife.74389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
Animal cell migration is predominantly driven by the coordinated, yet stochastic, polymerization of thousands of nanometer-scale actin filaments across micron-scale cell leading edges. It remains unclear how such inherently noisy processes generate robust cellular behavior. We employed high-speed imaging of migrating neutrophil-like HL-60 cells to explore the fine-scale shape fluctuations that emerge and relax throughout the process of leading edge maintenance. We then developed a minimal stochastic model of the leading edge that reproduces this stable relaxation behavior. Remarkably, we find lamellipodial stability naturally emerges from the interplay between branched actin network growth and leading edge shape – with no additional feedback required – based on a synergy between membrane-proximal branching and lateral spreading of filaments. These results thus demonstrate a novel biological noise-suppression mechanism based entirely on system geometry. Furthermore, our model suggests that the Arp2/3-mediated ~70–80° branching angle optimally smooths lamellipodial shape, addressing its long-mysterious conservation from protists to mammals. In every human cell, there are tens of millions of proteins which work together to control everything from the cell’s shape to its behavior. One of the most abundant proteins is actin, which organizes itself into filaments that mechanically support the cell and help it to move. These filaments are very dynamic, with individual actin molecules constantly being added or removed. This allows the cell to build large structures with distinct shapes and properties. Many motile cells, for example, have a structure called a lamellipodium which protrudes at their ‘leading edge’ and pushes them forward. The lamellipodium has a very robust shape that does not vary much between different cell types, or change significantly as cells migrate. But how the tens of thousands of actin molecules inside the lamellipodium organize themselves into this large, stable structure is not fully understood. To investigate, Garner and Theriot used high-speed video microscopy to track the shape of human cells cultured in the laboratory. As the cells crawled along a glass surface, their leading edge undulated like strings being plucked on a guitar. A computer simulation showed that these ripples can be caused by filaments randomly adding and removing actin molecules. While these random movements could destabilize the structure of the leading edge, the simulation suggests that another aspect of actin filament growth smooths out any fluctuations in the lamellipodium’s shape. Actin networks in the lamellipodium have a branched configuration, with new strands emerging off each other at an angle like branches in a tree. Garner and Theriot found that the specific angle in which new filaments are added smooths out the lamellipodium’s shape, which may explain why this geometry has persisted throughout evolution. These findings suggest that the way in which actin filaments join together helps to maintain the shape of large cellular structures. In the future, scientists could use this design principle to build molecular machines that can self-organize into microstructures. These engineered constructs could be used to modulate the activity of living cells that have been damaged by disease.
Collapse
Affiliation(s)
- Rikki M Garner
- Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Julie A Theriot
- Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, United States
| |
Collapse
|
7
|
Nejad MR, Yeomans JM. Active Extensile Stress Promotes 3D Director Orientations and Flows. PHYSICAL REVIEW LETTERS 2022; 128:048001. [PMID: 35148135 DOI: 10.1103/physrevlett.128.048001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
We use numerical simulations and linear stability analysis to study an active nematic layer where the director is allowed to point out of the plane. Our results highlight the difference between extensile and contractile systems. Contractile stress suppresses the flows perpendicular to the layer and favors in-plane orientations of the director. By contrast extensile stress promotes instabilities that can turn the director out of the plane, leaving behind a population of distinct, in-plane regions that continually elongate and divide. This supports extensile forces as a mechanism for the initial stages of layer formation in living systems, and we show that a planar drop with extensile (contractile) activity grows into three dimensions (remains in two dimensions). The results also explain the propensity of disclination lines in three dimensional active nematics to be of twist type in extensile or wedge type in contractile materials.
Collapse
Affiliation(s)
- Mehrana R Nejad
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
8
|
Shim J, Zhou C, Gong T, Iserlis DA, Linjawi HA, Wong M, Pan T, Tan C. Building protein networks in synthetic systems from the bottom-up. Biotechnol Adv 2021; 49:107753. [PMID: 33857631 PMCID: PMC9558565 DOI: 10.1016/j.biotechadv.2021.107753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/18/2021] [Accepted: 04/06/2021] [Indexed: 01/01/2023]
Abstract
The recent development of synthetic biology has expanded the capability to design and construct protein networks outside of living cells from the bottom-up. The new capability has enabled us to assemble protein networks for the basic study of cellular pathways, expression of proteins outside cells, and building tissue materials. Furthermore, the integration of natural and synthetic protein networks has enabled new functions of synthetic or artificial cells. Here, we review the underlying technologies for assembling protein networks in liposomes, water-in-oil droplets, and biomaterials from the bottom-up. We cover the recent applications of protein networks in biological transduction pathways, energy self-supplying systems, cellular environmental sensors, and cell-free protein scaffolds. We also review new technologies for assembling protein networks, including multiprotein purification methods, high-throughput assay screen platforms, and controllable fusion of liposomes. Finally, we present existing challenges towards building protein networks that rival the complexity and dynamic response akin to natural systems. This review addresses the gap in our understanding of synthetic and natural protein networks. It presents a vision towards developing smart and resilient protein networks for various biomedical applications.
Collapse
Affiliation(s)
- Jiyoung Shim
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Chuqing Zhou
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Ting Gong
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Dasha Aleksandra Iserlis
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Hamad Abdullah Linjawi
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Matthew Wong
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Tingrui Pan
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America; Suzhou Institute for Advanced Research, University of Science and Technology, Suzhou, China.
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America.
| |
Collapse
|
9
|
Sunami H, Shimizu Y, Denda J, Yokota I, Kishimoto H, Igarashi Y. A 3D Microfabricated Scaffold System for Unidirectional Cell Migration. ACTA ACUST UNITED AC 2020; 4:e2000113. [PMID: 32924291 DOI: 10.1002/adbi.202000113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/02/2020] [Indexed: 11/08/2022]
Abstract
The present study demonstrates unidirectional cell migration using a novel 3D microfabricated scaffold, as revealed by the uneven sorting of cells into an area of 1 mm × 1 mm. To induce unidirectional cell migration, it is important to determine the optimal arrangement of 3D edges, and thus, the anisotropic periodic structures of micropatterns are adjusted appropriately. The cells put forth protrusions directionally along the sharp edges of these micropatterns, and migrated in the protruding direction. There are three advantages to this novel system. First, the range of applications is wide, because this system effectively induces unidirectional migration as long as 3D shapes of the scaffolds are maintained. Second, this system can contribute to the field of cell biology as a novel taxis assay. Third, this system is highly applicable to the development of medical devices. In the present report, unique 3D microfabricated scaffolds that provoked unidirectional migration of NIH3T3 cells are described. The 3D scaffolds could provoke cells to accumulate in a single target location, or could provoke a dissipated cell distribution. Because the shapes are very simple, they could be applied to the surfaces of various medical devices. Their utilization as a cell separation technology is also anticipated.
Collapse
Affiliation(s)
- Hiroshi Sunami
- Faculty of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
| | - Yusuke Shimizu
- Faculty of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
| | - Junko Denda
- Faculty of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
| | - Ikuko Yokota
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Hidehiro Kishimoto
- Faculty of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
| | - Yasuyuki Igarashi
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| |
Collapse
|
10
|
On the mechanical response of the actomyosin cortex during cell indentations. Biomech Model Mechanobiol 2020; 19:2061-2079. [PMID: 32356071 DOI: 10.1007/s10237-020-01324-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/02/2020] [Indexed: 01/01/2023]
Abstract
A mechanical model is presented to analyze the mechanics and dynamics of the cell cortex during indentation. We investigate the impact of active contraction on the cross-linked actin network for different probe sizes and indentation rates. The essential molecular mechanisms of filament stretching, cross-linking and motor activity, are represented by an active and viscous mechanical continuum. The filaments behave as worm-like chains linked either by passive rigid linkers or by myosin motors. In the first example, the effects of probe size and loading rate are evaluated using the model for an idealized rounded cell shape in which properties are based on the results of parallel-plate rheometry available in the literature. Extreme cases of probe size and indentation rate are taken into account. Afterward, AFM experiments were done by engaging smooth muscle cells with both sharp and spherical probes. By inverse analysis with finite element software, our simulations mimicking the experimental conditions show the model is capable of fitting the AFM data. The results provide spatiotemporal dependence on the size and rate of the mechanical stimuli. The model captures the general features of the cell response. It characterizes the actomyosin cortex as an active solid at short timescales and as a fluid at longer timescales by showing (1) higher levels of contraction in the zones of high curvature; (2) larger indentation forces as the probe size increases; and (3) increase in the apparent modulus with the indentation depth but no dependence on the rate of the mechanical stimuli. The methodology presented in this work can be used to address and predict microstructural dependence on the force generation of living cells, which can contribute to understanding the broad spectrum of results in cell experiments.
Collapse
|
11
|
Mai MH, Camley BA. Hydrodynamic effects on the motility of crawling eukaryotic cells. SOFT MATTER 2020; 16:1349-1358. [PMID: 31934705 DOI: 10.1039/c9sm01797f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Eukaryotic cell motility is crucial during development, wound healing, the immune response, and cancer metastasis. Some eukaryotic cells can swim, but cells more commonly adhere to and crawl along the extracellular matrix. We study the relationship between hydrodynamics and adhesion that describe whether a cell is swimming, crawling, or combining these motions. Our simple model of a cell, based on the three-sphere swimmer, is capable of both swimming and crawling. As cell-matrix adhesion strength increases, the influence of hydrodynamics on migration diminishes. Cells with significant adhesion can crawl with speeds much larger than their nonadherent, swimming counterparts. We predict that, while most eukaryotic cells are in the strong-adhesion limit, increasing environment viscosity or decreasing cell-matrix adhesion could lead to significant hydrodynamic effects even in crawling cells. Signatures of hydrodynamic effects include a dependence of cell speed on the presence of a nearby substrate or interactions between noncontacting cells. These signatures will be suppressed at large adhesion strengths, but even strongly adherent cells will generate relevant fluid flows that will advect nearby passive particles and swimmers.
Collapse
Affiliation(s)
- Melissa H Mai
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
12
|
He F, Springer NL, Whitman MA, Pathi SP, Lee Y, Mohanan S, Marcott S, Chiou AE, Blank BS, Iyengar N, Morris PG, Jochelson M, Hudis CA, Shah P, Kunitake JAMR, Estroff LA, Lammerding J, Fischbach C. Hydroxyapatite mineral enhances malignant potential in a tissue-engineered model of ductal carcinoma in situ (DCIS). Biomaterials 2019; 224:119489. [PMID: 31546097 PMCID: PMC6878891 DOI: 10.1016/j.biomaterials.2019.119489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 01/21/2023]
Abstract
While ductal carcinoma in situ (DCIS) is known as a precursor lesion to most invasive breast carcinomas, the mechanisms underlying this transition remain enigmatic. DCIS is typically diagnosed by the mammographic detection of microcalcifications (MC). MCs consisting of non-stoichiometric hydroxyapatite (HA) mineral are frequently associated with malignant disease, yet it is unclear whether HA can actively promote malignancy. To investigate this outstanding question, we compared phenotypic outcomes of breast cancer cells cultured in control or HA-containing poly(lactide-co-glycolide) (PLG) scaffolds. Exposure to HA mineral in scaffolds increased the expression of pro-tumorigenic interleukin-8 (IL-8) among transformed but not benign cells. Notably, MCF10DCIS.com cells cultured in HA scaffolds adopted morphological changes associated with increased invasiveness and exhibited increased motility that were dependent on IL-8 signaling. Moreover, MCF10DCIS.com xenografts in HA scaffolds displayed evidence of enhanced malignant progression relative to xenografts in control scaffolds. These experimental findings were supported by a pathological analysis of clinical DCIS specimens, which correlated the presence of MCs with increased IL-8 staining and ductal proliferation. Collectively, our work suggests that HA mineral may stimulate malignancy in preinvasive DCIS cells and validate PLG scaffolds as useful tools to study cell-mineral interactions.
Collapse
Affiliation(s)
- Frank He
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Nora L Springer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, 66506, USA
| | - Matthew A Whitman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Siddharth P Pathi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Yeonkyung Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sunish Mohanan
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA
| | - Stephen Marcott
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Aaron E Chiou
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Bryant S Blank
- Cornell Center for Animal Resources and Education, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Neil Iyengar
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center/Evelyn H. Lauder Breast and Imaging Center, New York, NY, 10065, USA
| | - Patrick G Morris
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center/Evelyn H. Lauder Breast and Imaging Center, New York, NY, 10065, USA
| | - Maxine Jochelson
- Department of Radiology, Memorial Sloan Kettering Cancer Center/Evelyn H. Lauder Breast and Imaging Center, New York, NY, 10065, USA
| | - Clifford A Hudis
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center/Evelyn H. Lauder Breast and Imaging Center, New York, NY, 10065, USA
| | - Pragya Shah
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jennie A M R Kunitake
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jan Lammerding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
13
|
Thone MN, Kwon YJ. Extracellular blebs: Artificially-induced extracellular vesicles for facile production and clinical translation. Methods 2019; 177:135-145. [PMID: 31734187 DOI: 10.1016/j.ymeth.2019.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) have emerged as promising biologic and comprehensive therapies for precision medicine. Despite their potential demonstrated at the benchtop, few EV formulations have made it to the clinic due to challenges in regulatory compliant scalable production; including purity, homogeneity, and reproducibility. For translation of this technology, there is a strong need for novel production methods that can meet clinical production criteria. Initial research aimed to address these challenges by taking advantage of natural pathways to increase EV yields. Such "conventional" approaches moderately increased yields but produced inhomogeneous EVs. Additionally, as there are currently no standard methods for isolation, characterization, or quantification, isolated EVs were often impure, contaminated with proteins and other biomacromolecules, and highly diverse in function. The use of shear stress and extrusion methods for EV-like vesicle production has also been investigated. While these processes can produce large EV-like vesicle yields nearly immediately, the harsh processes still result in inhomogeneous loading, and still suffer from poor purity. Chemically-induced membrane blebbing is a promising alternative production method that has the potential to overcome the previously insurmountable barriers of these current methods. This technique produces pure, and well defined EV-like vesicles, termed extracellular blebs (EBs), in clinically relevant scales over the course of minutes to hours. Furthermore, blebbing agents act on the cell in a way which locks the current surface properties and contents, preventing change, allowing for homogeneous EB production, and further preventing post-production changes. EBs may provide a promising pathway for clinical translation of EV technology.
Collapse
Affiliation(s)
- Melissa N Thone
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, United States.
| | - Young Jik Kwon
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, United States; Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States.
| |
Collapse
|
14
|
Gauquelin E, Tlili S, Gay C, Peyret G, Mège RM, Fardin MA, Ladoux B. Influence of proliferation on the motions of epithelial monolayers invading adherent strips. SOFT MATTER 2019; 15:2798-2810. [PMID: 30888391 PMCID: PMC6457434 DOI: 10.1039/c9sm00105k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biological systems integrate dynamics at many scales, from molecules, protein complexes and genes, to cells, tissues and organisms. At every step of the way, mechanics, biochemistry and genetics offer complementary approaches to understand these dynamics. At the tissue scale, in vitro monolayers of epithelial cells provide a model to capture the influence of various factors on the motions of the tissue, in order to understand in vivo processes from morphogenesis, cancer progression and tissue remodelling. Ongoing efforts include research aimed at deciphering the roles of the cytoskeleton, of cell-substrate and cell-cell adhesions, and of cell proliferation-the point we investigate here. We show that confined to adherent strips, and on the time scale of a day or two, monolayers move with a characteristic front speed independent of proliferation, but that the motion is accompanied by persistent velocity waves, only in the absence of cell divisions. Here we show that the long-range transmission of physical signals is strongly coupled to cell density and proliferation. We interpret our results from a kinematic and mechanical perspective. Our study provides a framework to understand density-driven mechanisms of collective cell migration.
Collapse
Affiliation(s)
- Estelle Gauquelin
- Institut Jacques Monod (IJM), Université Denis Diderot - Paris 7, CNRS UMR 7592, Paris 72505, France.
| | - Sham Tlili
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Cyprien Gay
- Laboratoire Matière et Systèmes Complexes, Université Denis Diderot - Paris 7, CNRS UMR 7057, Paris 72505, France
| | - Grégoire Peyret
- Institut Jacques Monod (IJM), Université Denis Diderot - Paris 7, CNRS UMR 7592, Paris 72505, France.
| | - René-Marc Mège
- Institut Jacques Monod (IJM), Université Denis Diderot - Paris 7, CNRS UMR 7592, Paris 72505, France.
| | - Marc A Fardin
- Institut Jacques Monod (IJM), Université Denis Diderot - Paris 7, CNRS UMR 7592, Paris 72505, France.
| | - Benoît Ladoux
- Institut Jacques Monod (IJM), Université Denis Diderot - Paris 7, CNRS UMR 7592, Paris 72505, France.
| |
Collapse
|
15
|
Jansen C, Tobita C, Umemoto EU, Starkus J, Rysavy NM, Shimoda LMN, Sung C, Stokes AJ, Turner H. Calcium-dependent, non-apoptotic, large plasma membrane bleb formation in physiologically stimulated mast cells and basophils. J Extracell Vesicles 2019; 8:1578589. [PMID: 30815238 PMCID: PMC6383620 DOI: 10.1080/20013078.2019.1578589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 01/05/2023] Open
Abstract
Large membrane derangements in the form of non-detaching blebs or membrane protrusions occur in a variety of cell stress and physiological situations and do not always reflect apoptotic processes. They have been studied in model mast cells under conditions of cell stress, but their potential physiological relevance to mast cell function and formation in primary mast cells or basophils have not been addressed. In the current study, we examine the large, non-detaching, non-apoptotic, membrane structures that form in model and primary mast cells under conditions of stimulation that are relevant to allergy, atopy and Type IV delayed hypersensitivity reactions. We characterized the inflation kinetics, dependency of formation upon external free calcium and striking geometric consistency of formation for large plasma membrane blebs (LPMBs). We describe that immunologically stimulated LPMBs in mast cells are constrained to form in locations where dissociation of the membrane-associated cytoskeleton occurs. Mast cell LPMBs decorate with wheat germ agglutinin, suggesting that they contain plasma membrane (PM) lectins. Electrophysiological capacitance measurements support a model where LPMBs are not being formed from internal membranes newly fused into the PM, but rather arise from stretching of the existing membrane, or inflation and smoothing of a micro-ruffled PM. This study provides new insights into the physiological manifestations of LPMB in response to immunologically relevant stimuli and in the absence of cell stress, death or apoptotic pathways.
Collapse
Affiliation(s)
- C Jansen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - C Tobita
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i.,Undergraduate Program in Biology, Chaminade University, Honolulu, Hawai'i
| | - E U Umemoto
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - J Starkus
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - N M Rysavy
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - L M N Shimoda
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - C Sung
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - A J Stokes
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawai'i
| | - H Turner
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| |
Collapse
|
16
|
Rich SK, Terman JR. Axon formation, extension, and navigation: only a neuroscience phenomenon? Curr Opin Neurobiol 2018; 53:174-182. [PMID: 30248549 DOI: 10.1016/j.conb.2018.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/13/2018] [Indexed: 01/09/2023]
Abstract
Understanding how neurons form, extend, and navigate their finger-like axonal and dendritic processes is crucial for developing therapeutics for the diseased and damaged brain. Although less well appreciated, many other types of cells also send out similar finger-like projections. Indeed, unlike neuronal specific phenomena such as synapse formation or synaptic transmission, an important issue for thought is that this critical long-standing question of how a cellular process like an axon or dendrite forms and extends is not primarily a neuroscience problem but a cell biological problem. In that case, the use of simple cellular processes - such as the bristle cell process of Drosophila - can aid in the fight to answer these critical questions. Specifically, determining how a model cellular process is generated can provide a framework for manipulations of all types of membranous process-containing cells, including different types of neurons.
Collapse
Affiliation(s)
- Shannon K Rich
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan R Terman
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
17
|
Swinburne IA, Mosaliganti KR, Upadhyayula S, Liu TL, Hildebrand DGC, Tsai TYC, Chen A, Al-Obeidi E, Fass AK, Malhotra S, Engert F, Lichtman JW, Kirchhausen T, Betzig E, Megason SG. Lamellar projections in the endolymphatic sac act as a relief valve to regulate inner ear pressure. eLife 2018; 7:e37131. [PMID: 29916365 PMCID: PMC6008045 DOI: 10.7554/elife.37131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 01/23/2023] Open
Abstract
The inner ear is a fluid-filled closed-epithelial structure whose function requires maintenance of an internal hydrostatic pressure and fluid composition. The endolymphatic sac (ES) is a dead-end epithelial tube connected to the inner ear whose function is unclear. ES defects can cause distended ear tissue, a pathology often seen in hearing and balance disorders. Using live imaging of zebrafish larvae, we reveal that the ES undergoes cycles of slow pressure-driven inflation followed by rapid deflation. Absence of these cycles in lmx1bb mutants leads to distended ear tissue. Using serial-section electron microscopy and adaptive optics lattice light-sheet microscopy, we find a pressure relief valve in the ES comprised of partially separated apical junctions and dynamic overlapping basal lamellae that separate under pressure to release fluid. We propose that this lmx1-dependent pressure relief valve is required to maintain fluid homeostasis in the inner ear and other fluid-filled cavities.
Collapse
Affiliation(s)
- Ian A Swinburne
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | | | - Srigokul Upadhyayula
- Department of PediatricsHarvard Medical SchoolBostonUnited States
- Program in Cellular and Molecular MedicineBoston Children’s HospitalBostonUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tsung-Li Liu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - David G C Hildebrand
- Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
| | - Tony Y -C Tsai
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Anzhi Chen
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Ebaa Al-Obeidi
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Anna K Fass
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Samir Malhotra
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Florian Engert
- Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
| | - Jeff W Lichtman
- Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
| | - Tomas Kirchhausen
- Department of PediatricsHarvard Medical SchoolBostonUnited States
- Program in Cellular and Molecular MedicineBoston Children’s HospitalBostonUnited States
- Department of Cell BiologyHarvard Medical SchoolBostonUnited States
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sean G Megason
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| |
Collapse
|
18
|
Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress, and the future with focus on cell size control: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056601. [PMID: 29313526 PMCID: PMC5897229 DOI: 10.1088/1361-6633/aaa628] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1-3), we review the first 'golden era' of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4-7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the 'adder' principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome 'sectors' re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.
Collapse
Affiliation(s)
- Suckjoon Jun
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America. Section of Molecular Biology, Division of Biology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| | | | | | | |
Collapse
|
19
|
Lee J. Insights into cell motility provided by the iterative use of mathematical modeling and experimentation. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.2.97] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
20
|
Nickaeen M, Novak IL, Pulford S, Rumack A, Brandon J, Slepchenko BM, Mogilner A. A free-boundary model of a motile cell explains turning behavior. PLoS Comput Biol 2017; 13:e1005862. [PMID: 29136638 PMCID: PMC5705165 DOI: 10.1371/journal.pcbi.1005862] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 11/28/2017] [Accepted: 10/31/2017] [Indexed: 01/14/2023] Open
Abstract
To understand shapes and movements of cells undergoing lamellipodial motility, we systematically explore minimal free-boundary models of actin-myosin contractility consisting of the force-balance and myosin transport equations. The models account for isotropic contraction proportional to myosin density, viscous stresses in the actin network, and constant-strength viscous-like adhesion. The contraction generates a spatially graded centripetal actin flow, which in turn reinforces the contraction via myosin redistribution and causes retraction of the lamellipodial boundary. Actin protrusion at the boundary counters the retraction, and the balance of the protrusion and retraction shapes the lamellipodium. The model analysis shows that initiation of motility critically depends on three dimensionless parameter combinations, which represent myosin-dependent contractility, a characteristic viscosity-adhesion length, and a rate of actin protrusion. When the contractility is sufficiently strong, cells break symmetry and move steadily along either straight or circular trajectories, and the motile behavior is sensitive to conditions at the cell boundary. Scanning of a model parameter space shows that the contractile mechanism of motility supports robust cell turning in conditions where short viscosity-adhesion lengths and fast protrusion cause an accumulation of myosin in a small region at the cell rear, destabilizing the axial symmetry of a moving cell. To understand shapes and movements of simple motile cells, we systematically explore minimal models describing a cell as a two-dimensional actin-myosin gel with a free boundary. The models account for actin-myosin contraction balanced by viscous stresses in the actin gel and uniform adhesion. The myosin contraction causes the lamellipodial boundary to retract. Actin protrusion at the boundary counters the retraction, and the balance of protrusion and retraction shapes the cell. The models reproduce a variety of motile shapes observed experimentally. The analysis shows that the mechanical state of a cell depends on a small number of parameters. We find that when the contractility is sufficiently strong, cells break symmetry and move steadily along either straight or circular trajectory. Scanning model parameters shows that the contractile mechanism of motility supports robust cell turning behavior in conditions where deformable actin gel and fast protrusion destabilize the axial symmetry of a moving cell.
Collapse
Affiliation(s)
- Masoud Nickaeen
- Richard D. Berlin Center for Cell Analysis and Modeling, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Igor L. Novak
- Richard D. Berlin Center for Cell Analysis and Modeling, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Stephanie Pulford
- Center for Engineering Learning & Teaching, University of Washington, Seattle, WA, United States of America
| | - Aaron Rumack
- Department of Computer Science, Cornell University, Ithaca, NY, United States of America
| | - Jamie Brandon
- Department of Mathematics, Adrian College, Adrian, MI, United States of America
| | - Boris M. Slepchenko
- Richard D. Berlin Center for Cell Analysis and Modeling, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
21
|
Tjhung E, Berthier L. Discontinuous fluidization transition in time-correlated assemblies of actively deforming particles. Phys Rev E 2017; 96:050601. [PMID: 29347785 DOI: 10.1103/physreve.96.050601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 06/07/2023]
Abstract
Tracking experiments in dense biological tissues reveal a diversity of sources for local energy injection at the cell scale. The effect of cell motility has been largely studied, but much less is known about the effect of the observed volume fluctuations of individual cells. We consider a microscopic model of "actively deforming" particles where local fluctuations of the particle size constitute a unique source of motion. We demonstrate that collective motion can emerge under the sole influence of such active volume fluctuations. We interpret the onset of diffusive motion as a nonequilibrium first-order phase transition, which arises at a well-defined amplitude of self-deformation. This behavior contrasts with the glassy dynamics produced by self-propulsion, but resembles the mechanical response of soft solids under mechanical deformation. It thus constitutes an example of an active yielding transition.
Collapse
Affiliation(s)
- Elsen Tjhung
- Laboratoire Charles Coulomb, UMR 5221, CNRS and Université Montpellier, 34095 Montpellier, France
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221, CNRS and Université Montpellier, 34095 Montpellier, France
| |
Collapse
|
22
|
Abaurrea Velasco C, Dehghani Ghahnaviyeh S, Nejat Pishkenari H, Auth T, Gompper G. Complex self-propelled rings: a minimal model for cell motility. SOFT MATTER 2017; 13:5865-5876. [PMID: 28766641 DOI: 10.1039/c7sm00439g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Collective behavior of active matter is observed for self-propelled particles, such as vibrated disks and active Brownian particles, as well as for cytoskeletal filaments in motile cells. Here, a system of quasi two-dimensional penetrable self-propelled rods inside rigid rings is used to construct a complex self-propelled particle. The rods interact sterically with each other and with a stationary or mobile ring via a separation-shifted Lennard-Jones potential. They either have a sliding attachment to the inside of the ring at one of their ends, or can move freely within the ring confinement. We study the inner structure and dynamics of the mobile self-propelled rings. We find that these complex particles cannot only be characterized as active Brownian particles, but can also exhibit cell-like motility: random walks, persistent motion, circling, and run-and-circle motion.
Collapse
Affiliation(s)
- Clara Abaurrea Velasco
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | | | | | |
Collapse
|
23
|
Golfier S, Rosendahl P, Mietke A, Herbig M, Guck J, Otto O. High-throughput cell mechanical phenotyping for label-free titration assays of cytoskeletal modifications. Cytoskeleton (Hoboken) 2017; 74:283-296. [PMID: 28445605 PMCID: PMC5601209 DOI: 10.1002/cm.21369] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 01/29/2023]
Abstract
The mechanical fingerprint of cells is inherently linked to the structure of the cytoskeleton and can serve as a label‐free marker for cell homeostasis or pathologic states. How cytoskeletal composition affects the physical response of cells to external loads has been intensively studied with a spectrum of techniques, yet quantitative and statistically powerful investigations in the form of titration assays are hampered by the low throughput of most available methods. In this study, we employ real‐time deformability cytometry (RT‐DC), a novel microfluidic tool to examine the effects of biochemically modified F‐actin and microtubule stability and nuclear chromatin structure on cell deformation in a human leukemia cell line (HL60). The high throughput of our method facilitates extensive titration assays that allow for significance assessment of the observed effects and extraction of half‐maximal concentrations for most of the applied reagents. We quantitatively show that integrity of the F‐actin cortex and microtubule network dominate cell deformation on millisecond timescales probed with RT‐DC. Drug‐induced alterations in the nuclear chromatin structure were not found to consistently affect cell deformation. The sensitivity of the high‐throughput cell mechanical measurements to the cytoskeletal modifications we present in this study opens up new possibilities for label‐free dose‐response assays of cytoskeletal modifications.
Collapse
Affiliation(s)
- Stefan Golfier
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max-Planck-Institute for Physics of Complex Systems, Dresden, Germany
| | - Philipp Rosendahl
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Alexander Mietke
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max-Planck-Institute for Physics of Complex Systems, Dresden, Germany
| | - Maik Herbig
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Oliver Otto
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,ZIK HIKE, Universität Greifswald, Greifswald, Germany
| |
Collapse
|
24
|
Hakim V, Silberzan P. Collective cell migration: a physics perspective. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:076601. [PMID: 28282028 DOI: 10.1088/1361-6633/aa65ef] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cells have traditionally been viewed either as independently moving entities or as somewhat static parts of tissues. However, it is now clear that in many cases, multiple cells coordinate their motions and move as collective entities. Well-studied examples comprise development events, as well as physiological and pathological situations. Different ex vivo model systems have also been investigated. Several recent advances have taken place at the interface between biology and physics, and have benefitted from progress in imaging and microscopy, from the use of microfabrication techniques, as well as from the introduction of quantitative tools and models. We review these interesting developments in quantitative cell biology that also provide rich examples of collective out-of-equilibrium motion.
Collapse
Affiliation(s)
- Vincent Hakim
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS, PSL Research University, UPMC, Paris, France
| | | |
Collapse
|
25
|
Bameta T, Das D, Das D, Padinhateeri R, Inamdar MM. Sufficient conditions for the additivity of stall forces generated by multiple filaments or motors. Phys Rev E 2017; 95:022406. [PMID: 28297971 DOI: 10.1103/physreve.95.022406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 06/06/2023]
Abstract
Molecular motors and cytoskeletal filaments work collectively most of the time under opposing forces. This opposing force may be due to cargo carried by motors or resistance coming from the cell membrane pressing against the cytoskeletal filaments. Some recent studies have shown that the collective maximum force (stall force) generated by multiple cytoskeletal filaments or molecular motors may not always be just a simple sum of the stall forces of the individual filaments or motors. To understand this excess or deficit in the collective force, we study a broad class of models of both cytoskeletal filaments and molecular motors. We argue that the stall force generated by a group of filaments or motors is additive, that is, the stall force of N number of filaments (motors) is N times the stall force of one filament (motor), when the system is reversible at stall. Conversely, we show that this additive property typically does not hold true when the system is irreversible at stall. We thus present a novel and unified understanding of the existing models exhibiting such non-addivity, and generalise our arguments by developing new models that demonstrate this phenomena. We also propose a quantity similar to thermodynamic efficiency to easily predict this deviation from stall-force additivity for filament and motor collectives.
Collapse
Affiliation(s)
- Tripti Bameta
- UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Vidhyanagari Campus, Mumbai-400098, India
| | - Dipjyoti Das
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai-400 076, India
| | - Dibyendu Das
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai-400 076, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai-400 076, India
| |
Collapse
|
26
|
Ingato D, Lee JU, Sim SJ, Kwon YJ. Good things come in small packages: Overcoming challenges to harness extracellular vesicles for therapeutic delivery. J Control Release 2016; 241:174-185. [DOI: 10.1016/j.jconrel.2016.09.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/15/2022]
|
27
|
de Menezes JPB, Koushik A, Das S, Guven C, Siegel A, Laranjeira-Silva MF, Losert W, Andrews NW. Leishmania infection inhibits macrophage motility by altering F-actin dynamics and the expression of adhesion complex proteins. Cell Microbiol 2016; 19. [PMID: 27641840 DOI: 10.1111/cmi.12668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/16/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
Abstract
Leishmania is an intracellular protozoan parasite that causes a broad spectrum of clinical manifestations, ranging from self-healing skin lesions to fatal visceralizing disease. As the host cells of choice for all species of Leishmania, macrophages are critical for the establishment of infections. How macrophages contribute to parasite homing to specific tissues and how parasites modulate macrophage function are still poorly understood. In this study, we show that Leishmania amazonensis infection inhibits macrophage roaming motility. The reduction in macrophage speed is not dependent on particle load or on factors released by infected macrophages. L. amazonensis-infected macrophages also show reduced directional migration in response to the chemokine MCP-1. We found that infected macrophages have lower levels of total paxillin, phosphorylated paxillin, and phosphorylated focal adhesion kinase when compared to noninfected macrophages, indicating abnormalities in the formation of signaling adhesion complexes that regulate motility. Analysis of the dynamics of actin polymerization at peripheral sites also revealed a markedly enhanced F-actin turnover frequency in L. amazonensis-infected macrophages. Thus, Leishmania infection inhibits macrophage motility by altering actin dynamics and impairing the expression of proteins that function in plasma membrane-extracellular matrix interactions.
Collapse
Affiliation(s)
- Juliana Perrone Bezerra de Menezes
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA.,Laboratório de Patologia e Biointervenção, CPqGM, FIOCRUZ, Salvador, Bahia, Brazil
| | - Amrita Koushik
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | - Satarupa Das
- Department of Physics, University of Maryland, Maryland, USA
| | - Can Guven
- Department of Physics, University of Maryland, Maryland, USA
| | - Ariel Siegel
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | | | - Wolfgang Losert
- Department of Physics, University of Maryland, Maryland, USA
| | - Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| |
Collapse
|
28
|
Persistence of fan-shaped keratocytes is a matrix-rigidity-dependent mechanism that requires α 5β 1 integrin engagement. Sci Rep 2016; 6:34141. [PMID: 27678055 PMCID: PMC5039689 DOI: 10.1038/srep34141] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/05/2016] [Indexed: 12/27/2022] Open
Abstract
Despite the importance of matrix rigidity on cell functions, many aspects of the mechanosensing process in highly migratory cells remain elusive. Here, we studied the migration of highly motile keratocytes on culture substrates with similar biochemical properties and rigidities spanning the range between soft tissues (~kPa) and stiff culture substrates (~GPa). We show that morphology, polarization and persistence of motile keratocytes are regulated by the matrix stiffness over seven orders of magnitude, without changing the cell spreading area. Increasing the matrix rigidity leads to more F-actin in the lamellipodia and to the formation of mature contractile actomyosin fibers that control the cell rear retraction. Keratocytes remain rounded and form nascent adhesions on compliant substrates, whereas large and uniformly distributed focal adhesions are formed on fan-shaped keratocytes migrating on rigid surfaces. By combining poly-L-lysine, fibronectin and vitronectin coatings with selective blocking of αvβ3 or α5β1 integrins, we show that αVβ3 integrins permit the spreading of keratocytes but are not sufficient for polarization and rigidity sensing that require the engagement of α5β1 integrins. Our study demonstrates a matrix rigidity-dependent regulation of the directional persistence in motile keratocytes and refines the role of αvβ3 and α5β1 integrins in the molecular clutch model.
Collapse
|
29
|
Abstract
Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.
Collapse
Affiliation(s)
- Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom WC1E 6BT; .,Institute for the Physics of Living Systems, University College London, London, United Kingdom, WC1E 6BT
| | - Irene M Aspalter
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom WC1E 6BT; .,Institute for the Physics of Living Systems, University College London, London, United Kingdom, WC1E 6BT
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| |
Collapse
|
30
|
Cunniff B, McKenzie AJ, Heintz NH, Howe AK. AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion. Mol Biol Cell 2016; 27:2662-74. [PMID: 27385336 PMCID: PMC5007087 DOI: 10.1091/mbc.e16-05-0286] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/26/2016] [Indexed: 01/06/2023] Open
Abstract
Mitochondria infiltrate leading edge lamellipodia, increasing local mitochondrial mass and relative ATP concentration. AMPK regulates infiltration of mitochondria into the leading edge of 2D lamellipodia and 3D invadopodia, coupling local metabolic sensing to subcellular targeting of mitochondria during cell movement. Cell migration is a complex behavior involving many energy-expensive biochemical events that iteratively alter cell shape and location. Mitochondria, the principal producers of cellular ATP, are dynamic organelles that fuse, divide, and relocate to respond to cellular metabolic demands. Using ovarian cancer cells as a model, we show that mitochondria actively infiltrate leading edge lamellipodia, thereby increasing local mitochondrial mass and relative ATP concentration and supporting a localized reversal of the Warburg shift toward aerobic glycolysis. This correlates with increased pseudopodial activity of the AMP-activated protein kinase (AMPK), a critically important cellular energy sensor and metabolic regulator. Furthermore, localized pharmacological activation of AMPK increases leading edge mitochondrial flux, ATP content, and cytoskeletal dynamics, whereas optogenetic inhibition of AMPK halts mitochondrial trafficking during both migration and the invasion of three-dimensional extracellular matrix. These observations indicate that AMPK couples local energy demands to subcellular targeting of mitochondria during cell migration and invasion.
Collapse
Affiliation(s)
- Brian Cunniff
- Department of Pathology, University of Vermont, Burlington, VT 05405 University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405
| | - Andrew J McKenzie
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405 Department of Pharmacology, University of Vermont, Burlington, VT 05405
| | - Nicholas H Heintz
- Department of Pathology, University of Vermont, Burlington, VT 05405 University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405
| | - Alan K Howe
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405 Department of Pharmacology, University of Vermont, Burlington, VT 05405
| |
Collapse
|
31
|
Zhang H, Zhou GL. CAP1 (Cyclase-Associated Protein 1) Exerts Distinct Functions in the Proliferation and Metastatic Potential of Breast Cancer Cells Mediated by ERK. Sci Rep 2016; 6:25933. [PMID: 27173014 PMCID: PMC4865817 DOI: 10.1038/srep25933] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/22/2016] [Indexed: 12/14/2022] Open
Abstract
The actin-regulating protein CAP1 is implicated in the invasiveness of human cancers. However, the exact role remains elusive and controversial given lines of conflicting evidence. Moreover, a potential role in the proliferative transformation has largely been overlooked. Further establishing the role and dissecting underlying mechanisms are imperative before targeting CAP1 can become a possibility for cancer treatment. Here we report our findings that CAP1 exerts cell type-dependent functions in the invasiveness of breast cancer cells. Depletion of CAP1 in the metastatic MDA-MB-231 and BT-549 cancer cells stimulated the metastatic potential while it actually inhibited it in the non-metastatic MCF-7 cancer cells or in normal cells. Moreover, we demonstrate functions for CAP1 in cancer cell proliferation and anchorage-independent growth, again in a cell context-dependent manner. Importantly, we identify pivotal roles for the ERK-centered signaling in mediating both CAP1 functions. Phosphor mutants of CAP1 at the S307/S309 regulatory site had compromised rescue effects for both the invasiveness and proliferation in CAP1-knockdown cells, suggesting that CAP1 likely mediates upstream cell signals to control both functions. These novel mechanistic insights may ultimately open up avenues for strategies targeting CAP1 in the treatment of breast cancer, tailored for specific types of the highly diverse disease.
Collapse
Affiliation(s)
- Haitao Zhang
- Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA.,Molecular Biosciences Program, Arkansas State University, State University, AR 72467, USA
| | - Guo-Lei Zhou
- Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA.,Molecular Biosciences Program, Arkansas State University, State University, AR 72467, USA
| |
Collapse
|
32
|
Han X, Tian Y, Tian D. Tumor metastatic promoter ABCE1 interacts with the cytoskeleton protein actin and increases cell motility. Oncol Rep 2016; 35:3623-9. [PMID: 27109616 DOI: 10.3892/or.2016.4751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/18/2016] [Indexed: 11/06/2022] Open
Abstract
ABCE1, a member of the ATP-binding cassette (ABC) family, is a candidate tumor metastatic promoter in lung cancer. Overexpression of ABCE1 is correlated with aggressive growth and metastasis in lung cancer cells. However, the exact mechanism remains unclear. In the present study, GST pull-down assay provided evidence of the possible interaction between ABCE1 and β-actin using GST-ABCE1 as a bait protein. Co-immunoprecipitation manifested ABCE1 formed complexes with β-actin in vivo. ABCE1 overexpression significantly increased the migration of lung cancer cells which may be attributed to the promotion of F-actin rearrangements. Taken together, these data suggest that overexpression of ABCE1 produces an obvious effect on the motility of lung cancer cells through cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Xu Han
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Ye Tian
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Dali Tian
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
33
|
Scinderin promotes the invasion and metastasis of gastric cancer cells and predicts the outcome of patients. Cancer Lett 2016; 376:110-7. [PMID: 27033455 DOI: 10.1016/j.canlet.2016.03.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 12/31/2022]
Abstract
Invasion and metastasis are major malignant characteristics of human gastric cancer (GC), but the underlying molecular mechanisms are poorly understood. Recent studies have shown that scinderin (SCIN), an actin severing and capping protein that regulates the actin cytoskeleton, is involved in the proliferation and migration of certain cancer cells. Accordingly, this study aimed to investigate the potential role of SCIN in the invasion and metastasis of human GC cells and to evaluate its prognostic value for GC patients. We found that high levels of SCIN expression in GC tumors were correlated with poor overall survival of patients. Silencing of SCIN effectively suppressed the migratory and invasive capabilities of human GC cells in vitro and tumorigenicity and metastasis in vivo. Furthermore, knockdown of SCIN markedly inhibited the formation of filopodia, decreasing GC cell migration and the expression of Cdc42, an important regulator of filopodia by GC cells. These findings suggest that SCIN may be a novel prognostic marker and a potential therapeutic target in human GC.
Collapse
|
34
|
Zhu K, Sun Y, Miu A, Yen M, Liu B, Zeng Q, Mogilner A, Zhao M. cAMP and cGMP Play an Essential Role in Galvanotaxis of Cell Fragments. J Cell Physiol 2015; 231:1291-300. [PMID: 26517849 DOI: 10.1002/jcp.25229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/28/2015] [Indexed: 01/09/2023]
Abstract
Cell fragments devoid of the nucleus and major organelles are found in physiology and pathology, for example platelets derived from megakaryocytes, and cell fragments from white blood cells and glioma cells. Platelets exhibit active chemotaxis. Fragments from white blood cells display chemotaxis, phagocytosis, and bactericidal functions. Signaling mechanisms underlying migration of cell fragments are poorly understood. Here we used fish keratocyte fragments and demonstrated striking differences in signal transduction in migration of cell fragments and parental cells in a weak electric field. cAMP or cGMP agonists completely abolished directional migration of fragments, but had no effect on parental cells. The inhibition effects were prevented by pre-incubating with cAMP and cGMP antagonists. Blocking cAMP and cGMP downstream signaling by inhibition of PKA and PKG also recovered fragment galvanotaxis. Both perturbations confirmed that the inhibitory effect was mediated by cAMP or cGMP signaling. Inhibition of cathode signaling with PI3K inhibitor LY294002 also prevented the effects of cAMP or cGMP agonists. Our results suggest that cAMP and cGMP are essential for galvanotaxis of cell fragments, in contrast to the signaling mechanisms in parental cells.
Collapse
Affiliation(s)
- Kan Zhu
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, California.,Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaohui Sun
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, California
| | - Anh Miu
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, California
| | - Michael Yen
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, California
| | - Bowei Liu
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, California
| | - Qunli Zeng
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, New York
| | - Min Zhao
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
35
|
Yeung TL, Leung CS, Yip KP, Au Yeung CL, Wong STC, Mok SC. Cellular and molecular processes in ovarian cancer metastasis. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. Am J Physiol Cell Physiol 2015. [PMID: 26224579 DOI: 10.1152/ajpcell.00188.2015] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy. It is usually diagnosed at a late stage, with a 5-yr survival rate of <30%. The majority of ovarian cancer cases are diagnosed after tumors have widely spread within the peritoneal cavity, limiting the effectiveness of debulking surgery and chemotherapy. Owing to a substantially lower survival rate at late stages of disease than at earlier stages, the major cause of ovarian cancer deaths is believed to be therapy-resistant metastasis. Although metastasis plays a crucial role in promoting ovarian tumor progression and decreasing patient survival rates, the underlying mechanisms of ovarian cancer spread have yet to be thoroughly explored. For many years, researchers have believed that ovarian cancer metastasizes via a passive mechanism by which ovarian cancer cells are shed from the primary tumor and carried by the physiological movement of peritoneal fluid to the peritoneum and omentum. However, the recent discovery of hematogenous metastasis of ovarian cancer to the omentum via circulating tumor cells instigated rethinking of the mode of ovarian cancer metastasis and the importance of the "seed-and-soil" hypothesis for ovarian cancer metastasis. In this review we discuss the possible mechanisms by which ovarian cancer cells metastasize from the primary tumor to the omentum, the cross-talk signaling events between ovarian cancer cells and various stromal cells that play crucial roles in ovarian cancer metastasis, and the possible clinical implications of these findings in the management of this deadly, highly metastatic disease.
Collapse
Affiliation(s)
- Tsz-Lun Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cecilia S Leung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Chi Lam Au Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas; NCI Center for Modeling Cancer Development, Houston Methodist Research Institute, Houston, Texas
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas;
| |
Collapse
|
36
|
Manca F, Giordano S, Palla PL, Cleri F. Stochastic mechanical degradation of multi-cracked fiber bundles with elastic and viscous interactions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:131. [PMID: 25998172 DOI: 10.1140/epje/i2015-15044-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
The mechanics of fiber bundles has been largely investigated in order to understand their complex failure modes. Under a mechanical load, the fibers fail progressively while the load is redistributed among the unbroken fibers. The classical fiber bundle model captures the most important features of this rupture process. On the other hand, the homogenization techniques are able to evaluate the stiffness degradation of bulk solids with a given population of cracks. However, these approaches are inadequate to determine the effective response of a degraded bundle where breaks are induced by non-mechanical actions. Here, we propose a method to analyze the behavior of a fiber bundle, undergoing a random distribution of breaks, by considering the intrinsic response of the fibers and the visco-elastic interactions among them. We obtain analytical solutions for simple configurations, while the most general cases are studied by Monte Carlo simulations. We find that the degradation of the effective bundle stiffness can be described by two scaling regimes: a first exponential regime for a low density of breaks, followed by a power-law regime at increasingly higher break density. For both regimes, we find analytical effective expressions described by specific scaling exponents.
Collapse
Affiliation(s)
- Fabio Manca
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN UMR CNRS 8520), 59652, Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
37
|
Fang S, Chen L, Yu M, Cheng B, Lin Y, Morris-Natschke SL, Lee KH, Gu Q, Xu J. Synthesis, antitumor activity, and mechanism of action of 6-acrylic phenethyl ester-2-pyranone derivatives. Org Biomol Chem 2015; 13:4714-26. [PMID: 25800703 PMCID: PMC4390547 DOI: 10.1039/c5ob00007f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the scaffolds of caffeic acid phenethyl ester (CAPE) as well as bioactive lactone-containing compounds, 6-acrylic phenethyl ester-2-pyranone derivatives were synthesized and evaluated against five tumor cell lines (HeLa, C6, MCF-7, A549, and HSC-2). Most of the new derivatives exhibited moderate to potent cytotoxic activity. Moreover, HeLa cell lines showed higher sensitivity to these compounds. In particular, compound showed potent cytotoxic activity (IC50 = 0.50-3.45 μM) against the five cell lines. Further investigation on the mechanism of action showed that induced apoptosis, arrested the cell cycle at G2/M phases in HeLa cells, and inhibited migration through disruption of the actin cytoskeleton. In addition, ADMET properties were also calculated in silico, and compound showed good ADMET properties with good absorption, low hepatotoxicity, and good solubility, and thus, could easily be bound to carrier proteins, without inhibition of CYP2D6. A structure-activity relationship (SAR) analysis indicated that compounds with ortho-substitution on the benzene ring exhibited obviously increased cytotoxic potency. This study indicated that compound is a promising compound as an antitumor agent.
Collapse
Affiliation(s)
- Sai Fang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The actin-myosin cytoskeleton allows cells to move, change shape, and exert forces. These fascinating functions involve active contraction of cross-linked networks of actin filaments by myosin II motor proteins. Unlike muscle cells, where actin and myosin form ordered bundles that contract homogeneously, nonmuscle cells have a variety of more disordered types of actin-myosin meshworks. Active gels reconstituted from purified actin and myosin proteins offer a useful in vitro model system to systematically and quantitatively investigate the mechanisms of contraction and the role of physical parameters like motor activity and network connectivity. In order to quantify the effect of these physical parameters on contraction, time-lapse microscopy combined with quantitative image analysis is required. Here we describe an assay that we developed specifically to record contraction events of entire biomimetic active gels in contraction chambers, which enables one to systematically quantify the dependence of contraction time and length scales on experimental parameters such as protein concentrations, adenosine triphosphate concentration, ionic strength, and surface adhesion.
Collapse
|
39
|
Brown L, Wan H. Desmoglein 3: a help or a hindrance in cancer progression? Cancers (Basel) 2015; 7:266-86. [PMID: 25629808 PMCID: PMC4381258 DOI: 10.3390/cancers7010266] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 02/07/2023] Open
Abstract
Desmoglein 3 is one of seven desmosomal cadherins that mediate cell-cell adhesion in desmosomes. Desmosomes are the intercellular junctional complexes that anchor the intermediate filaments of adjacent cells and confer strong cell adhesion thus are essential in the maintenance of tissue architecture and structural integrity. Like adherens junctions, desmosomes function as tumour suppressors and are down regulated in the process of epithelial-mesenchymal transition and in tumour cell invasion and metastasis. However, recently several studies have shown that various desmosomal components, including desmoglein 3, are up-regulated in cancer with increased levels of expression correlating with the clinical stage of malignancy, implicating their potentiality to serve as a diagnostic and prognostic marker. Furthermore, in vitro studies have demonstrated that overexpression of desmoglein 3 in cancer cell lines activates several signal pathways that have an impact on cell morphology, adhesion and locomotion. These additional signalling roles of desmoglein 3 may not be associated to its adhesive function in desmosomes but rather function outside of the junctions, acting as a key regulator in the control of actin based cellular processes. This review will discuss recent advances which support the role of desmoglein 3 in cancer progression.
Collapse
Affiliation(s)
- Louise Brown
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Center for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Blizard Building, London E1 2AT, UK.
| | - Hong Wan
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Center for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Blizard Building, London E1 2AT, UK.
| |
Collapse
|
40
|
Manca F, Giordano S, Palla PL, Cleri F. Scaling shift in multicracked fiber bundles. PHYSICAL REVIEW LETTERS 2014; 113:255501. [PMID: 25554893 DOI: 10.1103/physrevlett.113.255501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Indexed: 06/04/2023]
Abstract
Bundles of fibers, wires, or filaments are ubiquitous structures in both natural and artificial materials. We investigate the bundle degradation induced by an external damaging action through a theoretical model describing an assembly of parallel fibers, progressively damaged by a random population of cracks. Fibers in our model interact by means of a lateral linear coupling, thus retaining structural integrity even after substantial damage. Monte Carlo simulations of the Young's modulus degradation for increasing crack density demonstrate a remarkable scaling shift between an exponential and a power-law regime. Analytical solutions of the model confirm this behavior, and provide a thorough understanding of the underlying physics.
Collapse
Affiliation(s)
- Fabio Manca
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520), 59652 Villeneuve d'Ascq, France
| | - Stefano Giordano
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520), 59652 Villeneuve d'Ascq, France and International Associated Laboratory LIA LEMAC/LICS, ECLille, 59652 Villeneuve d'Ascq, France
| | - Pier Luca Palla
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520), 59652 Villeneuve d'Ascq, France and University of Lille I, 59652 Villeneuve d'Ascq, France
| | - Fabrizio Cleri
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR 8520), 59652 Villeneuve d'Ascq, France and University of Lille I, 59652 Villeneuve d'Ascq, France
| |
Collapse
|
41
|
Vernerey FJ, Farsad M. A mathematical model of the coupled mechanisms of cell adhesion, contraction and spreading. J Math Biol 2014; 68:989-1022. [PMID: 23463540 PMCID: PMC3855150 DOI: 10.1007/s00285-013-0656-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/23/2013] [Indexed: 01/11/2023]
Abstract
Recent research has shown that cell spreading is highly dependent on the contractility of its cytoskeleton and the mechanical properties of the environment it is located in. The dynamics of such process is critical for the development of tissue engineering strategy but is also a key player in wound contraction, tissue maintenance and angiogenesis. To better understand the underlying physics of such phenomena, the paper describes a mathematical formulation of cell spreading and contraction that couples the processes of stress fiber formation, protrusion growth through actin polymerization at the cell edge and dynamics of cross-membrane protein (integrins) enabling cell-substrate attachment. The evolving cell's cytoskeleton is modeled as a mixture of fluid, proteins and filaments that can exchange mass and generate contraction. In particular, besides self-assembling into stress fibers, actin monomers able to polymerize into an actin meshwork at the cell's boundary in order to push the membrane forward and generate protrusion. These processes are possible via the development of cell-substrate attachment complexes that arise from the mechano-sensitive equilibrium of membrane proteins, known as integrins. After deriving the governing equation driving the dynamics of cell evolution and spreading, we introduce a numerical solution based on the extended finite element method, combined with a level set formulation. Numerical simulations show that the proposed model is able to capture the dependency of cell spreading and contraction on substrate stiffness and chemistry. The very good agreement between model predictions and experimental observations suggests that mechanics plays a strong role into the coupled mechanisms of contraction, adhesion and spreading of adherent cells.
Collapse
Affiliation(s)
- Franck J Vernerey
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, USA,
| | | |
Collapse
|
42
|
Chapnick DA, Jacobsen J, Liu X. The development of a novel high throughput computational tool for studying individual and collective cellular migration. PLoS One 2013; 8:e82444. [PMID: 24386097 PMCID: PMC3873918 DOI: 10.1371/journal.pone.0082444] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
Understanding how cells migrate individually and collectively during development and cancer metastasis can be significantly aided by a computation tool to accurately measure not only cellular migration speed, but also migration direction and changes in migration direction in a temporal and spatial manner. We have developed such a tool for cell migration researchers, named Pathfinder, which is capable of simultaneously measuring the migration speed, migration direction, and changes in migration directions of thousands of cells both instantaneously and over long periods of time from fluorescence microscopy data. Additionally, we demonstrate how the Pathfinder software can be used to quantify collective cell migration. The novel capability of the Pathfinder software to measure the changes in migration direction of large populations of cells in a spatiotemporal manner will aid cellular migration research by providing a robust method for determining the mechanisms of cellular guidance during individual and collective cell migration.
Collapse
Affiliation(s)
- Douglas A. Chapnick
- 1 Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, United States of America
| | - Jeremy Jacobsen
- 1 Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, United States of America
| | - Xuedong Liu
- 1 Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
43
|
Ovcharenko A, Granot G, Rokah OH, Park J, Shpilberg O, Raanani P. Enhanced adhesion/migration and induction of Pyk2 expression in K562 cells following imatinib exposure. Leuk Res 2013; 37:1729-36. [DOI: 10.1016/j.leukres.2013.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/16/2013] [Accepted: 10/04/2013] [Indexed: 11/27/2022]
|
44
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
45
|
Ditlev JA, Mayer BJ, Loew LM. There is more than one way to model an elephant. Experiment-driven modeling of the actin cytoskeleton. Biophys J 2013; 104:520-32. [PMID: 23442903 DOI: 10.1016/j.bpj.2012.12.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022] Open
Abstract
Mathematical modeling has established its value for investigating the interplay of biochemical and mechanical mechanisms underlying actin-based motility. Because of the complex nature of actin dynamics and its regulation, many of these models are phenomenological or conceptual, providing a general understanding of the physics at play. But the wealth of carefully measured kinetic data on the interactions of many of the players in actin biochemistry cries out for the creation of more detailed and accurate models that could permit investigators to dissect interdependent roles of individual molecular components. Moreover, no human mind can assimilate all of the mechanisms underlying complex protein networks; so an additional benefit of a detailed kinetic model is that the numerous binding proteins, signaling mechanisms, and biochemical reactions can be computationally organized in a fully explicit, accessible, visualizable, and reusable structure. In this review, we will focus on how comprehensive and adaptable modeling allows investigators to explain experimental observations and develop testable hypotheses on the intracellular dynamics of the actin cytoskeleton.
Collapse
Affiliation(s)
- Jonathon A Ditlev
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | |
Collapse
|
46
|
Beck MR, Dixon RDS, Goicoechea SM, Murphy GS, Brungardt JG, Beam MT, Srinath P, Patel J, Mohiuddin J, Otey CA, Campbell SL. Structure and function of palladin's actin binding domain. J Mol Biol 2013; 425:3325-37. [PMID: 23806659 DOI: 10.1016/j.jmb.2013.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 06/03/2013] [Accepted: 06/11/2013] [Indexed: 11/28/2022]
Abstract
Here, we report the NMR structure of the actin-binding domain contained in the cell adhesion protein palladin. Previously, we demonstrated that one of the immunoglobulin domains of palladin (Ig3) is both necessary and sufficient for direct filamentous actin binding in vitro. In this study, we identify two basic patches on opposite faces of Ig3 that are critical for actin binding and cross-linking. Sedimentation equilibrium assays indicate that the Ig3 domain of palladin does not self-associate. These combined data are consistent with an actin cross-linking mechanism that involves concurrent attachment of two actin filaments by a single palladin molecule by an electrostatic mechanism. Palladin mutations that disrupt actin binding show altered cellular distributions and morphology of actin in cells, revealing a functional requirement for the interaction between palladin and actin in vivo.
Collapse
Affiliation(s)
- Moriah R Beck
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ovcharenko A, Granot G, Shpilberg O, Raanani P. Retinoic acid induces adhesion and migration in NB4 cells through Pyk2 signaling. Leuk Res 2013; 37:956-62. [PMID: 23587524 DOI: 10.1016/j.leukres.2013.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/03/2013] [Accepted: 03/17/2013] [Indexed: 12/21/2022]
Abstract
Since the introduction of all-trans-retinoic acid (ATRA) treatment for acute promyelocytic leukemia (APL) there has been increasing concern about extramedullary disease (EMD) progression despite favorable response in the bone marrow. We postulated that ATRA treatment enhances migration and adhesion abilities possibly enabling APL cells to inhabit extramedullary sites. We revealed an increase in adhesion, migration and invasion capabilities of NB4 cells following ATRA treatment. ATRA induced upregulation of Pyk2 mRNA, protein and phosphorylation levels and enhanced Pyk2 interaction with paxillin and vinculin. Pyk2 inhibition resulted in a reduction of NB4 cell adhesion and migration following ATRA treatment. These results indicate that in vitro Pyk2 might function to regulate cell adhesion and motility following ATRA treatment and its upregulated expression may contribute to EMD development in APL patients.
Collapse
Affiliation(s)
- Adelina Ovcharenko
- Felsenstein Medical Research Center, Tel Aviv University, Petah Tikva, Israel
| | | | | | | |
Collapse
|
48
|
Abstract
We discuss motions of an elastic N × M membrane model whose constituents can bind reversibly with strength ε to adhesive sites of a flat substrate. One of the edges of the membrane ("front") is driven in one direction at rate constant p by N stochastically treadmilling short parallel lines ("cortex"). The main conclusions derived from Monte Carlo studies of this model are the following: (a) Since the polymerizing cortex pushes only the leading edge of the membrane, the major part of the membranes is dragged behind. Therefore, the locomotion of the membrane can be described by frictional sliding processes which are asymmetrically distributed between front and rear of the membrane. A signature of this asymmetry is the difference between the life times of adhesion bonds at front and rear, τ(1) and τ(M), respectively, where τ(1) ≫ τ(M). (b) There are four characteristic times for the membrane motion: The first time, T(0) ~ τ(M) ~ e(aε), is the resting time where the displacement of the membrane is practically zero. The second time, T(p) ~ τ(1) ~ M, is the friction time which characterizes the time between two consecutive ruptures of adhesion bonds at the front, and which signalizes the onset of drift ("protrusion") at the leading edge. The third time, T(r) ~ M(γ(ε)) (γ > 1), characterizes the "retraction" of the trailing edge, which is the retarded response to the pulling leading edge. The fourth time, T(L) ~ M(2), is the growth time for fluctuation of the end-to-end distance. (c) The separation of time scales, T(r)/T(p) ~ M(γ(ε) - 1), leads to stretched fluctuations of the end-to-end distance, which are considered as stochastic cycles of protrusion and retraction on the time scale of T(L). (d) The drift velocity v obeys anomalous scaling, v/p~f(p(1/γ(ε))M), where f(z) ~ const. for small drag pM ≪ 1, and f(z) ~ z(-γ(ε)) for pM ≫ 1, which implies v~M(-γ(ε)). These results may also turn out to be useful for the (more difficult) problem of understanding the protrusion-retraction cycle of crawling biological cells. We compare our model and our results to previous two-particle theories for membrane protrusion and to known stochastic friction models.
Collapse
Affiliation(s)
- A Baumgaertner
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
49
|
Schwab A, Fabian A, Hanley PJ, Stock C. Role of ion channels and transporters in cell migration. Physiol Rev 2013; 92:1865-913. [PMID: 23073633 DOI: 10.1152/physrev.00018.2011] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell motility is central to tissue homeostasis in health and disease, and there is hardly any cell in the body that is not motile at a given point in its life cycle. Important physiological processes intimately related to the ability of the respective cells to migrate include embryogenesis, immune defense, angiogenesis, and wound healing. On the other side, migration is associated with life-threatening pathologies such as tumor metastases and atherosclerosis. Research from the last ≈ 15 years revealed that ion channels and transporters are indispensable components of the cellular migration apparatus. After presenting general principles by which transport proteins affect cell migration, we will discuss systematically the role of channels and transporters involved in cell migration.
Collapse
|
50
|
Shemesh T, Bershadsky AD, Kozlov MM. Physical model for self-organization of actin cytoskeleton and adhesion complexes at the cell front. Biophys J 2012; 102:1746-56. [PMID: 22768930 DOI: 10.1016/j.bpj.2012.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 02/12/2012] [Accepted: 03/02/2012] [Indexed: 01/07/2023] Open
Abstract
Cell motion is driven by interplay between the actin cytoskeleton and the cell adhesions in the front part of the cell. The actin network segregates into lamellipodium and lamellum, whereas the adhesion complexes are characteristically distributed underneath the actin system. Here, we suggest a computational model for this characteristic organization of the actin-adhesion system. The model is based on the ability of the adhesion complexes to sense mechanical forces, the stick-slip character of the interaction between the adhesions and the moving actin network, and a hypothetical propensity of the actin network to disintegrate upon sufficiently strong stretching stresses. We identify numerically three possible types of system organization, all observed in living cells: two states in which the actin network exhibits segregation into lamellipodium and lamellum, whereas the cell edge either remains stationary or moves, and a state where the actin network does not undergo segregation. The model recovers the asynchronous fluctuations and outward bulging of the cell edge, and the dependence of the edge protrusion velocity on the rate of the nascent adhesion generation, the membrane tension, and the substrate rigidity.
Collapse
Affiliation(s)
- Tom Shemesh
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|