1
|
Llewellyn J, Hubbard SJ, Swift J. Translation is an emerging constraint on protein homeostasis in ageing. Trends Cell Biol 2024; 34:646-656. [PMID: 38423854 DOI: 10.1016/j.tcb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Proteins are molecular machines that provide structure and perform vital transport, signalling and enzymatic roles. Proteins expressed by cells require tight regulation of their concentration, folding, localisation, and modifications; however, this state of protein homeostasis is continuously perturbed by tissue-level stresses. While cells in healthy tissues are able to buffer against these perturbations, for example, by expression of chaperone proteins, protein homeostasis is lost in ageing, and can lead to protein aggregation characteristic of protein folding diseases. Here, we review reports of a progressive disconnect between transcriptomic and proteomic regulation during cellular ageing. We discuss how age-associated changes to cellular responses to specific stressors in the tissue microenvironment are exacerbated by loss of ribosomal proteins, ribosomal pausing, and mistranslation.
Collapse
Affiliation(s)
- Jack Llewellyn
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Simon J Hubbard
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.
| | - Joe Swift
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
2
|
Çiftçi YC, Yurtsever Y, Akgül B. Long non-coding RNA-mediated modulation of endoplasmic reticulum stress under pathological conditions. J Cell Mol Med 2024; 28:e18561. [PMID: 39072992 DOI: 10.1111/jcmm.18561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Endoplasmic reticulum (ER) stress, which ensues from an overwhelming protein folding capacity, activates the unfolded protein response (UPR) in an effort to restore cellular homeostasis. As ER stress is associated with numerous diseases, it is highly important to delineate the molecular mechanisms governing the ER stress to gain insight into the disease pathology. Long non-coding RNAs, transcripts with a length of over 200 nucleotides that do not code for proteins, interact with proteins and nucleic acids, fine-tuning the UPR to restore ER homeostasis via various modes of actions. Dysregulation of specific lncRNAs is implicated in the progression of ER stress-related diseases, presenting these molecules as promising therapeutic targets. The comprehensive analysis underscores the importance of understanding the nuanced interplay between lncRNAs and ER stress for insights into disease mechanisms. Overall, this review consolidates current knowledge, identifies research gaps and offers a roadmap for future investigations into the multifaceted roles of lncRNAs in ER stress and associated diseases to shed light on their pivotal roles in the pathogenesis of related diseases.
Collapse
Affiliation(s)
- Yusuf Cem Çiftçi
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yiğit Yurtsever
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
3
|
Cruz-Navarrete FA, Griffin WC, Chan YC, Martin MI, Alejo JL, Brady RA, Natchiar SK, Knudson IJ, Altman RB, Schepartz A, Miller SJ, Blanchard SC. β-Amino Acids Reduce Ternary Complex Stability and Alter the Translation Elongation Mechanism. ACS CENTRAL SCIENCE 2024; 10:1262-1275. [PMID: 38947208 PMCID: PMC11212133 DOI: 10.1021/acscentsci.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024]
Abstract
Templated synthesis of proteins containing non-natural amino acids (nnAAs) promises to expand the chemical space available to biological therapeutics and materials, but existing technologies are still limiting. Addressing these limitations requires a deeper understanding of the mechanism of protein synthesis and how it is perturbed by nnAAs. Here we examine the impact of nnAAs on the formation and ribosome utilization of the central elongation substrate: the ternary complex of native, aminoacylated tRNA, thermally unstable elongation factor, and GTP. By performing ensemble and single-molecule fluorescence resonance energy transfer measurements, we reveal that both the (R)- and (S)-β2 isomers of phenylalanine (Phe) disrupt ternary complex formation to levels below in vitro detection limits, while (R)- and (S)-β3-Phe reduce ternary complex stability by 1 order of magnitude. Consistent with these findings, (R)- and (S)-β2-Phe-charged tRNAs were not utilized by the ribosome, while (R)- and (S)-β3-Phe stereoisomers were utilized inefficiently. (R)-β3-Phe but not (S)-β3-Phe also exhibited order of magnitude defects in the rate of translocation after mRNA decoding. We conclude from these findings that non-natural amino acids can negatively impact the translation mechanism on multiple fronts and that the bottlenecks for improvement must include the consideration of the efficiency and stability of ternary complex formation.
Collapse
Affiliation(s)
- F. Aaron Cruz-Navarrete
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Wezley C. Griffin
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Yuk-Cheung Chan
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Maxwell I. Martin
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Jose L. Alejo
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Ryan A. Brady
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - S. Kundhavai Natchiar
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Isaac J. Knudson
- College
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Roger B. Altman
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Alanna Schepartz
- College
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Molecular
and Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, United States
- Chan
Zuckerberg Biohub, San Francisco, California 94158, United States
- Innovation
Investigator, ARC Institute, Palo Alto, California 94304, United States
| | - Scott J. Miller
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Scott C. Blanchard
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
4
|
Jain V, Cope AL. Examining the Effects of Temperature on the Evolution of Bacterial tRNA Pools. Genome Biol Evol 2024; 16:evae116. [PMID: 38805023 PMCID: PMC11166485 DOI: 10.1093/gbe/evae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
The genetic code consists of 61 codons coding for 20 amino acids. These codons are recognized by transfer RNAs (tRNAs) that bind to specific codons during protein synthesis. All organisms utilize less than all 61 possible anticodons due to base pair wobble: the ability to have a mismatch with a codon at its third nucleotide. Previous studies observed a correlation between the tRNA pool of bacteria and the temperature of their respective environments. However, it is unclear if these patterns represent biological adaptations to maintain the efficiency and accuracy of protein synthesis in different environments. A mechanistic mathematical model of mRNA translation is used to quantify the expected elongation rates and error rate for each codon based on an organism's tRNA pool. A comparative analysis across a range of bacteria that accounts for covariance due to shared ancestry is performed to quantify the impact of environmental temperature on the evolution of the tRNA pool. We find that thermophiles generally have more anticodons represented in their tRNA pool than mesophiles or psychrophiles. Based on our model, this increased diversity is expected to lead to increased missense errors. The implications of this for protein evolution in thermophiles are discussed.
Collapse
Affiliation(s)
- Vatsal Jain
- Biotechnology High School, Freehold, NJ, USA
| | - Alexander L Cope
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
5
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Bergeron JJM. Proteomics Impact on Cell Biology to Resolve Cell Structure and Function. Mol Cell Proteomics 2024; 23:100758. [PMID: 38574860 PMCID: PMC11070594 DOI: 10.1016/j.mcpro.2024.100758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
The acceleration of advances in proteomics has enabled integration with imaging at the EM and light microscopy levels, cryo-EM of protein structures, and artificial intelligence with proteins comprehensively and accurately resolved for cell structures at nanometer to subnanometer resolution. Proteomics continues to outpace experimentally based structural imaging, but their ultimate integration is a path toward the goal of a compendium of all proteins to understand mechanistically cell structure and function.
Collapse
Affiliation(s)
- John J M Bergeron
- Department of Medicine, McGill University Hospital Research Institute, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Marín M, López M, Gallego-Yerga L, Álvarez R, Peláez R. Experimental structure based drug design (SBDD) applications for anti-leishmanial drugs: A paradigm shift? Med Res Rev 2024; 44:1055-1120. [PMID: 38142308 DOI: 10.1002/med.22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Leishmaniasis is a group of neglected tropical diseases caused by at least 20 species of Leishmania protozoa, which are spread by the bite of infected sandflies. There are three main forms of the disease: cutaneous leishmaniasis (CL, the most common), visceral leishmaniasis (VL, also known as kala-azar, the most serious), and mucocutaneous leishmaniasis. One billion people live in areas endemic to leishmaniasis, with an annual estimation of 30,000 new cases of VL and more than 1 million of CL. New treatments for leishmaniasis are an urgent need, as the existing ones are inefficient, toxic, and/or expensive. We have revised the experimental structure-based drug design (SBDD) efforts applied to the discovery of new drugs against leishmaniasis. We have grouped the explored targets according to the metabolic pathways they belong to, and the key achieved advances are highlighted and evaluated. In most cases, SBDD studies follow high-throughput screening campaigns and are secondary to pharmacokinetic optimization, due to the majoritarian belief that there are few validated targets for SBDD in leishmaniasis. However, some SBDD strategies have significantly contributed to new drug candidates against leishmaniasis and a bigger number holds promise for future development.
Collapse
Affiliation(s)
- Miguel Marín
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Marta López
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
8
|
Rybak MY, Gagnon MG. Structures of the ribosome bound to EF-Tu-isoleucine tRNA elucidate the mechanism of AUG avoidance. Nat Struct Mol Biol 2024; 31:810-816. [PMID: 38538914 DOI: 10.1038/s41594-024-01236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/31/2024] [Indexed: 04/18/2024]
Abstract
The frequency of errors upon decoding of messenger RNA by the bacterial ribosome is low, with one misreading event per 1 × 104 codons. In the universal genetic code, the AUN codon box specifies two amino acids, isoleucine and methionine. In bacteria and archaea, decoding specificity of the AUA and AUG codons relies on the wobble avoidance strategy that requires modification of C34 in the anticodon loop of isoleucine transfer RNAIleCAU (tRNAIleCAU). Bacterial tRNAIleCAU with 2-lysylcytidine (lysidine) at the wobble position deciphers AUA while avoiding AUG. Here we report cryo-electron microscopy structures of the Escherichia coli 70S ribosome complexed with elongation factor thermo unstable (EF-Tu) and isoleucine-tRNAIleLAU in the process of decoding AUA and AUG. Lysidine in tRNAIleLAU excludes AUG by promoting the formation of an unusual Hoogsteen purine-pyrimidine nucleobase geometry at the third position of the codon, weakening the interactions with the mRNA and destabilizing the EF-Tu ternary complex. Our findings elucidate the molecular mechanism by which tRNAIleLAU specifically decodes AUA over AUG.
Collapse
MESH Headings
- Peptide Elongation Factor Tu/metabolism
- Peptide Elongation Factor Tu/chemistry
- Peptide Elongation Factor Tu/genetics
- Cryoelectron Microscopy
- Escherichia coli/metabolism
- Escherichia coli/genetics
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Ribosomes/chemistry
- RNA, Transfer, Ile/metabolism
- RNA, Transfer, Ile/chemistry
- RNA, Transfer, Ile/genetics
- Models, Molecular
- Codon/metabolism
- Codon/genetics
- Anticodon/chemistry
- Anticodon/metabolism
- Nucleic Acid Conformation
- Isoleucine/metabolism
- Isoleucine/chemistry
- RNA, Messenger/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Lysine/analogs & derivatives
- Pyrimidine Nucleosides
Collapse
Affiliation(s)
- Mariia Yu Rybak
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Matthieu G Gagnon
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
9
|
Levintov L, Vashisth H. Adenine Methylation Enhances the Conformational Flexibility of an RNA Hairpin Tetraloop. J Phys Chem B 2024; 128:3157-3166. [PMID: 38535997 PMCID: PMC11000223 DOI: 10.1021/acs.jpcb.4c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
The N6-methyladenosine modification is one of the most abundant post-transcriptional modifications in ribonucleic acid (RNA) molecules. Using molecular dynamics simulations and alchemical free-energy calculations, we studied the structural and energetic implications of incorporating this modification in an adenine mononucleotide and an RNA hairpin structure. At the mononucleotide level, we found that the syn configuration is more favorable than the anti configuration by 2.05 ± 0.15 kcal/mol. The unfavorable effect of methylation was due to the steric overlap between the methyl group and a nitrogen atom in the purine ring. We then probed the effect of methylation in an RNA hairpin structure containing an AUCG tetraloop, which is recognized by a "reader" protein (YTHDC1) to promote transcriptional silencing of long noncoding RNAs. While methylation had no significant conformational effect on the hairpin stem, the methylated tetraloop showed enhanced conformational flexibility compared to the unmethylated tetraloop. The increased flexibility was associated with the outward flipping of two bases (A6 and U7) which formed stacking interactions with each other and with the C8 and G9 bases in the tetraloop, leading to a conformation similar to that in the RNA/reader protein complex. Therefore, methylation-induced conformational flexibility likely facilitates RNA recognition by the reader protein.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering
and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Harish Vashisth
- Department of Chemical Engineering
and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
10
|
Izadi M, Ali TA, Shurrab FM, Aharpour E, Pourkarimi E. Tryptophanyl-tRNA synthetase-1 (WARS-1) depletion and high tryptophan concentration lead to genomic instability in Caenorhabditis elegans. Cell Death Discov 2024; 10:165. [PMID: 38575580 PMCID: PMC10995160 DOI: 10.1038/s41420-024-01917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
The fidelity of translation is ensured by a family of proteins named aminoacyl-tRNA synthetases (ARSs), making them crucial for development and survival. More recently, mutations in the tryptophanyl-tRNA synthetase 1 (WARS1) have been linked to various human diseases, from intellectual disability to various types of cancer. To understand the function of WARS1, we investigated the effect of WARS-1 depletion during the mitotic and meiotic cell cycle in the developing germline of Caenorhabditis elegans (C. elegans) and demonstrated the role of WARS-1 in genome integrity. wars-1 knockdown results in cell cycle arrest of the mitotically active germ cells. Such mitotic arrest is also associated with canonical DNA damage-induced checkpoint signaling in mitotic and meiotic germ cells. Significantly, such DNA checkpoint activation is associated with the morphological anomalies in chromatin structures that are the hallmarks of genome instability, such as the formation of chromatin bridges, micronuclei, and chromatin buds. We demonstrated that knocking down wars-1 results in an elevation of the intracellular concentration of tryptophan and its catabolites, a surprising finding emphasizing the impact of cellular amino acid availability and organismal/individual dietary uptake on genome integrity. Our result demonstrates that exposing C. elegans to a high tryptophan dosage leads to DNA damage checkpoint activation and a significant increase in the tryptophan metabolites. Targeting tryptophan catabolism, the least utilized amino acid in nature, can be important in developing new cancer therapeutic approaches. All in all, we have strong evidence that knocking down wars-1 results in defects in genomic integrity.
Collapse
Affiliation(s)
- Mahmoud Izadi
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar
| | - Tayyiba Akbar Ali
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar
| | - Farah M Shurrab
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar
| | | | - Ehsan Pourkarimi
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar.
| |
Collapse
|
11
|
Choi T, Li Z, Song G, Chen HF. Comprehensive Comparison and Critical Assessment of RNA-Specific Force Fields. J Chem Theory Comput 2024; 20:2676-2688. [PMID: 38447040 DOI: 10.1021/acs.jctc.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Molecular dynamics simulations play a pivotal role in elucidating the dynamic behaviors of RNA structures, offering a valuable complement to traditional methods such as nuclear magnetic resonance or X-ray. Despite this, the current precision of RNA force fields lags behind that of protein force fields. In this work, we systematically compared the performance of four RNA force fields (ff99bsc0χOL3, AMBERDES, ff99OL3_CMAP1, AMBERMaxEnt) across diverse RNA structures. Our findings highlight significant challenges in maintaining stability, particularly with regard to cross-strand and cross-loop hydrogen bonds. Furthermore, we observed the limitations in accurately describing the conformations of nonhelical structural motif, terminal nucleotides, and also base pairing and base stacking interactions by the tested RNA force fields. The identified deficiencies in existing RNA force fields provide valuable insights for subsequent force field development. Concurrently, these findings offer recommendations for selecting appropriate force fields in RNA simulations.
Collapse
Affiliation(s)
- Taeyoung Choi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengxin Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Hinnu M, Putrinš M, Kogermann K, Kaldalu N, Tenson T. Fluorescent reporters give new insights into antibiotics-induced nonsense and frameshift mistranslation. Sci Rep 2024; 14:6883. [PMID: 38519558 PMCID: PMC10959953 DOI: 10.1038/s41598-024-57597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/20/2024] [Indexed: 03/25/2024] Open
Abstract
We developed a reporter system based on simultaneous expression of two fluorescent proteins: GFP as a reporter of the capacity of protein synthesis and mutated mScarlet-I as a reporter of translational errors. Because of the unique stop codons or frameshift mutations introduced into the mScarlet-I gene, red fluorescence was produced only after a mistranslation event. These reporters allowed us to estimate mistranslation at a single cell level using either flow cytometry or fluorescence microscopy. We found that laboratory strains of Escherichia coli are more prone to mistranslation compared to the clinical isolates. As relevant for uropathogenic E. coli, growth in human urine elevated translational frameshifting compared to standard laboratory media, whereas different standard media had a small effect on translational fidelity. Antibiotic-induced mistranslation was studied by using amikacin (aminoglycoside family) and azithromycin (macrolide family). Bactericidal amikacin induced preferably stop-codon readthrough at a moderate level. Bacteriostatic azithromycin on the other hand induced both frameshifting and stop-codon readthrough at much higher level. Single cell analysis revealed that fluorescent reporter-protein signal can be lost due to leakage from a fraction of bacteria in the presence of antibiotics, demonstrating the complexity of the antimicrobial activity.
Collapse
Affiliation(s)
- Mariliis Hinnu
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia.
| | - Marta Putrinš
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
- Institute of Pharmacy, University of Tartu, 50411, Tartu, Estonia
| | - Karin Kogermann
- Institute of Pharmacy, University of Tartu, 50411, Tartu, Estonia
| | - Niilo Kaldalu
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| |
Collapse
|
13
|
Szekely O, Rangadurai AK, Gu S, Manghrani A, Guseva S, Al-Hashimi HM. NMR measurements of transient low-populated tautomeric and anionic Watson-Crick-like G·T/U in RNA:DNA hybrids: implications for the fidelity of transcription and CRISPR/Cas9 gene editing. Nucleic Acids Res 2024; 52:2672-2685. [PMID: 38281263 PMCID: PMC10954477 DOI: 10.1093/nar/gkae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024] Open
Abstract
Many biochemical processes use the Watson-Crick geometry to distinguish correct from incorrect base pairing. However, on rare occasions, mismatches such as G·T/U can transiently adopt Watson-Crick-like conformations through tautomerization or ionization of the bases, giving rise to replicative and translational errors. The propensities to form Watson-Crick-like mismatches in RNA:DNA hybrids remain unknown, making it unclear whether they can also contribute to errors during processes such as transcription and CRISPR/Cas editing. Here, using NMR R1ρ experiments, we show that dG·rU and dT·rG mismatches in two RNA:DNA hybrids transiently form tautomeric (Genol·T/U $ \mathbin{\lower.3ex\hbox{$\buildrel\textstyle\rightarrow\over {\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}}$}}$ G·Tenol/Uenol) and anionic (G·T-/U-) Watson-Crick-like conformations. The tautomerization dynamics were like those measured in A-RNA and B-DNA duplexes. However, anionic dG·rU- formed with a ten-fold higher propensity relative to dT-·rG and dG·dT- and this could be attributed to the lower pKa (ΔpKa ∼0.4-0.9) of U versus T. Our findings suggest plausible roles for Watson-Crick-like G·T/U mismatches in transcriptional errors and CRISPR/Cas9 off-target gene editing, uncover a crucial difference between the chemical dynamics of G·U versus G·T, and indicate that anionic Watson-Crick-like G·U- could play a significant role evading Watson-Crick fidelity checkpoints in RNA:DNA hybrids and RNA duplexes.
Collapse
Affiliation(s)
- Or Szekely
- Department of Biology, Duke University, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27710, USA
| | | | - Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, NY, NY 10032, USA
| | - Akanksha Manghrani
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, NY, NY 10032, USA
| | - Serafima Guseva
- Department of Biochemistry and Molecular Biophysics, Columbia University, NY, NY 10032, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, NY, NY 10032, USA
| |
Collapse
|
14
|
Cruz-Navarrete FA, Griffin WC, Chan YC, Martin MI, Alejo JL, Natchiar SK, Knudson IJ, Altman RB, Schepartz A, Miller SJ, Blanchard SC. β-amino acids reduce ternary complex stability and alter the translation elongation mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581891. [PMID: 38464221 PMCID: PMC10925103 DOI: 10.1101/2024.02.24.581891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Templated synthesis of proteins containing non-natural amino acids (nnAAs) promises to vastly expand the chemical space available to biological therapeutics and materials. Existing technologies limit the identity and number of nnAAs than can be incorporated into a given protein. Addressing these bottlenecks requires deeper understanding of the mechanism of messenger RNA (mRNA) templated protein synthesis and how this mechanism is perturbed by nnAAs. Here we examine the impact of both monomer backbone and side chain on formation and ribosome-utilization of the central protein synthesis substate: the ternary complex of native, aminoacylated transfer RNA (aa-tRNA), thermally unstable elongation factor (EF-Tu), and GTP. By performing ensemble and single-molecule fluorescence resonance energy transfer (FRET) measurements, we reveal the dramatic effect of monomer backbone on ternary complex formation and protein synthesis. Both the (R) and (S)-β2 isomers of Phe disrupt ternary complex formation to levels below in vitro detection limits, while (R)- and (S)-β3-Phe reduce ternary complex stability by approximately one order of magnitude. Consistent with these findings, (R)- and (S)-β2-Phe-charged tRNAs were not utilized by the ribosome, while (R)- and (S)-β3-Phe stereoisomers were utilized inefficiently. The reduced affinities of both species for EF-Tu ostensibly bypassed the proofreading stage of mRNA decoding. (R)-β3-Phe but not (S)-β3-Phe also exhibited order of magnitude defects in the rate of substrate translocation after mRNA decoding, in line with defects in peptide bond formation that have been observed for D-α-Phe. We conclude from these findings that non-natural amino acids can negatively impact the translation mechanism on multiple fronts and that the bottlenecks for improvement must include consideration of the efficiency and stability of ternary complex formation.
Collapse
Affiliation(s)
- F. Aaron Cruz-Navarrete
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Wezley C. Griffin
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yuk-Cheung Chan
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Maxwell I. Martin
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jose L. Alejo
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - S. Kundhavai Natchiar
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Isaac J. Knudson
- College of Chemistry, University of California, Berkeley, California, USA
| | - Roger B. Altman
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Alanna Schepartz
- College of Chemistry, University of California, Berkeley, California, USA
- Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Innovation Investigator, ARC Institute, Palo Alto, CA 94304, USA
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Scott C. Blanchard
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
15
|
Ali Z, Kukhta T, Trant JF, Sharma P. An Atlas of the base inter-RNA stacks involved in bacterial translation. Biophys Chem 2024; 305:107144. [PMID: 38061282 DOI: 10.1016/j.bpc.2023.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Nucleobase-specific noncovalent interactions play a crucial role in translation. Herein, we provide a comprehensive analysis of the stacks between different RNA components in the crystal structures of the bacterial ribosome caught at different translation stages. Analysis of tRNA||rRNA stacks reveals distinct behaviour; both the A-and E-site tRNAs exhibit unique stacking patterns with 23S rRNA bases, while P-site tRNAs stack with 16S rRNA bases. Furthermore, E-site stacks exhibit diverse face orientations and ring topologies-rare for inter-chain RNA interactions-with higher average interaction energies than A or P-site stacks. This suggests that stacking may be essential for stabilizing tRNA progression through the E-site. Additionally, mRNA||rRNA stacks reveal other geometries, which depend on the tRNA binding site, whereas 16S rRNA||23S rRNA stacks highlight the importance of specific bases in maintaining the integrity of the translational complex by linking the two rRNAs. Furthermore, tRNA||mRNA stacks exhibit distinct geometries and energetics at the E-site, indicating their significance during tRNA translocation and elimination. Overall, both A and E-sites display a more diverse distribution of inter-RNA stacks compared to the P-site. Stacking interactions in the active ribosome are not simply accidental byproducts of biochemistry but are likely invoked to compensate and support the integrity and dynamics of translation.
Collapse
MESH Headings
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Ribosomes/chemistry
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Nucleic Acid Conformation
Collapse
Affiliation(s)
- Zakir Ali
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Teagan Kukhta
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada; We-Spark Health Institute, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada; Binary Star Research Services, LaSalle, ON N9J 3X8, Canada.
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada.
| |
Collapse
|
16
|
Sabat N, Stämpfli A, Flamme M, Hanlon S, Bisagni S, Sladojevich F, Püntener K, Hollenstein M. Artificial nucleotide codons for enzymatic DNA synthesis. Chem Commun (Camb) 2023; 59:14547-14550. [PMID: 37987464 DOI: 10.1039/d3cc04933g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Herein, we report the high-yielding solid-phase synthesis of unmodified and chemically modified trinucleotide triphosphates (dN3TPs). These synthetic codons can be used for enzymatic DNA synthesis provided their scaffold is stabilized with phosphorothioate units. Enzymatic synthesis with three rather than one letter nucleotides will be useful to produce xenonucleic acids (XNAs) and for in vitro selection of modified functional nucleic acids.
Collapse
Affiliation(s)
- Nazarii Sabat
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Andreas Stämpfli
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Marie Flamme
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Steven Hanlon
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Serena Bisagni
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Filippo Sladojevich
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Kurt Püntener
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
17
|
Bakre A, Kariithi HM, Suarez DL. Alternative probe hybridization buffers for target RNA depletion and viral sequence recovery in NGS for poultry samples. J Virol Methods 2023; 321:114793. [PMID: 37604238 DOI: 10.1016/j.jviromet.2023.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Non-targeted next generation sequencing (NGS) is widely applied to identify the diversity of pathogens in field samples. However, abundance of host RNA (especially rRNA) and other environmental nucleic acids can reduce the abundance of pathogen specific reads of interest, reduce depth of coverage and increase surveillance costs. We presently deplete chicken- and selected bacterial-specific rRNAs in poultry field RNA samples with complementary DNA probes in a commercially available probe hybridization buffer followed by digestion of the RNA:DNA hybrids with RNase H. Because the current buffer is an expensive special order reagent of proprietary composition, we tested in-house and other commercially available buffers and identified a viable alternative that yields equivalent host rRNA depletion and viral-specific reads in poultry samples as the current special order reagent but at a reduced cost.
Collapse
Affiliation(s)
- Abhijeet Bakre
- Exotic and Emerging Avian Viral Diseases Research Unit, SEPRL, USDA-ARS, Athens, GA, USA.
| | - Henry M Kariithi
- Exotic and Emerging Avian Viral Diseases Research Unit, SEPRL, USDA-ARS, Athens, GA, USA; Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811-00200, Kaptagat Rd, Loresho, Nairobi, Kenya.
| | - David L Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, SEPRL, USDA-ARS, Athens, GA, USA.
| |
Collapse
|
18
|
Jain V, Cope AL. Determining the effects of temperature on the evolution of bacterial tRNA pools. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559538. [PMID: 37873246 PMCID: PMC10592612 DOI: 10.1101/2023.09.26.559538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The genetic code consists of 61 codon coding for 20 amino acids. These codons are recognized by transfer RNAs (tRNA) that bind to specific codons during protein synthesis. Most organisms utilize less than all 61 possible anticodons due to base pair wobble: the ability to have a mismatch with a codon at its third nucleotide. Previous studies observed a correlation between the tRNA pool of bacteria and the temperature of their respective environments. However, it is unclear if these patterns represent biological adaptations to maintain the efficiency and accuracy of protein synthesis in different environments. A mechanistic mathematical model of mRNA translation is used to quantify the expected elongation rates and error rate for each codon based on an organism's tRNA pool. A comparative analysis across a range of bacteria that accounts for covariance due to shared ancestry is performed to quantify the impact of environmental temperature on the evolution of the tRNA pool. We find that thermophiles generally have more anticodons represented in their tRNA pool than mesophiles or psychrophiles. Based on our model, this increased diversity is expected to lead to increased missense errors. The implications of this for protein evolution in thermophiles are discussed.
Collapse
Affiliation(s)
- Vatsal Jain
- Biotechnology High School, Freehold, New Jersey
| | - Alexander L. Cope
- Department of Genetics, Rutgers University, Piscataway, New Jersey
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
19
|
Inafuku DA, Kirkpatrick KL, Osuagwu O, An Q, Brewster DA, Nakib MZ. Channel capacity of the ribosome. Phys Rev E 2023; 108:044404. [PMID: 37978643 DOI: 10.1103/physreve.108.044404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/09/2023] [Indexed: 11/19/2023]
Abstract
Translation is one of the most fundamental processes in the biological cell. Because of the central role that translation plays across all domains of life, the enzyme that carries out this process, the ribosome, is required to process information with high accuracy. This accuracy often approaches values near unity experimentally. In this paper, we model the ribosome as an information channel and demonstrate mathematically that this biological machine has information-processing capabilities that have not been recognized previously. In particular, we calculate bounds on the ribosome's theoretical Shannon capacity and numerically approximate this capacity. Finally, by incorporating estimates on the ribosome's operation time, we show that the ribosome operates at speeds safely below its capacity, allowing the ribosome to process information with an arbitrary degree of error. Our results show that the ribosome achieves a high accuracy in line with purely information-theoretic means.
Collapse
Affiliation(s)
- Daniel A Inafuku
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kay L Kirkpatrick
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Onyema Osuagwu
- Electrical and Computer Engineering Department, Morgan State University, Baltimore, Maryland 21251, USA
- Cybersecurity Assurance and Policy Center, Morgan State University, Baltimore, Maryland 21251, USA
| | - Qier An
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - David A Brewster
- Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Mayisha Zeb Nakib
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
20
|
Magaña AJ, Sklenicka J, Pinilla C, Giulianotti M, Chapagain P, Santos R, Ramirez MS, Tolmasky ME. Restoring susceptibility to aminoglycosides: identifying small molecule inhibitors of enzymatic inactivation. RSC Med Chem 2023; 14:1591-1602. [PMID: 37731693 PMCID: PMC10507813 DOI: 10.1039/d3md00226h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 09/22/2023] Open
Abstract
Growing resistance to antimicrobial medicines is a critical health problem that must be urgently addressed. Adding to the increasing number of patients that succumb to infections, there are other consequences to the rise in resistance like the compromise of several medical procedures and dental work that are heavily dependent on infection prevention. Since their introduction in the clinics, aminoglycoside antibiotics have been a critical component of the armamentarium to treat infections. Still, the increase in resistance and their side effects led to a decline in their utilization. However, numerous current factors, like the urgent need for antimicrobials and their favorable properties, led to renewed interest in these drugs. While efforts to design new classes of aminoglycosides refractory to resistance mechanisms and with fewer toxic effects are starting to yield new promising molecules, extending the useful life of those already in use is essential. For this, numerous research projects are underway to counter resistance from different angles, like inhibition of expression or activity of resistance components. This review focuses on selected examples of one aspect of this quest, the design or identification of small molecule inhibitors of resistance caused by enzymatic modification of the aminoglycoside. These compounds could be developed as aminoglycoside adjuvants to overcome resistant infections.
Collapse
Affiliation(s)
- Angel J Magaña
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| | - Jan Sklenicka
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| | - Clemencia Pinilla
- Center for Translational Science, Florida International University Port St. Lucie FL 34987 USA
| | - Marc Giulianotti
- Center for Translational Science, Florida International University Port St. Lucie FL 34987 USA
| | - Prem Chapagain
- Department of Physics, Florida International University Miami FL 33199 USA
- Biomolecular Sciences Institute, Florida International University Miami FL 33199 USA
| | - Radleigh Santos
- Department of Mathematics, Nova Southeastern University Fort Lauderdale FL 33314 USA
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| |
Collapse
|
21
|
Abedeera SM, Jayalath KS, Xie J, Rauff RM, Abeysirigunawardena SC. Pseudouridine Synthase RsuA Confers a Survival Advantage to Bacteria under Streptomycin Stress. Antibiotics (Basel) 2023; 12:1447. [PMID: 37760743 PMCID: PMC10525438 DOI: 10.3390/antibiotics12091447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Bacterial ribosome small subunit rRNA (16S rRNA) contains 11 nucleotide modifications scattered throughout all its domains. The 16S rRNA pseudouridylation enzyme, RsuA, which modifies U516, is a survival protein essential for bacterial survival under stress conditions. A comparison of the growth curves of wildtype and RsuA knock-out E. coli strains illustrates that RsuA renders a survival advantage to bacteria under streptomycin stress. The RsuA-dependent growth advantage for bacteria was found to be dependent on its pseudouridylation activity. In addition, the role of RsuA as a trans-acting factor during ribosome biogenesis may also play a role in bacterial growth under streptomycin stress. Furthermore, circular dichroism spectroscopy measurements and RNase footprinting studies have demonstrated that pseudouridine at position 516 influences helix 18 structure, folding, and streptomycin binding. This study exemplifies the importance of bacterial rRNA modification enzymes during environmental stress.
Collapse
Affiliation(s)
| | | | | | | | - Sanjaya C. Abeysirigunawardena
- Department of Chemistry and Biochemistry, Kent State University, 1175 Risman Dr., Kent, OH 44242, USA; (S.M.A.); (K.S.J.); (J.X.); (R.M.R.)
| |
Collapse
|
22
|
Girodat D, Wieden HJ, Blanchard SC, Sanbonmatsu KY. Geometric alignment of aminoacyl-tRNA relative to catalytic centers of the ribosome underpins accurate mRNA decoding. Nat Commun 2023; 14:5582. [PMID: 37696823 PMCID: PMC10495418 DOI: 10.1038/s41467-023-40404-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 07/27/2023] [Indexed: 09/13/2023] Open
Abstract
Accurate protein synthesis is determined by the two-subunit ribosome's capacity to selectively incorporate cognate aminoacyl-tRNA for each mRNA codon. The molecular basis of tRNA selection accuracy, and how fidelity can be affected by antibiotics, remains incompletely understood. Using molecular simulations, we find that cognate and near-cognate tRNAs delivered to the ribosome by Elongation Factor Tu (EF-Tu) can follow divergent pathways of motion into the ribosome during both initial selection and proofreading. Consequently, cognate aa-tRNAs follow pathways aligned with the catalytic GTPase and peptidyltransferase centers of the large subunit, while near-cognate aa-tRNAs follow pathways that are misaligned. These findings suggest that differences in mRNA codon-tRNA anticodon interactions within the small subunit decoding center, where codon-anticodon interactions occur, are geometrically amplified over distance, as a result of this site's physical separation from the large ribosomal subunit catalytic centers. These insights posit that the physical size of both tRNA and ribosome are key determinants of the tRNA selection fidelity mechanism.
Collapse
Affiliation(s)
- Dylan Girodat
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Hans-Joachim Wieden
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- New Mexico Consortium, Los Alamos, NM, 87545, USA.
| |
Collapse
|
23
|
Zafar H, Hassan AH, Demo G. Translation machinery captured in motion. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1792. [PMID: 37132456 DOI: 10.1002/wrna.1792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Translation accuracy is one of the most critical factors for protein synthesis. It is regulated by the ribosome and its dynamic behavior, along with translation factors that direct ribosome rearrangements to make translation a uniform process. Earlier structural studies of the ribosome complex with arrested translation factors laid the foundation for an understanding of ribosome dynamics and the translation process as such. Recent technological advances in time-resolved and ensemble cryo-EM have made it possible to study translation in real time at high resolution. These methods provided a detailed view of translation in bacteria for all three phases: initiation, elongation, and termination. In this review, we focus on translation factors (in some cases GTP activation) and their ability to monitor and respond to ribosome organization to enable efficient and accurate translation. This article is categorized under: Translation > Ribosome Structure/Function Translation > Mechanisms.
Collapse
Affiliation(s)
- Hassan Zafar
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ahmed H Hassan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Gabriel Demo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
24
|
Szekely O, Rangadurai AK, Gu S, Manghrani A, Guseva S, Al-Hashimi HM. NMR measurements of transient low-populated tautomeric and anionic Watson-Crick-like G·T/U in RNA:DNA hybrids: Implications for the fidelity of transcription and CRISPR/Cas9 gene editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554670. [PMID: 37662220 PMCID: PMC10473728 DOI: 10.1101/2023.08.24.554670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Many biochemical processes use the Watson-Crick geometry to distinguish correct from incorrect base pairing. However, on rare occasions, mismatches such as G•T/U can transiently adopt Watson-Crick-like conformations through tautomerization or ionization of the bases, giving rise to replicative and translational errors. The propensities to form Watson-Crick-like mismatches in RNA:DNA hybrids remain unknown, making it unclear whether they can also contribute to errors during processes such as transcription and CRISPR/Cas editing. Here, using NMR R 1ρ experiments, we show that dG•rU and dT•rG mismatches in two RNA:DNA hybrids transiently form tautomeric (G enol •T/U ⇄G•T enol /U enol ) and anionic (G•T - /U - ) Watson-Crick-like conformations. The tautomerization dynamics were like those measured in A-RNA and B-DNA duplexes. However, anionic dG•rU - formed with a ten-fold higher propensity relative to dT - •rG and dG•dT - and this could be attributed to the lower pK a (Δ pK a ∼0.4-0.9) of U versus T. Our findings suggest plausible roles for Watson-Crick-like G•T/U mismatches in transcriptional errors and CRISPR/Cas9 off-target gene editing, uncover a crucial difference between the chemical dynamics of G•U versus G•T, and indicate that anionic Watson-Crick-like G•U - could play a significant role evading Watson-Crick fidelity checkpoints in RNA:DNA hybrids and RNA duplexes.
Collapse
|
25
|
Jain S, Koziej L, Poulis P, Kaczmarczyk I, Gaik M, Rawski M, Ranjan N, Glatt S, Rodnina MV. Modulation of translational decoding by m 6A modification of mRNA. Nat Commun 2023; 14:4784. [PMID: 37553384 PMCID: PMC10409866 DOI: 10.1038/s41467-023-40422-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
N6-methyladenosine (m6A) is an abundant, dynamic mRNA modification that regulates key steps of cellular mRNA metabolism. m6A in the mRNA coding regions inhibits translation elongation. Here, we show how m6A modulates decoding in the bacterial translation system using a combination of rapid kinetics, smFRET and single-particle cryo-EM. We show that, while the modification does not impair the initial binding of aminoacyl-tRNA to the ribosome, in the presence of m6A fewer ribosomes complete the decoding process due to the lower stability of the complexes and enhanced tRNA drop-off. The mRNA codon adopts a π-stacked codon conformation that is remodeled upon aminoacyl-tRNA binding. m6A does not exclude canonical codon-anticodon geometry, but favors alternative more dynamic conformations that are rejected by the ribosome. These results highlight how modifications outside the Watson-Crick edge can still interfere with codon-anticodon base pairing and complex recognition by the ribosome, thereby modulating the translational efficiency of modified mRNAs.
Collapse
Affiliation(s)
- Sakshi Jain
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, 37077, Germany
| | - Lukasz Koziej
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Panagiotis Poulis
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, 37077, Germany
| | - Igor Kaczmarczyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, 30-387, Poland
| | - Monika Gaik
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Michal Rawski
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Krakow, 30-387, Poland
| | - Namit Ranjan
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, 37077, Germany
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland.
| | - Marina V Rodnina
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, 37077, Germany.
| |
Collapse
|
26
|
Soma A, Kubota A, Tomoe D, Ikeuchi Y, Kawamura F, Arimoto H, Shiwa Y, Kanesaki Y, Nanamiya H, Yoshikawa H, Suzuki T, Sekine Y. yaaJ, the tRNA-Specific Adenosine Deaminase, Is Dispensable in Bacillus subtilis. Genes (Basel) 2023; 14:1515. [PMID: 37628567 PMCID: PMC10454642 DOI: 10.3390/genes14081515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Post-transcriptional modifications of tRNA are crucial for their core function. The inosine (I; 6-deaminated adenosine) at the first position in the anticodon of tRNAArg(ICG) modulates the decoding capability and is generally considered essential for reading CGU, CGC, and CGA codons in eubacteria. We report here that the Bacillus subtilis yaaJ gene encodes tRNA-specific adenosine deaminase and is non-essential for viability. A β-galactosidase reporter assay revealed that the translational activity of CGN codons was not impaired in the yaaJ-deletion mutant. Furthermore, tRNAArg(CCG) responsible for decoding the CGG codon was dispensable, even in the presence or absence of yaaJ. These results strongly suggest that tRNAArg with either the anticodon ICG or ACG has an intrinsic ability to recognize all four CGN codons, providing a fundamental concept of non-canonical wobbling mediated by adenosine and inosine nucleotides in the anticodon. This is the first example of the four-way wobbling by inosine nucleotide in bacterial cells. On the other hand, the absence of inosine modification induced +1 frameshifting, especially at the CGA codon. Additionally, the yaaJ deletion affected growth and competency. Therefore, the inosine modification is beneficial for translational fidelity and proper growth-phase control, and that is why yaaJ has been actually conserved in B. subtilis.
Collapse
Affiliation(s)
- Akiko Soma
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Atsushi Kubota
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Daisuke Tomoe
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yoshiho Ikeuchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fujio Kawamura
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Hijiri Arimoto
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yuh Shiwa
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yu Kanesaki
- Shizuoka Instrumental Analysis Center, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hideaki Nanamiya
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
- Fukushima Translational Research Foundation, Capital Front Bldg., 7-4, 1-35, Sakae-machi, Fukushima 960-8031, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
27
|
Ochkasova A, Arbuzov G, Malygin A, Graifer D. Two "Edges" in Our Knowledge on the Functions of Ribosomal Proteins: The Revealed Contributions of Their Regions to Translation Mechanisms and the Issues of Their Extracellular Transport by Exosomes. Int J Mol Sci 2023; 24:11458. [PMID: 37511213 PMCID: PMC10380927 DOI: 10.3390/ijms241411458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Ribosomal proteins (RPs), the constituents of the ribosome, belong to the most abundant proteins in the cell. A highly coordinated network of interactions implicating RPs and ribosomal RNAs (rRNAs) forms the functionally competent structure of the ribosome, enabling it to perform translation, the synthesis of polypeptide chain on the messenger RNA (mRNA) template. Several RPs contact ribosomal ligands, namely, those with transfer RNAs (tRNAs), mRNA or translation factors in the course of translation, and the contribution of a number of these particular contacts to the translation process has recently been established. Many ribosomal proteins also have various extra-ribosomal functions unrelated to translation. The least-understood and -discussed functions of RPs are those related to their participation in the intercellular communication via extracellular vesicles including exosomes, etc., which often carry RPs as passengers. Recently reported data show that such a kind of communication can reprogram a receptor cell and change its phenotype, which is associated with cancer progression and metastasis. Here, we review the state-of-art ideas on the implications of specific amino acid residues of RPs in the particular stages of the translation process in higher eukaryotes and currently available data on the transport of RPs by extracellular vesicles and its biological effects.
Collapse
Affiliation(s)
- Anastasia Ochkasova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Grigory Arbuzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexey Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Dmitri Graifer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
28
|
Westhof E, Watson ZL, Zirbel CL, Cate JHD. Anionic G•U pairs in bacterial ribosomal rRNAs. RNA (NEW YORK, N.Y.) 2023; 29:1069-1076. [PMID: 37068913 DOI: 10.1261/rna.079583.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/05/2023] [Indexed: 06/18/2023]
Abstract
Wobble GU pairs (or G•U) occur frequently within double-stranded RNA helices interspersed between standard G=C and A-U Watson-Crick pairs. Another type of G•U pair interacting via their Watson-Crick edges has been observed in the A site of ribosome structures between a modified U34 in the tRNA anticodon triplet and G + 3 in the mRNA. In such pairs, the electronic structure of the U is changed with a negative charge on N3(U), resulting in two H-bonds between N1(G)…O4(U) and N2(G)…N3(U). Here, we report that such pairs occur in other highly conserved positions in ribosomal RNAs of bacteria in the absence of U modification. An anionic cis Watson-Crick G•G pair is also observed and well conserved in the small subunit. These pairs are observed in tightly folded regions.
Collapse
Affiliation(s)
- Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, F-67084 Strasbourg, France
| | - Zoe L Watson
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, USA
| | - Craig L Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - Jamie H D Cate
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
29
|
Rodnina MV. Decoding and Recoding of mRNA Sequences by the Ribosome. Annu Rev Biophys 2023; 52:161-182. [PMID: 37159300 DOI: 10.1146/annurev-biophys-101922-072452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Faithful translation of messenger RNA (mRNA) into protein is essential to maintain protein homeostasis in the cell. Spontaneous translation errors are very rare due to stringent selection of cognate aminoacyl transfer RNAs (tRNAs) and the tight control of the mRNA reading frame by the ribosome. Recoding events, such as stop codon readthrough, frameshifting, and translational bypassing, reprogram the ribosome to make intentional mistakes and produce alternative proteins from the same mRNA. The hallmark of recoding is the change of ribosome dynamics. The signals for recoding are built into the mRNA, but their reading depends on the genetic makeup of the cell, resulting in cell-specific changes in expression programs. In this review, I discuss the mechanisms of canonical decoding and tRNA-mRNA translocation; describe alternative pathways leading to recoding; and identify the links among mRNA signals, ribosome dynamics, and recoding.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
30
|
Yang C, Yang X, Liu C, Hou J, Chen X, Wang L, Wu X. EPRS1 correlates with malignant progression in hepatocellular carcinoma. Infect Agent Cancer 2023; 18:27. [PMID: 37138286 PMCID: PMC10155449 DOI: 10.1186/s13027-023-00503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/14/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Glutamyl-prolyl-tRNA synthetase 1 (EPRS1) is an aminoacyl-tRNA synthase involved in the pathology of cancer and other diseases. In this study, we investigated the carcinogenic function, potential mechanism, and clinical significance of EPRS1 in human hepatocellular carcinoma (HCC). METHODS The expression, clinical significance, and prognostic value of EPRS1 in HCC were assessed using the TCGA and GEO databases. The function of EPRS1 in HCC cells was detected by CCK-8, Transwell, and hepatosphere formation assays. Immunohistochemistry was used to explore the difference in EPRS1 levels in HCC tissues and peri-cancerous tissues. The mechanism of EPRS1 was studied using a proteomics method. Finally, cBioportal and MEXEPRSS were used to analyze the variations involved in the differential expression of EPRS1. RESULTS EPRS1 was frequently upregulated at the mRNA and protein levels in liver cancer. Increased EPRS1 correlated with shortened patient survival. EPRS1 could promote cancer cell proliferation, characteristics of cell stemness, and mobility. Mechanistically, EPRS1 played a carcinogenic role by upregulating several downstream proline-rich proteins, primarily LAMC1 and CCNB1. In addition, copy number variation could contribute to the high expression of EPRS1 in liver cancer. CONCLUSION Together, our data imply that enhanced EPRS1 contributes to the development of HCC by increasing the expression of oncogenes in the tumor microenvironment. EPRS1 may be a successful treatment target.
Collapse
Affiliation(s)
- Chen Yang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Oncology, Lianyungang Oriental Hospital, Lianyungang, Jiangsu, China
| | - Xiaofeng Yang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chenghao Liu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jun Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xueling Chen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Xiangwei Wu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
31
|
Zhang D, Zhu L, Wang F, Li P, Wang Y, Gao Y. Molecular mechanisms of eukaryotic translation fidelity and their associations with diseases. Int J Biol Macromol 2023; 242:124680. [PMID: 37141965 DOI: 10.1016/j.ijbiomac.2023.124680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Converting genetic information into functional proteins is a complex, multi-step process, with each step being tightly regulated to ensure the accuracy of translation, which is critical to cellular health. In recent years, advances in modern biotechnology, especially the development of cryo-electron microscopy and single-molecule techniques, have enabled a clearer understanding of the mechanisms of protein translation fidelity. Although there are many studies on the regulation of protein translation in prokaryotes, and the basic elements of translation are highly conserved in prokaryotes and eukaryotes, there are still great differences in the specific regulatory mechanisms. This review describes how eukaryotic ribosomes and translation factors regulate protein translation and ensure translation accuracy. However, a certain frequency of translation errors does occur in translation, so we describe diseases that arise when the rate of translation errors reaches or exceeds a threshold of cellular tolerance.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
32
|
Nguyen H, Hoffer E, Fagan C, Maehigashi T, Dunham C. Structural basis for reduced ribosomal A-site fidelity in response to P-site codon-anticodon mismatches. J Biol Chem 2023; 299:104608. [PMID: 36924943 PMCID: PMC10140155 DOI: 10.1016/j.jbc.2023.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNALys in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.
Collapse
Affiliation(s)
- HaAn Nguyen
- Department of Chemistry, Emory University, Atlanta, GA USA; Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| | - EricD Hoffer
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA; Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA USA
| | - CrystalE Fagan
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA; Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA USA
| | - Tatsuya Maehigashi
- Department of Chemistry, Emory University, Atlanta, GA USA; Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| | - ChristineM Dunham
- Department of Chemistry, Emory University, Atlanta, GA USA; Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA.
| |
Collapse
|
33
|
Lyu Z, Wilson C, Ling J. Translational Fidelity during Bacterial Stresses and Host Interactions. Pathogens 2023; 12:383. [PMID: 36986305 PMCID: PMC10057733 DOI: 10.3390/pathogens12030383] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Translational fidelity refers to accuracy during protein synthesis and is maintained in all three domains of life. Translational errors occur at base levels during normal conditions and may rise due to mutations or stress conditions. In this article, we review our current understanding of how translational fidelity is perturbed by various environmental stresses that bacterial pathogens encounter during host interactions. We discuss how oxidative stress, metabolic stresses, and antibiotics affect various types of translational errors and the resulting effects on stress adaption and fitness. We also discuss the roles of translational fidelity during pathogen-host interactions and the underlying mechanisms. Many of the studies covered in this review will be based on work with Salmonella enterica and Escherichia coli, but other bacterial pathogens will also be discussed.
Collapse
Affiliation(s)
| | | | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
34
|
Nguyen HA, Hoffer ED, Fagan CE, Maehigashi T, Dunham CM. Structural basis for reduced ribosomal A-site fidelity in response to P-site codon-anticodon mismatches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.28.526049. [PMID: 36747737 PMCID: PMC9900946 DOI: 10.1101/2023.01.28.526049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNA Lys in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.
Collapse
Affiliation(s)
- Ha An Nguyen
- Department of Chemistry, Emory University, Atlanta, GA USA
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| | - Eric D. Hoffer
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA USA
| | - Crystal E. Fagan
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA USA
| | - Tatsuya Maehigashi
- Department of Chemistry, Emory University, Atlanta, GA USA
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| | - Christine M. Dunham
- Department of Chemistry, Emory University, Atlanta, GA USA
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| |
Collapse
|
35
|
Sultanov D, Hochwagen A. Varying strength of selection contributes to the intragenomic diversity of rRNA genes. Nat Commun 2022; 13:7245. [PMID: 36434003 PMCID: PMC9700816 DOI: 10.1038/s41467-022-34989-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Ribosome biogenesis in eukaryotes is supported by hundreds of ribosomal RNA (rRNA) gene copies that are encoded in the ribosomal DNA (rDNA). The multiple copies of rRNA genes are thought to have low sequence diversity within one species. Here, we present species-wide rDNA sequence analysis in Saccharomyces cerevisiae that challenges this view. We show that rDNA copies in this yeast are heterogeneous, both among and within isolates, and that many variants avoided fixation or elimination over evolutionary time. The sequence diversity landscape across the rDNA shows clear functional stratification, suggesting different copy-number thresholds for selection that contribute to rDNA diversity. Notably, nucleotide variants in the most conserved rDNA regions are sufficiently deleterious to exhibit signatures of purifying selection even when present in only a small fraction of rRNA gene copies. Our results portray a complex evolutionary landscape that shapes rDNA sequence diversity within a single species and reveal unexpectedly strong purifying selection of multi-copy genes.
Collapse
Affiliation(s)
- Daniel Sultanov
- grid.137628.90000 0004 1936 8753Department of Biology, New York University, New York, NY 10003 USA
| | - Andreas Hochwagen
- grid.137628.90000 0004 1936 8753Department of Biology, New York University, New York, NY 10003 USA
| |
Collapse
|
36
|
Banreti A, Bhattacharya S, Wien F, Matsuo K, Réfrégiers M, Meinert C, Meierhenrich U, Hudry B, Thompson D, Noselli S. Biological effects of the loss of homochirality in a multicellular organism. Nat Commun 2022; 13:7059. [PMID: 36400783 PMCID: PMC9674851 DOI: 10.1038/s41467-022-34516-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Homochirality is a fundamental feature of all known forms of life, maintaining biomolecules (amino-acids, proteins, sugars, nucleic acids) in one specific chiral form. While this condition is central to biology, the mechanisms by which the adverse accumulation of non-L-α-amino-acids in proteins lead to pathophysiological consequences remain poorly understood. To address how heterochirality build-up impacts organism's health, we use chiral-selective in vivo assays to detect protein-bound non-L-α-amino acids (focusing on aspartate) and assess their functional significance in Drosophila. We find that altering the in vivo chiral balance creates a 'heterochirality syndrome' with impaired caspase activity, increased tumour formation, and premature death. Our work shows that preservation of homochirality is a key component of protein function that is essential to maintain homeostasis across the cell, tissue and organ level.
Collapse
Affiliation(s)
- Agnes Banreti
- grid.461605.0Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Shayon Bhattacharya
- grid.10049.3c0000 0004 1936 9692Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Frank Wien
- grid.426328.9DISCO Beamline, Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | - Koichi Matsuo
- grid.257022.00000 0000 8711 3200HiSOR Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima, Japan
| | - Matthieu Réfrégiers
- grid.417870.d0000 0004 0614 8532Centre de Biophysique Moléculaire, CNRS; UPR4301, 45071 Orléans, France
| | - Cornelia Meinert
- grid.462124.70000 0004 0384 8488Université Côte d’Azur, Institut de Chimie de Nice, CNRS; UMR 7272, 06108 Nice, France
| | - Uwe Meierhenrich
- grid.462124.70000 0004 0384 8488Université Côte d’Azur, Institut de Chimie de Nice, CNRS; UMR 7272, 06108 Nice, France
| | - Bruno Hudry
- grid.461605.0Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Damien Thompson
- grid.10049.3c0000 0004 1936 9692Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Stéphane Noselli
- grid.461605.0Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| |
Collapse
|
37
|
Error-prone protein synthesis recapitulates early symptoms of Alzheimer disease in aging mice. Cell Rep 2022; 40:111433. [PMID: 36170830 DOI: 10.1016/j.celrep.2022.111433] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Age-related neurodegenerative diseases (NDDs) are associated with the aggregation and propagation of specific pathogenic protein species (e.g., Aβ, α-synuclein). However, whether disruption of synaptic homeostasis results from protein misfolding per se rather than accumulation of a specific rogue protein is an unexplored question. Here, we show that error-prone translation, with its frequent outcome of random protein misfolding, is sufficient to recapitulate many early features of NDDs, including perturbed Ca2+ signaling, neuronal hyperexcitability, and mitochondrial dysfunction. Mice expressing the ribosomal ambiguity mutation Rps9 D95N exhibited disrupted synaptic homeostasis resulting in behavioral changes reminiscent of early Alzheimer disease (AD), such as learning and memory deficits, maladaptive emotional responses, epileptiform discharges, suppressed circadian rhythmicity, and sleep fragmentation, accompanied by hippocampal NPY expression and cerebral glucose hypometabolism. Collectively, our findings suggest that random protein misfolding may contribute to the pathogenesis of age-related NDDs, providing an alternative framework for understanding the initiation of AD.
Collapse
|
38
|
Naganathan A, Culver GM. Interdependency and Redundancy Add Complexity and Resilience to Biogenesis of Bacterial Ribosomes. Annu Rev Microbiol 2022; 76:193-210. [PMID: 35609945 DOI: 10.1146/annurev-micro-041020-121806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pace and efficiency of ribosomal subunit production directly impact the fitness of bacteria. Biogenesis demands more than just the union of ribosomal components, including RNA and proteins, to form this functional ribonucleoprotein particle. Extra-ribosomal protein factors play a fundamental role in the efficiency and efficacy of ribosomal subunit biogenesis. A paucity of data on intermediate steps, multiple and overlapping pathways, and the puzzling number of functions that extra-ribosomal proteins appear to play in vivo make unraveling the formation of this macromolecular assemblage difficult. In this review, we outline with examples the multinodal landscape of factor-assisted mechanisms that influence ribosome synthesis in bacteria. We discuss in detail late-stage events that mediate correct ribosome formation and the transition to translation initiation and thereby ensure high-fidelity protein synthesis.
Collapse
Affiliation(s)
- Anusha Naganathan
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| |
Collapse
|
39
|
Lee C, Ye Q, Shin E, Ting T, Lee SJ. Acquisition of Streptomycin Resistance by Oxidative Stress Induced by Hydrogen Peroxide in Radiation-Resistant Bacterium Deinococcus geothermalis. Int J Mol Sci 2022; 23:ijms23179764. [PMID: 36077162 PMCID: PMC9456066 DOI: 10.3390/ijms23179764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/24/2022] [Indexed: 12/01/2022] Open
Abstract
Streptomycin is used primarily to treat bacterial infections, including brucellosis, plague, and tuberculosis. Streptomycin resistance easily develops in numerous bacteria through the inhibition of antibiotic transfer, the production of aminoglycoside-modifying enzymes, or mutations in ribosomal components with clinical doses of streptomycin treatment. (1) Background: A transposable insertion sequence is one of the mutation agents in bacterial genomes under oxidative stress. (2) Methods: In the radiation-resistant bacterium Deinococcus geothermalis subjected to chronic oxidative stress induced by 20 mM hydrogen peroxide, active transposition of an insertion sequence element and several point mutations in three streptomycin resistance (SmR)-related genes (rsmG, rpsL, and mthA) were identified. (3) Results: ISDge6 of the IS5 family integrated into the rsmG gene (dgeo_2335), called SrsmG, encodes a ribosomal guanosine methyltransferase resulting in streptomycin resistance. In the case of dgeo_2840-disrupted mutant strains (S1 and S2), growth inhibition under antibiotic-free conditions was recovered with increased growth yields in the presence of 50 µg/mL streptomycin due to a streptomycin-dependent (SmD) mutation. These mutants have a predicted proline-to-leucine substitution at the 91st residue of ribosomal protein S12 in the decoding center. (4) Conclusions: Our findings show that the active transposition of a unique IS element under oxidative stress conditions conferred antibiotic resistance through the disruption of rsmG. Furthermore, chronic oxidative stress induced by hydrogen peroxide also induced streptomycin resistance caused by point and frameshift mutations of streptomycin-interacting residues such as K43, K88, and P91 in RpsL and four genes for streptomycin resistance.
Collapse
|
40
|
Yao Y, Yuan H, Wu G, Ma C, Gong Z. Proteome Analysis of the Soybean Nodule Phosphorus Response Mechanism and Characterization of Stress-Induced Ribosome Structural and Protein Expression Changes. FRONTIERS IN PLANT SCIENCE 2022; 13:908889. [PMID: 35755677 PMCID: PMC9218819 DOI: 10.3389/fpls.2022.908889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
In agroecosystems, a plant-usable form of nitrogen is mainly generated by legume-based biological nitrogen fixation, a process that requires phosphorus (P) as an essential nutrient. To investigate the physiological mechanism whereby phosphorus influences soybean nodule nitrogen fixation, soybean root nodules were exposed to four phosphate levels: 1 mg/L (P stress), 11 mg/L (P stress), 31 mg/L (Normal P), and 61 mg/L (High P) then proteome analysis of nodules was conducted to identify phosphorus-associated proteome changes. We found that phosphorus stress-induced ribosomal protein structural changes were associated with altered key root nodule protein synthesis profiles. Importantly, up-regulated expression of peroxidase was observed as an important phosphorus stress-induced nitrogen fixation-associated adaptation that supported two nodule-associated activities: scavenging of reactive oxygen species (ROS) and cell wall growth. In addition, phosphorus transporter (PT) and purple acid phosphatase (PAPs) were up-regulated that regulated phosphorus transport and utilization to maintain phosphorus balance and nitrogen fixation function in phosphorus-stressed root nodules.
Collapse
Affiliation(s)
- Yubo Yao
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, China
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Hongmei Yuan
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guangwen Wu
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chunmei Ma
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhenping Gong
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
41
|
Kumar P, Bhatnagar A, Sankaranarayanan R. Chiral proofreading during protein biosynthesis and its evolutionary implications. FEBS Lett 2022; 596:1615-1627. [PMID: 35662005 DOI: 10.1002/1873-3468.14419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/29/2022] [Indexed: 11/05/2022]
Abstract
Homochirality of biomacromolecules is a prerequisite for their proper functioning and hence essential for all life forms. This underscores the role of cellular chiral checkpoints in enforcing homochirality during protein biosynthesis. D-aminoacyl-tRNA deacylase (DTD) is an enzyme that performs 'Chirality-based proofreading' to remove D-amino acids mistakenly attached to tRNAs, thus recycling them for further rounds of translation. Paradoxically, owing to its L-chiral rejection mode of action, DTD can remove glycine as well, which is an achiral amino acid. However, this activity is modulated by discriminator base (N73) in tRNA, a unique element that protects the cognate Gly-tRNAGly . Here, we review our recent work showing various aspects of DTD and tRNAGly co-evolution and its key role in maintaining proper translation surveillance in both bacteria and eukaryotes. Moreover, we also discuss two major optimization events on DTD and tRNA that resolved compatibility issues among the archaeal and the bacterial translation apparatuses. Importantly, such optimizations are necessary for the emergence of mitochondria and successful eukaryogenesis.
Collapse
Affiliation(s)
- Pradeep Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-CCMB campus, Uppal Road, Hyderabad, 500007, India
| | - Akshay Bhatnagar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Rajan Sankaranarayanan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-CCMB campus, Uppal Road, Hyderabad, 500007, India
| |
Collapse
|
42
|
He X, ElNaggar M, Ostrowski MA, Guttman A, Gentalen E, Sperry J. Evaluation of an icIEF-MS system for comparable charge variant analysis of biotherapeutics with rapid peak identification by mass spectrometry. Electrophoresis 2022; 43:1215-1222. [PMID: 35286725 PMCID: PMC9322286 DOI: 10.1002/elps.202100295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023]
Abstract
Protein therapeutics are usually produced in heterogeneous forms during bioproduction and bioprocessing. Heterogeneity results from post‐translational modifications that can yield charge variants and require characterization throughout product development and manufacturing. Isoelectric focusing (IEF) with UV detection is one of the most common methods to evaluate protein charge heterogeneity in the biopharmaceutical industry. To identify charge variant peaks, a new imaged microfluidic chip‐based isoelectric focusing (icIEF) system coupled directly to mass spectrometry was recently reported. Bridging is required to demonstrate comparability between existing and new technology. As such, here we demonstrate the comparability of the pI value measurement and relative charge species distributions between the icIEF‐MS system and the control data from a frequently utilized methodology in the biopharmaceutical industry for several blinded development‐phase biopharmaceutical monoclonal antibodies across a wide pI range of 7.3–9.0. Hyphenation of the icIEF system with mass spectrometry enabled direct and detailed structural determination of a test molecule, with masses suggesting acidic and basic shifts are caused by sialic acid additions and the presence of unprocessed lysine residues. In addition, MS analysis further identified several low‐abundance glycoforms. The icIEF‐MS system provides sample quantification, characterization, and identification of mAb proteoforms without sacrificing icIEF quantification comparability or speed.
Collapse
Affiliation(s)
| | | | | | - Andras Guttman
- Horvath Csaba Memorial Laboratory of Bioseparation Sciences, University of Debrecen, Hungary.,Previously with SCIEX
| | | | | |
Collapse
|
43
|
Phenotype of Mrps5-Associated Phylogenetic Polymorphisms Is Intimately Linked to Mitoribosomal Misreading. Int J Mol Sci 2022; 23:ijms23084384. [PMID: 35457201 PMCID: PMC9030964 DOI: 10.3390/ijms23084384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 01/25/2023] Open
Abstract
We have recently identified point mutation V336Y in mitoribosomal protein Mrps5 (uS5m) as a mitoribosomal ram (ribosomal ambiguity) mutation conferring error-prone mitochondrial protein synthesis. In vivo in transgenic knock-in animals, homologous mutation V338Y was associated with a discrete phenotype including impaired mitochondrial function, anxiety-related behavioral alterations, enhanced susceptibility to noise-induced hearing damage, and accelerated metabolic aging in muscle. To challenge the postulated link between Mrps5 V338Y-mediated misreading and the in vivo phenotype, we introduced mutation G315R into the mouse Mrps5 gene as Mrps5 G315R is homologous to the established bacterial ram mutation RpsE (uS5) G104R. However, in contrast to bacterial translation, the homologous G → R mutation in mitoribosomal Mrps5 did not affect the accuracy of mitochondrial protein synthesis. Importantly, in the absence of mitochondrial misreading, homozygous mutant MrpS5G315R/G315R mice did not show a phenotype distinct from wild-type animals.
Collapse
|
44
|
Ye S, Lehmann J. Genetic code degeneracy is established by the decoding center of the ribosome. Nucleic Acids Res 2022; 50:4113-4126. [PMID: 35325219 PMCID: PMC9023292 DOI: 10.1093/nar/gkac171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 02/10/2022] [Accepted: 03/23/2022] [Indexed: 11/21/2022] Open
Abstract
The degeneracy of the genetic code confers a wide array of properties to coding sequences. Yet, its origin is still unclear. A structural analysis has shown that the stability of the Watson–Crick base pair at the second position of the anticodon–codon interaction is a critical parameter controlling the extent of non-specific pairings accepted at the third position by the ribosome, a flexibility at the root of degeneracy. Based on recent cryo-EM analyses, the present work shows that residue A1493 of the decoding center provides a significant contribution to the stability of this base pair, revealing that the ribosome is directly involved in the establishment of degeneracy. Building on existing evolutionary models, we show the evidence that the early appearance of A1493 and A1492 established the basis of degeneracy when an elementary kinetic scheme of translation was prevailing. Logical considerations on the expansion of this kinetic scheme indicate that the acquisition of the peptidyl transferase center was the next major evolutionary step, while the induced-fit mechanism, that enables a sharp selection of the tRNAs, necessarily arose later when G530 was acquired by the decoding center.
Collapse
Affiliation(s)
- Shixin Ye
- INSERM U1195 unit, University of Paris-Saclay, 94276 Le Kremlin Bicêtre, France
| | - Jean Lehmann
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University of Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
45
|
Shcherbakov D, Nigri M, Akbergenov R, Brilkova M, Mantovani M, Petit PI, Grimm A, Karol AA, Teo Y, Sanchón AC, Kumar Y, Eckert A, Thiam K, Seebeck P, Wolfer DP, Böttger EC. Premature aging in mice with error-prone protein synthesis. SCIENCE ADVANCES 2022; 8:eabl9051. [PMID: 35235349 PMCID: PMC8890705 DOI: 10.1126/sciadv.abl9051] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The main source of error in gene expression is messenger RNA decoding by the ribosome. Translational accuracy has been suggested on a purely correlative basis to positively coincide with maximum possible life span among different rodent species, but causal evidence that translation errors accelerate aging in vivo and limit life span is lacking. We have now addressed this question experimentally by creating heterozygous knock-in mice that express the ribosomal ambiguity mutation RPS9 D95N, resulting in genome-wide error-prone translation. Here, we show that Rps9 D95N knock-in mice exhibit reduced life span and a premature onset of numerous aging-related phenotypes, such as reduced weight, chest deformation, hunchback posture, poor fur condition, and urinary syndrome, together with lymphopenia, increased levels of reactive oxygen species-inflicted damage, accelerated age-related changes in DNA methylation, and telomere attrition. Our results provide an experimental link between translational accuracy, life span, and aging-related phenotypes in mammals.
Collapse
Affiliation(s)
- Dimitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Martina Nigri
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, CH-8057 Zurich, Switzerland
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Margarita Brilkova
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Matilde Mantovani
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | | | - Amandine Grimm
- Universitäre Psychiatrische Kliniken Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, CH-4055 Basel, Switzerland
| | - Agnieszka A. Karol
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Youjin Teo
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Adrián Cortés Sanchón
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Yadhu Kumar
- Eurofins Genomics Europe Sequencing GmbH, D-78467 Konstanz, Germany
| | - Anne Eckert
- Universitäre Psychiatrische Kliniken Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, CH-4055 Basel, Switzerland
| | | | - Petra Seebeck
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, CH-8057 Zurich, Switzerland
| | - David P. Wolfer
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, CH-8057 Zurich, Switzerland
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
- Corresponding author.
| |
Collapse
|
46
|
Abstract
Accurate protein synthesis (translation) relies on translation factors that rectify ribosome fluctuations into a unidirectional process. Understanding this process requires structural characterization of the ribosome and translation-factor dynamics. In the 2000s, crystallographic studies determined high-resolution structures of ribosomes stalled with translation factors, providing a starting point for visualizing translation. Recent progress in single-particle cryogenic electron microscopy (cryo-EM) has enabled near-atomic resolution of numerous structures sampled in heterogeneous complexes (ensembles). Ensemble and time-resolved cryo-EM have now revealed unprecedented views of ribosome transitions in the three principal stages of translation: initiation, elongation, and termination. This review focuses on how translation factors help achieve high accuracy and efficiency of translation by monitoring distinct ribosome conformations and by differentially shifting the equilibria of ribosome rearrangements for cognate and near-cognate substrates. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA;
| |
Collapse
|
47
|
Xu B, Liu L, Song G. Functions and Regulation of Translation Elongation Factors. Front Mol Biosci 2022; 8:816398. [PMID: 35127825 PMCID: PMC8807479 DOI: 10.3389/fmolb.2021.816398] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Translation elongation is a key step of protein synthesis, during which the nascent polypeptide chain extends by one amino acid residue during one elongation cycle. More and more data revealed that the elongation is a key regulatory node for translational control in health and disease. During elongation, elongation factor Tu (EF-Tu, eEF1A in eukaryotes) is used to deliver aminoacyl-tRNA (aa-tRNA) to the A-site of the ribosome, and elongation factor G (EF-G, EF2 in eukaryotes and archaea) is used to facilitate the translocation of the tRNA2-mRNA complex on the ribosome. Other elongation factors, such as EF-Ts/eEF1B, EF-P/eIF5A, EF4, eEF3, SelB/EFsec, TetO/Tet(M), RelA and BipA, have been found to affect the overall rate of elongation. Here, we made a systematic review on the canonical and non-canonical functions and regulation of these elongation factors. In particular, we discussed the close link between translational factors and human diseases, and clarified how post-translational modifications control the activity of translational factors in tumors.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Guangtao Song
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| |
Collapse
|
48
|
Chen J, Liu H, Cui X, Li Z, Chen HF. RNA-Specific Force Field Optimization with CMAP and Reweighting. J Chem Inf Model 2022; 62:372-385. [PMID: 35021622 DOI: 10.1021/acs.jcim.1c01148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RNA plays a key role in a variety of cell activities. However, it is difficult to capture its structure dynamics by the traditional experimental methods because of the inherent limitations. Molecular dynamics simulation has become a valuable complement to the experimental methods. Previous studies have indicated that the current force fields cannot accurately reproduce the conformations and structural dynamics of RNA. Therefore, an RNA-specific force field was developed to improve the conformation sampling of RNA. The distribution of ζ/α dihedrals of tetranucleotides was optimized by a reweighting method, and the grid-based energy correction map (CMAP) term was first introduced into the Amber RNA force field of ff99bsc0χOL3, named ff99OL3_CMAP1. Extensive validations of tetranucleotides and tetraloops show that ff99OL3_CMAP1 can significantly decrease the population of an incorrect structure, increase the consistency between the simulation results and experimental values for tetranucleotides, and improve the stability of tetraloops. ff99OL3_CMAP1 can also precisely reproduce the conformation of a duplex and riboswitches. These findings confirm that the newly developed force field ff99OL3_CMAP1 can improve the conformer sampling of RNA.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 20024 Shanghai, China
| | - Hao Liu
- Institute of Natural Sciences, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Xiaochen Cui
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 20024 Shanghai, China
| | - Zhengxin Li
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 20024 Shanghai, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 20024 Shanghai, China.,Shanghai Center for Bioinformation Technology, 200240 Shanghai, China
| |
Collapse
|
49
|
Gamper H, Masuda I, Hou YM. Genome Expansion by tRNA +1 Frameshifting at Quadruplet Codons. J Mol Biol 2022; 434:167440. [PMID: 34995554 PMCID: PMC9643101 DOI: 10.1016/j.jmb.2021.167440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022]
Abstract
Inducing tRNA +1 frameshifting to read a quadruplet codon has the potential to incorporate a non-canonical amino acid (ncAA) into the polypeptide chain. While this strategy is attractive for genome expansion in biotechnology and bioengineering endeavors, improving the yield is hampered by a lack of understanding of where the shift can occur in an elongation cycle of protein synthesis. Lacking a clear answer to this question, current efforts have focused on designing +1-frameshifting tRNAs with an extra nucleotide inserted to the anticodon loop for pairing with a quadruplet codon in the aminoacyl-tRNA binding (A) site of the ribosome. However, the designed and evolved +1-frameshifting tRNAs vary broadly in achieving successful genome expansion. Here we summarize recent work on +1-frameshifting tRNAs. We suggest that, rather than engineering the quadruplet anticodon-codon pairing scheme at the ribosome A site, efforts should be made to engineer the pairing scheme at steps after the A site, including the step of the subsequent translocation and the step that stabilizes the pairing scheme in the +1-frame in the peptidyl-tRNA binding (P) site.
Collapse
Affiliation(s)
- Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
50
|
Blanchet S, Ranjan N. Translation Phases in Eukaryotes. Methods Mol Biol 2022; 2533:217-228. [PMID: 35796991 PMCID: PMC9761538 DOI: 10.1007/978-1-0716-2501-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein synthesis in eukaryotes is carried out by 80S ribosomes with the help of many specific translation factors. Translation comprises four major steps: initiation, elongation, termination, and ribosome recycling. In this review, we provide a comprehensive list of translation factors required for protein synthesis in yeast and higher eukaryotes and summarize the mechanisms of each individual phase of eukaryotic translation.
Collapse
Affiliation(s)
- Sandra Blanchet
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| |
Collapse
|