1
|
Borho J, Kögel M, Eckert A, Barth H. Repurposing FDA-approved disulfiram for targeted inhibition of diphtheria toxin and the binary protein toxins of Clostridium botulinum and Bacillus anthracis. Front Pharmacol 2024; 15:1455696. [PMID: 39346565 PMCID: PMC11427369 DOI: 10.3389/fphar.2024.1455696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Many bacteria act pathogenic by the release of AB-type protein toxins that efficiently enter human or animal cells and act as enzymes in their cytosol. This leads to disturbed cell functions and the clinical symptoms characteristic for the individual toxin. Therefore, molecules that directly target and neutralize these toxins provide promising novel therapeutic options. Here, we found that the FDA-approved drug disulfiram (DSF), used for decades to treat alcohol abuse, protects cells from intoxication with diphtheria toxin (DT) from Corynebacterium diphtheria, the causative agent of diphtheria, lethal toxin (LT) from Bacillus anthracis, which contributes to anthrax, and C2 enterotoxin from Clostridium botulinum when applied in concentrations lower than those found in plasma of patients receiving standard DSF treatment for alcoholism (up to 20 µM). Moreover, this inhibitory effect is increased by copper, a known enhancer of DSF activity. LT and C2 are binary toxins, consisting of two non-linked proteins, an enzyme (A) and a separate binding/transport (B) subunit. To act cytotoxic, their proteolytically activated B subunits PA63 and C2IIa, respectively, form barrel-shaped heptamers that bind to their cellular receptors and form complexes with their respective A subunits LF and C2I. The toxin complexes are internalized via receptor-mediated endocytosis and in acidified endosomes, PA63 and C2IIa form pores in endosomal membranes, which facilitate translocation of LF and C2I into the cytosol, where they act cytotoxic. In DT, A and B subunits are located within one protein, but DT also forms pores in endosomes that facilitate translocation of the A subunit. If cell binding, membrane translocation, or substrate modification is inhibited, cells are protected from intoxication. Our results implicate that DSF neither affects cellular binding nor the catalytic activity of the investigated toxins to a relevant extend, but interferes with the toxin pore-mediated translocation of the A subunits of DT, LT and C2 toxin, as demonstrated by membrane-translocation assays and toxin pore conductivity experiments in the presence or absence of DSF. Since toxin translocation across intracellular membranes represents a central step during cellular uptake of many bacterial toxins, DSF might neutralize a broad spectrum of medically relevant toxins.
Collapse
Affiliation(s)
| | | | | | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
2
|
Lietz S, Sokolowski LM, Barth H, Ernst K. Alpha-1 antitrypsin inhibits Clostridium botulinum C2 toxin, Corynebacterium diphtheriae diphtheria toxin and B. anthracis fusion toxin. Sci Rep 2024; 14:21257. [PMID: 39261531 PMCID: PMC11390955 DOI: 10.1038/s41598-024-71706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
The bacterium Clostridium botulinum, well-known for producing botulinum neurotoxins, which cause the severe paralytic illness known as botulism, produces C2 toxin, a binary AB-toxin with ADP-ribosyltranferase activity. C2 toxin possesses two separate protein components, an enzymatically active A-component C2I and the binding and translocation B-component C2II. After proteolytic activation of C2II to C2IIa, the heptameric structure binds C2I and is taken up via receptor-mediated endocytosis into the target cells. Due to acidification of endosomes, the C2IIa/C2I complex undergoes conformational changes and consequently C2IIa forms a pore into the endosomal membrane and C2I can translocate into the cytoplasm, where it ADP-ribosylates G-actin, a key component of the cytoskeleton. This modification disrupts the actin cytoskeleton, resulting in the collapse of cytoskeleton and ultimately cell death. Here, we show that the serine-protease inhibitor α1-antitrypsin (α1AT) which we identified previously from a hemofiltrate library screen for PT from Bordetella pertussis is a multitoxin inhibitor. α1AT inhibits intoxication of cells with C2 toxin via inhibition of binding to cells and inhibition of enzyme activity of C2I. Moreover, diphtheria toxin and an anthrax fusion toxin are inhibited by α1AT. Since α1AT is commercially available as a drug for treatment of the α1AT deficiency, it could be repurposed for treatment of toxin-mediated diseases.
Collapse
Affiliation(s)
- Stefanie Lietz
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081, Ulm, Germany
| | - Lena-Marie Sokolowski
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
3
|
Zhu J, Tao P, Chopra AK, Rao VB. Bacteriophage T4 as a Protein-Based, Adjuvant- and Needle-Free, Mucosal Pandemic Vaccine Design Platform. Annu Rev Virol 2024; 11:395-420. [PMID: 38768614 DOI: 10.1146/annurev-virology-111821-111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The COVID-19 pandemic has transformed vaccinology. Rapid deployment of mRNA vaccines has saved countless lives. However, these platforms have inherent limitations including lack of durability of immune responses and mucosal immunity, high cost, and thermal instability. These and uncertainties about the nature of future pandemics underscore the need for exploring next-generation vaccine platforms. Here, we present a novel protein-based, bacteriophage T4 platform for rapid design of efficacious vaccines against bacterial and viral pathogens. Full-length antigens can be displayed at high density on a 120 × 86 nm phage capsid through nonessential capsid binding proteins Soc and Hoc. Such nanoparticles, without any adjuvant, induce robust humoral, cellular, and mucosal responses when administered intranasally and confer sterilizing immunity. Combined with structural stability and ease of manufacture, T4 phage provides an excellent needle-free, mucosal pandemic vaccine platform and allows equitable vaccine access to low- and middle-income communities across the globe.
Collapse
Affiliation(s)
- Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA; ,
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ashok K Chopra
- Department of Microbiology and Immunology, Sealy Institute for Vaccine Sciences, Institute for Human Infections and Immunity, and Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA; ,
| |
Collapse
|
4
|
da Fonseca IIM, Nagamine MK, Gentile LB, Nishiya AT, da Fonseca JM, de Oliveira Massoco C, Ward JM, Liu S, Leppla SH, Dagli MLZ. Targeting canine mammary neoplastic epithelial cells with a reengineered anthrax toxin: first study. Vet Res Commun 2024; 48:2407-2428. [PMID: 38805149 DOI: 10.1007/s11259-024-10400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Mammary tumors are the most frequent type of neoplasms in intact female dogs. New therapies that target neoplastic cells without affecting normal cells are highly sought. The Bacillus anthracis toxin has been reengineered to target tumor cells that express urokinase plasminogen activators and metalloproteinases. In previous studies carried out in our laboratory, the reengineered anthrax toxin had inhibitory effects on canine oral mucosal melanoma and canine osteosarcoma cells. In this study, five canine neoplastic epithelial cell lines (four adenocarcinomas and one adenoma) and one non-neoplastic canine mammary epithelial cell line were treated with different concentrations of reengineered anthrax toxin components. Cell viability was quantified using an MTT assay and half-maximal inhibitory concentration (IC50) values. Cell lines were considered sensitive when the IC50 was lower than 5000 ng/ml. One canine mammary adenocarcinoma cell line and one mammary adenoma cell line showed significantly decreased viability after treatment, whereas the non-neoplastic cell line was resistant. We conclude that the reengineered anthrax toxin may be considered a targeted therapy for canine mammary neoplasms while preserving normal canine mammary epithelial cells.
Collapse
Affiliation(s)
- Ivone Izabel Mackowiak da Fonseca
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Márcia Kazumi Nagamine
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Luciana Boffoni Gentile
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Adriana Tomoko Nishiya
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Jonathan Mackowiak da Fonseca
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Cristina de Oliveira Massoco
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | | | - Shihui Liu
- Aging Institute and Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Stephen Howard Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Lucia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil.
| |
Collapse
|
5
|
Ahmad A, Khan JM, Paray BA, Rashid K, Parvez A. Endolysosomal trapping of therapeutics and endosomal escape strategies. Drug Discov Today 2024; 29:104070. [PMID: 38942071 DOI: 10.1016/j.drudis.2024.104070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Internalizing therapeutic molecules or genes into cells and safely delivering them to the target tissue where they can perform the intended tasks is one of the key characteristics of the smart gene/drug delivery vector. Despite much research in this field, endosomal escape continues to be a significant obstacle to the development of effective gene/drug delivery systems. In this review, we discuss in depth the several types of endocytic pathways involved in the endolysosomal trapping of therapeutic agents. In addition, we describe numerous mechanisms involved in nanoparticle endosomal escape. Furthermore, many other techniques are employed to increase endosomal escape to minimize entrapment of therapeutic compounds within endolysosomes, which have been reviewed at length in this study.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Department of Medical Biochemistry, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Khalid Rashid
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ashib Parvez
- Department of Community Medicine, F.H. Medical College, Atal Bihari Vajpayee Medical University, Etmadpur, Agra, India
| |
Collapse
|
6
|
Kompes G, Duvnjak S, Reil I, Mihaljević Ž, Habrun B, Benić M, Cvetnić L, Špičić S, Bagarić A. Antimicrobial Resistance Profile, Whole-Genome Sequencing and Core Genome Multilocus Sequence Typing of B. anthracis Isolates in Croatia from 2001 to 2022. Antibiotics (Basel) 2024; 13:639. [PMID: 39061321 PMCID: PMC11274125 DOI: 10.3390/antibiotics13070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Bacillus anthracis, the causative agent of anthrax disease, is a worldwide threat to livestock, wildlife and public health. It is also considered one of the most important pathogens of bioterrorism. Rapid and reliable diagnosis and administration of antimicrobials are essential for effective anthrax treatment. In this study, we determined the in vitro susceptibilities of 40 isolates of B. anthracis isolated in Croatia over the recent two decades to 18 antimicrobials. Whole-genome sequencing was performed, and bioinformatics tools were used to determine virulence factors and antimicrobial resistance genes. Core genome-based multilocus sequence typing was used for isolate comparison and phylogenetic analysis. All isolates were susceptible to all antimicrobials recommended for post-exposure prophylaxis or anthrax therapy. Susceptibility was found to all other tested antimicrobials that are an alternative for primary therapy. We found two beta-lactamase genes, but their expression is not sufficient to confer resistance. In all isolates used in this study, we found 21 virulence genes, 8 of which are responsible for toxin and capsule production. As far as phylogenetic analysis is concerned, the B. anthracis isolates from Croatia are categorised into two clades. The first is clade A, subclade Trans Eurasia, and the other is clade B, subclade B2.
Collapse
Affiliation(s)
- Gordan Kompes
- Laboratory for General Bacteriology and Mycology, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (G.K.); (B.H.); (A.B.)
| | - Sanja Duvnjak
- Laboratory for Bacterial Zoonoses and Molecular Diagnostics of Bacterial Diseases, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Irena Reil
- Laboratory for Bacterial Zoonoses and Molecular Diagnostics of Bacterial Diseases, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Željko Mihaljević
- Laboratory for Pathology, Department for Pathology, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Boris Habrun
- Laboratory for General Bacteriology and Mycology, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (G.K.); (B.H.); (A.B.)
| | - Miroslav Benić
- Laboratory for Mastitis and Raw Milk Quality, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (M.B.); (L.C.)
| | - Luka Cvetnić
- Laboratory for Mastitis and Raw Milk Quality, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (M.B.); (L.C.)
| | - Silvio Špičić
- Laboratory for Bacterial Zoonoses and Molecular Diagnostics of Bacterial Diseases, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Antonela Bagarić
- Laboratory for General Bacteriology and Mycology, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia; (G.K.); (B.H.); (A.B.)
| |
Collapse
|
7
|
Schneider S, Wirth C, Jank T, Hunte C, Aktories K. Tyrosine-modifying glycosylation by Yersinia effectors. J Biol Chem 2024; 300:107331. [PMID: 38703997 PMCID: PMC11152714 DOI: 10.1016/j.jbc.2024.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 05/06/2024] Open
Abstract
Mono-O-glycosylation of target proteins by bacterial toxins or effector proteins is a well-known mechanism by which bacteria interfere with essential functions of host cells. The respective glycosyltransferases are important virulence factors such as the Clostridioides difficile toxins A and B. Here, we describe two glycosyltransferases of Yersinia species that have a high sequence identity: YeGT from the zoonotic pathogen Yersinia enterocolitica and YkGT from the murine pathogen Yersinia kristensenii. We show that both modify Rho family proteins by attachment of GlcNAc at tyrosine residues (Tyr-34 in RhoA). Notably, the enzymes differed in their target protein specificity. While YeGT modified RhoA, B, and C, YkGT possessed a broader substrate spectrum and glycosylated not only Rho but also Rac and Cdc42 subfamily proteins. Mutagenesis studies indicated that residue 177 is important for this broader target spectrum. We determined the crystal structure of YeGT shortened by 16 residues N terminally (sYeGT) in the ligand-free state and bound to UDP, the product of substrate hydrolysis. The structure assigns sYeGT to the GT-A family. It shares high structural similarity to glycosyltransferase domains from toxins. We also demonstrated that the 16 most N-terminal residues of YeGT and YkGT are important for the mediated translocation into the host cell using the pore-forming protective antigen of anthrax toxin. Mediated introduction into HeLa cells or ectopic expression of YeGT and YkGT caused morphological changes and redistribution of the actin cytoskeleton. The data suggest that YeGT and YkGT are likely bacterial effectors belonging to the family of tyrosine glycosylating bacterial glycosyltransferases.
Collapse
Affiliation(s)
- Silvia Schneider
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Christophe Wirth
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany.
| | - Thomas Jank
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Carola Hunte
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus Aktories
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Alam MZ, Madan R. Clostridioides difficile Toxins: Host Cell Interactions and Their Role in Disease Pathogenesis. Toxins (Basel) 2024; 16:241. [PMID: 38922136 PMCID: PMC11209539 DOI: 10.3390/toxins16060241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Clostridioides difficile, a Gram-positive anaerobic bacterium, is the leading cause of hospital-acquired antibiotic-associated diarrhea worldwide. The severity of C. difficile infection (CDI) varies, ranging from mild diarrhea to life-threatening conditions such as pseudomembranous colitis and toxic megacolon. Central to the pathogenesis of the infection are toxins produced by C. difficile, with toxin A (TcdA) and toxin B (TcdB) as the main virulence factors. Additionally, some strains produce a third toxin known as C. difficile transferase (CDT). Toxins damage the colonic epithelium, initiating a cascade of cellular events that lead to inflammation, fluid secretion, and further tissue damage within the colon. Mechanistically, the toxins bind to cell surface receptors, internalize, and then inactivate GTPase proteins, disrupting the organization of the cytoskeleton and affecting various Rho-dependent cellular processes. This results in a loss of epithelial barrier functions and the induction of cell death. The third toxin, CDT, however, functions as a binary actin-ADP-ribosylating toxin, causing actin depolymerization and inducing the formation of microtubule-based protrusions. In this review, we summarize our current understanding of the interaction between C. difficile toxins and host cells, elucidating the functional consequences of their actions. Furthermore, we will outline how this knowledge forms the basis for developing innovative, toxin-based strategies for treating and preventing CDI.
Collapse
Affiliation(s)
- Md Zahidul Alam
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27858, USA
| | - Rajat Madan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| |
Collapse
|
9
|
Truex N, Mohapatra S, Melo M, Rodriguez J, Li N, Abraham W, Sementa D, Touti F, Keskin DB, Wu CJ, Irvine DJ, Gómez-Bombarelli R, Pentelute BL. Design of Cytotoxic T Cell Epitopes by Machine Learning of Human Degrons. ACS CENTRAL SCIENCE 2024; 10:793-802. [PMID: 38680558 PMCID: PMC11046456 DOI: 10.1021/acscentsci.3c01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 05/01/2024]
Abstract
Antigen processing is critical for therapeutic vaccines to generate epitopes for priming cytotoxic T cell responses against cancer and pathogens, but insufficient processing often limits the quantity of epitopes released. We address this challenge using machine learning to ascribe a proteasomal degradation score to epitope sequences. Epitopes with varying scores were translocated into cells using nontoxic anthrax proteins. Epitopes with a low score show pronounced immunogenicity due to antigen processing, but epitopes with a high score show limited immunogenicity. This work sheds light on the sequence-activity relationships between proteasomal degradation and epitope immunogenicity. We anticipate that future efforts to incorporate proteasomal degradation signals into vaccine designs will lead to enhanced cytotoxic T cell priming by these vaccines in clinical settings.
Collapse
Affiliation(s)
- Nicholas
L. Truex
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Somesh Mohapatra
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Machine
Intelligence and Manufacturing Operations Group, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mariane Melo
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Ragon Institute
of Massachusetts General Hospital, Massachusetts
Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, United States
| | - Jacob Rodriguez
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Na Li
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Wuhbet Abraham
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Deborah Sementa
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Faycal Touti
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Derin B. Keskin
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Translational
Immunogenomics Laboratory (TIGL), Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Computer Science, Metropolitan College, Boston University, Boston, Massachusetts 02215, United States
- Section
for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Catherine J. Wu
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02215, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Darrell J. Irvine
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Ragon Institute
of Massachusetts General Hospital, Massachusetts
Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, United States
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| | - Rafael Gómez-Bombarelli
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley L. Pentelute
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Center
for Environmental Health Sciences, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Popoff MR. Overview of Bacterial Protein Toxins from Pathogenic Bacteria: Mode of Action and Insights into Evolution. Toxins (Basel) 2024; 16:182. [PMID: 38668607 PMCID: PMC11054074 DOI: 10.3390/toxins16040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/29/2024] Open
Abstract
Bacterial protein toxins are secreted by certain bacteria and are responsible for mild to severe diseases in humans and animals. They are among the most potent molecules known, which are active at very low concentrations. Bacterial protein toxins exhibit a wide diversity based on size, structure, and mode of action. Upon recognition of a cell surface receptor (protein, glycoprotein, and glycolipid), they are active either at the cell surface (signal transduction, membrane damage by pore formation, or hydrolysis of membrane compound(s)) or intracellularly. Various bacterial protein toxins have the ability to enter cells, most often using an endocytosis mechanism, and to deliver the effector domain into the cytosol, where it interacts with an intracellular target(s). According to the nature of the intracellular target(s) and type of modification, various cellular effects are induced (cell death, homeostasis modification, cytoskeleton alteration, blockade of exocytosis, etc.). The various modes of action of bacterial protein toxins are illustrated with representative examples. Insights in toxin evolution are discussed.
Collapse
Affiliation(s)
- Michel R Popoff
- Unité des Toxines Bactériennes, Institut Pasteur, Université Paris Cité, CNRS UMR 2001 INSERM U1306, F-75015 Paris, France
| |
Collapse
|
11
|
Verma A, De Pascalis R, Mocca CP, Li X, Burns DL. Visualization of immune pathways that enhance the neutralizing antibody response to vaccines after primary immunization. mBio 2024; 15:e0003724. [PMID: 38334423 PMCID: PMC10936199 DOI: 10.1128/mbio.00037-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
We examined the relationship between the association of a vaccine antigen with immune cells in secondary lymphoid organs shortly after immunization and the resulting neutralizing antibody response induced by that antigen using three antigenic forms of anthrax protective antigen (PA) that induce qualitatively different antibody responses. The three PA forms used were wild-type PA, which binds to anthrax toxin receptors and elicits a robust antibody response that includes both neutralizing and non-neutralizing antibodies; a receptor-binding-deficient (RBD) mutant form of PA, which does not bind cellular receptors and elicits only barely detectable antibody responses; and an engineered chimeric form of PA, which binds cholera toxin receptors and elicits a robust total antibody response but a poor neutralizing antibody response. We found that both wild-type PA and the PA chimera associated with immune cells in secondary lymphoid organs after immunization, but the RBD mutant PA exhibited minimal association, revealing a relationship between antigen binding to toxin receptors on immune cells after immunization and subsequent antibody responses. A portion of wild-type PA that bound to immune cells was cell surface-associated and maintained its native conformation. Much lower amounts of conformationally intact PA chimera were associated with immune cells after immunization, correlating with the lower neutralizing antibody response elicited by the PA chimera. Thus, binding of an antigen to receptors on immune cells in secondary lymphoid organs after immunization and maintenance of conformational integrity of the cell-associated antigen help dictate the magnitude of the resulting neutralizing antibody response, but not necessarily the total antibody response.IMPORTANCEMany vaccines protect by the induction of antibodies that neutralize the action of the pathogen. Here, we followed the fate of three antigenic forms of a vaccine antigen in secondary lymphoid organs after immunization to investigate events leading to a robust neutralizing antibody response. We found that the magnitude of the neutralizing antibody response, but not the total antibody response, correlates with the levels of conformationally intact antigen associated with immune cells in secondary lymphoid organs after primary immunization. We believe that these results provide important insights into the genesis of neutralizing antibody responses induced by vaccine antigens and may have implications for vaccine design.
Collapse
Affiliation(s)
- Anita Verma
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Roberto De Pascalis
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Christopher P. Mocca
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Xiaohong Li
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Drusilla L. Burns
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
12
|
Tessier E, Cheutin L, Garnier A, Vigne C, Tournier JN, Rougeaux C. Early Circulating Edema Factor in Inhalational Anthrax Infection: Does It Matter? Microorganisms 2024; 12:308. [PMID: 38399712 PMCID: PMC10891819 DOI: 10.3390/microorganisms12020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Anthrax toxins are critical virulence factors of Bacillus anthracis and Bacillus cereus strains that cause anthrax-like disease, composed of a common binding factor, the protective antigen (PA), and two enzymatic proteins, lethal factor (LF) and edema factor (EF). While PA is required for endocytosis and activity of EF and LF, several studies showed that these enzymatic factors disseminate within the body in the absence of PA after intranasal infection. In an effort to understand the impact of EF in the absence of PA, we used a fluorescent EF chimera to facilitate the study of endocytosis in different cell lines. Unexpectedly, EF was found inside cells in the absence of PA and showed a pole-dependent endocytosis. However, looking at enzymatic activity, PA was still required for EF to induce an increase in intracellular cAMP levels. Interestingly, the sequential delivery of EF and then PA rescued the rise in cAMP levels, indicating that PA and EF may functionally associate during intracellular trafficking, as well as it did at the cell surface. Our data shed new light on EF trafficking and the potential location of PA and EF association for optimal cytosolic delivery.
Collapse
Affiliation(s)
- Emilie Tessier
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Laurence Cheutin
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Annabelle Garnier
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Clarisse Vigne
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Jean-Nicolas Tournier
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
- Institut Pasteur, 75015 Paris, France
| | - Clémence Rougeaux
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| |
Collapse
|
13
|
Papatheodorou P, Minton NP, Aktories K, Barth H. An Updated View on the Cellular Uptake and Mode-of-Action of Clostridioides difficile Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:219-247. [PMID: 38175478 DOI: 10.1007/978-3-031-42108-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Research on the human gut pathogen Clostridioides (C.) difficile and its toxins continues to attract much attention as a consequence of the threat to human health posed by hypervirulent strains. Toxin A (TcdA) and Toxin B (TcdB) are the two major virulence determinants of C. difficile. Both are single-chain proteins with a similar multidomain architecture. Certain hypervirulent C. difficile strains also produce a third toxin, namely binary toxin CDT (C. difficile transferase). C. difficile toxins are the causative agents of C. difficile-associated diseases (CDADs), such as antibiotics-associated diarrhea and pseudomembranous colitis. For that reason, considerable efforts have been expended to unravel their molecular mode-of-action and the cellular mechanisms responsible for their uptake. Many of these studies have been conducted in European laboratories. Here, we provide an update on our previous review (Papatheodorou et al. Adv Exp Med Biol, 2018) on important advances in C. difficile toxins research.
Collapse
Affiliation(s)
- Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany.
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, University of Nottingham, Nottingham, UK
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
14
|
Truex NL, Mohapatra S, Melo M, Rodriguez J, Li N, Abraham W, Sementa D, Touti F, Keskin DB, Wu CJ, Irvine DJ, Gómez-Bombarelli R, Pentelute BL. Design of Cytotoxic T Cell Epitopes by Machine Learning of Human Degrons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554289. [PMID: 37662211 PMCID: PMC10473641 DOI: 10.1101/2023.08.22.554289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Antigen processing is critical for producing epitope peptides that are presented by HLA molecules for T cell recognition. Therapeutic vaccines aim to harness these epitopes for priming cytotoxic T cell responses against cancer and pathogens, but insufficient processing often reduces vaccine efficacy through limiting the quantity of epitopes released. Here, we set out to improve antigen processing by harnessing protein degradation signals called degrons from the ubiquitin-proteasome system. We used machine learning to generate a computational model that ascribes a proteasomal degradation score between 0 and 100. Epitope peptides with varying degron activities were synthesized and translocated into cells using nontoxic anthrax proteins: protective antigen (PA) and the N-terminus of lethal factor (LFN). Immunogenicity studies revealed epitope sequences with a low score (<25) show pronounced T-cell activation but epitope sequences with a higher score (>75) provide limited activation. This work sheds light on the sequence-activity relationships between proteasomal degradation and epitope immunogenicity, through conserving the epitope region but varying the flanking sequence. We anticipate that future efforts to incorporate proteasomal degradation signals into vaccine designs will lead to enhanced cytotoxic T cell priming by vaccine therapeutics in clinical settings.
Collapse
Affiliation(s)
- Nicholas L. Truex
- Department of Chemistry, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Department of Chemistry and Biochemistry, University of South Carolina; 631 Sumter St., Columbia, South Carolina, 29208, USA
| | - Somesh Mohapatra
- Department of Materials Science and Engineering, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Machine Intelligence and Manufacturing Operations Group, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Mariane Melo
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; 500 Main Street, Cambridge, Massachusetts 02142, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology; 400 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Jacob Rodriguez
- Department of Chemistry, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Na Li
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; 500 Main Street, Cambridge, Massachusetts 02142, USA
| | - Wuhbet Abraham
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; 500 Main Street, Cambridge, Massachusetts 02142, USA
| | - Deborah Sementa
- Department of Chemistry, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Faycal Touti
- Department of Chemistry, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Derin B. Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, 02215, USA
- Harvard Medical School; Boston, Massachusetts, 02115, USA
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
- Translational Immunogenomics Laboratory (TIGL), Dana-Farber Cancer Institute; Boston, Massachusetts, 02215, USA
- Department of Computer Science, Metropolitan College, Boston University; Boston, Massachusetts, USA
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark; Lyngby, DK
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, 02215, USA
- Harvard Medical School; Boston, Massachusetts, 02115, USA
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02215, USA
| | - Darrell J. Irvine
- Department of Materials Science and Engineering, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; 500 Main Street, Cambridge, Massachusetts 02142, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology; 400 Technology Square, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Howard Hughes Medical Institute; 4000 Jones Bridge Rd, Chevy Chase, Maryland 20815, USA
| | - Rafael Gómez-Bombarelli
- Department of Materials Science and Engineering, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; 500 Main Street, Cambridge, Massachusetts 02142, USA
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
15
|
Klipp A, Burger M, Leroux JC. Get out or die trying: Peptide- and protein-based endosomal escape of RNA therapeutics. Adv Drug Deliv Rev 2023; 200:115047. [PMID: 37536508 DOI: 10.1016/j.addr.2023.115047] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
RNA therapeutics offer great potential to transform the biomedical landscape, encompassing the treatment of hereditary conditions and the development of better vaccines. However, the delivery of RNAs into the cell is hampered, among others, by poor endosomal escape. This major hurdle is often tackled using special lipids, polymers, or protein-based delivery vectors. In this review, we will focus on the most prominent peptide- and protein-based endosomal escape strategies with focus on RNA drugs. We discuss cell penetrating peptides, which are still incorporated into novel transfection systems today to promote endosomal escape. However, direct evidence for enhanced endosomal escape by the action of such peptides is missing and their transfection efficiency, even in permissive cell culture conditions, is rather low. Endosomal escape by the help of pore forming proteins or phospholipases, on the other hand, allowed to generate more efficient transfection systems. These are, however, often hampered by considerable toxicity and immunogenicity. We conclude that the perfect enhancer of endosomal escape has yet to be devised. To increase the chances of success, any new transfection system should be tested under relevant conditions and guided by assays that allow direct quantification of endosomal escape.
Collapse
Affiliation(s)
- Alexander Klipp
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| |
Collapse
|
16
|
Wales A, Mackintosh A. JMM Profile: Bacillus anthracis. J Med Microbiol 2023; 72. [PMID: 37602808 DOI: 10.1099/jmm.0.001747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
Graphical abstract
Principal routes of
Bacillus anthracis
infection and stages of anthrax pathogenesis, consistent with current understandings. Depending on the route of infection, germination of spores may happen in extracellular tissue fluid, or following phagocytosis (a). Successful infection of host cells leads to toxin-associated cell death and release of vegetative cells and toxin (b). Toxin binds and enters other host cells (c), including those of the immune system, disrupting function. In some cases this leads to systemic disease, which typically is fatal.
Collapse
Affiliation(s)
- Andrew Wales
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
| | - Adrienne Mackintosh
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone Surrey, KT15 3LJ, UK
| |
Collapse
|
17
|
Márquez-López A, Fanarraga ML. AB Toxins as High-Affinity Ligands for Cell Targeting in Cancer Therapy. Int J Mol Sci 2023; 24:11227. [PMID: 37446406 DOI: 10.3390/ijms241311227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Conventional targeted therapies for the treatment of cancer have limitations, including the development of acquired resistance. However, novel alternatives have emerged in the form of targeted therapies based on AB toxins. These biotoxins are a diverse group of highly poisonous molecules that show a nanomolar affinity for their target cell receptors, making them an invaluable source of ligands for biomedical applications. Bacterial AB toxins, in particular, are modular proteins that can be genetically engineered to develop high-affinity therapeutic compounds. These toxins consist of two distinct domains: a catalytically active domain and an innocuous domain that acts as a ligand, directing the catalytic domain to the target cells. Interestingly, many tumor cells show receptors on the surface that are recognized by AB toxins, making these high-affinity proteins promising tools for developing new methods for targeting anticancer therapies. Here we describe the structure and mechanisms of action of Diphtheria (Dtx), Anthrax (Atx), Shiga (Stx), and Cholera (Ctx) toxins, and review the potential uses of AB toxins in cancer therapy. We also discuss the main advances in this field, some successful results, and, finally, the possible development of innovative and precise applications in oncology based on engineered recombinant AB toxins.
Collapse
Affiliation(s)
- Ana Márquez-López
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain
| | - Mónica L Fanarraga
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|
18
|
Beitzinger C, Kronhardt A, Benz R. Chloroquine-analogues block anthrax protective antigen channels in steady-state and kinetic studies. Toxicology 2023; 492:153547. [PMID: 37201861 DOI: 10.1016/j.tox.2023.153547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The tripartite anthrax toxin from Bacillus anthracis represents the prototype of A-B type of toxins, where the effector A (an enzymatic subunit) is transported with the help of a binding component B into a target cell. Anthrax toxin consists of three different molecules, two effectors, lethal factor (LF) and edema factor (EF) and the binding component also known as protective antigen (PA). PA forms heptamers or octamers following binding to host cell's receptors and mediates the translocation of the effectors into the cytosol via the endosomal pathway. The cation-selective PA63-channel is able to reconstitute in lipid membranes and can be blocked by chloroquine and other heterocyclic compounds. This suggests that the PA63-channel contains a binding site for quinolines. In this study, we investigated the structure-function relationship of different quinolines for the block of the PA63-channel. The affinity of the different chloroquine analogues to the PA63-channel as provided by the equilibrium dissociation constant was measured using titrations. Some quinolines had a much higher affinity to the PA63-channel than chloroquine itself. We also performed ligand-induced current noise measurements using fast Fourier transformation to get insight in the kinetics of the binding of some quinolines to the PA63-channel. The on-rate constants of ligand binding were around 108M-1·s-1 at 150mM KCl and were only little dependent on the individual quinoline. The off-rates varied between 4s-1 and 160s-1 and depended much more on the structure of the molecules than the on-rate constants. The possible use of the 4-aminoquinolines as a therapy is discussed.
Collapse
Affiliation(s)
- Christoph Beitzinger
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
| | - Angelika Kronhardt
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
| | - Roland Benz
- Science Faculty, Constructor University Bremen, Campus-Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
19
|
Targeting the Inside of Cells with Biologicals: Toxin Routes in a Therapeutic Context. BioDrugs 2023; 37:181-203. [PMID: 36729328 PMCID: PMC9893211 DOI: 10.1007/s40259-023-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Numerous toxins translocate to the cytosol in order to fulfil their function. This demonstrates the existence of routes for proteins from the extracellular space to the cytosol. Understanding these routes is relevant to multiple aspects related to therapeutic applications. These include the development of anti-toxin treatments, the potential use of toxins as shuttles for delivering macromolecular cargo to the cytosol or the use of drugs based on toxins. Compared with other strategies for delivery, such as chemicals as carriers for macromolecular delivery or physical methods like electroporation, toxin routes present paths into the cell that potentially cause less damage and can be specifically targeted. The efficiency of delivery via toxin routes is limited. However, low-delivery efficiencies can be entirely sufficient, if delivered cargoes possess an amplification effect or if very few molecules are sufficient for inducing the desired effects. This is known for example from RNA-based vaccines that have been developed during the coronavirus disease 2019 pandemic as well as for other approved RNA-based drugs, which elicited the desired effect despite their typically low delivery efficiencies. The different mechanisms by which toxins enter cells may have implications for their technological utility. We review the mechanistic principles of the translocation pathway of toxins from the extracellular space to the cytosol, the delivery efficiencies, and therapeutic strategies or applications that exploit toxin routes for intracellular delivery.
Collapse
|
20
|
ANTXR1 as a potential sensor of extracellular mechanical cues. Acta Biomater 2023; 158:80-86. [PMID: 36638946 DOI: 10.1016/j.actbio.2023.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Cell adhesion molecules mediate cell-cell or cell-matrix interactions, some of which are mechanical sensors, such as integrins. Emerging evidence indicates that anthrax toxin receptor 1 (ANTXR1), a newly identified cell adhesion molecule, can also sense extracellular mechanical signals such as hydrostatic pressure and extracellular matrix (ECM) rigidity. ANTXR1 can interact with ECM through connecting intracellular cytoskeleton and ECM molecules (just like integrins) to regulate numerous biological processes, such as cell adhesion, cell migration or ECM homeostasis. Although with high structural similarity to integrins, its functions and downstream signal transduction are independent from those of integrins. In this perspective, based on existing evidence in literature, we analyzed the structural and functional evidence that ANTXR1 can act as a potential sensor for extracellular mechanical cues. To our knowledge, this is the first in-depth overview of ANTXR1 from the perspective of mechanobiology. STATEMENT OF SIGNIFICANCE: An overview of ANTXR1 from the perspective of mechanobiology; An analysis of mechanical sensitivity of ANTXR1 in structure and function; A summary of existing evidence of ANTXR1 as a potential mechanosensor.
Collapse
|
21
|
Aktories K. From signal transduction to protein toxins-a narrative review about milestones on the research route of C. difficile toxins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:173-190. [PMID: 36203094 PMCID: PMC9831965 DOI: 10.1007/s00210-022-02300-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023]
Abstract
Selected findings about Clostridioides difficile (formerly Clostridium difficile) toxins are presented in a narrative review. Starting with a personal view on research about G proteins, adenylyl cyclase, and ADP-ribosylating toxins in the laboratory of Günter Schultz in Heidelberg, milestones of C. difficile toxin research are presented with the focus on toxin B (TcdB), covering toxin structure, receptor binding, toxin up-take and refolding, the intracellular actions of TcdB, and the treatment of C. difficile infection.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| |
Collapse
|
22
|
Sharma S, Bahl V, Srivastava G, Shamim R, Bhatnagar R, Gaur D. Recombinant full-length Bacillus Anthracis protective antigen and its 63 kDa form elicits protective response in formulation with addavax. Front Immunol 2023; 13:1075662. [PMID: 36713362 PMCID: PMC9877290 DOI: 10.3389/fimmu.2022.1075662] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Bacillus anthracis is the causative agent for the lethal disease anthrax, primarily affecting animals and humans in close contact with an infected host. The pathogenicity of B. anthracis is attributed to the secreted exotoxins and their outer capsule. The host cell-binding exotoxin component "protective antigen" (PA) is reported to be a potent vaccine candidate. The aim of our study is to produce several PA constructs and analyze their vaccine potential. Methods We have designed the various subunit, PA-based recombinant proteins, i.e., full-length Protective antigen (PA-FL), C-terminal 63 kDa fragment (PA63), Protective antigen domain 1-domain 4 chimeras (PA-D1-4) and protective antigen domain 4 (PA-D4) and analyzed their vaccine potential with different human-compatible adjuvants in the mouse model. We have optimized the process and successfully expressed our recombinant antigens as soluble proteins, except full-length PA. All the recombinant antigen formulations with three different adjuvants i.e., Addavax, Alhydrogel, and Montanide ISA 720, were immunized in different mouse groups. The vaccine efficacy of the formulations was analyzed by mouse serum antigen-specific antibody titer, toxin neutralization assay, and survival analysis of mouse groups challenged with a lethal dose of B. anthracis virulent spores. Results We have demonstrated that the PA-FL addavax and PA63 addavax formulations were most effective in protecting spore-challenged mice and serum from the mice immunized with PAFL addavax, PA-FL alhydrogel, PA63 addavax, and PA63 alhydrogel formulations were equivalently efficient in neutralizing the anthrax lethal toxin. The higher levels of serum Th1, Th2, and Th17 cytokines in PA-FL addavax immunized mice correspond to the enhanced protection provided by the formulation in challenged mice. Discussion We have demonstrated that the PA-FL addavax and PA63 addavax formulations exhibit equivalent efficiency as vaccine formulation both in a mouse model of anthrax and mammalian cell lines. However, PA63 is a smaller antigen than PA-FL and more importantly, PA63 is expressed as a soluble protein in E. coli, which imparts a translational advantage to PA63-based formulation. Thus, the outcome of our study has significant implications for the development of protective antigen-based vaccine formulations for human use against the lethal disease anthrax.
Collapse
Affiliation(s)
- Shikhar Sharma
- Laboratory of Malaria & Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,Department of Oncology Science, University of Oklahoma Health Science Center, Oklahoma City, OK, United States,*Correspondence: Shikhar Sharma, ;
| | - Vanndita Bahl
- Laboratory of Malaria & Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Gaurav Srivastava
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Risha Shamim
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria & Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
23
|
Holay M, Krishnan N, Zhou J, Duan Y, Guo Z, Gao W, Fang RH, Zhang L. Single Low-Dose Nanovaccine for Long-Term Protection against Anthrax Toxins. NANO LETTERS 2022; 22:9672-9678. [PMID: 36448694 PMCID: PMC9970955 DOI: 10.1021/acs.nanolett.2c03881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Anthrax infections caused by Bacillus anthracis are an ongoing bioterrorism and livestock threat worldwide. Current approaches for management, including extended passive antibody transfusion, antibiotics, and prophylactic vaccination, are often cumbersome and associated with low patient compliance. Here, we report on the development of an adjuvanted nanotoxoid vaccine based on macrophage membrane-coated nanoparticles bound with anthrax toxins. This design leverages the natural binding interaction of protective antigen, a key anthrax toxin, with macrophages. In a murine model, a single low-dose vaccination with the nanotoxoids generates long-lasting immunity that protects against subsequent challenge with anthrax toxins. Overall, this work provides a new approach to address the ongoing threat of anthrax outbreaks and bioterrorism by taking advantage of an emerging biomimetic nanotechnology.
Collapse
|
24
|
Mondal AK, Lata K, Singh M, Chatterjee S, Chauhan A, Puravankara S, Chattopadhyay K. Cryo-EM elucidates mechanism of action of bacterial pore-forming toxins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184013. [PMID: 35908609 DOI: 10.1016/j.bbamem.2022.184013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Pore-forming toxins (PFTs) rupture plasma membranes and kill target cells. PFTs are secreted as soluble monomers that undergo drastic structural rearrangements upon interacting with the target membrane and generate transmembrane oligomeric pores. A detailed understanding of the molecular mechanisms of the pore-formation process remains unclear due to limited structural insights regarding the transmembrane oligomeric pore states of the PFTs. However, recent advances in the field of cryo-electron microscopy (cryo-EM) have led to the high-resolution structure determination of the oligomeric pore forms of diverse PFTs. Here, we discuss the pore-forming mechanisms of various PFTs, specifically the mechanistic details contributed by the cryo-EM-based structural studies.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Mahendra Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Shamaita Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Aakanksha Chauhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Sindhoora Puravankara
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India.
| |
Collapse
|
25
|
Rojas AJ, Wolfe JM, Dhanjee HH, Buslov I, Truex NL, Liu RY, Massefski W, Pentelute BL, Buchwald SL. Palladium-peptide oxidative addition complexes for bioconjugation. Chem Sci 2022; 13:11891-11895. [PMID: 36320916 PMCID: PMC9580489 DOI: 10.1039/d2sc04074c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
The synthesis of palladium oxidative addition complexes derived from unprotected peptides is described. Incorporation of 4-halophenylalanine into a peptide during solid phase peptide synthesis allows for subsequent oxidative addition at this position upon treatment with a palladium precursor and suitable ligand. The resulting palladium-peptide complexes are solid, storable, water-soluble, and easily purified via high-performance liquid chromatography. These complexes react with thiols in aqueous buffer, offering an efficient method for bioconjugation. Using this strategy, peptides can be functionalized with small molecules to prepare modified aryl thioether side-chains at low micromolar concentrations. Additionally, peptide-peptide and peptide-protein ligations are demonstrated under dilute aqueous conditions.
Collapse
Affiliation(s)
- Anthony J Rojas
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA .,Department of Chemistry and Biochemistry, Kennesaw State University 1000 Chastain Road NW Kennesaw GA 30144 USA
| | - Justin M Wolfe
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Heemal H Dhanjee
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Ivan Buslov
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Nicholas L Truex
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Richard Y Liu
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Walter Massefski
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA .,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology 500 Main Street Cambridge MA 02142 USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA.,Broad Institute of MIT and Harvard 415 Main Street Cambridge MA 02142 USA
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
26
|
Treatment of ovarian cancer with modified anthrax toxin. Proc Natl Acad Sci U S A 2022; 119:e2210179119. [PMID: 35917343 PMCID: PMC9371659 DOI: 10.1073/pnas.2210179119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
27
|
Abstract
AB toxins are protein virulence factors secreted by many bacterial pathogens, contributing to the pathogenicity of the cognate bacteria. AB toxins consist of two functionally distinct components: the enzymatic "A" component for pathogenicity and the receptor-binding "B" component for toxin delivery. Consistently, unlike other virulence factors such as effectors, AB toxins do not require additional systems to deliver them to the target host cells. Target host cells are located in the infection site and/or located distantly from infected host cells. The first part of this review discusses the structural and functional features of single-peptide and multiprotein AB toxins in the context of host-microbe interactions, using several well-characterized examples. The second part of this review discusses toxin neutralization strategies, as well as applications of AB toxins relevant to developing intervention strategies against diseases.
Collapse
Affiliation(s)
- Jeongmin Song
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
28
|
Teixeira-Nunes M, Retailleau P, Comisso M, Deruelle V, Mechold U, Renault L. Bacterial Nucleotidyl Cyclases Activated by Calmodulin or Actin in Host Cells: Enzyme Specificities and Cytotoxicity Mechanisms Identified to Date. Int J Mol Sci 2022; 23:ijms23126743. [PMID: 35743184 PMCID: PMC9223806 DOI: 10.3390/ijms23126743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Many pathogens manipulate host cell cAMP signaling pathways to promote their survival and proliferation. Bacterial Exoenzyme Y (ExoY) toxins belong to a family of invasive, structurally-related bacterial nucleotidyl cyclases (NC). Inactive in bacteria, they use proteins that are uniquely and abundantly present in eukaryotic cells to become potent, unregulated NC enzymes in host cells. Other well-known members of the family include Bacillus anthracis Edema Factor (EF) and Bordetella pertussis CyaA. Once bound to their eukaryotic protein cofactor, they can catalyze supra-physiological levels of various cyclic nucleotide monophosphates in infected cells. Originally identified in Pseudomonas aeruginosa, ExoY-related NC toxins appear now to be more widely distributed among various γ- and β-proteobacteria. ExoY-like toxins represent atypical, poorly characterized members within the NC toxin family. While the NC catalytic domains of EF and CyaA toxins use both calmodulin as cofactor, their counterparts in ExoY-like members from pathogens of the genus Pseudomonas or Vibrio use actin as a potent cofactor, in either its monomeric or polymerized form. This is an original subversion of actin for cytoskeleton-targeting toxins. Here, we review recent advances on the different members of the NC toxin family to highlight their common and distinct functional characteristics at the molecular, cytotoxic and enzymatic levels, and important aspects that need further characterizations.
Collapse
Affiliation(s)
- Magda Teixeira-Nunes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles (ICSN), CNRS-UPR2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France;
| | - Martine Comisso
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
| | - Vincent Deruelle
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, CNRS UMR 3528, Institut Pasteur, 75015 Paris, France; (V.D.); (U.M.)
| | - Undine Mechold
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, CNRS UMR 3528, Institut Pasteur, 75015 Paris, France; (V.D.); (U.M.)
| | - Louis Renault
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
- Correspondence:
| |
Collapse
|
29
|
Schenck G, Baj K, Iggo JA, Wallace M. Efficient p Ka Determination in a Nonaqueous Solvent Using Chemical Shift Imaging. Anal Chem 2022; 94:8115-8119. [PMID: 35622966 PMCID: PMC9201807 DOI: 10.1021/acs.analchem.2c00200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
pKa is an important property of a molecule which impacts many fields, such as drug design, catalysis, reactivity, and environmental toxicity. It is often necessary to measure pKa in nonaqueous media due to the poor solubility of an analyte in water, for example, many compounds of pharmaceutical interest. Although NMR methods to measure pKa in water are well established, determining pKa in organic solvents is laborious and problematic. We present an efficient one-shot method to determine the pKa of an analyte in an organic solvent in a single measurement. Diffusion of an acid into a basic solution of the analyte and a set of pH indicators establishes a pH gradient in the NMR tube. The chemical shift of a pH sensitive resonance of the analyte and the pH of the solution are then determined simultaneously as a function of position along the pH gradient by recording a chemical shift image of the NMR tube. The pKa of the analyte is then determined using the Henderson-Hasselbalch equation. The method can be implemented in any laboratory with a gradient equipped NMR high-field spectrometer and is demonstrated for a range of pharmaceutical compounds and inorganic phosphazene bases.
Collapse
Affiliation(s)
- George Schenck
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Krzysztof Baj
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Jonathan A Iggo
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Matthew Wallace
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U. K
| |
Collapse
|
30
|
Receptor-enhanced immunogenicity of anthrax protective antigen is primarily mediated by capillary morphogenesis Protein-2. Vaccine 2022; 40:4318-4321. [PMID: 35710508 PMCID: PMC9308747 DOI: 10.1016/j.vaccine.2022.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/23/2022]
Abstract
Anthrax protective antigen (PA), the receptor-binding component of anthrax toxin, elicits toxin-neutralizing antibodies which provide protection against anthrax disease. PA binds to two mammalian receptors, capillary morphogenesis protein-2 (CMG2) and tumor endothelial marker-8 (TEM8). We previously observed that binding of PA to its receptors plays a role in eliciting a strong toxin-neutralizing antibody response. In this study, we examined the roles that individual receptors play in mediating the toxin-neutralizing antibody response. Mice immunized with PA that binds preferentially to CMG2 elicited a toxin-neutralizing antibody response similar to that elicited by wild-type PA, whereas the antibody response elicited by PA that binds preferentially to TEM8 was significantly lower. Also, the toxin-neutralizing antibody response elicited by wild-type PA in CMG2-null mice was found to be significantly lower than that induced in CMG2-sufficient mice, further supporting a predominant role for the CMG2 receptor in mediating a protective antibody response to PA.
Collapse
|
31
|
Favre D, Harmon JF, Zhang A, Miller MS, Kaltashov IA. Decavanadate interactions with the elements of the SARS-CoV-2 spike protein highlight the potential role of electrostatics in disrupting the infectivity cycle. J Inorg Biochem 2022; 234:111899. [PMID: 35716549 PMCID: PMC9183239 DOI: 10.1016/j.jinorgbio.2022.111899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/15/2022]
Abstract
Polyoxidometalates (POMs) exhibit a range of biological properties that can be exploited for a variety of therapeutic applications. However, their potential utility as antivirals has been largely overlooked in the ongoing efforts to identify safe, effective and robust therapeutic agents to combat COVID-19. We focus on decavanadate (V10), a paradigmatic member of the POM family, to highlight the utility of electrostatic forces as a means of disrupting molecular processes underlying the SARS-CoV-2 entry into the host cell. While the departure from the traditional lock-and-key approach to the rational drug design relies on less-specific and longer-range interactions, it may enhance the robustness of therapeutic agents by making them less sensitive to the viral mutations. Native mass spectrometry (MS) not only demonstrates the ability of V10 to associate with the receptor-binding domain of the SARS-CoV-2 spike protein, but also provides evidence that this association disrupts the protein binding to its host cell-surface receptor. Furthermore, V10 is also shown to be capable of binding to the polybasic furin cleavage site within the spike protein, which is likely to decrease the effectiveness of the proteolytic processing of the latter (a pre-requisite for the viral fusion with the host cell membrane). Although in vitro studies carried out with SARS-CoV-2 infected cells identify V10 cytotoxicity as a major factor limiting its utility as an antiviral agent, the collected data provide a compelling stimulus for continuing the search for effective, robust and safe therapeutics targeting the novel coronavirus among members of the POM family.
Collapse
Affiliation(s)
- Daniel Favre
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003, United States of America
| | - Jackson F Harmon
- Institute for Applied Life Sciences, University of Massachusetts-Amherst, Amherst, MA 01003, United States of America
| | - Ali Zhang
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Matthew S Miller
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003, United States of America; Institute for Applied Life Sciences, University of Massachusetts-Amherst, Amherst, MA 01003, United States of America.
| |
Collapse
|
32
|
Scott H, Huang W, Andra K, Mamillapalli S, Gonti S, Day A, Zhang K, Mehzabeen N, Battaile KP, Raju A, Lovell S, Bann JG, Taylor DJ. Structure of the anthrax protective antigen D425A dominant negative mutant reveals a stalled intermediate state of pore maturation. J Mol Biol 2022; 434:167548. [PMID: 35304125 DOI: 10.1016/j.jmb.2022.167548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The tripartite protein complex produced by anthrax bacteria (Bacillus anthracis) is a member of the AB family of β-barrel pore-forming toxins. The protective antigen (PA) component forms an oligomeric prepore that assembles on the host cell surface and serves as a scaffold for binding of lethal and edema factors. Following endocytosis, the acidic environment of the late endosome triggers a pH-induced conformational rearrangement to promote maturation of the PA prepore to a functional, membrane spanning pore that facilitates delivery of lethal and edema factors to the cytosol of the infected host. Here, we show that the dominant-negative D425A mutant of PA stalls anthrax pore maturation in an intermediate state at acidic pH. Our 2.7 Å cryo-EM structure of the intermediate state reveals structural rearrangements that involve constriction of the oligomeric pore combined with an intramolecular dissociation of the pore-forming module. In addition to defining the early stages of anthrax pore maturation, the structure identifies asymmetric conformational changes in the oligomeric pore that are influenced by the precise configuration of adjacent protomers.
Collapse
Affiliation(s)
- Harry Scott
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kiran Andra
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | - Srinivas Gonti
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | - Alexander Day
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kaiming Zhang
- Stanford Linear Accelerator Center and the Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Nurjahan Mehzabeen
- Protein Structure Laboratory, University of Kansas, Lawrence, KS 66047, USA
| | - Kevin P Battaile
- IMCA-CAT, APS, Argonne National Laboratory, 9700 South Cass Avenue, Building 435A, Argonne, IL 60439, USA
| | - Anjali Raju
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Scott Lovell
- Protein Structure Laboratory, University of Kansas, Lawrence, KS 66047, USA
| | - James G Bann
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA.
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
33
|
Tian S, Liu Y, Appleton E, Wang H, Church GM, Dong M. Targeted intracellular delivery of Cas13 and Cas9 nucleases using bacterial toxin-based platforms. Cell Rep 2022; 38:110476. [PMID: 35263584 PMCID: PMC8958846 DOI: 10.1016/j.celrep.2022.110476] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/26/2021] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Targeted delivery of therapeutic proteins toward specific cells and across cell membranes remains major challenges. Here, we develop protein-based delivery systems utilizing detoxified single-chain bacterial toxins such as diphtheria toxin (DT) and botulinum neurotoxin (BoNT)-like toxin, BoNT/X, as carriers. The system can deliver large protein cargoes including Cas13a, CasRx, Cas9, and Cre recombinase into cells in a receptor-dependent manner, although delivery of ribonucleoproteins containing guide RNAs is not successful. Delivery of Cas13a and CasRx, together with guide RNA expression, reduces mRNAs encoding GFP, SARS-CoV-2 fragments, and endogenous proteins PPIB, KRAS, and CXCR4 in multiple cell lines. Delivery of Cre recombinase modifies the reporter loci in cells. Delivery of Cas9, together with guide RNA expression, generates mutations at the targeted genomic sites in cell lines and induced pluripotent stem cell (iPSC)-derived human neurons. These findings establish modular delivery systems based on single-chain bacterial toxins for delivery of membrane-impermeable therapeutics into targeted cells.
Collapse
Affiliation(s)
- Songhai Tian
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | - Yang Liu
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA; Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Evan Appleton
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Huan Wang
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - George M Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Galante D, Manzulli V, Donatiello A, Fasanella A, Chirullo B, Francia M, Rondinone V, Serrecchia L, Pace L, Iatarola M, Tarantino M, Adone R. Production of a Bacillus anthracis Secretome with Suitable Characteristics as Antigen in a Complement Fixation Test. Life (Basel) 2022; 12:life12020312. [PMID: 35207599 PMCID: PMC8876820 DOI: 10.3390/life12020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
In this study, we cultured the Bacillus anthracis vaccine strain Sterne 34F2 in a medium containing EDTA, and we assessed the best conditions to inhibit the activity of zinc-dependent metalloproteases to obtain a secretome containing a high concentration of non-degraded PA (PA83), as evaluated by the SDS-PAGE analysis. Then, we used this secretome as the antigen in a Complement Fixation Test (CFT) to monitor the production of antibodies against PA83 in the sera of rabbits vaccinated with Sterne 34F2 and then infected with a B. anthracis virulent strain to evaluate the potency of the vaccine. The PAS-based CFT results were compared with those obtained by using a commercial ELISA kit. The two serological tests gave similar results in terms of specificity and sensitivity, as the kinetics of the antibodies production was very similar. The Sterne 34F2 vaccine induced an antibody response to PA83, whose titer was not inferior to 1:8 in PAS-based CFT and 42 kU/mL in PA83-based ELISA, respectively, in all vaccinated rabbits. Our opinion is that the PAS-based CFT can be successfully employed in humans and in animals for epidemiological retrospective studies or post-vaccination monitoring. We also suggest the use of our method to test the efficacy of veterinary anthrax vaccines.
Collapse
Affiliation(s)
- Domenico Galante
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Anthrax Reference Institute of Italy, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (A.D.); (A.F.); (V.R.); (L.S.); (L.P.); (M.I.)
- Correspondence: ; Tel.: +39-0881786330
| | - Viviana Manzulli
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Anthrax Reference Institute of Italy, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (A.D.); (A.F.); (V.R.); (L.S.); (L.P.); (M.I.)
| | - Adelia Donatiello
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Anthrax Reference Institute of Italy, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (A.D.); (A.F.); (V.R.); (L.S.); (L.P.); (M.I.)
| | - Antonio Fasanella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Anthrax Reference Institute of Italy, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (A.D.); (A.F.); (V.R.); (L.S.); (L.P.); (M.I.)
| | - Barbara Chirullo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (B.C.); (M.F.); (M.T.); (R.A.)
| | - Massimiliano Francia
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (B.C.); (M.F.); (M.T.); (R.A.)
| | - Valeria Rondinone
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Anthrax Reference Institute of Italy, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (A.D.); (A.F.); (V.R.); (L.S.); (L.P.); (M.I.)
| | - Luigina Serrecchia
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Anthrax Reference Institute of Italy, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (A.D.); (A.F.); (V.R.); (L.S.); (L.P.); (M.I.)
| | - Lorenzo Pace
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Anthrax Reference Institute of Italy, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (A.D.); (A.F.); (V.R.); (L.S.); (L.P.); (M.I.)
| | - Michela Iatarola
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Anthrax Reference Institute of Italy, Via Manfredonia 20, 71121 Foggia, Italy; (V.M.); (A.D.); (A.F.); (V.R.); (L.S.); (L.P.); (M.I.)
| | - Michela Tarantino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (B.C.); (M.F.); (M.T.); (R.A.)
| | - Rosanna Adone
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (B.C.); (M.F.); (M.T.); (R.A.)
| |
Collapse
|
35
|
Kim NY, Son WR, Lee MH, Choi HS, Choi JY, Song YJ, Yu CH, Song DH, Hur GH, Jeong ST, Hong SY, Shin YK, Shin S. A multipathogen DNA vaccine elicits protective immune responses against two class A bioterrorism agents, anthrax and botulism. Appl Microbiol Biotechnol 2022; 106:1531-1542. [PMID: 35141866 PMCID: PMC8979915 DOI: 10.1007/s00253-022-11812-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 12/17/2022]
Abstract
Abstract
The potential use of biological agents has become a major public health concern worldwide. According to the CDC classification, Bacillus anthracis and Clostridium botulinum, the bacterial pathogens that cause anthrax and botulism, respectively, are considered to be the most dangerous potential biological agents. Currently, there is no licensed vaccine that is well suited for mass immunization in the event of an anthrax or botulism epidemic. In the present study, we developed a dual-expression system-based multipathogen DNA vaccine that encodes the PA-D4 gene of B. anthracis and the HCt gene of C. botulinum. When the multipathogen DNA vaccine was administered to mice and guinea pigs, high level antibody responses were elicited against both PA-D4 and HCt. Analysis of the serum IgG subtype implied a combined Th1/Th2 response to both antigens, but one that was Th2 skewed. In addition, immunization with the multipathogen DNA vaccine induced effective neutralizing antibody activity against both PA-D4 and HCt. Finally, the protection efficiency of the multipathogen DNA vaccine was determined by sequential challenge with 10 LD50 of B. anthracis spores and 10 LD50 of botulinum toxin, or vice versa, and the multipathogen DNA vaccine provided higher than 50% protection against lethal challenge with both high-risk biothreat agents. Our studies suggest the strategy used for this anthrax-botulinum multipathogen DNA vaccine as a prospective approach for developing emergency vaccines that can be immediately distributed on a massive scale in response to a biothreat emergency or infectious disease outbreak.
Key points • A novel multipathogen DNA vaccine was constructed against anthrax and botulism. • Robust immune responses were induced following vaccination. • Suggests a potential vaccine development strategy against biothreat agents. |
Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11812-6.
Collapse
Affiliation(s)
- Na Young Kim
- R&D Center, ABION Inc., Seoul, Republic of Korea
| | - Won Rak Son
- R&D Center, ABION Inc., Seoul, Republic of Korea
| | - Min Hoon Lee
- R&D Center, ABION Inc., Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | | | | | - Young Jo Song
- The 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Chi Ho Yu
- The 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Dong Hyun Song
- The 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Gyeung Haeng Hur
- The 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Seong Tae Jeong
- The 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Sung Youl Hong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungho Shin
- Bio-MAX/N-Bio, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Paolino KM, Regules JA, Moon JE, Ruck RC, Bennett JW, Remich SA, Mills KT, Lin L, Washington CN, Fornillos GA, Lindsey CY, O'Brien KA, Shi M, Mark Jones R, Green BJ, Tottey S, Chichester JA, Streatfield SJ, Yusibov V. Safety and immunogenicity of a plant-derived recombinant protective antigen (rPA)-based vaccine against Bacillus anthracis: A Phase 1 dose-escalation study in healthy adults. Vaccine 2022; 40:1864-1871. [DOI: 10.1016/j.vaccine.2022.01.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
|
37
|
Heber S, Barthold L, Baier J, Papatheodorou P, Fois G, Frick M, Barth H, Fischer S. Inhibition of Clostridioides difficile Toxins TcdA and TcdB by Ambroxol. Front Pharmacol 2022; 12:809595. [PMID: 35058787 PMCID: PMC8764291 DOI: 10.3389/fphar.2021.809595] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023] Open
Abstract
Clostridioides (C.) difficile produces the exotoxins TcdA and TcdB, which are the predominant virulence factors causing C. difficile associated disease (CDAD). TcdA and TcdB bind to target cells and are internalized via receptor-mediated endocytosis. Translocation of the toxins’ enzyme subunits from early endosomes into the cytosol depends on acidification of endosomal vesicles, which is a prerequisite for the formation of transmembrane channels. The enzyme subunits of the toxins translocate into the cytosol via these channels where they are released after auto-proteolytic cleavage. Once in the cytosol, both toxins target small GTPases of the Rho/Ras-family and inactivate them by mono-glucosylation. This in turn interferes with actin-dependent processes and ultimately leads to the breakdown of the intestinal epithelial barrier and inflammation. So far, therapeutic approaches to treat CDAD are insufficient, since conventional antibiotic therapy does not target the bacterial protein toxins, which are the causative agents for the clinical symptoms. Thus, directly targeting the exotoxins represents a promising approach for the treatment of CDAD. Lately, it was shown that ambroxol (Ax) prevents acidification of intracellular organelles. Therefore, we investigated the effect of Ax on the cytotoxic activities of TcdA and TcdB. Ax significantly reduced toxin-induced morphological changes as well as the glucosylation of Rac1 upon intoxication with TcdA and TcdB. Most surprisingly, Ax, independent of its effects on endosomal acidification, decreased the toxins’ intracellular enzyme activity, which is mediated by a catalytic glucosyltransferase domain. Considering its undoubted safety profile, Ax might be taken into account as therapeutic option in the context of CDAD.
Collapse
Affiliation(s)
- Sebastian Heber
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Lara Barthold
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Jan Baier
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
38
|
Palacio-Castañeda V, Brock R, Verdurmen WPR. Generation of Protein-Phosphorodiamidate Morpholino Oligomer Conjugates for Efficient Cellular Delivery via Anthrax Protective Antigen. Methods Mol Biol 2022; 2434:129-141. [PMID: 35213014 PMCID: PMC9703282 DOI: 10.1007/978-1-0716-2010-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphorodiamidate morpholino oligomers (PMOs) offer great promise as therapeutic agents for translation blocking or splice modulation due to their high stability and affinity for target sequences. However, in spite of their neutral charge as compared to natural oligonucleotides or phosphorothioate analogs, they still show little permeability for cellular membranes, highlighting the need for effective cytosolic delivery strategies. In addition, the implementation of strategies for efficient cellular targeting is highly desirable to minimize side effects and maximize the drug dose at its site of action. Anthrax toxin is a three-protein toxin of which the pore-forming protein anthrax protective antigen (PA) can be redirected to a receptor of choice and lethal factor (LF), one of the two substrate proteins, can be coupled to various cargoes for efficient cytosolic cargo delivery. In this protocol, we describe the steps to produce the proteins and protein conjugates required for cytosolic delivery of PMOs through the cation-selective pore generated by anthrax protective antigen. The method relies on the introduction of a unique cysteine at the C-terminal end of a truncated LF (aa 1-254), high-yield expression of the (truncated) toxin proteins in E. coli, functionalization of a PMO with a maleimide group and coupling of the maleimide-functionalized PMO to the unique cysteine on LF by maleimide-thiol conjugation chemistry. Through co-administration of PA with LF-PMO conjugates, an efficient cytosolic delivery of PMOs can be obtained.
Collapse
Affiliation(s)
- Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter P R Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
39
|
Yang NJ, Isensee J, Neel DV, Quadros AU, Zhang HXB, Lauzadis J, Liu SM, Shiers S, Belu A, Palan S, Marlin S, Maignel J, Kennedy-Curran A, Tong VS, Moayeri M, Röderer P, Nitzsche A, Lu M, Pentelute BL, Brüstle O, Tripathi V, Foster KA, Price TJ, Collier RJ, Leppla SH, Puopolo M, Bean BP, Cunha TM, Hucho T, Chiu IM. Anthrax toxins regulate pain signaling and can deliver molecular cargoes into ANTXR2 + DRG sensory neurons. Nat Neurosci 2021; 25:168-179. [PMID: 34931070 DOI: 10.1038/s41593-021-00973-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/01/2021] [Indexed: 11/09/2022]
Abstract
Bacterial products can act on neurons to alter signaling and function. In the present study, we found that dorsal root ganglion (DRG) sensory neurons are enriched for ANTXR2, the high-affinity receptor for anthrax toxins. Anthrax toxins are composed of protective antigen (PA), which binds to ANTXR2, and the protein cargoes edema factor (EF) and lethal factor (LF). Intrathecal administration of edema toxin (ET (PA + EF)) targeted DRG neurons and induced analgesia in mice. ET inhibited mechanical and thermal sensation, and pain caused by formalin, carrageenan or nerve injury. Analgesia depended on ANTXR2 expressed by Nav1.8+ or Advillin+ neurons. ET modulated protein kinase A signaling in mouse sensory and human induced pluripotent stem cell-derived sensory neurons, and attenuated spinal cord neurotransmission. We further engineered anthrax toxins to introduce exogenous protein cargoes, including botulinum toxin, into DRG neurons to silence pain. Our study highlights interactions between a bacterial toxin and nociceptors, which may lead to the development of new pain therapeutics.
Collapse
Affiliation(s)
- Nicole J Yang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Jörg Isensee
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dylan V Neel
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Andreza U Quadros
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Justas Lauzadis
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, USA
| | | | - Stephanie Shiers
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Andreea Belu
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | | | | | - Victoria S Tong
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pascal Röderer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany.,Cellomics Unit, LIFE & BRAIN GmbH, Bonn, Germany
| | - Anja Nitzsche
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany.,Cellomics Unit, LIFE & BRAIN GmbH, Bonn, Germany
| | - Mike Lu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| | | | | | - Theodore J Price
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - R John Collier
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michelino Puopolo
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Tim Hucho
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Kouadio JL, Zheng M, Aikins M, Duda D, Duff S, Chen D, Zhang J, Milligan J, Taylor C, Mamanella P, Rydel T, Kessenich C, Panosian T, Yin Y, Moar W, Giddings K, Park Y, Jerga A, Haas J. Structural and functional insights into the first Bacillus thuringiensis vegetative insecticidal protein of the Vpb4 fold, active against western corn rootworm. PLoS One 2021; 16:e0260532. [PMID: 34928980 PMCID: PMC8687597 DOI: 10.1371/journal.pone.0260532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is a major maize pest in the United States causing significant economic loss. The emergence of field-evolved resistant WCR to Bacillus thuringiensis (Bt) traits has prompted the need to discover and deploy new insecticidal proteins in transgenic maize. In the current study we determined the crystal structure and mode of action (MOA) of the Vpb4Da2 protein (formerly known as Vip4Da2) from Bt, the first identified insecticidal Vpb4 protein with commercial level control against WCR. The Vpb4Da2 structure exhibits a six-domain architecture mainly comprised of antiparallel β-sheets organized into β-sandwich layers. The amino-terminal domains 1-3 of the protein share structural homology with the protective antigen (PA) PA14 domain and encompass a long β-pore forming loop as in the clostridial binary-toxB module. Domains 5 and 6 at the carboxyl-terminal half of Vpb4Da2 are unique as this extension is not observed in PA or any other structurally-related protein other than Vpb4 homologs. These unique Vpb4 domains adopt the topologies of carbohydrate-binding modules known to participate in receptor-recognition. Functional assessment of Vpb4Da2 suggests that domains 4-6 comprise the WCR receptor binding region and are key in conferring the observed insecticidal activity against WCR. The current structural analysis was complemented by in vitro and in vivo characterizations, including immuno-histochemistry, demonstrating that Vpb4Da2 follows a MOA that is consistent with well-characterized 3-domain Bt insecticidal proteins despite significant structural differences.
Collapse
Affiliation(s)
| | - Meiying Zheng
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Michael Aikins
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - David Duda
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Stephen Duff
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Danqi Chen
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jun Zhang
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jason Milligan
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Christina Taylor
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | | | - Timothy Rydel
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Colton Kessenich
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Timothy Panosian
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Yong Yin
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - William Moar
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Kara Giddings
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Agoston Jerga
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jeffrey Haas
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| |
Collapse
|
41
|
Solution Structures of Bacillus anthracis Protective Antigen Proteins Using Small Angle Neutron Scattering and Protective Antigen 63 Ion Channel Formation Kinetics. Toxins (Basel) 2021; 13:toxins13120888. [PMID: 34941724 PMCID: PMC8708185 DOI: 10.3390/toxins13120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
We are studying the structures of bacterial toxins that form ion channels and enable macromolecule transport across membranes. For example, the crystal structure of the Staphylococcus aureus α-hemolysin (α-HL) channel in its functional state was confirmed using neutron reflectometry (NR) with the protein reconstituted in membranes tethered to a solid support. This method, which provides sub-nanometer structural information, could also test putative structures of the Bacillus anthracis protective antigen 63 (PA63) channel, locate where B. anthracis lethal factor and edema factor toxins (LF and EF, respectively) bind to it, and determine how certain small molecules can inhibit the interaction of LF and EF with the channel. We report here the solution structures of channel-forming PA63 and its precursor PA83 (which does not form channels) obtained with small angle neutron scattering. At near neutral pH, PA83 is a monomer and PA63 a heptamer. The latter is compared to two cryo-electron microscopy structures. We also show that although the α-HL and PA63 channels have similar structural features, unlike α-HL, PA63 channel formation in lipid bilayer membranes ceases within minutes of protein addition, which currently precludes the use of NR for elucidating the interactions between PA63, LF, EF, and potential therapeutic agents.
Collapse
|
42
|
Hirschenberger M, Stadler N, Fellermann M, Sparrer KMJ, Kirchhoff F, Barth H, Papatheodorou P. CRISPA: A Non-viral, Transient Cas9 Delivery System Based on Reengineered Anthrax Toxin. Front Pharmacol 2021; 12:770283. [PMID: 34733166 PMCID: PMC8558532 DOI: 10.3389/fphar.2021.770283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Translating the CRISPR/Cas9 genome editing technology into clinics is still hampered by rather unspecific, unsafe and/or inconvenient approaches for the delivery of its main components - the Cas9 endonuclease and a guide RNA - into cells. Here, we describe the development of a novel transient and non-viral Cas9 delivery strategy based on the translocation machinery of the Bacillus anthracis anthrax toxin, PA (protective antigen). We show that Cas9 variants fused to the N-terminus of the lethal factor or to a hexahistidine tag are shuttled through channels formed by PA into the cytosol of human cells. As proof-of-principle, we applied our new approach, denoted as CRISPA, to knock out lipolysis-stimulated lipoprotein receptor (LSR) in the human colon cancer cell line HCT116 and green-fluorescent protein (GFP) in human embryonic kidney 293T cells stably expressing GFP. Notably, we confirmed that the transporter PA can be adapted to recognize specific host cell-surface receptor proteins and may be optimized for cell type-selective delivery of Cas9. Altogether, CRISPA provides a novel, transient and non-viral way to deliver Cas9 into specific cells. Thus, this system is an additional step towards safe translation of the CRISPR/Cas9 technology into clinics.
Collapse
Affiliation(s)
- Maximilian Hirschenberger
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany.,Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Nicole Stadler
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Maximilian Fellermann
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | |
Collapse
|
43
|
An in vivo selection-derived d-peptide for engineering erythrocyte-binding antigens that promote immune tolerance. Proc Natl Acad Sci U S A 2021; 118:2101596118. [PMID: 34417313 DOI: 10.1073/pnas.2101596118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When displayed on erythrocytes, peptides and proteins can drive antigen-specific immune tolerance. Here, we investigated a straightforward approach based on erythrocyte binding to promote antigen-specific tolerance to both peptides and proteins. We first identified a robust erythrocyte-binding ligand. A pool of one million fully d-chiral peptides was injected into mice, blood cells were isolated, and ligands enriched on these cells were identified using nano-liquid chromatography-tandem mass spectrometry. One round of selection yielded a murine erythrocyte-binding ligand with an 80 nM apparent dissociation constant, K d We modified an 83-kDa bacterial protein and a peptide antigen derived from ovalbumin (OVA) with the identified erythrocyte-binding ligand. An administration of the engineered bacterial protein led to decreased protein-specific antibodies in mice. Similarly, mice given the engineered OVA-derived peptide had decreased inflammatory anti-OVA CD8+ T cell responses. These findings suggest that our tolerance-induction strategy is applicable to both peptide and protein antigens and that our in vivo selection strategy can be used for de novo discovery of robust erythrocyte-binding ligands.
Collapse
|
44
|
Machen AJ, Fisher MT, Freudenthal BD. Anthrax toxin translocation complex reveals insight into the lethal factor unfolding and refolding mechanism. Sci Rep 2021; 11:13038. [PMID: 34158520 PMCID: PMC8219829 DOI: 10.1038/s41598-021-91596-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
Translocation is essential to the anthrax toxin mechanism. Protective antigen (PA), the binding component of this AB toxin, forms an oligomeric pore that translocates lethal factor (LF) or edema factor, the active components of the toxin, into the cell. Structural details of the translocation process have remained elusive despite their biological importance. To overcome the technical challenges of studying translocation intermediates, we developed a method to immobilize, transition, and stabilize anthrax toxin to mimic important physiological steps in the intoxication process. Here, we report a cryoEM snapshot of PApore translocating the N-terminal domain of LF (LFN). The resulting 3.3 Å structure of the complex shows density of partially unfolded LFN near the canonical PApore binding site. Interestingly, we also observe density consistent with an α helix emerging from the 100 Å β barrel channel suggesting LF secondary structural elements begin to refold in the pore channel. We conclude the anthrax toxin β barrel aids in efficient folding of its enzymatic payload prior to channel exit. Our hypothesized refolding mechanism has broader implications for pore length of other protein translocating toxins.
Collapse
Affiliation(s)
- Alexandra J Machen
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mark T Fisher
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
45
|
Yang S, Ngai WSC, Chen PR. Chemical engineering of bacterial effectors for regulating cell signaling and responses. Curr Opin Chem Biol 2021; 64:48-56. [PMID: 33993047 DOI: 10.1016/j.cbpa.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/10/2021] [Indexed: 01/24/2023]
Abstract
Bacteria have evolved a variety of effector proteins to facilitate their survival and proliferation within the host environment. Continuous competition at the host-pathogen interface has empowered these effectors with unique mechanism and high specificity toward their host targets. The rich repertoire of bacterial effectors has thus provided us an attractive toolkit for investigating various cellular processes, such as signal transductions. With recent advances in protein chemistry and engineering, we now have the capability for on-demand control of protein activity with high precision. Herein, we review the development of chemically engineered bacterial effectors to control kinase-mediated signal transductions, inhibit protein translation, and direct genetic editing within host cells. We also highlight future opportunities for harnessing diverse prokaryotic effectors as powerful tools for mechanistic investigation and therapeutic intervention of eukaryotic systems.
Collapse
Affiliation(s)
- Shaojun Yang
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - William Shu Ching Ngai
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Peng R Chen
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
46
|
Guo Z, Kubiatowicz LJ, Fang RH, Zhang L. Nanotoxoids: Biomimetic Nanoparticle Vaccines against Infections. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhongyuan Guo
- Department of NanoEngineering, Chemical Engineering Program and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Luke J. Kubiatowicz
- Department of NanoEngineering, Chemical Engineering Program and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
47
|
Vaccine Delivery with a Detoxified Bacterial Toxin. Methods Mol Biol 2021. [PMID: 32959257 DOI: 10.1007/978-1-0716-0795-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
It is still a challenge to develop needle-free mucosal vaccines. Despite progress in the development of the influenza vaccine, it must be reformulated annually because of antigenic changes in circulating influenza viral strains. Due to seasonal drift and shift of circulating strains, the influenza vaccine does not always match the circulating strains, and included adjuvants are not sufficient to induce a protective effect with long-lived memory cells. The adjuvants play a major role in the immune responses to a vaccine. Interestingly, the Bacillus anthracis detoxified anthrax edema toxin, which composes of protective antigen PA and N-fragment of edema factor (EFn), has shown improved effects for humoral and cellular immune responses. Here we describe the design of a universal influenza vaccine construct that consists of three tandem M2e repeats of the influenza antigen plus HA2 and detoxified toxin EFn, which is associated with the PA component, as well as the techniques used to corroborate protection. We present two major parts of description to demonstrate the vaccine strategy, using detoxified anthrax toxin for intranasal delivery of influenza antigen: (1) vaccine candidate design, production, and purification; (2) influenza virus microneutralization assay and cellular responses and lethal challenge with influenza viruses and B. anthracis Sterne spores. In the methods detailed here, we used different versions of the M2e-HA2 proteins.
Collapse
|
48
|
Landenberger M, Nieland J, Roeder M, Nørgaard K, Papatheodorou P, Ernst K, Barth H. The cytotoxic effect of Clostridioides difficile pore-forming toxin CDTb. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183603. [PMID: 33689753 DOI: 10.1016/j.bbamem.2021.183603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/05/2023]
Abstract
Clostridioides (C.) difficile is clinically highly relevant and produces several AB-type protein toxins, which are the causative agents for C. difficile-associated diarrhea and pseudomembranous colitis. Treatment with antibiotics can lead to C. difficile overgrowth in the gut of patients due to the disturbed microbiota. C. difficile releases large Rho/Ras-GTPase glucosylating toxins TcdA and TcdB, which are considered as the major virulence factors for C. difficile-associated diseases. In addition to TcdA and TcdB, C. difficile strains isolated from severe cases of colitis produce a third toxin called CDT. CDT is a member of the family of clostridial binary actin ADP-ribosylating toxins and consists of two separate protein components. The B-component, CDTb, binds to the receptor and forms a complex with and facilitates transport and translocation of the enzymatically active A-component, CDTa, into the cytosol of target cells by forming trans-membrane pores through which CDTa translocates. In the cytosol, CDTa ADP-ribosylates G-actin causing depolymerization of the actin cytoskeleton and, eventually, cell death. In the present study, we report that CDTb exhibits a cytotoxic effect in the absence of CDTa. We show that CDTb causes cell rounding and impairs cell viability and the epithelial integrity of CaCo-2 monolayers in the absence of CDTa. CDTb-induced cell rounding depended on the presence of LSR, the specific cellular receptor of CDT. The isolated receptor-binding domain of CDTb was not sufficient to cause cell rounding. CDTb-induced cell rounding was inhibited by enzymatically inactive CDTa or a pore-blocker, implying that CDTb pores in cytoplasmic membranes contribute to cytotoxicity.
Collapse
Affiliation(s)
- Marc Landenberger
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Julian Nieland
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Maurice Roeder
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Katharina Nørgaard
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | | - Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
49
|
Lu Z, Truex NL, Melo MB, Cheng Y, Li N, Irvine DJ, Pentelute BL. IgG-Engineered Protective Antigen for Cytosolic Delivery of Proteins into Cancer Cells. ACS CENTRAL SCIENCE 2021; 7:365-378. [PMID: 33655074 PMCID: PMC7908032 DOI: 10.1021/acscentsci.0c01670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 05/05/2023]
Abstract
Therapeutic immunotoxins composed of antibodies and bacterial toxins provide potent activity against malignant cells, but joining them with a defined covalent bond while maintaining the desired function is challenging. Here, we develop novel immunotoxins by dovetailing full-length immunoglobulin G (IgG) antibodies and nontoxic anthrax proteins, in which the C terminus of the IgG heavy chain is connected to the side chain of anthrax toxin protective antigen. This strategy enabled efficient conjugation of protective antigen variants to trastuzumab (Tmab) and cetuximab (Cmab) antibodies. The conjugates effectively perform intracellular delivery of edema factor and N terminus of lethal factor (LFN) fused with diphtheria toxin and Ras/Rap1-specific endopeptidase. Each conjugate shows high specificity for cells expressing human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR), respectively, and potent activity across six Tmab- and Cmab-resistant cell lines. The conjugates also exhibit increased pharmacokinetics and pronounced in vivo safety, which shows promise for further therapeutic development.
Collapse
Affiliation(s)
- Zeyu Lu
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Nicholas L. Truex
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mariane B. Melo
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Ragon
Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yiran Cheng
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Na Li
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Darrell J. Irvine
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Ragon
Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Biological Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Howard Hughes
Medical Institute, 4000
Jones Bridge Road, Chevy Chase, Maryland 20815, United
States
| | - Bradley L. Pentelute
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center
for Environmental Health Sciences, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad
Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
- E-mail:
| |
Collapse
|
50
|
Song N, Chen L, Ren X, Waterfield NR, Yang J, Yang G. N-Glycans and sulfated glycosaminoglycans contribute to the action of diverse Tc toxins on mammalian cells. PLoS Pathog 2021; 17:e1009244. [PMID: 33539469 PMCID: PMC7861375 DOI: 10.1371/journal.ppat.1009244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/18/2020] [Indexed: 01/11/2023] Open
Abstract
Tc toxin is an exotoxin composed of three subunits named TcA, TcB and TcC. Structural analysis revealed that TcA can form homopentamer that mediates the cellular recognition and delivery processes, thus contributing to the host tropism of Tc toxin. N-glycans and heparan sulfates have been shown to act as receptors for several Tc toxins. Here, we performed two independent genome-wide CRISPR-Cas9 screens, and have validated glycans and sulfated glycosaminoglycans (sGAGs) as Tc toxin receptors also for previously uncharacterized Tc toxins. We found that TcdA1 form Photorhabdus luminescens W14 (TcdA1W14) can recognize N-glycans via the RBD-D domain, corroborating previous findings. Knockout of N-glycan processing enzymes specifically blocks the intoxication of TcdA1W14-assembled Tc toxin. On the other hand, our results showed that sGAG biosynthesis pathway is involved in the cell surface binding of TcdA2TT01 (TcdA2 from P. luminescens TT01). Competition assays and biolayer interferometry demonstrated that the sulfation group in sGAGs is required for the binding of TcdA2TT01. Finally, based on the conserved domains of representative TcA proteins, we have identified 1,189 putative TcAs from 1,039 bacterial genomes. These TcAs are categorized into five subfamilies. Each subfamily shows a good correlation with both genetic organization of the TcA protein(s) and taxonomic origin of the genomes, suggesting these subfamilies may utilize different mechanisms for cellular recognition. Taken together, our results support the previously described two different binding modalities of Tc toxins, leading to unique host targeting properties. We also present the bioinformatics data and receptor screening strategies for TcA proteins, provide new insights into understanding host specificity and biomedical applications of Tc toxins. The Toxin complexes, also referred to as Tc toxins, are a family of A5BC exotoxins widely distributed among Gram-negative and positive bacteria. First identified in Entomopathogenic bacteria as key virulence factors to combat insect hosts, putative Tc toxin loci are also encoded by a range of human pathogens such as Salmonella and Yersinia. Previous studies indicated that several Tc toxins can target invertebrate and vertebrate cells via binding with N-glycans and heparan sulfates. Here our genome-wide CRISPR-Cas9 screens validated that different Tc toxins utilized distinct receptors for the adhesion to their targets, which is determined by TcA homopentamer. For example, TcdA1 from Photorhabdus luminescens W14 (TcdA1W14) relies on N-glycan binding to exert its toxic effects, while sulfate groups of sulfated glycosaminoglycans are critical for the cell targeting of other TcAs such as TcdA2TT01 (TcdA2 from P. luminescens TT01). Consistent with the previously described different binding modalities of Tc toxins, our results confirm that the receptor selectivity of TcAs contribute to the cellular tropism of Tc toxins. Furthermore we has also identified 1,189 TcA homologues and categorized them into five subfamilies. Each TcA subfamily shows a good correlation with the taxonomic origin of the genomes, suggesting these subfamilies are linked to diverse host tropisms via different binding modalities. Together, our findings provide mechanistic insights into understanding host specificity of distinct Tc toxins and the development of therapeutics for Tc toxin-related infections, as well as the adaptation of Tc-injectisomes as potential biotechnology tools and pest-control weapons.
Collapse
Affiliation(s)
- Nan Song
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingmei Ren
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guowei Yang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|