1
|
Paredes-Villa AA, Aguilar-Arce IE, Meneses-Morales I, Cervantes-Roldán R, Valadéz-Graham V, León-Del-Río A. NHERF2 regulatory function in signal transduction pathways and control of gene expression: Implications for cellular homeostasis and breast cancer. Arch Med Res 2025; 56:103179. [PMID: 39813852 DOI: 10.1016/j.arcmed.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/20/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Na⁺/H⁺ exchanger regulatory factor 2 (NHERF2) is a nucleocytoplasmic protein initially identified as a regulator of membrane-bound sodium-hydrogen exchanger 3 (NHE3). In the cytoplasm, NHERF2 regulates the activity of G protein-coupled receptors (GPCRs), including beta-2 adrenergic receptor (2β-AR), lysophosphatidic acid receptor 2, and parathyroid hormone type 1 receptor. In the nucleus, NHERF2 acts as a coregulator of transcription factors such as sex-determining region Y protein (SRY), involved in male sex determination, and estrogen receptor alpha (ERα). ERα is a ligand-dependent transcription factor that controls mammary gland growth and differentiation during puberty and pregnancy and plays a major role in the development and progression of breast cancer tumors. Altogether, the regulatory functions of NHERF2 on ion channels, GPCRs, and nuclear transcription factors have a modulatory effect on signal transduction pathways, metabolic homeostasis, cell proliferation and differentiation, neurotransmission, muscle contraction, and renal electrolyte balance. This work highlights NHERF2 functions in the cytoplasm and nucleus and underscores the nuclear mechanisms through which NHERF2 participates in the regulation of gene expression and tumor growth and progression in breast cancer.
Collapse
Affiliation(s)
- Adrián-Alejandro Paredes-Villa
- Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Posgrado en Ciencias Biológicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Isaac Esaú Aguilar-Arce
- Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Posgrado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Iván Meneses-Morales
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Rafael Cervantes-Roldán
- Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Viviana Valadéz-Graham
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alfonso León-Del-Río
- Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
2
|
Ávila G, Bonnet M, Viala D, Dejean S, Grilli G, Lecchi C, Ceciliani F. Citrus pectin modulates chicken peripheral blood mononuclear cell proteome in vitro. Poult Sci 2024; 103:104293. [PMID: 39288719 PMCID: PMC11421475 DOI: 10.1016/j.psj.2024.104293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Citrus pectin (CP) is a dietary fiber used in animal nutrition with anti-inflammatory properties. CP downregulates chicken immunoregulatory monocytes' functions, like chemotaxis and phagocytosis, in vitro. The molecular underlying background is still unknown. This study investigated the activity of CP on chicken peripheral blood mononuclear cells (PBMC) proteome. An overall number of 1503 proteins were identified and quantified. The supervised sparse variant partial least squares-discriminant analysis (sPLS-DA) for paired data highlighted 373 discriminant proteins between CP-treated and the control group, of which 50 proteins with the highest abundance in CP and 137 in the control group were selected for Gene Ontology (GO) analyses using ProteINSIDE. Discriminant Protein highly abundant in CP-treated cells were involved in actin cytoskeleton organization and negative regulation of cell migration. Interestingly, MARCKSL1, a chemotaxis inhibitor, was upregulated in CP-treated cells. On the contrary, CP incubation downregulated MARCKS, LGALS3, and LGALS8, which are involved in cytoskeleton rearrangements, cell migration, and phagocytosis. In conclusion, these results provide a proteomics background to the anti-inflammatory activity of CP, demonstrating that the in vitro downregulation of phagocytosis and chemotaxis is related to changes in proteins related to the cytoskeleton.
Collapse
Affiliation(s)
- G Ávila
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy
| | - M Bonnet
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
| | - D Viala
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France; INRAE, Metabolomic and Proteomic Exploration Facility, Proteomic Component (PFEMcp), F-63122 Saint-Genès-Champanelle, France
| | - S Dejean
- Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - G Grilli
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy
| | - C Lecchi
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy
| | - F Ceciliani
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy.
| |
Collapse
|
3
|
Chong ZZ, Souayah N. Radixin: Roles in the Nervous System and Beyond. Biomedicines 2024; 12:2341. [PMID: 39457653 PMCID: PMC11504607 DOI: 10.3390/biomedicines12102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Radixin is an ERM family protein that includes radixin, moesin, and ezrin. The importance of ERM family proteins has been attracting more attention, and studies on the roles of ERM in biological function and the pathogenesis of some diseases are accumulating. In particular, we have found that radixin is the most dramatically changed ERM protein in elevated glucose-treated Schwann cells. METHOD We systemically review the literature on ERM, radixin in focus, and update the roles of radixin in regulating cell morphology, interaction, and cell signaling pathways. The potential of radixin as a therapeutic target in neurodegenerative diseases and cancer was also discussed. RESULTS Radixin research has focused on its cell functions, activation, and pathogenic roles in some diseases. Radixin and other ERM proteins maintain cell shape, growth, and motility. In the nervous system, radixin has been shown to prevent neurodegeneration and axonal growth. The activation of radixin is through phosphorylation of its conserved threonine residues. Radixin functions in cell signaling pathways by binding to membrane proteins and relaying the cell signals into the cells. Deficiency of radixin has been involved in the pathogenic process of diseases in the central nervous system and diabetic peripheral nerve injury. Moreover, radixin also plays a role in cell growth and drug resistance in multiple cancers. The trials of therapeutic potential through radixin modulation have been accumulating. However, the exact mechanisms underlying the roles of radixin are far from clarification. CONCLUSIONS Radixin plays various roles in cells and is involved in developing neurodegenerative diseases and many types of cancers. Therefore, radixin may be considered a potential target for developing therapeutic strategies for its related diseases. Further elucidation of the function and the cell signaling pathways that are linked to radixin may open the avenue to finding novel therapeutic strategies for diseases in the nervous system and other body systems.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, New Jersey Medical School, Rutgers University, 185 S. Orange Ave, Newark, NJ 07103, USA
| | - Nizar Souayah
- Department of Neurology, New Jersey Medical School, Rutgers University, 185 S. Orange Ave, Newark, NJ 07103, USA
- Department of Neurology, New Jersey Medical School, Rutgers University, 90 Bergen Street DOC 8100, Newark, NJ 07101, USA
| |
Collapse
|
4
|
Alzahrani FA, Riza YM, Eid TM, Almotairi R, Scherschinski L, Contreras J, Nadeem M, Perez SE, Raikwar SP, Jha RM, Preul MC, Ducruet AF, Lawton MT, Bhatia K, Akhter N, Ahmad S. Exosomes in Vascular/Neurological Disorders and the Road Ahead. Cells 2024; 13:670. [PMID: 38667285 PMCID: PMC11049650 DOI: 10.3390/cells13080670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), stroke, and aneurysms, are characterized by the abnormal accumulation and aggregation of disease-causing proteins in the brain and spinal cord. Recent research suggests that proteins linked to these conditions can be secreted and transferred among cells using exosomes. The transmission of abnormal protein buildup and the gradual degeneration in the brains of impacted individuals might be supported by these exosomes. Furthermore, it has been reported that neuroprotective functions can also be attributed to exosomes in neurodegenerative diseases. The potential neuroprotective functions may play a role in preventing the formation of aggregates and abnormal accumulation of proteins associated with the disease. The present review summarizes the roles of exosomes in neurodegenerative diseases as well as elucidating their therapeutic potential in AD, PD, ALS, HD, stroke, and aneurysms. By elucidating these two aspects of exosomes, valuable insights into potential therapeutic targets for treating neurodegenerative diseases may be provided.
Collapse
Affiliation(s)
- Faisal A. Alzahrani
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yasir M. Riza
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thamir M. Eid
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Laboratory Technology, Prince Fahad bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Lea Scherschinski
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Jessica Contreras
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Muhammed Nadeem
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Sylvia E. Perez
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Sudhanshu P. Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Andrew F. Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Michael T. Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Kanchan Bhatia
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Naseem Akhter
- Department of Biology, Arizona State University, Lake Havasu City, AZ 86403, USA
| | - Saif Ahmad
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Phoenix Veterans Affairs (VA) Health Care System, Phoenix, AZ 85012, USA
| |
Collapse
|
5
|
Calabrese B, Halpain S. MARCKS and PI(4,5)P 2 reciprocally regulate actin-based dendritic spine morphology. Mol Biol Cell 2024; 35:ar23. [PMID: 38088877 PMCID: PMC10881156 DOI: 10.1091/mbc.e23-09-0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/14/2024] Open
Abstract
Myristoylated, alanine-rich C-kinase substrate (MARCKS) is an F-actin and phospholipid binding protein implicated in numerous cellular activities, including the regulation of morphology in neuronal dendrites and dendritic spines. MARCKS contains a lysine-rich effector domain that mediates its binding to plasma membrane phosphatidylinositol-4,5-biphosphate (PI(4,5)P2) in a manner controlled by PKC and calcium/calmodulin. In neurons, manipulations of MARCKS concentration and membrane targeting strongly affect the numbers, shapes, and F-actin properties of dendritic spines, but the mechanisms remain unclear. Here, we tested the hypothesis that the effects of MARCKS on dendritic spine morphology are due to its capacity to regulate the availability of plasma membrane PI(4,5)P2. We observed that the concentration of free PI(4,5)P2 on the dendritic plasma membrane was inversely proportional to the concentration of MARCKS. Endogenous PI(4,5)P2 levels were increased or decreased, respectively, by acutely overexpressing either phosphatidylinositol-4-phosphate 5-kinase (PIP5K) or inositol polyphosphate 5-phosphatase (5ptase). PIP5K, like MARCKS depletion, induced severe spine shrinkage; 5ptase, like constitutively membrane-bound MARCKS, induced aberrant spine elongation. These phenotypes involved changes in actin properties driven by the F-actin severing protein cofilin. Collectively, these findings support a model in which neuronal activity regulates actin-dependent spine morphology through antagonistic interactions of MARCKS and PI(4,5)P2.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Neurobiology, School of Biological Sciences, University of California San Diego and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Shelley Halpain
- Department of Neurobiology, School of Biological Sciences, University of California San Diego and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| |
Collapse
|
6
|
Yang J, Huang T, Zhang J, Bai G, Wang W, Yao J, Chen Z, Tu C. Sulphur dioxide and fluoride co-exposure cause enamel damage by disrupting the Cl -/HCO 3- ion transport. J Trace Elem Med Biol 2023; 77:127131. [PMID: 36630759 DOI: 10.1016/j.jtemb.2023.127131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/21/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Although there is growing evidence linking the exposure to sulphur dioxide (SO2) and fluoride to human diseases, there is little data on the co-exposure of SO2 and fluoride. Moreover, literature on SO2 and fluoride co-exposure to enamel damage is insufficient. In this work, we concentrate on the concurrent environmental issues of excessive SO2 and fluoride in several coal-consuming regions. METHOD To identify the toxicity of SO2 and fluoride exposure either separately or together, we used both ICR mice and LS8 cells, and factorial design was employed to assess the type of potential combined action. RESULT In this study, co-exposure to SO2 and fluoride exacerbated enamel damage, resulting in more severe enamel defects of incisor and the damage occurred earlier. Cl-/HCO3- exchanger expression is increased by SO2 and fluoride in mouse incisor. Consistent with in vivo results, co-exposure of SO2 and fluoride decreased pHi and increased [Cl-]i level by increasing the expression of the Cl-/HCO3- exchanger in LS8 cells. Furthermore, SO2 and F may increase merlin protein expression, and merlin deficiency causes AE2 expression to decrease in vitro. CONCLUSION Overall, these results indicate that co-exposure to SO2 and fluoride may result in more toxicity both in vitro and in vivo than a single exposure to SO2 and fluoride, suggesting that residents in areas contaminated with SO2 and fluoride may be more likely to suffer enamel damage.
Collapse
Affiliation(s)
- Junlin Yang
- School of Public Health, Guizhou Medical University, Guian New Region, China; The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tongtong Huang
- School of Public Health, Guizhou Medical University, Guian New Region, China
| | - Jianghui Zhang
- School of Public Health, Guizhou Medical University, Guian New Region, China
| | - Guohui Bai
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Wentai Wang
- School of Public Health, Guizhou Medical University, Guian New Region, China
| | - Jie Yao
- School of Public Health, Guizhou Medical University, Guian New Region, China
| | - Zheng Chen
- School of Public Health, Guizhou Medical University, Guian New Region, China
| | - Chenglong Tu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Region, China; Toxicity Testing Center of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
7
|
Lade JM, Andrade MR, Undem C, Walker J, Jiang H, Yun X, Shimoda LA. Hypoxia enhances interactions between Na +/H + exchanger isoform 1 and actin filaments via ezrin in pulmonary vascular smooth muscle. Front Physiol 2023; 14:1108304. [PMID: 36926194 PMCID: PMC10011449 DOI: 10.3389/fphys.2023.1108304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/24/2023] [Indexed: 03/08/2023] Open
Abstract
Exposure to hypoxia, due to high altitude or chronic lung disease, leads to structural changes in the pulmonary vascular wall, including hyperplasia and migration of pulmonary arterial smooth muscle cells (PASMCs). Previous studies showed that hypoxia upregulates the expression of Na+/H+ exchanger isoform 1 (NHE1) and that inhibition or loss of NHE1 prevents hypoxia-induced PASMC migration and proliferation. The exact mechanism by which NHE1 controls PASMC function has not been fully delineated. In fibroblasts, NHE1 has been shown to act as a membrane anchor for actin filaments, via binding of the adaptor protein, ezrin. Thus, in this study, we tested the role of ezrin and NHE1/actin interactions in controlling PASMC function. Using rat PASMCs exposed to in vitro hypoxia (4% O2, 24 h) we found that hypoxic exposure increased phosphorylation (activation) of ezrin, and promoted interactions between NHE1, phosphorylated ezrin and smooth muscle specific α-actin (SMA) as measured via immunoprecipitation and co-localization. Overexpression of wild-type human NHE1 in the absence of hypoxia was sufficient to induce PASMC migration and proliferation, whereas inhibiting ezrin phosphorylation with NSC668394 suppressed NHE1/SMA co-localization and migration in hypoxic PASMCs. Finally, overexpressing a version of human NHE1 in which amino acids were mutated to prevent NHE1/ezrin/SMA interactions was unable to increase PASMC migration and proliferation despite exhibiting normal Na+/H+ exchange activity. From these results, we conclude that hypoxic exposure increases ezrin phosphorylation in PASMCs, leading to enhanced ezrin/NHE1/SMA interaction. We further speculate that these interactions promote anchoring of the actin cytoskeleton to the membrane to facilitate the changes in cell movement and shape required for migration and proliferation.
Collapse
Affiliation(s)
- Julie M Lade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Baltimore, MD, United States
| | - Manuella R Andrade
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Clark Undem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Baltimore, MD, United States
| | - Jasmine Walker
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Baltimore, MD, United States
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Baltimore, MD, United States
| | - Xin Yun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Baltimore, MD, United States
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Moesin Serves as Scaffold Protein for PD-L1 in Human Uterine Cervical Squamous Carcinoma Cells. J Clin Med 2022; 11:jcm11133830. [PMID: 35807113 PMCID: PMC9267616 DOI: 10.3390/jcm11133830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy targeting the programmed death ligand-1 (PD-L1)/PD-1 axis has emerged as a promising treatment for uterine cervical cancer; however, only a small subset of patients with uterine cervical squamous cell carcinoma (SCC) derives clinical benefit from ICB therapies. Thus, there is an urgent unmet medical need for novel therapeutic strategies to block the PD-L1/PD-1 axis in patients with uterine cervical SCC. Here, we investigated the involvement of ezrin/radixin/moesin (ERM) family scaffold proteins, which crosslink several plasma membrane proteins with the actin cytoskeleton, on the plasma membrane localization of PD-L1 in BOKU and HCS-2 cells derived from human uterine cervical SCC. Immunofluorescence analysis showed that PD-L1 colocalized with all three ERM proteins in the plasma membrane. Gene knockdown of moesin, but not ezrin and radixin, substantially reduced the plasma membrane expression of PD-L1, with limited effect on mRNA expression. An immunoprecipitation assay demonstrated the molecular interaction between PD-L1 and moesin. Moreover, phosphorylated, i.e., activated, moesin was highly colocalized with PD-L1 in the plasma membrane. In conclusion, moesin may be a scaffold protein responsible for the plasma membrane expression of PD-L1 in human uterine cervical SCC.
Collapse
|
9
|
BifA Triggers Phosphorylation of Ezrin to Benefit Streptococcus equi subsp. zooepidemicus Survival from Neutrophils Killing. Biomedicines 2022; 10:biomedicines10050932. [PMID: 35625669 PMCID: PMC9138245 DOI: 10.3390/biomedicines10050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Streptococcus equi subsp. zooepidemicus (SEZ) ATCC35246 can invade the brain and cause severe neutrophils infiltration in brain tissue. This microorganism can survive and reproduce to an extremely high CFU burden (108–109/organ) under stressful neutrophils infiltration circumstances. The aim of this research is to explore the mechanism of the SEZ hypervirulent strain with its specific bifA gene which avoids being eliminated by neutrophils in the brain. We isolated the primary mouse neutrophils to treat SEZ WT and bifA gene defective (ΔBif) strains. The ΔBif strain had a weakened function of defending against neutrophils killing in vitro. The interaction between BifA and ezrin proteins in neutrophils were identified by co-IP and immunoblot. In neutrophils, the BifA interacts with ezrin and triggers the phosphorylation of ezrin at its Thr567 site in a PKC-dependent manner, then the excessive elevation of phosphorylated-ezrin recruits Dbl and activates Rac1. Since the Rac1 is closely relevant to several critical cellular functions, its abnormal activation will lead to neutrophils dysfunction and benefit to SEZ survival from neutrophils killing. Our findings reveal a novel consequence of BifA and ERM family protein (for ezrin, radixin, moesin) interaction, which happens between BifA and ezrin in neutrophils and contributes to SEZ survival in the brain. BifA should be considered as a potential target for drug development to prevent SEZ infection.
Collapse
|
10
|
Cotranslational interaction of human EBP50 and ezrin overcomes masked binding site during complex assembly. Proc Natl Acad Sci U S A 2022; 119:2115799119. [PMID: 35140182 PMCID: PMC8851480 DOI: 10.1073/pnas.2115799119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Multiprotein assemblages are the intracellular workhorses of many physiological processes. Assembly of constituents into complexes can be driven by stochastic, domain-dependent, posttranslational events in which mature, folded proteins specifically interact. However, inaccessibility of interacting surfaces in mature proteins (e.g., due to "buried" domains) can obstruct complex formation. Mechanisms by which multiprotein complex constituents overcome topological impediments remain enigmatic. For example, the heterodimeric complex formed by EBP50 and ezrin must address this issue as the EBP50-interacting domain in ezrin is obstructed by a self-interaction that occupies the EBP50 binding site. Here, we show that the EBP50-ezrin complex is formed by a cotranslational mechanism in which the C terminus of mature, fully formed EBP50 binds the emerging, ribosome-bound N-terminal FERM domain of ezrin during EZR mRNA translation. Consistent with this observation, a C-terminal EBP50 peptide mimetic reduces the cotranslational interaction and abrogates EBP50-ezrin complex formation. Phosphorylation of EBP50 at Ser339 and Ser340 abrogates the cotranslational interaction and inhibits complex formation. In summary, we show that the function of eukaryotic mRNA translation extends beyond "simple" generation of a linear peptide chain that folds into a tertiary structure, potentially for subsequent complex assembly; importantly, translation can facilitate interactions with sterically inaccessible domains to form functional multiprotein complexes.
Collapse
|
11
|
Zhang F, Liu B, Gao Y, Long J, Zhou H. The crystal structure of the FERM and C-terminal domain complex of Drosophila Merlin. Biochem Biophys Res Commun 2021; 553:92-98. [PMID: 33765559 DOI: 10.1016/j.bbrc.2021.03.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/25/2022]
Abstract
NF2/Merlin is an upstream regulator of hippo pathway, and it has two states: an auto-inhibited "closed" state and an active "open" form. Previous studies showed that Drosophila Merlin adopts a more closed conformation. However, the molecular mechanism of conformational regulation remains poorly understood. Here, we first confirmed the strong interaction between FERM and the C-terminal domain (CTD) of Merlin, and then determined the crystal structure of the FERM/CTD complex, which reveals the structural basis of Merlin adopting a more closed conformation compared to its human cognate NF2. Interestingly, we found that the conserved lipid-binding site of Merlin might be masked by a linker. Confocal analyses confirmed that all putative lipid-binding site are very important for the membranal location of Merlin. More, we found that the phosphomimic Thr616Asp mutation weakens the interaction between FERM and CTD of Merlin. Collectively, the crystal structure of the FERM/CTD complex not only provides a mechanistic explanation of functionally dormant conformation of Merlin may also serve as a foundation for revealing the mechanism of conformational regulation of Merlin.
Collapse
Affiliation(s)
- Fayou Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Beibei Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yaqi Gao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
12
|
Fang X, Zhang K, Jiang M, Ma L, Liu J, Xu H, Yang Y, Wang C. Enhanced lymphatic delivery of nanomicelles encapsulating CXCR4-recognizing peptide and doxorubicin for the treatment of breast cancer. Int J Pharm 2020; 594:120183. [PMID: 33340596 DOI: 10.1016/j.ijpharm.2020.120183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/29/2020] [Accepted: 12/13/2020] [Indexed: 01/22/2023]
Abstract
Lymph node metastases in cancer patients are associated with high aggressiveness, poor prognosis, and short survival time. The chemokine receptor 4 (CXCR4)/stroma derived factor 1α (CXCL12) biological axis plays a critical role in the spread of cancer cells. Designing effective delivery systems that can successfully deliver CXCR4 antagonists to lymph nodes, which are rich in CXCR4-overexpressing cancer cells, for controlling cancer metastasis remain challenging. In this study, we demonstrated that such a challenge may be alleviated by developing nanometer-sized polyethylene glycol-phosphatidylethanolamine (PEG-PE) micelles for the co-delivery of the CXCR4 antagonistic peptide E5 and doxorubicin (M-E5-Dox). This nanomicelle platform enables the preferential accumulation of cargos into lymph nodes and thus can better inhibit cancer metastasis and enhance antitumor efficacy than either free drugs or single drug-loaded micelles in breast cancer-bearing mouse models. Hence, M-E5-Dox is expected to be a potential therapeutic agent that would improve the clinical benefits of breast cancer therapy and treatment of various CXCR4-overexpressing malignancies.
Collapse
Affiliation(s)
- Xiaocui Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiyue Zhang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Jiang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lilusi Ma
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Haiyan Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Havranek B, Islam SM. Prediction and evaluation of deleterious and disease causing non-synonymous SNPs (nsSNPs) in human NF2 gene responsible for neurofibromatosis type 2 (NF2). J Biomol Struct Dyn 2020; 39:7044-7055. [PMID: 32787631 DOI: 10.1080/07391102.2020.1805018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The majority of genetic variations in the human genome that lead to variety of different diseases are caused by non-synonymous single nucleotide polymorphisms (nsSNPs). Neurofibromatosis type 2 (NF2) is a deadly disease caused by nsSNPs in the NF2 gene that encodes for a protein called merlin. This study used various in silico methods, SIFT, Polyphen-2, PhD-SNP and MutPred, to investigate the pathogenic effect of 14 nsSNPs in the merlin FERM domain. The G197C and L234R mutations were found to be two deleterious and disease mutations associated with the mild and severe forms of NF2, respectively. Molecular dynamics (MD) simulations were conducted to understand the stability, structure and dynamics of these mutations. Both mutant structures experienced larger flexibility compared to the wildtype. The L234R mutant suffered from more prominent structural instability, which may help to explain why it is associated with the more severe form of NF2. The intramolecular hydrogen bonding in L234R mutation decreased from the wildtype, while intermolecular hydrogen bonding of L234R mutation with solvent greatly increased. The native contacts were also found to be important. Protein-protein docking revealed that L234R mutation decreased the binding complementarity and binding affinity of LATS2 to merlin, which may have an impact on merlin's ability to regulate the Hippo signaling pathway. The calculated binding affinity of the LATS2 to L234R mutant and wildtype merlin protein is found to be 21.73 and -11 kcal/mol, respectively. The binding affinity of the wildtype merlin agreed very well with the experimental value, -8 kcal/mol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Brandon Havranek
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Shahidul M Islam
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Jeong W, Kim S, Lee U, Zhong ZA, Savitsky M, Kwon H, Kim J, Lee T, Cho JW, Williams BO, Katanaev VL, Jho EH. LDL receptor-related protein LRP6 senses nutrient levels and regulates Hippo signaling. EMBO Rep 2020; 21:e50103. [PMID: 32767654 DOI: 10.15252/embr.202050103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
Controlled cell growth and proliferation are essential for tissue homeostasis and development. Wnt and Hippo signaling are well known as positive and negative regulators of cell proliferation, respectively. The regulation of Hippo signaling by the Wnt pathway has been shown, but how and which components of Wnt signaling are involved in the activation of Hippo signaling during nutrient starvation are unknown. Here, we report that a reduction in the level of low-density lipoprotein receptor-related protein 6 (LRP6) during nutrient starvation induces phosphorylation and cytoplasmic localization of YAP, inhibiting YAP-dependent transcription. Phosphorylation of YAP via loss of LRP6 is mediated by large tumor suppressor kinases 1/2 (LATS1/2) and Merlin. We found that O-GlcNAcylation of LRP6 was reduced, and the overall amount of LRP6 was decreased via endocytosis-mediated lysosomal degradation during nutrient starvation. Merlin binds to LRP6; when LRP6 is less O-GlcNAcylated, Merlin dissociates from it and becomes capable of interacting with LATS1 to induce phosphorylation of YAP. Our data suggest that LRP6 has unexpected roles as a nutrient sensor and Hippo signaling regulator.
Collapse
Affiliation(s)
- Wonyoung Jeong
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Soyoung Kim
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Ukjin Lee
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Zhendong A Zhong
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Mikhail Savitsky
- Faculty of Medicine, Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, University of Geneva, Geneva, Switzerland
| | - Hyeryun Kwon
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Jiyoung Kim
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Taebok Lee
- Confocal Core Facility, Center for Medical Innovation, Seoul National University Hospital, Seoul, Korea
| | - Jin Won Cho
- Glycosylation Network Research Center, Yonsei University, Seoul, Korea
| | - Bart O Williams
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Vladimir L Katanaev
- Faculty of Medicine, Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, University of Geneva, Geneva, Switzerland.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, Korea
| |
Collapse
|
15
|
Abstract
Exosomes are small, single-membrane, secreted organelles of ∼30 to ∼200 nm in diameter that have the same topology as the cell and are enriched in selected proteins, lipids, nucleic acids, and glycoconjugates. Exosomes contain an array of membrane-associated, high-order oligomeric protein complexes, display pronounced molecular heterogeneity, and are created by budding at both plasma and endosome membranes. Exosome biogenesis is a mechanism of protein quality control, and once released, exosomes have activities as diverse as remodeling the extracellular matrix and transmitting signals and molecules to other cells. This pathway of intercellular vesicle traffic plays important roles in many aspects of human health and disease, including development, immunity, tissue homeostasis, cancer, and neurodegenerative diseases. In addition, viruses co-opt exosome biogenesis pathways both for assembling infectious particles and for establishing host permissiveness. On the basis of these and other properties, exosomes are being developed as therapeutic agents in multiple disease models.
Collapse
Affiliation(s)
- D Michiel Pegtel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Stephen J Gould
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| |
Collapse
|
16
|
ERM Proteins at the Crossroad of Leukocyte Polarization, Migration and Intercellular Adhesion. Int J Mol Sci 2020; 21:ijms21041502. [PMID: 32098334 PMCID: PMC7073024 DOI: 10.3390/ijms21041502] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Ezrin, radixin and moesin proteins (ERMs) are plasma membrane (PM) organizers that link the actin cytoskeleton to the cytoplasmic tail of transmembrane proteins, many of which are adhesion receptors, in order to regulate the formation of F-actin-based structures (e.g., microspikes and microvilli). ERMs also effect transmission of signals from the PM into the cell, an action mainly exerted through the compartmentalized activation of the small Rho GTPases Rho, Rac and Cdc42. Ezrin and moesin are the ERMs more highly expressed in leukocytes, and although they do not always share functions, both are mainly regulated through phosphatidylinositol 4,5-bisphosphate (PIP2) binding to the N-terminal band 4.1 protein-ERM (FERM) domain and phosphorylation of a conserved Thr in the C-terminal ERM association domain (C-ERMAD), exerting their functions through a wide assortment of mechanisms. In this review we will discuss some of these mechanisms, focusing on how they regulate polarization and migration in leukocytes, and formation of actin-based cellular structures like the phagocytic cup-endosome and the immune synapse in macrophages/neutrophils and lymphocytes, respectively, which represent essential aspects of the effector immune response.
Collapse
|
17
|
Jeong J, Kim W, Hens J, Dann P, Schedin P, Friedman PA, Wysolmerski JJ. NHERF1 Is Required for Localization of PMCA2 and Suppression of Early Involution in the Female Lactating Mammary Gland. Endocrinology 2019; 160:1797-1810. [PMID: 31087002 PMCID: PMC6619491 DOI: 10.1210/en.2019-00230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Prior studies have demonstrated that the calcium pump, plasma membrane calcium ATPase 2 (PMCA2), mediates calcium transport into milk and prevents mammary epithelial cell death during lactation. PMCA2 also regulates cell proliferation and cell death in breast cancer cells, in part by maintaining the receptor tyrosine kinase ErbB2/HER2 within specialized plasma membrane domains. Furthermore, the regulation of PMCA2 membrane localization and activity in breast cancer cells requires its interaction with the PDZ domain-containing scaffolding molecule sodium-hydrogen exchanger regulatory factor (NHERF) 1. In this study, we asked whether NHERF1 also interacts with PMCA2 in normal mammary epithelial cells during lactation. Our results demonstrate that NHERF1 expression is upregulated during lactation and that it interacts with PMCA2 at the apical membrane of secretory luminal epithelial cells. Similar to PMCA2, NHERF1 expression is rapidly reduced by milk stasis after weaning. Examining lactating NHERF1 knockout (KO) mice showed that NHERF1 contributes to the proper apical location of PMCA2, for proper apical-basal polarity in luminal epithelial cells, and that it participates in the suppression of Stat3 activation and the prevention of premature mammary gland involution. Additionally, we found that PMCA2 also interacts with the closely related scaffolding molecule, NHERF2, at the apical membrane, which likely maintains PMCA2 at the plasma membrane of mammary epithelial cells in lactating NHERF1KO mice. Based on these data, we conclude that, during lactation, NHERF1 is required for the proper expression and apical localization of PMCA2, which, in turn, contributes to preventing the premature activation of Stat3 and the lysosome-mediated cell death pathway that usually occur only early in mammary involution.
Collapse
Affiliation(s)
- Jaekwang Jeong
- Section of Endocrinology and Metabolism, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Wonnam Kim
- Division of Pharmacology, College of Korean Medicine, Semyung University, Jecheon, Republic of Korea
| | - Julie Hens
- Section of Endocrinology and Metabolism, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Pamela Dann
- Section of Endocrinology and Metabolism, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Pepper Schedin
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Peter A Friedman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John J Wysolmerski
- Section of Endocrinology and Metabolism, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Correspondence: John J. Wysolmerski, MD, Section of Endocrinology and Metabolism, Department of Internal Medicine, TAC S123a, Yale University School of Medicine, 333 Cedar Street, FMT 102, Box 208020, New Haven, Connecticut 06520. E-mail:
| |
Collapse
|
18
|
Gold MR, Reth MG. Antigen Receptor Function in the Context of the Nanoscale Organization of the B Cell Membrane. Annu Rev Immunol 2019; 37:97-123. [DOI: 10.1146/annurev-immunol-042718-041704] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The B cell antigen receptor (BCR) plays a central role in the self/nonself selection of B lymphocytes and in their activation by cognate antigen during the clonal selection process. It was long thought that most cell surface receptors, including the BCR, were freely diffusing and randomly distributed. Since the advent of superresolution techniques, it has become clear that the plasma membrane is compartmentalized and highly organized at the nanometer scale. Hence, a complete understanding of the precise conformation and activation mechanism of the BCR must take into account the organization of the B cell plasma membrane. We review here the recent literature on the nanoscale organization of the lymphocyte membrane and discuss how this new information influences our view of the conformational changes that the BCR undergoes during activation.
Collapse
Affiliation(s)
- Michael R. Gold
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michael G. Reth
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
- Department of Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, 79108 Freiburg, Germany
| |
Collapse
|
19
|
Michie KA, Bermeister A, Robertson NO, Goodchild SC, Curmi PMG. Two Sides of the Coin: Ezrin/Radixin/Moesin and Merlin Control Membrane Structure and Contact Inhibition. Int J Mol Sci 2019; 20:ijms20081996. [PMID: 31018575 PMCID: PMC6515277 DOI: 10.3390/ijms20081996] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022] Open
Abstract
The merlin-ERM (ezrin, radixin, moesin) family of proteins plays a central role in linking the cellular membranes to the cortical actin cytoskeleton. Merlin regulates contact inhibition and is an integral part of cell–cell junctions, while ERM proteins, ezrin, radixin and moesin, assist in the formation and maintenance of specialized plasma membrane structures and membrane vesicle structures. These two protein families share a common evolutionary history, having arisen and separated via gene duplication near the origin of metazoa. During approximately 0.5 billion years of evolution, the merlin and ERM family proteins have maintained both sequence and structural conservation to an extraordinary level. Comparing crystal structures of merlin-ERM proteins and their complexes, a picture emerges of the merlin-ERM proteins acting as switchable interaction hubs, assembling protein complexes on cellular membranes and linking them to the actin cytoskeleton. Given the high level of structural conservation between the merlin and ERM family proteins we speculate that they may function together.
Collapse
Affiliation(s)
- Katharine A Michie
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| | - Adam Bermeister
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| | - Neil O Robertson
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| | - Sophia C Goodchild
- Department of Molecular Sciences, Macquarie University, Sydney 2109, Australia.
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
20
|
Manousopoulou A, Hamdan M, Fotopoulos M, Garay‐Baquero DJ, Teng J, Garbis SD, Cheong Y. Integrated Eutopic Endometrium and Non‐Depleted Serum Quantitative Proteomic Analysis Identifies Candidate Serological Markers of Endometriosis. Proteomics Clin Appl 2018; 13:e1800153. [DOI: 10.1002/prca.201800153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/06/2018] [Indexed: 01/06/2023]
Affiliation(s)
| | - Mukhri Hamdan
- Department of Obstetrics and GynaecologyFaculty of MedicineUniversity Malaysia 50603 Kuala Lumpur Malaysia
| | | | | | - Jie Teng
- Institute for Life SciencesUniversity of Southampton Southampton, SO17 1BJ UK
- School of PharmacyTianjin Medical University Tianjin China
| | - Spiros D. Garbis
- Institute for Life SciencesUniversity of Southampton Southampton, SO17 1BJ UK
- Proteome Exploration Laboratory - Beckman InstituteDivision of Biology and Biological EngineeringCalifornia Institute of Technology Pasadena, CA 91125 USA
| | - Ying Cheong
- Human Development and HealthUniversity of Southampton Southampton SO16 UK
- Complete Fertility Centre SouthamptonPrincess Anne Hospital Coxford Road Southampton SO16 5YA UK
| |
Collapse
|
21
|
Jeong J, Choi J, Kim W, Dann P, Takyar F, Gefter JV, Friedman PA, Wysolmerski JJ. Inhibition of ezrin causes PKCα-mediated internalization of erbb2/HER2 tyrosine kinase in breast cancer cells. J Biol Chem 2018; 294:887-901. [PMID: 30463939 PMCID: PMC6341383 DOI: 10.1074/jbc.ra118.004143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Unlike other ErbB family members, HER2 levels are maintained on the cell surface when the receptor is activated, allowing prolonged signaling and contributing to its transforming ability. Interactions between HER2, HSP90, PMCA2, and NHERF1 within specialized plasma membrane domains contribute to the membrane retention of HER2. We hypothesized that the scaffolding protein ezrin, which has been shown to interact with NHERF1, might also help stabilize the HER2-PMCA2-NHERF1 complex at the plasma membrane. Therefore, we examined ezrin expression and its relationship with HER2, NHERF1, and PMCA2 levels in murine and human breast cancers. We also used genetic knockdown and/or pharmacologic inhibition of ezrin, HSP90, NHERF1, PMCA2, and HER2 to examine the functional relationships between these factors and membrane retention of HER2. We found ezrin to be expressed at low levels at the apical surface of normal mammary epithelial cells, but its expression is up-regulated and correlates with HER2 expression in hyperplasia and tumors in murine mammary tumor virus-Neu mice, in human HER2-positive breast cancer cell lines, and in ductal carcinoma in situ and invasive breast cancers from human patients. In breast cancer cells, ezrin co-localizes and interacts with HER2, NHERF1, PMCA2, and HSP90 in specialized membrane domains, and inhibiting ezrin disrupts interactions between HER2, PMCA2, NHERF1, and HSP90, inhibiting HER2 signaling and causing PKCα-mediated internalization and degradation of HER2. Inhibition of ezrin synergizes with lapatinib in a PKCα-dependent fashion to inhibit proliferation and promote apoptosis in HER2-positive breast cancer cells. We conclude that ezrin stabilizes a multiprotein complex that maintains active HER2 at the cell surface.
Collapse
Affiliation(s)
- Jaekwang Jeong
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Jungmin Choi
- the Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Wonnam Kim
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510.,the Division of Pharmacology, College of Korean Medicine, Semyung University, Jecheon 27136, Republic of Korea, and
| | - Pamela Dann
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Farzin Takyar
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Julia V Gefter
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Peter A Friedman
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - John J Wysolmerski
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510,
| |
Collapse
|
22
|
The interaction of talin with the cell membrane is essential for integrin activation and focal adhesion formation. Proc Natl Acad Sci U S A 2018; 115:10339-10344. [PMID: 30254158 DOI: 10.1073/pnas.1806275115] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multicellular organisms have well-defined, tightly regulated mechanisms for cell adhesion. Heterodimeric αβ integrin receptors play central roles in this function and regulate processes for normal cell functions, including signaling, cell migration, and development, binding to the extracellular matrix, and senescence. They are involved in hemostasis and the immune response, participate in leukocyte function, and have biological implications in angiogenesis and cancer. Proper control of integrin activation for cellular communication with the external environment requires several physiological processes. Perturbation of these equilibria may lead to constitutive integrin activation that results in bleeding disorders. Furthermore, integrins play key roles in cancer progression and metastasis in which certain tumor types exhibit higher levels of various integrins. Thus, the integrin-associated signaling complex is important for cancer therapy development. During inside-out signaling, the cytoskeletal protein talin plays a key role in regulating integrin affinity whereby the talin head domain activates integrin by binding to the cytoplasmic tail of β-integrin and acidic membrane phospholipids. To understand the mechanism of integrin activation by talin, we determined the crystal structure of the talin head domain bound to the acidic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2), allowing us to design a lipid-binding-deficient talin mutant. Our confocal microscopy with talin knockout cells suggests that the talin-cell membrane interaction seems essential for focal adhesion formation and stabilization. Basal integrin activation in Chinese hamster ovary cells suggests that the lipid-binding-deficient talin mutant inhibits integrin activation. Thus, membrane attachment of talin seems necessary for integrin activation and focal adhesion formation.
Collapse
|
23
|
A Comparative Immunohistochemical Study of Epithelial Membrane Antigen and NHERF1/EBP50 in the Diagnosis of Ependymomas. Appl Immunohistochem Mol Morphol 2018; 26:71-78. [DOI: 10.1097/pai.0000000000000384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Oh YS, Heo K, Kim EK, Jang JH, Bae SS, Park JB, Kim YH, Song M, Kim SR, Ryu SH, Kim IH, Suh PG. Dynamic relocalization of NHERF1 mediates chemotactic migration of ovarian cancer cells toward lysophosphatidic acid stimulation. Exp Mol Med 2017; 49:e351. [PMID: 28684865 PMCID: PMC5565956 DOI: 10.1038/emm.2017.88] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/28/2016] [Accepted: 01/09/2017] [Indexed: 01/05/2023] Open
Abstract
NHERF1/EBP50 (Na+/H+ exchanger regulating
factor 1; Ezrin-binding phosphoprotein of 50 kDa) organizes stable
protein complexes beneath the apical membrane of polar epithelial cells. By
contrast, in cancer cells without any fixed polarity, NHERF1 often localizes in
the cytoplasm. The regulation of cytoplasmic NHERF1 and its role in cancer
progression remain unclear. In this study, we found that, upon lysophosphatidic
acid (LPA) stimulation, cytoplasmic NHERF1 rapidly translocated to the plasma
membrane, and subsequently to cortical protrusion structures, of ovarian cancer
cells. This movement depended on direct binding of NHERF1 to C-terminally
phosphorylated ERM proteins (cpERMs). Moreover, NHERF1 depletion downregulated
cpERMs and further impaired cpERM-dependent remodeling of the cell cortex,
suggesting reciprocal regulation between these proteins. The LPA-induced protein
complex was highly enriched in migratory pseudopodia, whose formation was
impaired by overexpression of NHERF1 truncation mutants. Consistent with this,
NHERF1 depletion in various types of cancer cells abolished chemotactic cell
migration toward a LPA gradient. Taken together, our findings suggest that the
high dynamics of cytosolic NHERF1 provide cancer cells with a means of
controlling chemotactic migration. This capacity is likely to be essential for
ovarian cancer progression in tumor microenvironments containing LPA.
Collapse
Affiliation(s)
- Yong-Seok Oh
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Kyun Heo
- Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Eung-Kyun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jin-Hyeok Jang
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sun Sik Bae
- MRC for Ischemic Tissue Regeneration, Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jong Bae Park
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Yun Hee Kim
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Minseok Song
- Synaptic Circuit Plasticity Laboratory, Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Sung Ho Ryu
- Division of Molecular and Life Science, Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - In-Hoo Kim
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
25
|
Cheng C, Nowak RB, Biswas SK, Lo WK, FitzGerald PG, Fowler VM. Tropomodulin 1 Regulation of Actin Is Required for the Formation of Large Paddle Protrusions Between Mature Lens Fiber Cells. Invest Ophthalmol Vis Sci 2017; 57:4084-99. [PMID: 27537257 PMCID: PMC4986768 DOI: 10.1167/iovs.16-19949] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose To elucidate the proteins required for specialized small interlocking protrusions and large paddle domains at lens fiber cell tricellular junctions (vertices), we developed a novel method to immunostain single lens fibers and studied changes in cell morphology due to loss of tropomodulin 1 (Tmod1), an F-actin pointed end–capping protein. Methods We investigated F-actin and F-actin–binding protein localization in interdigitations of Tmod1+/+ and Tmod1−/− single mature lens fibers. Results F-actin–rich small protrusions and large paddles were present along cell vertices of Tmod1+/+ mature fibers. In contrast, Tmod1−/− mature fiber cells lack normal paddle domains, while small protrusions were unaffected. In Tmod1+/+ mature fibers, Tmod1, β2-spectrin, and α-actinin are localized in large puncta in valleys between paddles; but in Tmod1−/− mature fibers, β2-spectrin was dispersed while α-actinin was redistributed at the base of small protrusions and rudimentary paddles. Fimbrin and Arp3 (actin-related protein 3) were located in puncta at the base of small protrusions, while N-cadherin and ezrin outlined the cell membrane in both Tmod1+/+ and Tmod1−/− mature fibers. Conclusions These results suggest that distinct F-actin organizations are present in small protrusions versus large paddles. Formation and/or maintenance of large paddle domains depends on a β2-spectrin–actin network stabilized by Tmod1. α-Actinin–crosslinked F-actin bundles are enhanced in absence of Tmod1, indicating altered cytoskeleton organization. Formation of small protrusions is likely facilitated by Arp3-branched and fimbrin-bundled F-actin networks, which do not depend on Tmod1. This is the first work to reveal the F-actin–associated proteins required for the formation of paddles between lens fibers.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Roberta B Nowak
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Paul G FitzGerald
- Department of Cell Biology and Human Anatomy, University of California, Davis, California, United States
| | - Velia M Fowler
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|
26
|
Jeong J, VanHouten JN, Kim W, Dann P, Sullivan C, Choi J, Sneddon WB, Friedman PA, Wysolmerski JJ. The scaffolding protein NHERF1 regulates the stability and activity of the tyrosine kinase HER2. J Biol Chem 2017; 292:6555-6568. [PMID: 28235801 DOI: 10.1074/jbc.m116.770883] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/02/2017] [Indexed: 12/19/2022] Open
Abstract
We examined whether the scaffolding protein sodium-hydrogen exchanger regulatory factor 1 (NHERF1) interacts with the calcium pump PMCA2 and the tyrosine kinase receptor ErbB2/HER2 in normal mammary epithelial cells and breast cancer cells. NHERF1 interacts with the PDZ-binding motif in PMCA2 in both normal and malignant breast cells. NHERF1 expression is increased in HER2-positive breast cancers and correlates with HER2-positive status in human ductal carcinoma in situ (DCIS) lesions and invasive breast cancers as well as with increased mortality in patients. NHERF1 is part of a multiprotein complex that includes PMCA2, HSP90, and HER2 within specific actin-rich and lipid raft-rich membrane signaling domains. Knocking down NHERF1 reduces PMCA2 and HER2 expression, inhibits HER2 signaling, dissociates HER2 from HSP90, and causes the internalization, ubiquitination, and degradation of HER2. These results demonstrate that NHERF1 acts with PMCA2 to regulate HER2 signaling and membrane retention in breast cancers.
Collapse
Affiliation(s)
- Jaekwang Jeong
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine
| | - Joshua N VanHouten
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine
| | - Wonnam Kim
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine
| | - Pamela Dann
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine
| | | | - Jungmin Choi
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520
| | - W Bruce Sneddon
- the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Peter A Friedman
- the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and.,Department of Structural Biology,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - John J Wysolmerski
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine,
| |
Collapse
|
27
|
Morrow KA, Das S, Meng E, Menezes ME, Bailey SK, Metge BJ, Buchsbaum DJ, Samant RS, Shevde LA. Loss of tumor suppressor Merlin results in aberrant activation of Wnt/β-catenin signaling in cancer. Oncotarget 2017; 7:17991-8005. [PMID: 26908451 PMCID: PMC4951266 DOI: 10.18632/oncotarget.7494] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/11/2016] [Indexed: 11/25/2022] Open
Abstract
The expression of the tumor suppressor Merlin is compromised in nervous system malignancies due to genomic aberrations. We demonstrated for the first time, that in breast cancer, Merlin protein expression is lost due to proteasome-mediated elimination. Immunohistochemical analysis of tumor tissues from patients with metastatic breast cancer revealed characteristically reduced Merlin expression. Importantly, we identified a functional role for Merlin in impeding breast tumor xenograft growth and reducing invasive characteristics. We sought to determine a possible mechanism by which Merlin accomplishes this reduction in malignant activity. We observed that breast and pancreatic cancer cells with loss of Merlin show an aberrant increase in the activity of β-catenin concomitant with nuclear localization of β-catenin. We discovered that Merlin physically interacts with β-catenin, alters the sub-cellular localization of β-catenin, and significantly reduces the protein levels of β-catenin by targeting it for degradation through the upregulation of Axin1. Consequently, restoration of Merlin inhibited β-catenin-mediated transcriptional activity in breast and pancreatic cancer cells. We also present evidence that loss of Merlin sensitizes tumor cells to inhibition by compounds that target β-catenin-mediated activity. Thus, this study provides compelling evidence that Merlin reduces the malignant activity of pancreatic and breast cancer, in part by suppressing the Wnt/β-catenin pathway. Given the potent role of Wnt/β-catenin signaling in breast and pancreatic cancer and the flurry of activity to test β-catenin inhibitors in the clinic, our findings are opportune and provide evidence for Merlin in restraining aberrant activation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- K Adam Morrow
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Shamik Das
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Erhong Meng
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Sarah K Bailey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
28
|
Bassiri K, Ferluga S, Sharma V, Syed N, Adams CL, Lasonder E, Hanemann CO. Global Proteome and Phospho-proteome Analysis of Merlin-deficient Meningioma and Schwannoma Identifies PDLIM2 as a Novel Therapeutic Target. EBioMedicine 2017; 16:76-86. [PMID: 28126595 PMCID: PMC5474504 DOI: 10.1016/j.ebiom.2017.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/20/2022] Open
Abstract
Loss or mutation of the tumour suppressor Merlin predisposes individuals to develop multiple nervous system tumours, including schwannomas and meningiomas, sporadically or as part of the autosomal dominant inherited condition Neurofibromatosis 2 (NF2). These tumours display largely low grade features but their presence can lead to significant morbidity. Surgery and radiotherapy remain the only treatment options despite years of research, therefore an effective therapeutic is required. Unbiased omics studies have become pivotal in the identification of differentially expressed genes and proteins that may act as drug targets or biomarkers. Here we analysed the proteome and phospho-proteome of these genetically defined tumours using primary human tumour cells to identify upregulated/activated proteins and/or pathways. We identified over 2000 proteins in comparative experiments between Merlin-deficient schwannoma and meningioma compared to human Schwann and meningeal cells respectively. Using functional enrichment analysis we highlighted several dysregulated pathways and Gene Ontology terms. We identified several proteins and phospho-proteins that are more highly expressed in tumours compared to controls. Among proteins jointly dysregulated in both tumours we focused in particular on PDZ and LIM domain protein 2 (PDLIM2) and validated its overexpression in several tumour samples, while not detecting it in normal cells. We showed that shRNA mediated knockdown of PDLIM2 in both primary meningioma and schwannoma leads to significant reductions in cellular proliferation. To our knowledge, this is the first comprehensive assessment of the NF2-related meningioma and schwannoma proteome and phospho-proteome. Taken together, our data highlight several commonly deregulated factors, and indicate that PDLIM2 may represent a novel, common target for meningioma and schwannoma. Proteome and phosphoproteome of Merlin-deficient schwannomas and meningiomas were analysed. Comparative studies highlighted several pathways relevant for therapeutic intervention. PDLIM2 was identified as a novel, commonly upregulated protein in both tumours. PDLIM2 knockdown led to a significant reduction in proliferation in both cell types.
Loss or mutation of the protein Merlin causes a genetic condition known as Neurofibromatosis 2 (NF2) characterised by the growth of schwannomas and meningiomas. We analysed several of these tumour samples and identified over 2000 proteins in comparative experiments between Merlin-deficient schwannoma and meningioma compared to normal controls. We identified PDZ and LIM domain protein 2 (PDLIM2) as overexpressed in both tumour types and further showed that knockdown of PDLIM2 leads to significant reductions in cellular proliferation. Taken together, our data highlight several deregulated signalling pathways, and indicate that PDLIM2 may represent a novel, common target for meningioma and schwannoma.
Collapse
Affiliation(s)
- Kayleigh Bassiri
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - Sara Ferluga
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - Vikram Sharma
- School of Biomedical and Healthcare Sciences, Plymouth University, Drakes Circus, Plymouth PL4 8AA, UK
| | - Nelofer Syed
- John Fulcher Neuro-oncology Laboratory, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London W6 8RP, UK
| | - Claire L Adams
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - Edwin Lasonder
- School of Biomedical and Healthcare Sciences, Plymouth University, Drakes Circus, Plymouth PL4 8AA, UK
| | - C Oliver Hanemann
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK.
| |
Collapse
|
29
|
Wang Z, Ma B, Li H, Xiao X, Zhou W, Liu F, Zhang B, Zhu M, Yang Q, Zeng Y, Sun Y, Sun S, Wang Y, Zhang Y, Weng H, Chen L, Ye M, An X, Liu J. Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC. Oncotarget 2016; 7:509-23. [PMID: 26575790 PMCID: PMC4808014 DOI: 10.18632/oncotarget.6312] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 12/15/2022] Open
Abstract
Protein 4.1N is a member of protein 4.1 family and has been recognized as a potential tumor suppressor in solid tumors. Here, we aimed to investigate the role and mechanisms of 4.1N in non-small cell lung cancer (NSCLC). We confirmed that the expression level of 4.1N was inversely correlated with the metastatic properties of NSCLC cell lines and histological grade of clinical NSCLC tissues. Specific knockdown of 4.1N promoted tumor cell proliferation, migration and adhesion in vitro, and tumor growth and metastasis in mouse xenograft models. Furthermore, we identified PP1 as a novel 4.1N-interacting molecule, and the FERM domain of 4.1N mediated the interaction between 4.1N and PP1. Further, ectopic expression of 4.1N could inactivate JNK-c-Jun signaling pathway through enhancing PP1 activity and interaction between PP1 and p-JNK. Correspondingly, expression of potential downstream metastasis targets (ezrin and MMP9) and cell cycle targets (p53, p21 and p19) of JNK-c-Jun pathway were also regulated by 4.1N. Our data suggest that down-regulation of 4.1N expression is a critical step for NSCLC development and that repression of JNK-c-Jun signaling through PP1 is one of the key anti-tumor mechanisms of 4.1N.
Collapse
Affiliation(s)
- Zi Wang
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China.,Department of Medicine, University of California, Irvine, CA, USA
| | - Bianyin Ma
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Hui Li
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Xiaojuan Xiao
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Weihua Zhou
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China.,Department of Biochemistry, College of Medicine, Jishou University, Jishou, China
| | - Feng Liu
- Department of Medicine, University of California, Irvine, CA, USA
| | - Bin Zhang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Min Zhu
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Qin Yang
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Yayue Zeng
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Yang Sun
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, China
| | - Shuming Sun
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Yanpeng Wang
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Yibin Zhang
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Haibo Weng
- College of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Lixiang Chen
- College of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, China
| | - Xiuli An
- College of Life Sciences, Zhengzhou University, Zhengzhou, China.,Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA
| | - Jing Liu
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
30
|
Structural characterization suggests models for monomeric and dimeric forms of full-length ezrin. Biochem J 2016; 473:2763-82. [DOI: 10.1042/bcj20160541] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/29/2016] [Indexed: 12/12/2022]
Abstract
Ezrin is a member of the ERM (ezrin–radixin–moesin) family of proteins that have been conserved through metazoan evolution. These proteins have dormant and active forms, where the latter links the actin cytoskeleton to membranes. ERM proteins have three domains: an N-terminal FERM [band Four-point-one (4.1) ERM] domain comprising three subdomains (F1, F2, and F3); a helical domain; and a C-terminal actin-binding domain. In the dormant form, FERM and C-terminal domains form a stable complex. We have determined crystal structures of the active FERM domain and the dormant FERM:C-terminal domain complex of human ezrin. We observe a bistable array of phenylalanine residues in the core of subdomain F3 that is mobile in the active form and locked in the dormant form. As subdomain F3 is pivotal in binding membrane proteins and phospholipids, these transitions may facilitate activation and signaling. Full-length ezrin forms stable monomers and dimers. We used small-angle X-ray scattering to determine the solution structures of these species. As expected, the monomer shows a globular domain with a protruding helical coiled coil. The dimer shows an elongated dumbbell structure that is twice as long as the monomer. By aligning ERM sequences spanning metazoan evolution, we show that the central helical region is conserved, preserving the heptad repeat. Using this, we have built a dimer model where each monomer forms half of an elongated antiparallel coiled coil with domain-swapped FERM:C-terminal domain complexes at each end. The model suggests that ERM dimers may bind to actin in a parallel fashion.
Collapse
|
31
|
Binding of EBP50 to Nox organizing subunit p47phox is pivotal to cellular reactive species generation and altered vascular phenotype. Proc Natl Acad Sci U S A 2016; 113:E5308-17. [PMID: 27540115 DOI: 10.1073/pnas.1514161113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite numerous reports implicating NADPH oxidases (Nox) in the pathogenesis of many diseases, precise regulation of this family of professional reactive oxygen species (ROS) producers remains unclear. A unique member of this family, Nox1 oxidase, functions as either a canonical or hybrid system using Nox organizing subunit 1 (NoxO1) or p47(phox), respectively, the latter of which is functional in vascular smooth muscle cells (VSMC). In this manuscript, we identify critical requirement of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50; aka NHERF1) for Nox1 activation and downstream responses. Superoxide (O2 (•-)) production induced by angiotensin II (AngII) was absent in mouse EBP50 KO VSMC vs. WT. Moreover, ex vivo incubation of aortas with AngII showed a significant increase in O2 (•-) in WT but not EBP50 or Nox1 nulls. Similarly, lipopolysaccharide (LPS)-induced oxidative stress was attenuated in femoral arteries from EBP50 KO vs. WT. In silico analyses confirmed by confocal microscopy, immunoprecipitation, proximity ligation assay, FRET, and gain-/loss-of-function mutagenesis revealed binding of EBP50, via its PDZ domains, to a specific motif in p47(phox) Functional studies revealed AngII-induced hypertrophy was absent in EBP50 KOs, and in VSMC overexpressing EBP50, Nox1 gene silencing abolished VSMC hypertrophy. Finally, ex vivo measurement of lumen diameter in mouse resistance arteries exhibited attenuated AngII-induced vasoconstriction in EBP50 KO vs. WT. Taken together, our data identify EBP50 as a previously unidentified regulator of Nox1 and support that it promotes Nox1 activity by binding p47(phox) This interaction is pivotal for agonist-induced smooth muscle ROS, hypertrophy, and vasoconstriction and has implications for ROS-mediated physiological and pathophysiological processes.
Collapse
|
32
|
Miyawaki A, Mitsuhara Y, Orimoto A, Nakayasu Y, Tsunoda SI, Obana M, Maeda M, Nakayama H, Yoshioka Y, Tsutsumi Y, Fujio Y. Moesin is activated in cardiomyocytes in experimental autoimmune myocarditis and mediates cytoskeletal reorganization with protrusion formation. Am J Physiol Heart Circ Physiol 2016; 311:H476-86. [PMID: 27342875 DOI: 10.1152/ajpheart.00180.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/16/2016] [Indexed: 12/19/2022]
Abstract
Acute myocarditis is a self-limiting disease. Most patients with myocarditis recover without cardiac dysfunction in spite of limited capacity of myocardial regeneration. Therefore, to address intrinsic reparative machinery of inflamed hearts, we investigated the cellular dynamics of cardiomyocytes in response to inflammation using experimental autoimmune myocarditis (EAM) model. EAM was induced by immunization of BALB/c mice with α-myosin heavy chain peptides twice. The inflammatory reaction was evoked with myocardial damage with the peak at 3 wk after the first immunization (EAM3w). Morphological and functional restoration started from EAM3w, when active protrusion formation, a critical process of myocardial healing, was observed in cardiomyocytes. Shotgun proteomics revealed that cytoskeletal proteins were preferentially increased in cardiomyocytes at EAM3w, compared with preimmunized (EAM0w) hearts, and that moesin was the most remarkably upregulated among them. Immunoblot analyses demonstrated that the expression of both total and phosphorylated moesin was upregulated in isolated cardiomyocytes from EAM3w hearts. Immunofluorescence staining showed that moesin was localized at cardiomyocyte protrusions at EAM3w. Adenoviral vectors expressing wild-type, constitutively active and inactive form of moesin (wtMoesin, caMoesin, and iaMoesin, respectively) were transfected in neonatal rat cardiomyocytes. The overexpression of wtMoesin and caMoesin resulted in protrusion formation, while not iaMoesin. Finally, we found that cardiomyocyte protrusions were accompanied by cell-cell contact formation. The expression of moesin was upregulated in cardiomyocytes under inflammation, inducing protrusion formation in a phosphorylation-dependent fashion. Moesin signal could be a novel therapeutic target that stimulates myocardial repair by promoting contact formation of cardiomyocytes.
Collapse
Affiliation(s)
- Akimitsu Miyawaki
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | - Yusuke Mitsuhara
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | - Aya Orimoto
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | - Yusuke Nakayasu
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | - Shin-Ichi Tsunoda
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Saitoasagi, Ibaraki, Osaka, Japan; and
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | - Makiko Maeda
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | - Hiroyuki Nakayama
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | - Yasuo Yoshioka
- Department of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | - Yasuo Tsutsumi
- Department of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka, Suita, Osaka, Japan;
| |
Collapse
|
33
|
Merlin inhibits Wnt/β-catenin signaling by blocking LRP6 phosphorylation. Cell Death Differ 2016; 23:1638-47. [PMID: 27285107 DOI: 10.1038/cdd.2016.54] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 12/20/2022] Open
Abstract
Merlin, encoded by the NF2 gene, is a tumor suppressor that acts by inhibiting mitogenic signaling and is mutated in Neurofibromatosis type II (NF2) disease, although its molecular mechanism is not fully understood. Here, we observed that Merlin inhibited Wnt/β-catenin signaling by blocking phosphorylation of LRP6, which is necessary for Wnt signal transduction, whereas mutated Merlin in NF2 patients did not. Treatment with Wnt3a enhanced phosphorylation of Ser518 in Merlin via activation of PAK1 in a PIP2-dependent manner. Phosphorylated Merlin dissociated from LRP6, allowing for phosphorylation of LRP6. Tissues from NF2 patients exhibited higher levels of β-catenin, and proliferation of RT4-D6P2T rat schwannoma cells was significantly reduced by treatment with chemical inhibitors of Wnt/β-catenin signaling. Taken together, our findings suggest that sustained activation of Wnt/β-catenin signaling due to abrogation of Merlin-mediated inhibition of LRP6 phosphorylation may be a cause of NF2 disease.
Collapse
|
34
|
He P, Zhao L, No YR, Karvar S, Yun CC. The NHERF1 PDZ1 domain and IRBIT interact and mediate the activation of Na+/H+ exchanger 3 by ANG II. Am J Physiol Renal Physiol 2016; 311:F343-51. [PMID: 27279487 DOI: 10.1152/ajprenal.00247.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/01/2016] [Indexed: 11/22/2022] Open
Abstract
Na(+)/H(+) exchanger (NHE)3, a major Na(+) transporter in the luminal membrane of the proximal tubule, is subject to ANG II regulation in renal Na(+)/fluid absorption and blood pressure control. We have previously shown that inositol 1,4,5-trisphosphate receptor-binding protein released with inositol 1,4,5-trisphosphate (IRBIT) mediates ANG II-induced exocytosis of NHE3 in cultured proximal tubule epithelial cells. In searching for scaffold protein(s) that coordinates with IRBIT in NHE3 trafficking, we found that NHE regulatory factor (NHERF)1, NHE3, and IRBIT proteins were coexpressed in the same macrocomplexes and that loss of ANG II type 1 receptors decreased their expression in the renal brush-border membrane. We found that NHERF1 was required for ANG II-mediated forward trafficking and activation of NHE3 in cultured cells. ANG II induced a concomitant increase of NHERF1 interactions with NHE3 and IRBIT, which were abolished when the NHERF1 PDZ1 domain was removed. Overexpression of a yellow fluorescent protein-NHERF1 construct that lacks PDZ1, but not PDZ2, failed to exaggerate the ANG II-dependent increase of NHE3 expression in the apical membrane. Moreover, exogenous expression of PDZ1 exerted a dominant negative effect on NHE3 activation by ANG II. We further demonstrated that IRBIT was indispensable for the ANG II-provoked increase in NHERF1-NHE3 interactions and that phosphorylation of IRBIT at Ser(68) was necessary for the assembly of the NHEF1-IRBIT-NHE3 complex. Taken together, our findings suggest that NHERF1 mediates ANG II-induced activation of renal NHE3, which requires coordination between IRBIT and the NHERF1 PDZ1 domain in binding and transporting NHE3.
Collapse
Affiliation(s)
- Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia;
| | - Luqing Zhao
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Department of Gastroenterology, Beijing Hospital of Traditional Chinese Medicine affiliated with Capital Medical University, Beijing, China
| | - Yi Ran No
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Serhan Karvar
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - C Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Atlanta Veterans Affairs Medical Center, Decatur, Georgia; and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
35
|
Expression alterations define unique molecular characteristics of spinal ependymomas. Oncotarget 2016; 6:19780-91. [PMID: 25909290 PMCID: PMC4637320 DOI: 10.18632/oncotarget.3715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/11/2015] [Indexed: 12/18/2022] Open
Abstract
Ependymomas are glial tumors that originate in either intracranial or spinal regions. Although tumors from different regions are histologically similar, they are biologically distinct. We therefore sought to identify molecular characteristics of spinal ependymomas (SEPN) in order to better understand the disease biology of these tumors. Using gene expression profiles of 256 tumor samples, we identified increased expression of 1,866 genes in SEPN when compared to intracranial ependymomas. These genes are mainly related to anterior/posterior pattern specification, response to oxidative stress, glial cell differentiation, DNA repair, and PPAR signalling, and also significantly enriched with cellular senescence genes (P = 5.5 × 10-03). In addition, a high number of significantly down-regulated genes in SEPN are localized to chromosome 22 (81 genes from chr22: 43,325,255 - 135,720,974; FDR = 1.77 × 10-23 and 22 genes from chr22: 324,739 - 32,822,302; FDR = 2.07 × 10-09) including BRD1, EP300, HDAC10, HIRA, HIC2, MKL1, and NF2. Evaluation of NF2 co-expressed genes further confirms the enrichment of chromosome 22 regions. Finally, systematic integration of chromosome 22 genes with interactome and NF2 co-expression data identifies key candidate genes. Our results reveal unique molecular characteristics of SEPN such as altered expression of cellular senescence and chromosome 22 genes.
Collapse
|
36
|
Gungor-Ordueri NE, Celik-Ozenci C, Cheng CY. Ezrin: a regulator of actin microfilaments in cell junctions of the rat testis. Asian J Androl 2016; 17:653-8. [PMID: 25652626 PMCID: PMC4492059 DOI: 10.4103/1008-682x.146103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ezrin, radixin, moesin and merlin (ERM) proteins are highly homologous actin-binding proteins that share extensive sequence similarity with each other. These proteins tether integral membrane proteins and their cytoplasmic peripheral proteins (e.g., adaptors, nonreceptor protein kinases and phosphatases) to the microfilaments of actin-based cytoskeleton. Thus, these proteins are crucial to confer integrity of the apical membrane domain and its associated junctional complex, namely the tight junction and the adherens junction. Since ectoplasmic specialization (ES) is an F-actin-rich testis-specific anchoring junction-a highly dynamic ultrastructure in the seminiferous epithelium due to continuous transport of germ cells, in particular spermatids, across the epithelium during the epithelial cycle-it is conceivable that ERM proteins are playing an active role in these events. Although these proteins were first reported almost 25 years and have since been extensively studied in multiple epithelia/endothelia, few reports are found in the literature to examine their role in the actin filament bundles at the ES. Studies have shown that ezrin is also a constituent protein of the actin-based tunneling nanotubes (TNT) also known as intercellular bridges, which are transient cytoplasmic tubular ultrastructures that transport signals, molecules and even organelles between adjacent and distant cells in an epithelium to coordinate cell events that occur across an epithelium. Herein, we critically evaluate recent data on ERM in light of recent findings in the field in particular ezrin regarding its role in actin dynamics at the ES in the testis, illustrating additional studies are warranted to examine its physiological significance in spermatogenesis.
Collapse
Affiliation(s)
| | | | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA
| |
Collapse
|
37
|
Cortical actin and the plasma membrane: inextricably intertwined. Curr Opin Cell Biol 2016; 38:81-9. [PMID: 26986983 DOI: 10.1016/j.ceb.2016.02.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/09/2016] [Accepted: 02/25/2016] [Indexed: 11/22/2022]
Abstract
The plasma membrane serves as a barrier, separating the cell from its external environment. Simultaneously it acts as a site for information transduction, entry of nutrients, receptor signaling, and adapts to the shape of the cell. This requires local control of organization at multiple scales in this heterogeneous fluid lipid bilayer with a plethora of proteins and a closely juxtaposed dynamic cortical cytoskeleton. New membrane models highlight the influence of the underlying cortical actin on the diffusion of membrane components. Myosin motors as well as proteins that remodel actin filaments have additionally been implicated in defining the organization of many membrane constituents. Here we provide a perspective of the intimate relationship of the membrane lipid matrix and the underlying cytoskeleton.
Collapse
|
38
|
Cheng C, Nowak RB, Fowler VM. The lens actin filament cytoskeleton: Diverse structures for complex functions. Exp Eye Res 2016; 156:58-71. [PMID: 26971460 DOI: 10.1016/j.exer.2016.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 01/05/2023]
Abstract
The eye lens is a transparent and avascular organ in the front of the eye that is responsible for focusing light onto the retina in order to transmit a clear image. A monolayer of epithelial cells covers the anterior hemisphere of the lens, and the bulk of the lens is made up of elongated and differentiated fiber cells. Lens fiber cells are very long and thin cells that are supported by sophisticated cytoskeletal networks, including actin filaments at cell junctions and the spectrin-actin network of the membrane skeleton. In this review, we highlight the proteins that regulate diverse actin filament networks in the lens and discuss how these actin cytoskeletal structures assemble and function in epithelial and fiber cells. We then discuss methods that have been used to study actin in the lens and unanswered questions that can be addressed with novel techniques.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roberta B Nowak
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Velia M Fowler
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
39
|
Pore D, Gupta N. The ezrin-radixin-moesin family of proteins in the regulation of B-cell immune response. Crit Rev Immunol 2016; 35:15-31. [PMID: 25746045 DOI: 10.1615/critrevimmunol.2015012327] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dynamic reorganization of the cortical cytoskeleton is essential for numerous cellular processes, including B- and T-cell activation and migration. The ezrin-radixin-moesin (ERM) family of proteins plays structural and regulatory roles in the rearrangement of plasma membrane flexibility and protrusions through its members' reversible interaction with cortical actin filaments and the plasma membrane. Recent studies demonstrated that ERM proteins not only are involved in cytoskeletal organization but also offer a platform for the transmission of signals in response to a variety of extracellular stimuli through their ability to cross-link transmembrane receptors with downstream signaling components. In this review, we summarize present knowledge relating to ERMs and recent progress made toward elucidating a novel role for them in the regulation of B-cell function in health and disease.
Collapse
Affiliation(s)
- Debasis Pore
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Neetu Gupta
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
40
|
Resistin, a fat-derived secretory factor, promotes metastasis of MDA-MB-231 human breast cancer cells through ERM activation. Sci Rep 2016; 6:18923. [PMID: 26729407 PMCID: PMC4700449 DOI: 10.1038/srep18923] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/30/2015] [Indexed: 01/08/2023] Open
Abstract
Resistin, an adipocyte-secreted factor, is known to be elevated in breast cancer patients. However, the molecular mechanism by which resistin acts is not fully understood. The aim of this study was to investigate whether resistin could stimulate invasion and migration of breast cancer cells. Here, we report that resistin stimulated invasion and migration of breast cancer cells as well as phosphorylation of c-Src. Inhibition of c-Src blocked resistin-induced breast cancer cell invasion. Resistin increased intracellular calcium concentration, and chelation of intracellular calcium blocked resistin-mediated activation of Src. Resistin also induced phosphorylation of protein phosphatase 2A (PP2A). Inhibition of c-Src blocked resistin-mediated PP2A phosphorylation. In addition, resistin increased phosphorylation of PKCα. Inhibition of PP2A enhanced resistin-induced PKCα phosphorylation, demonstrating that PP2A activity is critical for PKCα phosphorylation. Resistin also increased phosphorylation of ezrin, radixin, and moesin (ERM). Additionally, ezrin interacted with PKCα, and resistin promoted co-localization of ezrin and PKCα. Either inhibition of c-Src and PKCα or knock-down of ezrin blocked resistin-induced breast cancer cells invasion. Moreover, resistin increased expression of vimentin, a key molecule for cancer cell invasion. Knock-down of ezrin abrogated resistin-induced vimentin expression. These results suggest that resistin play as a critical regulator of breast cancer metastasis.
Collapse
|
41
|
Sauvanet C, Wayt J, Pelaseyed T, Bretscher A. Structure, Regulation, and Functional Diversity of Microvilli on the Apical Domain of Epithelial Cells. Annu Rev Cell Dev Biol 2015; 31:593-621. [DOI: 10.1146/annurev-cellbio-100814-125234] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cécile Sauvanet
- Department of Molecular Biology and Genetics and Weill Institute for Molecular and Cell Biology, Cornell University, Ithaca, New York 14853;
| | - Jessica Wayt
- Department of Molecular Biology and Genetics and Weill Institute for Molecular and Cell Biology, Cornell University, Ithaca, New York 14853;
| | - Thaher Pelaseyed
- Department of Molecular Biology and Genetics and Weill Institute for Molecular and Cell Biology, Cornell University, Ithaca, New York 14853;
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics and Weill Institute for Molecular and Cell Biology, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
42
|
Kremer KN, Dudakovic A, Hess AD, Smith BD, Karp JE, Kaufmann SH, Westendorf JJ, van Wijnen AJ, Hedin KE. Histone Deacetylase Inhibitors Target the Leukemic Microenvironment by Enhancing a Nherf1-Protein Phosphatase 1α-TAZ Signaling Pathway in Osteoblasts. J Biol Chem 2015; 290:29478-92. [PMID: 26491017 DOI: 10.1074/jbc.m115.668160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 01/20/2023] Open
Abstract
Disrupting the protective signals provided by the bone marrow microenvironment will be critical for more effective combination drug therapies for acute myeloid leukemia (AML). Cells of the osteoblast lineage that reside in the endosteal niche have been implicated in promoting survival of AML cells. Here, we investigated how to prevent this protective interaction. We previously showed that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis of AML cells, unless the leukemic cells receive protective signals provided by differentiating osteoblasts (8, 10). We now identify a novel signaling pathway in differentiating osteoblasts that can be manipulated to disrupt the osteoblast-mediated protection of AML cells. Treating differentiating osteoblasts with histone deacetylase inhibitors (HDACi) abrogated their ability to protect co-cultured AML cells from SDF-1-induced apoptosis. HDACi prominently up-regulated expression of the Nherf1 scaffold protein, which played a major role in preventing osteoblast-mediated protection of AML cells. Protein phosphatase-1α (PP1α) was identified as a novel Nherf1 interacting protein that acts as the downstream mediator of this response by promoting nuclear localization of the TAZ transcriptional modulator. Moreover, independent activation of either PP1α or TAZ was sufficient to prevent osteoblast-mediated protection of AML cells even in the absence of HDACi. Together, these results indicate that HDACi target the AML microenvironment by enhancing activation of the Nherf1-PP1α-TAZ pathway in osteoblasts. Selective drug targeting of this osteoblast signaling pathway may improve treatments of AML by rendering leukemic cells in the bone marrow more susceptible to apoptosis.
Collapse
Affiliation(s)
| | | | - Allan D Hess
- the Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland 21287
| | - B Douglas Smith
- the Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland 21287
| | - Judith E Karp
- the Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland 21287
| | - Scott H Kaufmann
- Oncology and Molecular Pharmacology & Experimental Therapeutics and
| | - Jennifer J Westendorf
- Orthopedic Surgery, the Center of Regenerative Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905 and
| | - Andre J van Wijnen
- Orthopedic Surgery, the Center of Regenerative Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905 and
| | | |
Collapse
|
43
|
Kreimann EL, Ratajska M, Kuzniacka A, Demacopulo B, Stukan M, Limon J. A novel splicing mutation in the SLC9A3R1 gene in tumors from ovarian cancer patients. Oncol Lett 2015; 10:3722-3726. [PMID: 26788197 DOI: 10.3892/ol.2015.3796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 08/25/2015] [Indexed: 01/01/2023] Open
Abstract
The aim of the present study was to investigate novel molecular markers that could improve the diagnosis of ovarian cancer patients or be of predictive value. The sequence of the sodium-hydrogen antiporter 3 regulator 1 (SLC9A3R1) gene that codes for the PDZ2 motif of the Na+/H+ exchanger regulatory factor 1 (NHERF1) protein was analyzed. Changes in migration and cell transformation, and alterations of growth factor signaling pathways have been described in cells lacking endogenous NHERF1 or expressing an isoform lacking the function of the PDZ2 domain. Exons 2 and 3, together with flanking intronic sequences of the SLC9A3R1 gene, were amplified and bi-directionally sequenced in 31 primary tumor samples from epithelial ovarian cancer patients. In total, 3 different previously undescribed mutations were detected in 8 out of 31 serous adenocarcinoma tumor samples (25.8%). Bioinformatics analysis predicted a significant effect in the splicing process as a result of the mutations that could disrupt the NHERF1 PDZ2 domain. Point mutations in consensus splicing recognition are a major cause of the splicing defects that are found in several diseases, including cancer. It has previously been shown that a lack of exon 2 and disruption of the PDZ2 domain contribute to cell transformation and leads to modifications in the physiological regulation of the conformational state of NHERF1. Further studies in bigger groups of ovarian cancer patients will determine the importance of this mutation in disease progression and patient survival.
Collapse
Affiliation(s)
- Erica Lorena Kreimann
- Department of Radiobiology, National Atomic Energy Commission of Argentina, San Martín, Buenos Aires B1650KNA, Argentina
| | - Magdalena Ratajska
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk 80211, Poland
| | - Alina Kuzniacka
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk 80211, Poland
| | - Brenda Demacopulo
- Department of Radiobiology, National Atomic Energy Commission of Argentina, San Martín, Buenos Aires B1650KNA, Argentina
| | - Maciej Stukan
- Department of Gynecological Oncology, Gdynia Oncology Centre, Powstania Styczniowego, Gdynia 81519, Poland
| | - Janusz Limon
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk 80211, Poland
| |
Collapse
|
44
|
Blasky AJ, Mangan A, Prekeris R. Polarized protein transport and lumen formation during epithelial tissue morphogenesis. Annu Rev Cell Dev Biol 2015; 31:575-91. [PMID: 26359775 DOI: 10.1146/annurev-cellbio-100814-125323] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the major challenges in biology is to explain how complex tissues and organs arise from the collective action of individual polarized cells. The best-studied model of this process is the cross talk between individual epithelial cells during their polarization to form the multicellular epithelial lumen during tissue morphogenesis. Multiple mechanisms of apical lumen formation have been proposed. Some epithelial lumens form from preexisting polarized epithelial structures. However, de novo lumen formation from nonpolarized cells has recently emerged as an important driver of epithelial tissue morphogenesis, especially during the formation of small epithelial tubule networks. In this review, we discuss the latest findings regarding the mechanisms and regulation of de novo lumen formation in vitro and in vivo.
Collapse
Affiliation(s)
- Alex J Blasky
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045;
| | - Anthony Mangan
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045;
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045;
| |
Collapse
|
45
|
A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells. Nat Commun 2015; 6:7316. [PMID: 26095918 PMCID: PMC4557300 DOI: 10.1038/ncomms8316] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/27/2015] [Indexed: 12/15/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are thought to silence transposon and gene expression during development. However, the roles of piRNAs in somatic tissues are largely unknown. Here we report the identification of 555 piRNAs in human lung bronchial epithelial (HBE) and non-small cell lung cancer (NSCLC) cell lines, including 295 that do not exist in databases termed as piRNA-like sncRNAs or piRNA-Ls. Distinctive piRNA/piRNA-L expression patterns are observed between HBE and NSCLC cells. piRNA-like-163 (piR-L-163), the top downregulated piRNA-L in NSCLC cells, binds directly to phosphorylated ERM proteins (p-ERM), which is dependent on the central part of UUNNUUUNNUU motif in piR-L-163 and the RRRKPDT element in ERM. The piR-L-163/p-ERM interaction is critical for p-ERM's binding capability to filamentous actin (F-actin) and ERM-binding phosphoprotein 50 (EBP50). Thus, piRNA/piRNA-L may play a regulatory role through direct interaction with proteins in physiological and pathophysiological conditions. PIWI-interacting RNAs (piRNAs) suppress transposon and gene expression during development. Here, the authors identify many piRNAs and piRNA-like small RNAs in 11 human cell lines, and show that one piRNA-like small RNA binds to phosphorylated ERM proteins to regulate cancer cell migration and invasion.
Collapse
|
46
|
Babich V, Di Sole F. The Na+/H+ Exchanger-3 (NHE3) Activity Requires Ezrin Binding to Phosphoinositide and Its Phosphorylation. PLoS One 2015; 10:e0129306. [PMID: 26042733 PMCID: PMC4455992 DOI: 10.1371/journal.pone.0129306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/08/2015] [Indexed: 11/19/2022] Open
Abstract
Na+/H+ exchanger-3 (NHE3) plays an essential role in maintaining sodium and fluid homeostasis in the intestine and kidney epithelium. Thus, NHE3 is highly regulated and its function depends on binding to multiple regulatory proteins. Ezrin complexed with NHE3 affects its activity via not well-defined mechanisms. This study investigates mechanisms by which ezrin regulates NHE3 activity in epithelial Opossum Kidney cells. Ezrin is activated sequentially by phosphatidylinositol-4,5-bisphosphate (PIP2) binding and phosphorylation of threonine 567. Expression of ezrin lacking PIP2 binding sites inhibited NHE3 activity (-40%) indicating that ezrin binding to PIP2 is required for preserving NHE3 activity. Expression of a phosphomimetic ezrin mutated at the PIP2 binding region was sufficient not only to reverse NHE3 activity to control levels but also to increase its activity (+80%) similar to that of the expression of ezrin carrying the phosphomimetic mutation alone. Calcineurin Homologous Protein-1 (CHP1) is part, with ezrin, of the NHE3 regulatory complex. CHP1-mediated activation of NHE3 activity was blocked by expression of an ezrin variant that could not be phosphorylated but not by an ezrin variant unable to bind PIP2. Thus, for NHE3 activity under baseline conditions not only ezrin phosphorylation, but also ezrin spatial-temporal targeting on the plasma membrane via PIP2 binding is required; however, phosphorylation of ezrin appears to overcome the control of NHE3 transport. CHP1 action on NHE3 activity is not contingent on ezrin binding to PIP2 but rather on ezrin phosphorylation. These findings are important in understanding the interrelation and dynamics of a CHP1-ezrin-NHE3 regulatory complex.
Collapse
Affiliation(s)
- Victor Babich
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Francesca Di Sole
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Physiology and Pharmacology Department, Des Moines University, Iowa, United States of America
- * E-mail:
| |
Collapse
|
47
|
Singh V, Yang J, Cha B, Chen TE, Sarker R, Yin J, Avula LR, Tse M, Donowitz M. Sorting nexin 27 regulates basal and stimulated brush border trafficking of NHE3. Mol Biol Cell 2015; 26:2030-43. [PMID: 25851603 PMCID: PMC4472014 DOI: 10.1091/mbc.e14-12-1597] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/01/2015] [Indexed: 12/21/2022] Open
Abstract
In polarized epithelial cells, SNX27 regulates PDZ domain–directed trafficking of NHE3 from endosomes to the plasma membrane and increases the stability of brush border NHE3. This establishes SNX27 as an important regulator of polarized sorting in epithelial cells. Sorting nexin 27 (SNX27) contains a PDZ domain that is phylogenetically related to the PDZ domains of the NHERF proteins. Studies on nonepithelial cells have shown that this protein is located in endosomes, where it regulates trafficking of cargo proteins in a PDZ domain–dependent manner. However, the role of SNX27 in trafficking of cargo proteins in epithelial cells has not been adequately explored. Here we show that SNX27 directly interacts with NHE3 (C-terminus) primarily through the SNX27 PDZ domain. A combination of knockdown and reconstitution experiments with wild type and a PDZ domain mutant (GYGF → GAGA) of SNX27 demonstrate that the PDZ domain of SNX27 is required to maintain basal NHE3 activity and surface expression of NHE3 in polarized epithelial cells. Biotinylation-based recycling and degradation studies in intestinal epithelial cells show that SNX27 is required for the exocytosis (not endocytosis) of NHE3 from early endosome to plasma membrane. SNX27 is also required to regulate the retention of NHE3 on the plasma membrane. The findings of the present study extend our understanding of PDZ-mediated recycling of cargo proteins from endosome to plasma membrane in epithelial cells.
Collapse
Affiliation(s)
- Varsha Singh
- Gastroenterology Division, Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jianbo Yang
- Gastroenterology Division, Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Boyoung Cha
- Gastroenterology Division, Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Tiane-e Chen
- Gastroenterology Division, Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Rafiquel Sarker
- Gastroenterology Division, Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jianyi Yin
- Gastroenterology Division, Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Leela Rani Avula
- Gastroenterology Division, Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ming Tse
- Gastroenterology Division, Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Mark Donowitz
- Gastroenterology Division, Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
48
|
Pore D, Bodo J, Danda A, Yan D, Phillips JG, Lindner D, Hill BT, Smith MR, Hsi ED, Gupta N. Identification of Ezrin-Radixin-Moesin proteins as novel regulators of pathogenic B-cell receptor signaling and tumor growth in diffuse large B-cell lymphoma. Leukemia 2015; 29:1857-67. [PMID: 25801911 PMCID: PMC4558318 DOI: 10.1038/leu.2015.86] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a hematological cancer associated with an aggressive clinical course. The predominant subtypes of DLBCL display features of chronic or tonic B-cell antigen receptor (BCR) signaling. However, it is not known whether the spatial organization of the BCR contributes to the regulation of pro-survival signaling pathways and cell growth. Here, we show that primary DLBCL tumors and patient-derived DLBCL cell lines contain high levels of phosphorylated Ezrin-Radixin-Moesin (ERM) proteins. The surface BCRs in both activated B cell and germinal B cell subtype DLBCL cells co-segregate with phosphoERM suggesting that the cytoskeletal network may support localized BCR signaling and contribute to pathogenesis. Indeed, ablation of membrane-cytoskeletal linkages by dominant-negative mutants, pharmacological inhibition and knockdown of ERM proteins disrupted cell surface BCR organization, inhibited proximal and distal BCR signaling, and reduced the growth of DLBCL cell lines. In vivo administration of the ezrin inhibitor retarded the growth of DLBCL tumor xenografts, concomitant with reduction in intratumor phosphoERM levels, dampened pro-survival signaling and induction of apoptosis. Our results reveal a novel ERM-based spatial mechanism that is coopted by DLBCL cells to sustain tumor cell growth and survival.
Collapse
Affiliation(s)
- D Pore
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - J Bodo
- Department of Clinical Pathology, Institute of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - A Danda
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - D Yan
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - J G Phillips
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - D Lindner
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - B T Hill
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - M R Smith
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - E D Hsi
- Department of Clinical Pathology, Institute of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - N Gupta
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
49
|
Wei Z, Li Y, Ye F, Zhang M. Structural basis for the phosphorylation-regulated interaction between the cytoplasmic tail of cell polarity protein crumbs and the actin-binding protein moesin. J Biol Chem 2015; 290:11384-92. [PMID: 25792740 DOI: 10.1074/jbc.m115.643791] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Indexed: 11/06/2022] Open
Abstract
The type I transmembrane protein crumbs (Crb) plays critical roles in the establishment and maintenance of cell polarities in diverse tissues. As such, mutations of Crb can cause different forms of cancers. The cell intrinsic role of Crb in cell polarity is governed by its conserved, 37-residue cytoplasmic tail (Crb-CT) via binding to moesin and protein associated with Lin7-1 (PALS1). However, the detailed mechanism governing the Crb·moesin interaction and the balance of Crb in binding to moesin and PALS1 are not well understood. Here we report the 1.5 Å resolution crystal structure of the moesin protein 4.1/ezrin/radixin/moesin (FERM)·Crb-CT complex, revealing that both the canonical FERM binding motif and the postsynaptic density protein-95/Disc large-1/Zonula occludens-1 (PDZ) binding motif of Crb contribute to the Crb·moesin interaction. We further demonstrate that phosphorylation of Crb-CT by atypical protein kinase C (aPKC) disrupts the Crb·moesin association but has no impact on the Crb·PALS1 interaction. The above results indicate that, upon the establishment of the apical-basal polarity in epithelia, apical-localized aPKC can actively prevent the Crb·moesin complex formation and thereby shift Crb to form complex with PALS1 at apical junctions. Therefore, Crb may serve as an aPKC-mediated sensor in coordinating contact-dependent cell growth inhibition in epithelial tissues.
Collapse
Affiliation(s)
- Zhiyi Wei
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, and Department of Biology, South University of Science and Technology of China, Shenzhen 518055, China
| | - Youjun Li
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Fei Ye
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, and
| | - Mingjie Zhang
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, and
| |
Collapse
|
50
|
BELIZZI ANTONIA, GRECO MARIARAFFAELLA, RUBINO ROSA, PARADISO ANGELO, FORCINITI STEFANIA, ZEEBERG KATRINE, CARDONE ROSAANGELA, RESHKIN STEPHANJOEL. The scaffolding protein NHERF1 sensitizes EGFR-dependent tumor growth, motility and invadopodia function to gefitinib treatment in breast cancer cells. Int J Oncol 2014; 46:1214-24. [DOI: 10.3892/ijo.2014.2805] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/26/2014] [Indexed: 11/06/2022] Open
|