1
|
Li D, Wang L, Shi S, Deng X, Zeng X, Li Y, Li S, Bai P. Ubiquitin-like 4A alleviates the progression of intracerebral hemorrhage by regulating oxidative stress and mitochondrial damage. Exp Anim 2024; 73:421-432. [PMID: 38852999 DOI: 10.1538/expanim.24-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Acupuncture has obvious therapeutic effect on intracerebral hemorrhage (ICH). miR-34a-5p regulated by acupuncture was found to attenuate neurological deficits in ICH. However, the underlying mechanisms are unclear. Ubiquitin-like 4A (UBL4A) has not been studied in ICH. SD rats were injected with autologous blood to induce ICH and treated with Baihui-penetrating-Qubin acupuncture. Acupuncture resulted in an increase in forelimb placing test scores, and a decrease in corner test scores and brain water content of ICH rats. Histopathological examination showed that acupuncture inhibited ICH-induced inflammation, decreased damaged neurons and increased UBL4A expression. UBL4A overexpression increased cell viability, inhibited apoptosis, reduced reactive oxygen species (ROS) level and increased manganese superoxide dismutase (MnSOD) activity, mitochondrial membrane potential and mtDNA level in rat embryonic primary cortical neurons. miR-34a-5p knockdown increased UBL4A expression, apoptosis rate and ROS level in hemin-treated neurons. Dual luciferase assays showed that miR-34a-5p bound to UBL4A. Apoptotic cells and ROS level were increased in hemin-treated neurons with UBL4A and miR-34a-5p knockdown. We firstly demonstrate the inhibitory effect of UBL4A on neuronal apoptosis, and the regulation relationship between UBL4A and miR-34a-5p. This study provides a new candidate target for ICH treatment and more basis for elucidating the molecular mechanism of acupuncture. In the future, we will conduct a deeper exploration of the effects of UBL4A on ICH.
Collapse
Affiliation(s)
- Dan Li
- Department of Acupuncture, Beijing University of Chinese Medicine Third Affiliated Hospital, No. 51, Xiaoguan Street, Anwai, Chaoyang District, Beijing 100029, P.R. China
| | - Le Wang
- First Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, No. 6, Zone 1, Fangxingyuan, Fengtai District, Beijing, P.R. China
| | - Shufeng Shi
- Department of Tuina, Beijing University of Chinese Medicine Third Affiliated Hospital, No. 51, Xiaoguan Street, Anwai, Chaoyang District, Beijing 100029, P.R. China
| | - Xiaofeng Deng
- Department of Tuina, Beijing University of Chinese Medicine Third Affiliated Hospital, No. 51, Xiaoguan Street, Anwai, Chaoyang District, Beijing 100029, P.R. China
| | - Xuehan Zeng
- Department of Acupuncture, Beijing University of Chinese Medicine Third Affiliated Hospital, No. 51, Xiaoguan Street, Anwai, Chaoyang District, Beijing 100029, P.R. China
| | - Yunong Li
- Department of Acupuncture, Beijing University of Chinese Medicine Third Affiliated Hospital, No. 51, Xiaoguan Street, Anwai, Chaoyang District, Beijing 100029, P.R. China
| | - Shulin Li
- Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26, Heping Road, Xiangfang District, Harbin 150040, P.R. China
| | - Peng Bai
- Department of Acupuncture, Beijing University of Chinese Medicine Third Affiliated Hospital, No. 51, Xiaoguan Street, Anwai, Chaoyang District, Beijing 100029, P.R. China
| |
Collapse
|
2
|
Hao Q, Zhu X, Huang Y, Song J, Mou C, Zhang F, Miao R, Ma T, Wang P, Zhu Z, Chen C, Tong Q, Hu C, Chen Y, Dong H, Liu X, Jiang L, Wan J. E3 ligase DECREASED GRAIN SIZE 1 promotes degradation of a G-protein subunit and positively regulates grain size in rice. PLANT PHYSIOLOGY 2024; 196:948-960. [PMID: 38888990 DOI: 10.1093/plphys/kiae331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 05/01/2024] [Indexed: 06/20/2024]
Abstract
Grain size is one of the most important traits determining crop yield. However, the mechanism controlling grain size remains unclear. Here, we confirmed the E3 ligase activity of DECREASED GRAIN SIZE 1 (DGS1) in positive regulation of grain size in rice (Oryza sativa) suggested in a previous study. Rice G-protein subunit gamma 2 (RGG2), which negatively regulates grain size, was identified as an interacting protein of DGS1. Biochemical analysis suggested that DGS1 specifically interacts with canonical Gγ subunits (rice G-protein subunit gamma 1 [RGG1] and rice G-protein subunit gamma 2 [RGG2]) rather than non-canonical Gγ subunits (DENSE AND ERECT PANICLE 1 [DEP1], rice G-protein gamma subunit type C 2 [GCC2], GRAIN SIZE 3 [GS3]). We also identified the necessary domains for interaction between DGS1 and RGG2. As an E3 ligase, DGS1 ubiquitinated and degraded RGG2 via a proteasome pathway in several experiments. DGS1 also ubiquitinated RGG2 by its K140, K145, and S147 residues. Thus, this work identified a substrate of the E3 ligase DGS1 and elucidated the post-transcriptional regulatory mechanism of the G-protein signaling pathway in the control of grain size.
Collapse
Affiliation(s)
- Qixian Hao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingjie Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunshuai Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiawei Song
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Changling Mou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Fulin Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Miao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengfei Ma
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyan Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Qikai Tong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Hu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingying Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
4
|
Mu W, Zhi Y, Zhou J, Wang C, Chai K, Fan Z, Lv G. Endoplasmic reticulum stress and quality control in relation to cisplatin resistance in tumor cells. Front Pharmacol 2024; 15:1419468. [PMID: 38948460 PMCID: PMC11211601 DOI: 10.3389/fphar.2024.1419468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
The endoplasmic reticulum (ER) is a crucial organelle that orchestrates key cellular functions like protein folding and lipid biosynthesis. However, it is highly sensitive to disturbances that lead to ER stress. In response, the unfolded protein response (UPR) activates to restore ER homeostasis, primarily through three sensors: IRE1, ATF6, and PERK. ERAD and autophagy are crucial in mitigating ER stress, yet their dysregulation can lead to the accumulation of misfolded proteins. Cisplatin, a commonly used chemotherapy drug, induces ER stress in tumor cells, activating complex signaling pathways. Resistance to cisplatin stems from reduced drug accumulation, activation of DNA repair, and anti-apoptotic mechanisms. Notably, cisplatin-induced ER stress can dualistically affect tumor cells, promoting either survival or apoptosis, depending on the context. ERAD is crucial for degrading misfolded proteins, whereas autophagy can protect cells from apoptosis or enhance ER stress-induced apoptosis. The complex interaction between ER stress, cisplatin resistance, ERAD, and autophagy opens new avenues for cancer treatment. Understanding these processes could lead to innovative strategies that overcome chemoresistance, potentially improving outcomes of cisplatin-based cancer treatments. This comprehensive review provides a multifaceted perspective on the complex mechanisms of ER stress, cisplatin resistance, and their implications in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Moris VC, Bruneau L, Berthe J, Heuskin AC, Penninckx S, Ritter S, Weber U, Durante M, Danchin EGJ, Hespeels B, Doninck KV. Ionizing radiation responses appear incidental to desiccation responses in the bdelloid rotifer Adineta vaga. BMC Biol 2024; 22:11. [PMID: 38273318 PMCID: PMC10809525 DOI: 10.1186/s12915-023-01807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The remarkable resistance to ionizing radiation found in anhydrobiotic organisms, such as some bacteria, tardigrades, and bdelloid rotifers has been hypothesized to be incidental to their desiccation resistance. Both stresses produce reactive oxygen species and cause damage to DNA and other macromolecules. However, this hypothesis has only been investigated in a few species. RESULTS In this study, we analyzed the transcriptomic response of the bdelloid rotifer Adineta vaga to desiccation and to low- (X-rays) and high- (Fe) LET radiation to highlight the molecular and genetic mechanisms triggered by both stresses. We identified numerous genes encoding antioxidants, but also chaperones, that are constitutively highly expressed, which may contribute to the protection of proteins against oxidative stress during desiccation and ionizing radiation. We also detected a transcriptomic response common to desiccation and ionizing radiation with the over-expression of genes mainly involved in DNA repair and protein modifications but also genes with unknown functions that were bdelloid-specific. A distinct transcriptomic response specific to rehydration was also found, with the over-expression of genes mainly encoding Late Embryogenesis Abundant proteins, specific heat shock proteins, and glucose repressive proteins. CONCLUSIONS These results suggest that the extreme resistance of bdelloid rotifers to radiation might indeed be a consequence of their capacity to resist complete desiccation. This study paves the way to functional genetic experiments on A. vaga targeting promising candidate proteins playing central roles in radiation and desiccation resistance.
Collapse
Affiliation(s)
- Victoria C Moris
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium.
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium.
| | - Lucie Bruneau
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Jérémy Berthe
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Anne-Catherine Heuskin
- Namur Research Institute for Life Sciences (NARILIS), Laboratory of Analysis By Nuclear Reactions (LARN), University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet - Université Libre de Bruxelles, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| | - Sylvia Ritter
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Uli Weber
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 06903, Sophia Antipolis, France
| | - Boris Hespeels
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Karine Van Doninck
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium
| |
Collapse
|
6
|
Wang Y, Yue J, Yang N, Zheng C, Zheng Y, Wu X, Yang J, Zhang H, Liu L, Ning Y, Bhadauria V, Zhao W, Xie Q, Peng YL, Chen Q. An ERAD-related ubiquitin-conjugating enzyme boosts broad-spectrum disease resistance and yield in rice. NATURE FOOD 2023; 4:774-787. [PMID: 37591962 DOI: 10.1038/s43016-023-00820-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/10/2023] [Indexed: 08/19/2023]
Abstract
Rice is a staple crop for over half of the global population. However, blast disease caused by Magnaporthe orzae can result in more than a 30% loss in rice yield in epidemic years. Although some major resistance genes bolstering blast resistance have been identified in rice, their stacking in elite cultivars usually leads to yield penalties. Here we report that OsUBC45, a ubiquitin-conjugating enzyme functioning in the endoplasmic reticulum-associated protein degradation system, promotes broad-spectrum disease resistance and yield in rice. OsUBC45 is induced upon infection by M. oryzae, and its overexpression enhances resistance to blast disease and bacterial leaf blight by elevating pathogen-associated molecular pattern-triggered immunity (PTI) while nullifying the gene-attenuated PTI. The OsUBC45 overexpression also increases grain yield by over 10%. Further, OsUBC45 enhances the degradation of glycogen synthase kinase 3 OsGSK3 and aquaporin OsPIP2;1, which negatively regulate the grain size and PTI, respectively. The OsUBC45 reported in our study has the potential for improving yield and disease resistance for sustainable rice production.
Collapse
Affiliation(s)
- Yu Wang
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Jiaolin Yue
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Nan Yang
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Chuan Zheng
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Yunna Zheng
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Xi Wu
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Jun Yang
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Huawei Zhang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Lijing Liu
- School of Life Sciences, Shandong University, Qingdao, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Vijai Bhadauria
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Wensheng Zhao
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - You-Liang Peng
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
| | - Qian Chen
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Nguyen T, Mills JC, Cho CJ. The coordinated management of ribosome and translation during injury and regeneration. Front Cell Dev Biol 2023; 11:1186638. [PMID: 37427381 PMCID: PMC10325863 DOI: 10.3389/fcell.2023.1186638] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Diverse acute and chronic injuries induce damage responses in the gastrointestinal (GI) system, and numerous cell types in the gastrointestinal tract demonstrate remarkable resilience, adaptability, and regenerative capacity in response to stress. Metaplasias, such as columnar and secretory cell metaplasia, are well-known adaptations that these cells make, the majority of which are epidemiologically associated with an elevated cancer risk. On a number of fronts, it is now being investigated how cells respond to injury at the tissue level, where diverse cell types that differ in proliferation capacity and differentiation state cooperate and compete with one another to participate in regeneration. In addition, the cascades or series of molecular responses that cells show are just beginning to be understood. Notably, the ribosome, a ribonucleoprotein complex that is essential for translation on the endoplasmic reticulum (ER) and in the cytoplasm, is recognized as the central organelle during this process. The highly regulated management of ribosomes as key translational machinery, and their platform, rough endoplasmic reticulum, are not only essential for maintaining differentiated cell identity, but also for achieving successful cell regeneration after injury. This review will cover in depth how ribosomes, the endoplasmic reticulum, and translation are regulated and managed in response to injury (e.g., paligenosis), as well as why this is essential for the proper adaptation of a cell to stress. For this, we will first discuss how multiple gastrointestinal organs respond to stress through metaplasia. Next, we will cover how ribosomes are generated, maintained, and degraded, in addition to the factors that govern translation. Finally, we will investigate how ribosomes and translation machinery are dynamically regulated in response to injury. Our increased understanding of this overlooked cell fate decision mechanism will facilitate the discovery of novel therapeutic targets for gastrointestinal tract tumors, focusing on ribosomes and translation machinery.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jason C. Mills
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Charles J. Cho
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
8
|
Bergmann AC, Houen G, Trier NH. Determination of crucial epitopes in the sperm protein calsperin employing synthetic peptides and monoclonal antibodies. J Pept Sci 2023; 29:e3450. [PMID: 36082776 PMCID: PMC10078156 DOI: 10.1002/psc.3450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023]
Abstract
The chaperone protein calsperin is exclusively expressed in the testes and is essential for sperm migration from the uterus into the oviduct. During spermatogenesis, calsperin interacts with ADAM3, a spermatozoon membrane protein required for fertilization. In this study, we characterized a calsperin epitope by using two monoclonal antibodies and resin-bound calsperin peptides, which were tested for reactivity using a modified enzyme-linked immunosorbent assay. An epitope located at the C-terminal end of calsperin corresponding to amino acids 228 WEKHFLDAS237 was identified. Three hot spot amino acids were essential for antibody binding whereas the remaining amino acids in the identified epitope appeared to be essential for bringing the critical contact residues into an α-helix structure. No notable sequence similarity was determined between the identified calsperin epitope and calreticulin, a chaperone homologue with sequence similarity, indicating that the identified epitope was specific for calsperin. Characterization of the calsperin epitope and of the two antibodies tested may be used in assays for further characterization of calsperin, where knowledge about the binding sites is necessary, for example, in sandwich assays. Moreover, studies like these may be used to study the function of calsperin during spermatogenesis and fertilization in detail and to develop new male contraception methods by targeting calsperin and mediating neutralization of its function.
Collapse
Affiliation(s)
- Ann Christina Bergmann
- Department of Autoimmunology and Biomarkers, Statens Serum Institute, Copenhagen, Denmark
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
9
|
Zhang D, Huang L, Jia Y, Zhang S, Bi X, Dai W. Integrated analysis of mRNA and microRNA expression profiles in hepatopancreas of Litopenaeus vannamei under acute exposure to MC-LR. Front Genet 2023; 14:1088191. [PMID: 36741320 PMCID: PMC9892846 DOI: 10.3389/fgene.2023.1088191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Intensive shrimp farming is often threatened by microcystins Hepatopancreas is the primary target organ of MCs in shrimp. To investigate the response of hepatopancreas to acute MC-LR exposure, the expression profiles of RNA-seq and miRNA-seq in the hepatopancreas of L. vannamei were determined, and data integration analysis was performed at 72 h after MC-LR injection. The expression of 5 DEGs and three DEMs were detected by Quantitative PCR (qPCR). The results showed that the cumulative mortality rate of shrimp in MC-LR treatment group was 41.1%. A total of 1229 differentially expressed genes (844 up- and 385 down-regulated) and 86 differentially expressed miRNAs (40 up- and 46 down-regulated) were identified after MC-LR exposure. Functional analysis indicated that DEGs is mainly involved in the oxidative activity process in molecular functional categories, and proteasome was the most enriched KEGG pathway for mRNAs profile. According to the functional annotation of target genes of DEMs, protein binding was the most important term in the GO category, and protein processing in endoplasmic reticulum (ER) was the most enriched KEGG pathway. The regulatory network of miRNAs and DEGs involved in the pathway related to protein degradation in endoplasmic reticulum was constructed, and miR-181-5p regulated many genes in this pathway. The results of qPCR showed that there were significant differences in the expression of five DEGs and three DEMs, which might play an important role in the toxicity and hepatopancreas detoxification of MC-LR in shrimp. The results revealed that MC-LR exposure affected the degradation pathway of misfolded protein in ER of L. vannamei hepatopancreas, and miR-181-5p might play an important role in the effect of MC-LR on the degradation pathway of misfolded protein.
Collapse
Affiliation(s)
| | | | | | - Shulin Zhang
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China
| | | | | |
Collapse
|
10
|
Physiological and Transcriptomic Responses of Illicium difengpi to Drought Stress. SUSTAINABILITY 2022. [DOI: 10.3390/su14127479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Illicium difengpi Kib and Kim, an endangered plant unique to karst areas in China, has evolved an extremely high tolerance to arid environments. To elucidate the molecular mechanisms of the response to drought stress in I. difengpi, physiological index determination and transcriptome sequencing experiments were conducted in biennial seedlings grown under different soil moisture conditions (70~80%, 40~50% and 10~20%). With increasing drought stress, the leaf chlorophyll content decreased, while the proline (Pro), soluble sugar (SS) and malondialdehyde (MDA) contents increased; superoxide dismutase (SOD) and peroxidase (POD) activities also increased. Transcriptome sequencing and pairwise comparisons of the treatments revealed 2489, 4451 and 753 differentially expressed genes (DEGs) in CK70~80 vs. XP40~50, CK70~80 vs. XP10~20 and XP40~50 vs. XP10~20, respectively. These DEGs were divided into seven clusters according to their expression trends, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment results of different clusters indicated that genes in the hormone signal transduction and osmotic regulation pathways were greatly activated under mild drought stress. When drought stress increased, the DEGs related to membrane system and protein modification and folding were all upregulated; simultaneously, chitin catabolism- and glycolysis/gluconeogenesis-related genes were continuously upregulated throughout drought stress, while the genes involved in photosynthesis were downregulated. Here, 244 transcription factors derived from 10 families were also identified. These results lay a foundation for further research on the adaptation of I. difengpi to arid environments in karst areas and the establishment of a core regulatory relationship in its drought resistance mechanism.
Collapse
|
11
|
Coordinative regulation of ERAD and selective autophagy in plants. Essays Biochem 2022; 66:179-188. [PMID: 35612379 DOI: 10.1042/ebc20210099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/30/2022]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) plays important roles in plant development, hormone signaling, and plant-environment stress interactions by promoting the clearance of certain proteins or soluble misfolded proteins through the ubiquitin-proteasome system. Selective autophagy is involved in the autophagic degradation of protein aggregates mediated by specific selective autophagy receptors. These two major degradation routes co-operate with each other to relieve the cytotoxicity caused by ER stress. In this review, we analyze ERAD and different types of autophagy, including nonselective macroautophagy and ubiquitin-dependent and ubiquitin-independent selective autophagy in plants, and specifically summarize the selective autophagy receptors characterized in plants. In addition to being a part of selective autophagy, ERAD components also serve as their cargos. Moreover, an ubiquitinated substrate can be delivered to two distinguishable degradation systems, while the underlying determinants remain elusive. These excellent findings suggest an interdependent but complicated relationship between ERAD and selective autophagy. According to this point, we propose several key issues that need to be addressed in the future.
Collapse
|
12
|
The Role of SBI2/ALG12/EBS4 in the Regulation of Endoplasmic Reticulum-Associated Degradation (ERAD) Studied by a Null Allele. Int J Mol Sci 2022; 23:ijms23105811. [PMID: 35628619 PMCID: PMC9147235 DOI: 10.3390/ijms23105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Redundancy and lethality is a long-standing problem in genetics but generating minimal and lethal phenotypes in the knockouts of the same gene by different approaches drives this problem to a new high. In Asn (N)-linked glycosylation, a complex and ubiquitous cotranslational and post-translational protein modification required for the transfer of correctly folded proteins and endoplasmic reticulum-associated degradation (ERAD) of misfolded proteins, ALG12 (EBS4) is an α 1, 6-mannosyltransferase catalyzing a mannose into Glc3Man9GlcNAc2. In Arabidopsis, T-DNA knockout alg12-T is lethal while likely ebs4 null mutants isolated by forward genetics are most healthy as weak alleles, perplexing researchers and demanding further investigations. Here, we isolated a true null allele, sbi2, with the W258Stop mutation in ALG12/EBS4. sbi2 restored the sensitivity of brassinosteroid receptor mutants bri1-5, bri1-9, and bri1-235 with ER-trapped BRI1 to brassinosteroids. Furthermore, sbi2 maturated earlier than the wild-type. Moreover, concomitant with impaired and misfolded proteins accumulated in the ER, sbi2 had higher sensitivity to tunicamycin and salt than the wild-type. Our findings thus clarify the role of SBI2/ALG12/EBS4 in the regulation of the ERAD of misfolded glycoproteins, and plant growth and stress response. Further, our study advocates the necessity and importance of using multiple approaches to validate genetics study.
Collapse
|
13
|
Marone MP, Campanari MFZ, Raya FT, Pereira GAG, Carazzolle MF. Fungal communities represent the majority of root-specific transcripts in the transcriptomes of Agave plants grown in semiarid regions. PeerJ 2022; 10:e13252. [PMID: 35529479 PMCID: PMC9070324 DOI: 10.7717/peerj.13252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/21/2022] [Indexed: 01/13/2023] Open
Abstract
Agave plants present drought resistance mechanisms, commercial applications, and potential for bioenergy production. Currently, Agave species are used to produce alcoholic beverages and sisal fibers in semi-arid regions, mainly in Mexico and Brazil. Because of their high productivities, low lignin content, and high shoot-to-root ratio, agaves show potential as biomass feedstock to bioenergy production in marginal areas. Plants host many microorganisms and understanding their metabolism can inform biotechnological purposes. Here, we identify and characterize fungal transcripts found in three fiber-producing agave cultivars (Agave fourcroydes, A. sisalana, and hybrid 11648). We used leaf, stem, and root samples collected from the agave germplasm bank located in the state of Paraiba, in the Brazilian semiarid region, which has faced irregular precipitation periods. We used data from a de novo assembled transcriptome assembly (all tissues together). Regardless of the cultivar, around 10% of the transcripts mapped to fungi. Surprisingly, most root-specific transcripts were fungal (58%); of these around 64% were identified as Ascomycota and 28% as Basidiomycota in the three communities. Transcripts that code for heat shock proteins (HSPs) and enzymes involved in transport across the membrane in Ascomycota and Basidiomycota, abounded in libraries generated from the three cultivars. Indeed, among the most expressed transcripts, many were annotated as HSPs, which appear involved in abiotic stress resistance. Most HSPs expressed by Ascomycota are small HSPs, highly related to dealing with temperature stresses. Also, some KEGG pathways suggest interaction with the roots, related to transport to outside the cell, such as exosome (present in the three Ascomycota communities) and membrane trafficking, which were further investigated. We also found chitinases among secreted CAZymes, that can be related to pathogen control. We anticipate that our results can provide a starting point to the study of the potential uses of agaves' fungi as biotechnological tools.
Collapse
Affiliation(s)
- Marina Püpke Marone
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Fabio Trigo Raya
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | - Gonçalo Amarante Guimarães Pereira
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil,Center for Computing and Engineering Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcelo Falsarella Carazzolle
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil,Center for Computing and Engineering Sciences, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
14
|
Endoplasmic Reticulum Stress and Unfolded Protein Response Signaling in Plants. Int J Mol Sci 2022; 23:ijms23020828. [PMID: 35055014 PMCID: PMC8775474 DOI: 10.3390/ijms23020828] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Plants are sensitive to a variety of stresses that cause various diseases throughout their life cycle. However, they have the ability to cope with these stresses using different defense mechanisms. The endoplasmic reticulum (ER) is an important subcellular organelle, primarily recognized as a checkpoint for protein folding. It plays an essential role in ensuring the proper folding and maturation of newly secreted and transmembrane proteins. Different processes are activated when around one-third of newly synthesized proteins enter the ER in the eukaryote cells, such as glycosylation, folding, and/or the assembling of these proteins into protein complexes. However, protein folding in the ER is an error-prone process whereby various stresses easily interfere, leading to the accumulation of unfolded/misfolded proteins and causing ER stress. The unfolded protein response (UPR) is a process that involves sensing ER stress. Many strategies have been developed to reduce ER stress, such as UPR, ER-associated degradation (ERAD), and autophagy. Here, we discuss the ER, ER stress, UPR signaling and various strategies for reducing ER stress in plants. In addition, the UPR signaling in plant development and different stresses have been discussed.
Collapse
|
15
|
Wang J, Chen M, Wang M, Zhao W, Zhang C, Liu X, Cai M, Qiu Y, Zhang T, Zhou H, Zhao W, Si S, Shao R. The novel ER stress inducer Sec C triggers apoptosis by sulfating ER cysteine residues and degrading YAP via ER stress in pancreatic cancer cells. Acta Pharm Sin B 2022; 12:210-227. [PMID: 35127381 PMCID: PMC8800039 DOI: 10.1016/j.apsb.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most lethal malignancies. Although gemcitabine (GEM) is a standard treatment for PAAD, resistance limits its application and therapy. Secoemestrin C (Sec C) is a natural compound from the endophytic fungus Emericella, and its anticancer activity has not been investigated since it was isolated. Our research is the first to indicate that Sec C is a broad-spectrum anticancer agent and could exhibit potently similar anticancer activity both in GEM-resistant and GEM-sensitive PAAD cells. Interestingly, Sec C exerted a rapid growth-inhibiting effect (80% death at 6 h), which might be beneficial for patients who need rapid tumor shrinkage before surgery. Liquid chromatography/mass spectrometry and N-acetyl-l-cysteine (NAC) reverse assays show that Sec C sulfates cysteines to disrupt disulfide-bonds formation in endoplasmic reticulum (ER) proteins to cause protein misfolding, leading to ER stress and disorder of lipid biosynthesis. Microarray data and subsequent assays show that ER stress-mediated ER-associated degradation (ERAD) ubiquitinates and downregulates YAP to enhance ER stress via destruction complex (YAP-Axin-GSK-βTrCP), which also elucidates a unique degrading style for YAP. Potent anticancer activity in GEM-resistant cells and low toxicity make Sec C a promising anti-PAAD candidate.
Collapse
Affiliation(s)
| | | | - Mengyan Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenxia Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Conghui Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiujun Liu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meilian Cai
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuhan Qiu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianshu Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huimin Zhou
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuyi Si
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
16
|
Oh H, Kang MK, Park SH, Kim DY, Kim SI, Oh SY, Na W, Shim JH, Lim SS, Kang YH. Asaronic acid inhibits ER stress sensors and boosts functionality of ubiquitin-proteasomal degradation in 7β-hydroxycholesterol-loaded macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153763. [PMID: 34601222 DOI: 10.1016/j.phymed.2021.153763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Misfolded proteins are formed in the endoplasmic reticulum (ER) due to diverse stimuli including oxidant production, calcium disturbance, and inflammatory factors. Accumulation of these non-native proteins in the ER evokes cellular stress involving the activation of unfolded protein response (UPR) and the execution of ER-associated degradation (ERAD). Naturally-occurring plant compounds are known to interfere with UPR due to their antioxidant and anti-inflammatory activities, leading to inhibition of ER stress. However, there are few studies dealing with the protective effects of natural compounds on the functionality of ERAD. PURPOSE The current study examined whether asaronic acid enhanced ubiquitin-proteasomal degradation in J774A.1 murine macrophages exposed to 7β-hydroxycholesterol, a risk factor for atherosclerosis. Asaronic acid (2,4,5-trimethoxybenzoic acid), identified as one of purple perilla constituents, has anti-diabetic and anti-inflammatory effects. Little is known regarding the effects of asaronic acid on the ERAD process and the ubiquitin-proteasomal degradation. METHODS AND RESULTS Murine macrophages were incubated with 28 μM 7β-hydroxycholesterol in absence and presence of 1-20 μΜ asaronic acid for up to 24 h. Nontoxic asaronic acid in macrophage diminished the activation of the ER stress sensors of ATF6, IRE1 and PERK stimulated by 7β-hydroxycholesterol. This methoxybenzoic acid down-regulated the oxysterol-induced expression of EDEM1, OS9, Sel1L-Hrd1 and p97/VCP1, all required for the recognition, recruitment and dislocation of misfolded proteins. On the other hand, asaronic acid enhanced the ubiquitin-proteasomal degradation of non-native proteins dislocated to the cytosol by 7β-hydroxycholesterol, which entailed the induction of the chaperones of Hsp70 and CHIP and the increased colocalization of ubiquitin and proteasomes. Taken together, asaronic acid attenuated the induction of the UPR-associated sensors and the dislocation-linked transmembrane components in the ER. Conversely, this compound enhanced the proteasomal degradation of dislocated non-native proteins in concert with the chaperones of Hsp70 and CHIP through ubiquitination. CONCLUSION These observations demonstrate that asaronic acid may be a potent atheroprotective agent as a natural chaperone targeting ER stress-associated macrophage injury.
Collapse
Affiliation(s)
- Hyeongjoo Oh
- Department of Food Science and Nutrition and The Korean Institute of Nutrition, Hallym University, Chuncheon, Kangwon-do 24252, Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition and The Korean Institute of Nutrition, Hallym University, Chuncheon, Kangwon-do 24252, Korea
| | - Sin-Hye Park
- Department of Food Science and Nutrition and The Korean Institute of Nutrition, Hallym University, Chuncheon, Kangwon-do 24252, Korea
| | - Dong Yeon Kim
- Department of Food Science and Nutrition and The Korean Institute of Nutrition, Hallym University, Chuncheon, Kangwon-do 24252, Korea
| | - Soo-Il Kim
- Department of Food Science and Nutrition and The Korean Institute of Nutrition, Hallym University, Chuncheon, Kangwon-do 24252, Korea
| | - Su Yeon Oh
- Department of Food Science and Nutrition and The Korean Institute of Nutrition, Hallym University, Chuncheon, Kangwon-do 24252, Korea
| | - Woojin Na
- Department of Food Science and Nutrition and The Korean Institute of Nutrition, Hallym University, Chuncheon, Kangwon-do 24252, Korea
| | - Jae-Hoon Shim
- Department of Food Science and Nutrition and The Korean Institute of Nutrition, Hallym University, Chuncheon, Kangwon-do 24252, Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition and The Korean Institute of Nutrition, Hallym University, Chuncheon, Kangwon-do 24252, Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition and The Korean Institute of Nutrition, Hallym University, Chuncheon, Kangwon-do 24252, Korea.
| |
Collapse
|
17
|
De Coninck T, Gistelinck K, Janse van Rensburg HC, Van den Ende W, Van Damme EJM. Sweet Modifications Modulate Plant Development. Biomolecules 2021; 11:756. [PMID: 34070047 PMCID: PMC8158104 DOI: 10.3390/biom11050756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Plant development represents a continuous process in which the plant undergoes morphological, (epi)genetic and metabolic changes. Starting from pollination, seed maturation and germination, the plant continues to grow and develops specialized organs to survive, thrive and generate offspring. The development of plants and the interplay with its environment are highly linked to glycosylation of proteins and lipids as well as metabolism and signaling of sugars. Although the involvement of these protein modifications and sugars is well-studied, there is still a long road ahead to profoundly comprehend their nature, significance, importance for plant development and the interplay with stress responses. This review, approached from the plants' perspective, aims to focus on some key findings highlighting the importance of glycosylation and sugar signaling for plant development.
Collapse
Affiliation(s)
- Tibo De Coninck
- Laboratory of Glycobiology & Biochemistry, Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (T.D.C.); (K.G.)
| | - Koen Gistelinck
- Laboratory of Glycobiology & Biochemistry, Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (T.D.C.); (K.G.)
| | - Henry C. Janse van Rensburg
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium; (H.C.J.v.R.); (W.V.d.E.)
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium; (H.C.J.v.R.); (W.V.d.E.)
| | - Els J. M. Van Damme
- Laboratory of Glycobiology & Biochemistry, Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (T.D.C.); (K.G.)
| |
Collapse
|
18
|
Wei YY, Liang S, Zhang YR, Lu JP, Lin FC, Liu XH. MoSec61β, the beta subunit of Sec61, is involved in fungal development and pathogenicity, plant immunity, and ER-phagy in Magnaporthe oryzae. Virulence 2020; 11:1685-1700. [PMID: 33200669 PMCID: PMC7714445 DOI: 10.1080/21505594.2020.1848983] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The process of protein translocation into the endoplasmic reticulum (ER) is the initial and decisive step in the biosynthesis of all secretory proteins and many soluble organelle proteins. In this process, the Sec61 complex is the protein-conducting channel for transport. In this study, we identified and characterized the β subunit of the Sec61 complex in Magnaporthe oryzae (MoSec61β). Compared with the wild-type strain Guy11, the ΔMosec61β mutant exhibited highly branched mycelial morphology, reduced conidiation, high sensitivity to cell wall integrity stress, severely reduced virulence to rice and barley, and restricted biotrophic invasion. The turgor pressure of ΔMosec61β was notably reduced, which affected the function of appressoria. Moreover, ΔMosec61β was also sensitive to oxidative stress and exhibited a reduced ability to overcome plant immunity. Further examination demonstrated that MoSec61β affected the normal secretion of the apoplastic effectors Bas4 and Slp1. In addition, ΔMosec61β upregulated the level of ER-phagy. In conclusion, our results demonstrate the importance of the roles played by MoSec61β in the fungal development and pathogenesis of M. oryzae.
Collapse
Affiliation(s)
- Yun-Yun Wei
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University , Hangzhou, China
| | - Shuang Liang
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University , Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study , Hangzhou, China
| | - Yun-Ran Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University , Hangzhou, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University , Hangzhou, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University , Hangzhou, China.,State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences , Hangzhou, China
| | - Xiao-Hong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University , Hangzhou, China
| |
Collapse
|
19
|
Narayan M. Revisiting the Formation of a Native Disulfide Bond: Consequences for Protein Regeneration and Beyond. Molecules 2020; 25:molecules25225337. [PMID: 33207635 PMCID: PMC7697891 DOI: 10.3390/molecules25225337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
Oxidative protein folding involves the formation of disulfide bonds and the regeneration of native structure (N) from the fully reduced and unfolded protein (R). Oxidative protein folding studies have provided a wealth of information on underlying physico-chemical reactions by which disulfide-bond-containing proteins acquire their catalytically active form. Initially, we review key events underlying oxidative protein folding using bovine pancreatic ribonuclease A (RNase A), bovine pancreatic trypsin inhibitor (BPTI) and hen-egg white lysozyme (HEWL) as model disulfide bond-containing folders and discuss consequential outcomes with regard to their folding trajectories. We re-examine the findings from the same studies to underscore the importance of forming native disulfide bonds and generating a “native-like” structure early on in the oxidative folding pathway. The impact of both these features on the regeneration landscape are highlighted by comparing ideal, albeit hypothetical, regeneration scenarios with those wherein a native-like structure is formed relatively “late” in the R→N trajectory. A special case where the desired characteristics of oxidative folding trajectories can, nevertheless, stall folding is also discussed. The importance of these data from oxidative protein folding studies is projected onto outcomes, including their impact on the regeneration rate, yield, misfolding, misfolded-flux trafficking from the endoplasmic reticulum (ER) to the cytoplasm, and the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mahesh Narayan
- The Department of Chemistry and Biochemistry, The University of Texas as El Paso, El Paso, TX 79968, USA
| |
Collapse
|
20
|
McWilliam HEG, Mak JYW, Awad W, Zorkau M, Cruz-Gomez S, Lim HJ, Yan Y, Wormald S, Dagley LF, Eckle SBG, Corbett AJ, Liu H, Li S, Reddiex SJJ, Mintern JD, Liu L, McCluskey J, Rossjohn J, Fairlie DP, Villadangos JA. Endoplasmic reticulum chaperones stabilize ligand-receptive MR1 molecules for efficient presentation of metabolite antigens. Proc Natl Acad Sci U S A 2020; 117:24974-24985. [PMID: 32958637 PMCID: PMC7547156 DOI: 10.1073/pnas.2011260117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The antigen-presenting molecule MR1 (MHC class I-related protein 1) presents metabolite antigens derived from microbial vitamin B2 synthesis to activate mucosal-associated invariant T (MAIT) cells. Key aspects of this evolutionarily conserved pathway remain uncharacterized, including where MR1 acquires ligands and what accessory proteins assist ligand binding. We answer these questions by using a fluorophore-labeled stable MR1 antigen analog, a conformation-specific MR1 mAb, proteomic analysis, and a genome-wide CRISPR/Cas9 library screen. We show that the endoplasmic reticulum (ER) contains a pool of two unliganded MR1 conformers stabilized via interactions with chaperones tapasin and tapasin-related protein. This pool is the primary source of MR1 molecules for the presentation of exogenous metabolite antigens to MAIT cells. Deletion of these chaperones reduces the ER-resident MR1 pool and hampers antigen presentation and MAIT cell activation. The MR1 antigen-presentation pathway thus co-opts ER chaperones to fulfill its unique ability to present exogenous metabolite antigens captured within the ER.
Collapse
Affiliation(s)
- Hamish E G McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia;
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC 3010, Australia
| | - Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Wael Awad
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Matthew Zorkau
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sebastian Cruz-Gomez
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hui Jing Lim
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Yuting Yan
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sam Wormald
- Division of Systems Biology and Personalised Medicine, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Laura F Dagley
- Division of Systems Biology and Personalised Medicine, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Haiyin Liu
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC 3010, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC 3010, Australia
| | - Scott J J Reddiex
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC 3010, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC 3010, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, CF14 4XN Cardiff, United Kingdom
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia;
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia;
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC 3010, Australia
| |
Collapse
|
21
|
Zhang HM, Qiu Y, Zhao G, Wang H, Chen YT, Aghakeshmiri S, Hanson P, Yang D. Cleavage and degradation of EDEM1 promotes coxsackievirus B3 replication via ATF6a-mediated unfolded protein response signalling. Cell Microbiol 2020; 22:e13198. [PMID: 32083795 DOI: 10.1111/cmi.13198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
Abstract
Our previous study of coxsackievirus B3 (CVB3)-induced unfolded protein responses (UPR) found that overexpression of ATF6a enhances CVB3 VP1 capsid protein production and increases viral particle formation. These findings implicate that ATF6a signalling benefits CVB3 replication. However, the mechanism by which ATF6a signalling is transduced to promote virus replication is unclear. In this study, using a Tet-On inducible ATF6a HeLa cell line, we found that ATF6a signalling downregulated the protein expression of the endoplasmic reticulum (ER) degradation-enhancing α-mannosidase-like protein 1 (EDEM1), resulting in accumulation of CVB3 VP1 protein; in contrast, expression of a dominant negative ATF6a had the opposite effect. Furthermore, we found that EDEM1 was cleaved by both CVB3 protease 3C and virus-activated caspase and subsequently degraded via the ubiquitin-proteasome pathway. However, overexpression of EDEM1 caused VP1 degradation, likely via a glycosylation-independent and ubiquitin-lysosome pathway. Finally, we demonstrated that CRISPR/Cas9-mediated knockout of EDEM1 increased VP1 accumulation and thus CVB3 replication. This is the first study to report the ER protein quality control of non-enveloped RNA virus and reveals a novel mechanism by which CVB3 evades host ER quality control pathways through cleavage and degradation of the UPR target gene EDEM1, to ultimately benefit its own replication.
Collapse
Affiliation(s)
- Huifang M Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| | - Ye Qiu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,College of Biology, Hunan University, Changsha, China
| | - Guangze Zhao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| | - Hua Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,School of Medical Science and Laboratory Medicine, Jiangsu University, Jiangsu, People's Republic of China
| | - Yankuan T Chen
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| | - Sana Aghakeshmiri
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| | - Paul Hanson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| | - Decheng Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| |
Collapse
|
22
|
Guo SH, Yu L, Liu YM, Wang FF, Chen YC, Wang Y, Qiu BL, Sang W. Digital gene expression profiling in larvae of Tribolium castaneum at different periods post UV-B exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:514-523. [PMID: 30861439 DOI: 10.1016/j.ecoenv.2019.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
UV-B radiation is an important environmental factor. Exposure to excess UV-B radiation can cause serious effects on the development, survival, and reproduction of different organisms. Plants and animals have developed many different strategies to cope with UV-B-induced damage, but the physiological response of insects to UV-B remains unclear. In the present study, the red flour beetle Tribolium castaneum (Herbst) was used to assess the stress response of UV-B. The underlying molecular mechanisms were explored using RNA sequencing. We investigated the transcriptomic profile of T. castaneum larvae at 4 and 24 h after treatment with UV-B radiation via digital gene expression analysis. The 310 and 996 differentially expressed genes were detected at 4 and 24 h, respectively. Then the biological functions and associated metabolic processes of these genes were determined by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis. The reliability of the data was verified using qRT-PCR. The results indicated that several differentially expressed genes are involved in antioxidation, DNA repair, protein folding, carbon flux diversion, and the extracellular matrix to protect against UV-B-induced damage. This study will increase our understanding of the molecular mechanism underlying insect response to UV-B radiation.
Collapse
Affiliation(s)
- Shu-Hao Guo
- Key Laboratory of Bio-Pesticide Creation and Application, South China Agricultural University, Guangzhou 510640, China
| | - Lin Yu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yan-Mei Liu
- Key Laboratory of Bio-Pesticide Creation and Application, South China Agricultural University, Guangzhou 510640, China
| | - Fei-Feng Wang
- Key Laboratory of Bio-Pesticide Creation and Application, South China Agricultural University, Guangzhou 510640, China
| | - Yu-Chen Chen
- Key Laboratory of Bio-Pesticide Creation and Application, South China Agricultural University, Guangzhou 510640, China
| | - Ye Wang
- Key Laboratory of Bio-Pesticide Creation and Application, South China Agricultural University, Guangzhou 510640, China
| | - Bao-Li Qiu
- Key Laboratory of Bio-Pesticide Creation and Application, South China Agricultural University, Guangzhou 510640, China
| | - Wen Sang
- Key Laboratory of Bio-Pesticide Creation and Application, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
23
|
Patrolling the nucleus: inner nuclear membrane-associated degradation. Curr Genet 2019; 65:1099-1106. [PMID: 31020383 PMCID: PMC6744382 DOI: 10.1007/s00294-019-00971-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Protein quality control and transport are important for the integrity of organelles such as the endoplasmic reticulum, but it is largely unknown how protein homeostasis is regulated at the nuclear envelope (NE) despite the connection between NE protein function and human disease. Elucidating mechanisms that regulate the NE proteome is key to understanding nuclear processes such as gene expression, DNA replication and repair as NE components, particularly proteins at the inner nuclear membrane (INM), are involved in the maintenance of nuclear structure, nuclear positioning and chromosome organization. Nuclear pore complexes control the entry and exit of proteins in and out of the nucleus, restricting movement across the nuclear membrane based on protein size, or the size of the extraluminal-facing domain of a transmembrane protein, providing one level of INM proteome regulation. Research in budding yeast has identified a protein quality control system that targets mislocalized and misfolded proteins at the INM. Here, we review what is known about INM-associated degradation, including recent evidence suggesting that it not only targets mislocalized or misfolded proteins, but also contributes to homeostasis of resident INM proteins.
Collapse
|
24
|
Stressed: The Unfolded Protein Response in T Cell Development, Activation, and Function. Int J Mol Sci 2019; 20:ijms20071792. [PMID: 30978945 PMCID: PMC6479341 DOI: 10.3390/ijms20071792] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022] Open
Abstract
The unfolded protein response (UPR) is a highly conserved pathway that allows cells to respond to stress in the endoplasmic reticulum caused by an accumulation of misfolded and unfolded protein. This is of great importance to secretory cells because, in order for proteins to traffic from the endoplasmic reticulum (ER), they need to be folded appropriately. While a wealth of literature has implicated UPR in immune responses, less attention has been given to the role of UPR in T cell development and function. This review discusses the importance of UPR in T cell development, homeostasis, activation, and effector functions. We also speculate about how UPR may be manipulated in T cells to ameliorate pathologies.
Collapse
|
25
|
Comparative proteomic study reveals the enhanced immune response with the blockade of interleukin 10 with anti-IL-10 and anti-IL-10 receptor antibodies in human U937 cells. PLoS One 2019; 14:e0213813. [PMID: 30897137 PMCID: PMC6428271 DOI: 10.1371/journal.pone.0213813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/01/2019] [Indexed: 01/25/2023] Open
Abstract
Blocking cytokine interleukin 10 (IL-10) at the time of immunisation enhances vaccine induced T cell responses and improves control of tumour cell growth in vivo. However, the effect of an IL-10 blockade on the biological function of macrophages has not been explored. In the current paper, a macrophage precursor cell line, U937 cells, was selected to investigate the differential expression of proteins and relevant cell signalling pathway changes, when stimulated with lipopolysaccharide (LPS) in the presence of antibodies to IL-10 or IL-10 receptor. We used a quantitative proteomic strategy to investigate variations in protein profiles of U937 cells following the treatments with LPS, LPS plus human anti-IL10 antibody and anti-IL10R antibody in 24hrs, respectively. The LPS treatment significantly activated actin-related cell matrix formation and immune response pathways. The addition of anti-IL10 and anti-IL10R antibody further promoted the immune response and potentially effect macrophage survival through PI3K/AKT signalling; however, the latter appeared to also upregulated oncogene XRCC5 and Cajal body associated processes.
Collapse
|
26
|
LRP5 controls cardiac QT interval by modulating the metabolic homeostasis of L-type calcium channel. Int J Cardiol 2019; 275:120-128. [PMID: 30309679 DOI: 10.1016/j.ijcard.2018.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 5 (LRP5) has been intensively studied as a co-receptor for β-catenin-dependent Wnt signaling. Emerging evidences have demonstrated β-catenin-independent functions of LRP5. However, the biological role of LRP5 in the mammalian heart is largely unknown. METHODS AND RESULTS Conditional cardiac-specific Lrp5 knockout (Lrp5-CKO) mice were generated by crossing Lrp5flox/flox mice with αMHC/MerCreMer mice. Lrp5-CKO mice consistently displayed normal cardiac structure and function. Telemetric electrocardiogram recordings revealed a short QT interval in Lrp5-CKO mice, which was tightly linked to the striking abbreviation of action potential duration (APD) in ventricular myocytes. The analysis of whole-cell currents indicated that a reduction in activity and protein expression of L-type calcium channel (LTCC), rather than other ion channels, contributed to the abnormality in APD. Furthermore, we showed that Lrp5 ablation induced a significant convergence of CaV1.2α1c proteins to the endoplasmic reticulum. Consequently, increased proteasomal degradation of these proteins was observed, which was independent of the Wnt/β-catenin signaling pathway. CONCLUSIONS LRP5 directly modulates the degradation of LTCC to control cardiac QT interval. These findings provide compelling evidence for the potential role of LRPs in cardiac electrophysiology.
Collapse
|
27
|
Pereira F, Rettel M, Stein F, Savitski MM, Collinson I, Römisch K. Effect of Sec61 interaction with Mpd1 on endoplasmic reticulum-associated degradation. PLoS One 2019; 14:e0211180. [PMID: 30682149 PMCID: PMC6347170 DOI: 10.1371/journal.pone.0211180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/08/2019] [Indexed: 01/16/2023] Open
Abstract
Proteins that misfold in the endoplasmic reticulum (ER) are transported back to the cytosol for ER-associated degradation (ERAD). The Sec61 channel is one of the candidates for the retrograde transport conduit. Channel opening from the ER lumen must be triggered by ERAD factors and substrates. Here we aimed to identify new lumenal interaction partners of the Sec61 channel by chemical crosslinking and mass spectrometry. In addition to known Sec61 interactors we detected ERAD factors including Cue1, Ubc6, Ubc7, Asi3, and Mpd1. We show that the CPY* ERAD factor Mpd1 binds to the lumenal Sec61 hinge region. Deletion of the Mpd1 binding site reduced the interaction between both proteins and caused an ERAD defect specific for CPY* without affecting protein import into the ER or ERAD of other substrates. Our data suggest that Mpd1 binding to Sec61 is a prerequisite for CPY* ERAD and confirm a role of Sec61 in ERAD of misfolded secretory proteins.
Collapse
Affiliation(s)
- Fabio Pereira
- Faculty of Natural Sciences and Technology, Saarland University, Saarbruecken, Germany
| | - Mandy Rettel
- Proteomics Core Facility, EMBL, Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL, Heidelberg, Germany
| | | | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Karin Römisch
- Faculty of Natural Sciences and Technology, Saarland University, Saarbruecken, Germany
- * E-mail:
| |
Collapse
|
28
|
Park JH, Kang CH, Nawkar GM, Lee ES, Paeng SK, Chae HB, Chi YH, Kim WY, Yun DJ, Lee SY. EMR, a cytosolic-abundant ring finger E3 ligase, mediates ER-associated protein degradation in Arabidopsis. THE NEW PHYTOLOGIST 2018; 220:163-177. [PMID: 29932218 DOI: 10.1111/nph.15279] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/18/2018] [Indexed: 05/16/2023]
Abstract
Investigation of the endoplasmic reticulum-associated degradation (ERAD) system in plants led to the identification of ERAD-mediating RING finger protein (EMR) as a plant-specific ERAD E3 ligase from Arabidopsis. EMR was significantly up-regulated under endoplasmic reticulum (ER) stress conditions. The EMR protein purified from bacteria displayed high E3 ligase activity, and tobacco leaf-produced EMR mediated mildew resistance locus O-12 (MLO12) degradation in a proteasome-dependent manner. Subcellular localization and coimmunoprecipitation analyses showed that EMR forms a complex with ubiquitin-conjugating enzyme 32 (UBC32) as a cytosolic interaction partner. Mutation of EMR and RNA interference (RNAi) increased the tolerance of plants to ER stress. EMR RNAi in the bri1-5 background led to partial recovery of the brassinosteroid (BR)-insensitive phenotypes as compared with the original mutant plants and increased ER stress tolerance. The presented results suggest that EMR is involved in the plant ERAD system that affects BR signaling under ER stress conditions as a novel Arabidopsis ring finger E3 ligase mainly present in cytosol while the previously identified ERAD E3 components are typically membrane-bound proteins.
Collapse
Affiliation(s)
- Joung Hun Park
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Chang Ho Kang
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Ganesh M Nawkar
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Eun Seon Lee
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Seol Ki Paeng
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Ho Byoung Chae
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Yong Hun Chi
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Woe Yeon Kim
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| |
Collapse
|
29
|
Wang J, Wang J, Lu Y, Fang Y, Gao X, Wang Z, Zheng W, Xu S. The heat responsive wheat TaRAD23 rescues developmental and thermotolerant defects of the rad23b mutant in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:23-31. [PMID: 30080608 DOI: 10.1016/j.plantsci.2018.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/30/2018] [Accepted: 04/30/2018] [Indexed: 05/24/2023]
Abstract
High temperature severely damage the growth and development of crops with climate change. To effectively screen heat responsive proteins in wheat (Triticum aestivum L.), the isobaric tandem mass tag (TMT)-labeled quantitative proteomic analysis and quantitative real-time PCR (qRT-PCR) were performed. Here, we found that a wheat RADIATION SENSITIVE 23 protein, TaRAD23, was up-regulated at both protein and RNA levels by exposing to heat stress. Sequence homology analysis indicated that the TaRAD23 is a conserved protein, which is closely related to the Arabidopsis thaliana proteins AtRAD23B and AtRAD23A. Genetic knockout of AtRAD23B, but not AtRAD23A, shows multiple developmental defects, as well as sensitivity to heat stress. Meanwhile, we observed that constitutive overexpression of TaRAD23 in rad23b fully rescued developmental and thermotolerant defects of the mutant. Furthermore, qRT-PCR analysis of heat responsive genes in rad23b and its complementary lines suggested that suppression of the heat shock transcription factor AtHSFA2 and heat responsive genes (HSP70, HSP90, HSP17.6 and HSA32) may be the cause of the weaker thermotolerance in rad23b. Taken together, the data suggest that the heat responsive TaRAD23 is a functionally highly conserved protein that plays an important role in development, as well as the regulation in heat stress response network.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Junzhe Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Yunze Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Yan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China.
| | - Xin Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Weijun Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| |
Collapse
|
30
|
Zhang B, Qiu HL, Qu DH, Ruan Y, Chen DH. Phylogeny-dominant classification of J-proteins in Arabidopsis thaliana and Brassica oleracea. Genome 2018; 61:405-415. [PMID: 29620479 DOI: 10.1139/gen-2017-0206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hsp40s or DnaJ/J-proteins are evolutionarily conserved in all organisms as co-chaperones of molecular chaperone HSP70s that mainly participate in maintaining cellular protein homeostasis, such as protein folding, assembly, stabilization, and translocation under normal conditions as well as refolding and degradation under environmental stresses. It has been reported that Arabidopsis J-proteins are classified into four classes (types A-D) according to domain organization, but their phylogenetic relationships are unknown. Here, we identified 129 J-proteins in the world-wide popular vegetable Brassica oleracea, a close relative of the model plant Arabidopsis, and also revised the information of Arabidopsis J-proteins based on the latest online bioresources. According to phylogenetic analysis with domain organization and gene structure as references, the J-proteins from Arabidopsis and B. oleracea were classified into 15 main clades (I-XV) separated by a number of undefined small branches with remote relationship. Based on the number of members, they respectively belong to multigene clades, oligo-gene clades, and mono-gene clades. The J-protein genes from different clades may function together or separately to constitute a complicated regulatory network. This study provides a constructive viewpoint for J-protein classification and an informative platform for further functional dissection and resistant genes discovery related to genetic improvement of crop plants.
Collapse
Affiliation(s)
- Bin Zhang
- a Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Han-Lin Qiu
- b State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Dong-Hai Qu
- a Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ying Ruan
- a Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Dong-Hong Chen
- b State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
31
|
Bragoszewski P, Turek M, Chacinska A. Control of mitochondrial biogenesis and function by the ubiquitin-proteasome system. Open Biol 2018; 7:rsob.170007. [PMID: 28446709 PMCID: PMC5413908 DOI: 10.1098/rsob.170007] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/31/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are pivotal organelles in eukaryotic cells. The complex proteome of mitochondria comprises proteins that are encoded by nuclear and mitochondrial genomes. The biogenesis of mitochondrial proteins requires their transport in an unfolded state with a high risk of misfolding. The mislocalization of mitochondrial proteins is deleterious to the cell. The electron transport chain in mitochondria is a source of reactive oxygen species that damage proteins. Mitochondrial dysfunction is linked to many pathological conditions and, together with the loss of cellular protein homeostasis (proteostasis), are hallmarks of ageing and ageing-related degeneration diseases. The pathogenesis of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, has been associated with mitochondrial and proteostasis failure. Thus, mitochondrial proteins require sophisticated surveillance mechanisms. Although mitochondria form a proteasome-exclusive compartment, multiple lines of evidence indicate a crucial role for the cytosolic ubiquitin-proteasome system (UPS) in the quality control of mitochondrial proteins. The proteasome affects mitochondrial proteins at stages of their biogenesis and maturity. The effects of the UPS go beyond the removal of damaged proteins and include the adjustment of mitochondrial proteome composition, the regulation of organelle dynamics and the protection of cellular homeostasis against mitochondrial failure. In turn, mitochondrial activity and mitochondrial dysfunction adjust the activity of the UPS, with implications at the cellular level.
Collapse
Affiliation(s)
- Piotr Bragoszewski
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Michal Turek
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Agnieszka Chacinska
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland .,Centre of New Technologies, Warsaw University, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
32
|
Liu Z, Wang Z, Huang M, Yan L, Ma Z, Yin Y. The FgSsb-FgZuo-FgSsz complex regulates multiple stress responses and mycotoxin production via folding the soluble SNARE Vam7 and β2-tubulin in Fusarium graminearum. Environ Microbiol 2017; 19:5040-5059. [PMID: 29076607 DOI: 10.1111/1462-2920.13968] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 11/28/2022]
Abstract
Hsp70 proteins play important roles in protein folding in the budding yeast, but their functions in pathogenic fungi are largely unknown. Here, we found that Fusarium graminearum Hsp70 proteins FgSsb, FgSsz and their cochaperone FgZuo formed a complex. This complex was required for microtubule morphology, vacuole fusion and endocytosis. More importantly, the β2-tubulin FgTub2 and SNARE protein FgVam7 were identified as targeting proteins of this complex. We further found that the complex FgSsb-FgZuo-FgSsz controlled sensitivity of F. graminearum to the antimicrotubule drug carbendazim and cold stress via regulating the folding of FgTub2. Moreover, this complex assisted the folding of FgVam7, subsequently modulated vacuole fusion and responses to heavy metal, osmotic and oxidative stresses. In addition, the deletion of this complex led to dramatically decreased deoxynivalenol biosynthesis. This study uncovers a novel regulating mechanism of Hsp70 in multiple stress responses in a filamentous fungus.
Collapse
Affiliation(s)
- Zunyong Liu
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhihui Wang
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Mengmeng Huang
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Leiyan Yan
- Ningbo Academy of Agricultural Sciences, Ningbo, 315040, China
| | - Zhonghua Ma
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,State Key Laboratory of Rice Biology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanni Yin
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
33
|
Lang S, Pfeffer S, Lee PH, Cavalié A, Helms V, Förster F, Zimmermann R. An Update on Sec61 Channel Functions, Mechanisms, and Related Diseases. Front Physiol 2017; 8:887. [PMID: 29163222 PMCID: PMC5672155 DOI: 10.3389/fphys.2017.00887] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
The membrane of the endoplasmic reticulum (ER) of nucleated human cells harbors the protein translocon, which facilitates membrane integration or translocation of almost every newly synthesized polypeptide targeted to organelles of the endo- and exocytotic pathway. The translocon comprises the polypeptide-conducting Sec61 channel and several additional proteins and complexes that are permanently or transiently associated with the heterotrimeric Sec61 complex. This ensemble of proteins facilitates ER targeting of precursor polypeptides, modification of precursor polypeptides in transit through the Sec61 complex, and Sec61 channel gating, i.e., dynamic regulation of the pore forming subunit to mediate precursor transport and calcium efflux. Recently, cryoelectron tomography of translocons in native ER membrane vesicles, derived from human cell lines or patient fibroblasts, and even intact cells has given unprecedented insights into the architecture and dynamics of the native translocon and the Sec61 channel. These structural data are discussed in light of different Sec61 channel activities including ribosome receptor function, membrane insertion, and translocation of newly synthesized polypeptides as well as the putative physiological roles of the Sec61 channel as a passive ER calcium leak channel. Furthermore, the structural insights into the Sec61 channel are incorporated into an overview and update on Sec61 channel-related diseases—the Sec61 channelopathies—and novel therapeutic concepts for their treatment.
Collapse
Affiliation(s)
- Sven Lang
- Competence Center for Molecular Medicine, Saarland University Medical School, Homburg, Germany
| | - Stefan Pfeffer
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Po-Hsien Lee
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Adolfo Cavalié
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Friedrich Förster
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Richard Zimmermann
- Competence Center for Molecular Medicine, Saarland University Medical School, Homburg, Germany
| |
Collapse
|
34
|
SVIP regulates Z variant alpha-1 antitrypsin retro-translocation by inhibiting ubiquitin ligase gp78. PLoS One 2017; 12:e0172983. [PMID: 28301499 PMCID: PMC5354272 DOI: 10.1371/journal.pone.0172983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/13/2017] [Indexed: 11/26/2022] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is an inherited disorder characterized by early-onset emphysema and liver disease. The most common disease-causing mutation is a single amino acid substitution (Glu/Lys) at amino acid 342 of the mature protein, resulting in disruption of the 290–342 salt bridge (an electrophoretic abnormality defining the mutation [Z allele, or ZAAT]), protein misfolding, polymerization, and accumulation in the endoplasmic reticulum of hepatocytes and monocytes. The Z allele causes a toxic gain of function, and the E3 ubiquitin ligase gp78 promotes degradation and increased solubility of endogenous ZAAT. We hypothesized that the accumulation of ZAAT is influenced by modulation of gp78 E3 ligase and SVIP (small VCP-interacting protein) interaction with p97/VCP in ZAAT-expressing hepatocytes. We showed that the SVIP inhibitory effect on ERAD due to overexpression causes the accumulation of ZAAT in a human Z hepatocyte–like cell line (AT01). Overexpression of gp78, as well as SVIP suppression, induces gp78-VCP/p97 interaction in AT01 cells. This interaction leads to retro-translocation of ZAAT and reduction of the SVIP inhibitory role in ERAD. In this context, overexpression of gp78 or SVIP suppression may eliminate the toxic gain of function associated with polymerization of ZAAT, thus providing a potential new therapeutic approach to the treatment of AATD.
Collapse
|
35
|
Jang JK, Park KJ, Lee JH, Ko KY, Kang S, Kim IY. Selenoprotein S is required for clearance of C99 through endoplasmic reticulum-associated degradation. Biochem Biophys Res Commun 2017; 486:444-450. [PMID: 28315680 DOI: 10.1016/j.bbrc.2017.03.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/14/2017] [Indexed: 12/30/2022]
Abstract
Amyloid beta precursor protein (APP) is normally cleaved by α-secretase, but can also be cleaved by β-secretase (BACE1) to produce C99 fragments in the endoplasmic reticulum (ER) membrane. C99 is subsequently cleaved to amyloid β (Aβ), the aggregation of which is known to cause Alzheimer's disease. Therefore, C99 removing is for preventing the disease. Selenoprotein S (SelS) is an ER membrane protein participating in endoplasmic reticulum-associated degradation (ERAD), one of the stages in resolving ER stress of misfolded proteins accumulated in the ER. ERAD has been postulated as one of the processes to degrade C99; however, it remains unclear if the degradation depends on SelS. In this study, we investigated the effect of SelS on C99 degradation. We observed that both SelS and C99 were colocalized in the membrane fraction of mouse neuroblastoma Neuro2a (N2a) cells. While the level of SelS was increased by ER stress, the level of C99 was decreased. However, despite the induction of ER stress, there was no change in the amount of C99 in SelS knock-down cells. The interaction of C99 with p97(VCP), an essential component of the ERAD complex, did not occur in SelS knock-down cells. The ubiquitination of C99 was decreased in SelS knock-down cells. We also found that the extracellular amount of Aβ1-42 was relatively higher in SelS knock-down cells than in control cells. These results suggest that SelS is required for C99 degradation through ERAD, resulting in inhibition of Aβ production.
Collapse
Affiliation(s)
- Jun Ki Jang
- Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 02841, Republic of Korea
| | - Ki Jun Park
- Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 02841, Republic of Korea
| | - Jea Hwang Lee
- Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 02841, Republic of Korea
| | - Kwan Young Ko
- Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 02841, Republic of Korea
| | - Seongman Kang
- Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 02841, Republic of Korea
| | - Ick Young Kim
- Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 02841, Republic of Korea.
| |
Collapse
|
36
|
Obakan-Yerlikaya P, Arisan ED, Coker-Gurkan A, Adacan K, Ozbey U, Somuncu B, Baran D, Palavan-Unsal N. Calreticulin is a fine tuning molecule in epibrassinolide-induced apoptosis through activating endoplasmic reticulum stress in colon cancer cells. Mol Carcinog 2017; 56:1603-1619. [PMID: 28112451 DOI: 10.1002/mc.22616] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/29/2016] [Accepted: 01/20/2017] [Indexed: 12/26/2022]
Abstract
Epibrassinolide (EBR), a member of brassinostreoids plant hormones with cell proliferation promoting role in plants, is a natural polyhydroxysteroid with structural similarity to steroid hormones of vertebrates. EBR has antiproliferative and apoptosis-inducing effect in various cancer cells. Although EBR has been shown to affect survival and mitochondria-mediated apoptosis pathways in a p53-independent manner, the exact molecular targets of EBR are still under investigation. Our recent SILAC (Stable Isotope Labeling by Amino Acids in Cell Culture) data showed that the most significantly altered protein after EBR treatment was calreticulin (CALR). CALR, a chaperone localized in endoplasmic reticulum (ER) lumen, plays role in protein folding and buffering Ca2+ ions. The alteration of CALR may cause ER stress and unfolded protein response correspondingly the induction of apoptosis. Unfolded proteins are conducted to 26S proteasomal degradation following ubiquitination. Our study revealed that EBR treatment caused ER stress and UPR by altering CALR expression causing caspase-dependent apoptosis in HCT 116, HT29, DLD-1, and SW480 colon cancer cells. Furthermore, 48 h EBR treatment did not caused UPR in Fetal Human Colon cells (FHC) and Mouse Embryonic Fibroblast cells (MEF). In addition our findings showed that HCT 116 colon cancer cells lacking Bax and Puma expression still undergo UPR and related apoptosis. CALR silencing and rapamycin co-treatment prevented EBR-induced UPR and apoptosis, whereas 26S proteasome inhibition further increased the effect of EBR in colon cancer cells. All these findings showed that EBR is an ER stress and apoptotic inducer in colon cancer cells without affecting non-malignant cells.
Collapse
Affiliation(s)
- Pinar Obakan-Yerlikaya
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Elif Damla Arisan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Ajda Coker-Gurkan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Kaan Adacan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Utku Ozbey
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Berna Somuncu
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Didem Baran
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Narcin Palavan-Unsal
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| |
Collapse
|
37
|
Hegde RN, Subramanian A, Pothukuchi P, Parashuraman S, Luini A. Rare ER protein misfolding-mistrafficking disorders: Therapeutic developments. Tissue Cell 2017; 49:175-185. [PMID: 28222887 DOI: 10.1016/j.tice.2017.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 12/16/2022]
Abstract
The presence of a functional protein at the appropriate location in the cell is the result of the processes of transcription, translation, folding and trafficking to the correct destination. There are numerous diseases that are caused by protein misfolding, mainly due to mutations in the respective gene. The consequences of this misfolding may be that proteins effectively lose their function, either by being removed by the cellular quality control machinery or by accumulating at the incorrect intracellular or extracellular location. A number of mutations that lead to protein misfolding and affect trafficking to the final destination, e.g. Cystic fibrosis, Wilson's disease, and Progressive Familial Intrahepatic 1 cholestasis, result in proteins that retain partial function if their folding and trafficking is restored either by molecular or pharmacological means. In this review, we discuss several mutant proteins within this class of misfolding diseases and provide an update on the status of molecular and therapeutic developments and potential therapeutic strategies being developed to counter these diseases.
Collapse
Affiliation(s)
| | - Advait Subramanian
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | | | | | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy; Istituto di Ricovero e Cura a Carattere Scientifico SDN, Naples, Italy
| |
Collapse
|
38
|
You H, Ge Y, Zhang J, Cao Y, Xing J, Su D, Huang Y, Li M, Qu S, Sun F, Liang X. Derlin-1 promotes ubiquitylation and degradation of the epithelial Na + channel, ENaC. J Cell Sci 2017; 130:1027-1036. [PMID: 28137758 DOI: 10.1242/jcs.198242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/24/2017] [Indexed: 11/20/2022] Open
Abstract
Ubiquitylation of the epithelial Na+ channel (ENaC) plays a critical role in cellular functions, including transmembrane transport of Na+, Na+ and water balance, and blood pressure stabilization. Published studies have suggested that ENaC subunits are targets of ER-related degradation (ERAD) in yeast systems. However, the molecular mechanism underlying proteasome-mediated degradation of ENaC subunits remains to be established. Derlin-1, an E3 ligase mediator, links recognized target proteins to ubiquitin-mediated proteasomal degradation in the cytosol. In the present study, we found that derlin-1 suppressed the expression of ENaC at the protein level and that the subunit α-ENaC (also known as SCNN1A) physically interacted with derlin-1 at the membrane-anchored domains or the loop regions, and that derlin-1 initiated α-ENaC retrotranslocation. In addition, HUWE1, an endoplasmic reticulum (ER)-resident E3 ubiquitin ligase, was recruited and promoted K11-linked polyubiquitylation of α-ENaC and, hence, formation of an α-ENaC ubiquitin-mediated degradation complex. These findings suggest that derlin-1 promotes ENaC ubiquitylation and enhances ENaC ubiquitin- mediated proteasome degradation. The derlin-1 pathway therefore may represent a significant early checkpoint in the recognition and degradation of ENaC in mammalian cells.
Collapse
Affiliation(s)
- Hui You
- Renal Division, Sir Run Run Hospital, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China.,Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, Shanghai, 200072, China
| | - Yamei Ge
- Renal Division, Sir Run Run Hospital, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China
| | - Jian Zhang
- Renal Division, Sir Run Run Hospital, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China
| | - Yizhi Cao
- Renal Division, Sir Run Run Hospital, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China
| | - Jing Xing
- Renal Division, Sir Run Run Hospital, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China
| | - Dongming Su
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China
| | - Yujie Huang
- Renal Division, Sir Run Run Hospital, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China
| | - Min Li
- Renal Division, Sir Run Run Hospital, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, Shanghai, 200072, China
| | - Fei Sun
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Xiubin Liang
- Renal Division, Sir Run Run Hospital, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China
| |
Collapse
|
39
|
Lazar C, Uta M, Petrescu SM, Branza-Nichita N. Novel function of the endoplasmic reticulum degradation-enhancing α-mannosidase-like proteins in the human hepatitis B virus life cycle, mediated by the middle envelope protein. Cell Microbiol 2016; 19. [DOI: 10.1111/cmi.12653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/07/2016] [Accepted: 07/26/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Catalin Lazar
- Department of Viral Glycoproteins; Institute of Biochemistry of the Romanian Academy; Bucharest Romania
| | - Mihaela Uta
- Department of Viral Glycoproteins; Institute of Biochemistry of the Romanian Academy; Bucharest Romania
| | - Stefana Maria Petrescu
- Department of Molecular Cell Biology; Institute of Biochemistry of the Romanian Academy; Bucharest Romania
| | - Norica Branza-Nichita
- Department of Viral Glycoproteins; Institute of Biochemistry of the Romanian Academy; Bucharest Romania
| |
Collapse
|
40
|
Frabutt DA, Zheng YH. Arms Race between Enveloped Viruses and the Host ERAD Machinery. Viruses 2016; 8:v8090255. [PMID: 27657106 PMCID: PMC5035969 DOI: 10.3390/v8090255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022] Open
Abstract
Enveloped viruses represent a significant category of pathogens that cause serious diseases in animals. These viruses express envelope glycoproteins that are singularly important during the infection of host cells by mediating fusion between the viral envelope and host cell membranes. Despite low homology at protein levels, three classes of viral fusion proteins have, as of yet, been identified based on structural similarities. Their incorporation into viral particles is dependent upon their proper sub-cellular localization after being expressed and folded properly in the endoplasmic reticulum (ER). However, viral protein expression can cause stress in the ER, and host cells respond to alleviate the ER stress in the form of the unfolded protein response (UPR); the effects of which have been observed to potentiate or inhibit viral infection. One important arm of UPR is to elevate the capacity of the ER-associated protein degradation (ERAD) pathway, which is comprised of host quality control machinery that ensures proper protein folding. In this review, we provide relevant details regarding viral envelope glycoproteins, UPR, ERAD, and their interactions in host cells.
Collapse
Affiliation(s)
- Dylan A Frabutt
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | - Yong-Hui Zheng
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
41
|
Polo A, Guariniello S, Colonna G, Ciliberto G, Costantini S. A study on the structural features of SELK, an over-expressed protein in hepatocellular carcinoma, by molecular dynamics simulations in a lipid-water system. MOLECULAR BIOSYSTEMS 2016; 12:3209-22. [PMID: 27524292 DOI: 10.1039/c6mb00469e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human SELK is a small trans-membrane selenoprotein characterized by a single trans-membrane helix, while the N-terminal region protrudes into the lumen and the long C-terminal domain into the cytoplasm. SELK is over-expressed in some cancers, like hepatocellular carcinoma; however its precise role in cancer development is presently unknown. SELK is involved in promoting the calcium flux, catalyzing palmitoylation reactions and protein degradation in the endoplasmic reticulum (ER). Therefore, this protein should bind many different proteins like p97/VCP in the supramolecular complex involved in the ER degradation pathway. To study the structural features of SELK in the membrane, we have modeled the protein and then subjected it to molecular dynamics simulations in a lipid-water system. The model shows a N-terminal domain with three β-strands and a short helix, a well-defined trans-membrane helix and a C-terminal domain that lacks a persistent secondary structure and contains long disordered regions. The trajectory analysis during the simulation evidences that: (i) the N-terminal region explores a limited conformational space and is stabilized by intra-peptide H-bonds as well with membrane lipids and water, (ii) the trans-membrane helix was found to be quite stable and (iii) the disordered C-terminal region is stabilized by H-bonds with clustered water molecules as well as by rapidly interchanging intra-peptidic H-bonds, with a structural tendency to compact around the four HUB residues found for this domain. Moreover, N-terminal and C-terminal clusters are distributed differently in the conformational space suggesting that their dynamics are coupled complicatedly through the membrane. Further analyses have shown that the N-terminal has a tendency to pivot around the insertion with the TM-helix through the fluctuations of the three β-strands, which, in turn, show features similar to WW-domains. These results will be useful to study the SELK, SELS and VCP complex representing an interesting druggable target for cancer.
Collapse
Affiliation(s)
- Andrea Polo
- Servizio di Informatica Medica, Azienda Ospedaliera Universitaria, Seconda Università di Napoli, Napoli, Italy
| | | | | | | | | |
Collapse
|
42
|
Wen L, Han F, Shi Y, Li X. Role of the Endoplasmic Reticulum Pathway in the Medial Prefrontal Cortex in Post-Traumatic Stress Disorder Model Rats. J Mol Neurosci 2016; 59:471-82. [PMID: 27112439 DOI: 10.1007/s12031-016-0755-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
Previous studies revealed that patients with post-traumatic stress disorder (PTSD) have a smaller than normal medial prefrontal cortex (mPFC), and PTSD rats [single prolonged stress, (SPS)] have an increased mPFC neuron apoptosis, which are related to the severity of PTSD symptoms. Three signalling pathways [protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1)] in the endoplasmic reticulum (ER) play a critical role in resisting apoptosis. The aim of this study was to investigate whether the three branches of ER signalling are involved in SPS-induced mPFC neuron apoptosis. We used transmission electron microscopy (TEM) to detect morphological changes in ER and fluorescence spectrophotometry to detect the concentration of intracellular calcium in mPFC. We used molecular biological techniques to detect the expression levels of three branch signalling pathways of ER: phosphorylated PERK (p-PERK)/phosphorylated eukaryotic translation initiation factor 2A (p-eIF2a), ATF6a/X-box binding protein 1 (XBP1), and IRE1a. In addition, the ER molecular chaperone 78-kDa glucose-regulated protein (GRP78) and the ER-related apoptosis factors caspase family and Bax also were examined. Apoptosis neurons were detected by terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling. The results showed that the concentration of calcium in mPFC was increased in SPS rats. Using TEM, we found that mPFC neurons in SPS rats showed an expanded ER and chromatin margination. The increased expressions of p-PERK/p-eIF2a, ATF6a/XBP1, and IRE1 in response to SPS were also observed, although the degrees of increase were different. In addition, the protein and mRNA expression of GRP78 was increased in SPS rats; the upregulation of ER-related apoptosis factors and apoptosis neurons after SPS stimulation was observed. These results suggested that the three signalling pathways of unfolded protein response were involved in PTSD-induced, ER-dependent apoptosis in mPFC.
Collapse
Affiliation(s)
- Lili Wen
- PTSD Lab, Department of histology and embryology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenbei New Area, Shenyang, Liaoning province, China, 110122
| | - Fang Han
- PTSD Lab, Department of histology and embryology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenbei New Area, Shenyang, Liaoning province, China, 110122.
| | - Yuxiu Shi
- PTSD Lab, Department of histology and embryology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenbei New Area, Shenyang, Liaoning province, China, 110122
| | - Xiaoyan Li
- PTSD Lab, Department of histology and embryology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenbei New Area, Shenyang, Liaoning province, China, 110122
| |
Collapse
|
43
|
Lee JH, Park KJ, Jang JK, Jeon YH, Ko KY, Kwon JH, Lee SR, Kim IY. Selenoprotein S-dependent Selenoprotein K Binding to p97(VCP) Protein Is Essential for Endoplasmic Reticulum-associated Degradation. J Biol Chem 2015; 290:29941-52. [PMID: 26504085 DOI: 10.1074/jbc.m115.680215] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 01/24/2023] Open
Abstract
Cytosolic valosin-containing protein (p97(VCP)) is translocated to the ER membrane by binding to selenoprotein S (SelS), which is an ER membrane protein, during endoplasmic reticulum-associated degradation (ERAD). Selenoprotein K (SelK) is another known p97(VCP)-binding selenoprotein, and the expression of both SelS and SelK is increased under ER stress. To understand the regulatory mechanisms of SelS, SelK, and p97(VCP) during ERAD, the interaction of the selenoproteins with p97(VCP) was investigated using N2a cells and HEK293 cells. Both SelS and SelK co-precipitated with p97(VCP). However, the association between SelS and SelK did not occur in the absence of p97(VCP). SelS had the ability to recruit p97(VCP) to the ER membrane but SelK did not. The interaction between SelK and p97(VCP) did not occur in SelS knockdown cells, whereas SelS interacted with p97(VCP) in the presence or absence of SelK. These results suggest that p97(VCP) is first translocated to the ER membrane via its interaction with SelS, and then SelK associates with the complex on the ER membrane. Therefore, the interaction between SelK and p97(VCP) is SelS-dependent, and the resulting ERAD complex (SelS-p97(VCP)-SelK) plays an important role in ERAD and ER stress.
Collapse
Affiliation(s)
- Jea Hwang Lee
- From the Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-713, Republic of Korea and
| | - Ki Jun Park
- From the Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-713, Republic of Korea and
| | - Jun Ki Jang
- From the Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-713, Republic of Korea and
| | - Yeong Ha Jeon
- From the Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-713, Republic of Korea and
| | - Kwan Young Ko
- From the Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-713, Republic of Korea and
| | - Joon Hyun Kwon
- From the Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-713, Republic of Korea and
| | - Seung-Rock Lee
- the Departments of Biochemistry and Biomedical Science, Research Center for Aging and Geriatrics, Research Institute of Medical Science, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Ick Young Kim
- From the Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-713, Republic of Korea and
| |
Collapse
|
44
|
Nakatsukasa K, Okumura F, Kamura T. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast. Crit Rev Biochem Mol Biol 2015; 50:489-502. [PMID: 26362128 DOI: 10.3109/10409238.2015.1081869] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Fumihiko Okumura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Takumi Kamura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| |
Collapse
|
45
|
Kalies KU, Römisch K. Inhibitors of Protein Translocation Across the ER Membrane. Traffic 2015; 16:1027-38. [PMID: 26122014 DOI: 10.1111/tra.12308] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 12/21/2022]
Abstract
Protein translocation into the endoplasmic reticulum (ER) constitutes the first step of protein secretion. ER protein import is essential in all eukaryotic cells and is particularly critical in fast-growing tumour cells. Thus, the process can serve as target both for potential cancer drugs and for bacterial virulence factors. Inhibitors of protein transport across the ER membrane range from broad-spectrum to highly substrate-specific and can interfere with virtually any stage of this multistep process, and even with transport of endocytosed antigens into the cytosol for cross-presentation.
Collapse
Affiliation(s)
- Kai-Uwe Kalies
- Institute of Biology, CSCM, University of Lübeck, Lübeck, Germany
| | - Karin Römisch
- Department of Microbiology, Faculty of Natural Sciences and Technology VIII, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
46
|
Słomińska-Wojewódzka M, Sandvig K. The Role of Lectin-Carbohydrate Interactions in the Regulation of ER-Associated Protein Degradation. Molecules 2015; 20:9816-46. [PMID: 26023941 PMCID: PMC6272441 DOI: 10.3390/molecules20069816] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 01/08/2023] Open
Abstract
Proteins entering the secretory pathway are translocated across the endoplasmic reticulum (ER) membrane in an unfolded form. In the ER they are restricted to a quality control system that ensures correct folding or eventual degradation of improperly folded polypeptides. Mannose trimming of N-glycans on newly synthesized proteins plays an important role in the recognition and sorting of terminally misfolded glycoproteins for ER-associated protein degradation (ERAD). In this process misfolded proteins are retrotranslocated into the cytosol, polyubiquitinated, and eventually degraded by the proteasome. The mechanism by which misfolded glycoproteins are recognized and recruited to the degradation machinery has been extensively studied during last decade. In this review, we focus on ER degradation-enhancing α-mannosidase-like protein (EDEM) family proteins that seem to play a key role in the discrimination between proteins undergoing a folding process and terminally misfolded proteins directed for degradation. We describe interactions of EDEM proteins with other components of the ERAD machinery, as well as with various protein substrates. Carbohydrate-dependent interactions together with N-glycan-independent interactions seem to regulate the complex process of protein recognition and direction for proteosomal degradation.
Collapse
Affiliation(s)
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway.
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway.
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
47
|
Tannous A, Pisoni GB, Hebert DN, Molinari M. N-linked sugar-regulated protein folding and quality control in the ER. Semin Cell Dev Biol 2015; 41:79-89. [PMID: 25534658 PMCID: PMC4474783 DOI: 10.1016/j.semcdb.2014.12.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022]
Abstract
Asparagine-linked glycans (N-glycans) are displayed on the majority of proteins synthesized in the endoplasmic reticulum (ER). Removal of the outermost glucose residue recruits the lectin chaperone malectin possibly involved in a first triage of defective polypeptides. Removal of a second glucose promotes engagement of folding and quality control machineries built around the ER lectin chaperones calnexin (CNX) and calreticulin (CRT) and including oxidoreductases and peptidyl-prolyl isomerases. Deprivation of the last glucose residue dictates the release of N-glycosylated polypeptides from the lectin chaperones. Correctly folded proteins are authorized to leave the ER. Non-native polypeptides are recognized by the ER quality control key player UDP-glucose glycoprotein glucosyltransferase 1 (UGT1), re-glucosylated and re-addressed to the CNX/CRT chaperone binding cycle to provide additional opportunity for the protein to fold in the ER. Failure to attain the native structure determines the selection of the misfolded polypeptides for proteasome-mediated degradation.
Collapse
Affiliation(s)
- Abla Tannous
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | - Maurizio Molinari
- Università della Svizzera italiana, CH-6900 Lugano, Switzerland; Institute for Research in Biomedicine, Protein Folding and Quality Control, CH-6500 Bellinzona, Switzerland; Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
48
|
de Oliveira GAP, Rangel LP, Costa DC, Silva JL. Misfolding, Aggregation, and Disordered Segments in c-Abl and p53 in Human Cancer. Front Oncol 2015; 5:97. [PMID: 25973395 PMCID: PMC4413674 DOI: 10.3389/fonc.2015.00097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/10/2015] [Indexed: 01/31/2023] Open
Abstract
The current understanding of the molecular mechanisms that lead to cancer is not sufficient to explain the loss or gain of function in proteins related to tumorigenic processes. Among them, more than 100 oncogenes, 20-30 tumor-suppressor genes, and hundreds of genes participating in DNA repair and replication have been found to play a role in the origins of cancer over the last 25 years. The phosphorylation of serine, threonine, or tyrosine residues is a critical step in cellular growth and development and is achieved through the tight regulation of protein kinases. Phosphorylation plays a major role in eukaryotic signaling as kinase domains are found in 2% of our genes. The deregulation of kinase control mechanisms has disastrous consequences, often leading to gains of function, cell transformation, and cancer. The c-Abl kinase protein is one of the most studied targets in the fight against cancer and is a hotspot for drug development because it participates in several solid tumors and is the hallmark of chronic myelogenous leukemia. Tumor suppressors have the opposite effects. Their fundamental role in the maintenance of genomic integrity has awarded them a role as the guardians of DNA. Among the tumor suppressors, p53 is the most studied. The p53 protein has been shown to be a transcription factor that recognizes and binds to specific DNA response elements and activates gene transcription. Stress triggered by ionizing radiation or other mutagenic events leads to p53 phosphorylation and cell-cycle arrest, senescence, or programed cell death. The p53 gene is the most frequently mutated gene in cancer. Mutations in the DNA-binding domain are classified as class I or class II depending on whether substitutions occur in the DNA contact sites or in the protein core, respectively. Tumor-associated p53 mutations often lead to the loss of protein function, but recent investigations have also indicated gain-of-function mutations. The prion-like aggregation of mutant p53 is associated with loss-of-function, dominant-negative, and gain-of-function effects. In the current review, we focused on the most recent insights into the protein structure and function of the c-Abl and p53 proteins that will provide us guidance to understand the loss and gain of function of these misfolded tumor-associated proteins.
Collapse
Affiliation(s)
- Guilherme A. P. de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana P. Rangel
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielly C. Costa
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Zhang T, Kho DH, Wang Y, Harazono Y, Nakajima K, Xie Y, Raz A. Gp78, an E3 ubiquitin ligase acts as a gatekeeper suppressing nonalcoholic steatohepatitis (NASH) and liver cancer. PLoS One 2015; 10:e0118448. [PMID: 25789613 PMCID: PMC4366401 DOI: 10.1371/journal.pone.0118448] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/16/2015] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is related to metabolic dysregulation and the perturbation of endoplasmic reticulum (ER) homeostasis that frequently develops into hepatocellular carcinoma (HCC). Gp78 is E3 ligase, which regulates endoplasmic reticulum-associated degradation (ERAD) by ubiquitinylation of misfolded ER proteins. Here, we report that upon ageing (12 months), gp78-/- mice developed obesity, recapitulating age-related human NASH. Liver histology of gp78-/- mice revealed typical steatosis, hepatic inflammation and fibrosis, followed by progression to hepatocellular tumors. Acute ER stress revealed that loss of gp78 results in up regulation of unfolded protein response (UPR) pathways and SREBP-1 regulating de novo lipogenesis, responsible for fatty liver. Tissue array of human hepatocellular carcinoma (HCC) demonstrated that the expression of gp78 was inversely correlated with clinical grades of cancer. Here, we have described the generation of the first preclinical experimental model system which spontaneously develops age-related NASH and HCC, linking ERAD to hepatosteatosis, cirrhosis, and cancer. It suggests that gp78 is a regulator of normal liver homeostasis and a tumor suppressor in human liver.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Departments of Oncology and Pathology, Wayne State University School of Medicine and the Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Dhong Hyo Kho
- Departments of Oncology and Pathology, Wayne State University School of Medicine and the Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Ying Wang
- Departments of Oncology and Pathology, Wayne State University School of Medicine and the Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Yosuke Harazono
- Departments of Oncology and Pathology, Wayne State University School of Medicine and the Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Kosei Nakajima
- Departments of Oncology and Pathology, Wayne State University School of Medicine and the Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Youming Xie
- Departments of Oncology and Pathology, Wayne State University School of Medicine and the Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Avraham Raz
- Departments of Oncology and Pathology, Wayne State University School of Medicine and the Karmanos Cancer Institute, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
50
|
Fabrizio G, Di Paola S, Stilla A, Giannotta M, Ruggiero C, Menzel S, Koch-Nolte F, Sallese M, Di Girolamo M. ARTC1-mediated ADP-ribosylation of GRP78/BiP: a new player in endoplasmic-reticulum stress responses. Cell Mol Life Sci 2015; 72:1209-25. [PMID: 25292337 PMCID: PMC11113179 DOI: 10.1007/s00018-014-1745-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 12/12/2022]
Abstract
Protein mono-ADP-ribosylation is a reversible post-translational modification of cellular proteins. This scheme of amino-acid modification is used not only by bacterial toxins to attack host cells, but also by endogenous ADP-ribosyltransferases (ARTs) in mammalian cells. These latter ARTs include members of three different families of proteins: the well characterised arginine-specific ecto-enzymes (ARTCs), two sirtuins, and some members of the poly(ADP-ribose) polymerase (PARP/ARTD) family. In the present study, we demonstrate that human ARTC1 is localised to the endoplasmic reticulum (ER), in contrast to the previously characterised ARTC proteins, which are typical GPI-anchored ecto-enzymes. Moreover, using the "macro domain" cognitive binding module to identify ADP-ribosylated proteins, we show here that the ER luminal chaperone GRP78/BiP (glucose-regulated protein of 78 kDa/immunoglobulin heavy-chain-binding protein) is a cellular target of human ARTC1 and hamster ARTC2. We further developed a procedure to visualise ADP-ribosylated proteins using immunofluorescence. With this approach, in cells overexpressing ARTC1, we detected staining of the ER that co-localises with GRP78/BiP, thus confirming that this modification occurs in living cells. In line with the key role of GRP78/BiP in the ER stress response system, we provide evidence here that ARTC1 is activated during the ER stress response, which results in acute ADP-ribosylation of GRP78/BiP paralleling translational inhibition. Thus, this identification of ARTC1 as a regulator of GRP78/BiP defines a novel, previously unsuspected, player in GRP78-mediated ER stress responses.
Collapse
Affiliation(s)
- Gaia Fabrizio
- Laboratory of G-Protein-mediated Signalling, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale 8/A, 66030 Santa Maria Imbaro, CH Italy
| | - Simone Di Paola
- Laboratory of G-Protein-mediated Signalling, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale 8/A, 66030 Santa Maria Imbaro, CH Italy
- Present Address: Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Annalisa Stilla
- Laboratory of G-Protein-mediated Signalling, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale 8/A, 66030 Santa Maria Imbaro, CH Italy
| | - Monica Giannotta
- Genomic Approaches to Membrane Traffic Unit, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale, 8/A, 66030 Santa Maria Imbaro, CH Italy
- Present Address: Unit of Vascular Biology, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Carmen Ruggiero
- Genomic Approaches to Membrane Traffic Unit, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale, 8/A, 66030 Santa Maria Imbaro, CH Italy
- Present Address: Associated International Laboratory (LIA) NEOGENEX CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Stephan Menzel
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinist 52, 20246 Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinist 52, 20246 Hamburg, Germany
| | - Michele Sallese
- Genomic Approaches to Membrane Traffic Unit, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale, 8/A, 66030 Santa Maria Imbaro, CH Italy
| | - Maria Di Girolamo
- Laboratory of G-Protein-mediated Signalling, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale 8/A, 66030 Santa Maria Imbaro, CH Italy
| |
Collapse
|