1
|
Li Z, Zhang W, Zhang Z, Mao G, Qi L, Wang Y, Yang H, Ye H. PICH, A protein that maintains genomic stability, can promote tumor growth. Gene 2025; 935:149074. [PMID: 39491600 DOI: 10.1016/j.gene.2024.149074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Genomic instability is regardedas a hallmark of cancer cells. It can be presented in many ways, among which chromosome instability has received attention. Ultrafine anaphase bridges are a typeof chromatin bridges, the untimely resolution of which can also lead to chromosome instability. PICH can play a role in maintaining chromosome stability by regulating chromosome morphologyand resolving ultrafine anaphase bridges. Recently, PICH has been found to be overexpressed in various cancers. Overexpression of PICH is related to the proliferation of tumors and poor prognosis. In this article, we consider that PICH can maintain genomic stability by regulating appropriate chromosome structure, ensuring proper chromosome segregation, and facilitating replication fork reversal. We summarize how PICH regulates chromosome stability, how PICH resolves Ultrafine anaphase bridges with other proteins, and how PICH promotes tumor progression.
Collapse
Affiliation(s)
- Zeyuan Li
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Wentao Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Zihan Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Guoming Mao
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Linping Qi
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Yubin Wang
- Laboratory Medicine Center Gansu Provincial Natural Science, Lanzhou University Second Hospital, People's Republic of China
| | - Hanteng Yang
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
| | - Huili Ye
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China; Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China; Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
| |
Collapse
|
2
|
Zhao 赵 J嘉, Fu H, Wang Z, Zhang M, Liang Y, Cui X, Pan W, Ren Z, Wu Z, Zhang Y, Gui X, Huo L, Lei X, Wang C, Schnittger A, Pawlowski WP, Liu B. Genetic variation in Arabidopsis thaliana reveals the existence of natural heat resilience factors for meiosis. PLANT PHYSIOLOGY 2024; 197:kiae671. [PMID: 39711182 DOI: 10.1093/plphys/kiae671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Heat interferes with multiple meiotic processes, leading to genome instability and sterility in flowering plants, including many crops. Despite its importance for food security, the mechanisms underlying heat tolerance of meiosis are poorly understood. In this study, we analyzed different meiotic processes in the Arabidopsis (Arabidopsis thaliana) accessions Col and Ler, their F1 hybrids, and the F2 offspring under heat stress (37 °C). At 37 °C, Col exhibits significantly reduced formation of double-strand breaks and completely abolished homolog pairing, synapsis, and crossover (CO) formation. Strikingly, Ler and Col/Ler hybrids exhibit normal CO formation and show mildly impacted homolog pairing and synapsis. Interestingly, only 10% to 20% of F2 offspring behave as Ler, revealing that heat tolerance of meiotic recombination in Arabidopsis is genetically controlled by several loci. Moreover, F2 offspring show defects in chromosome morphology and integrity and sister chromatid segregation, the levels of which exceed those in either inbreds or hybrids, thus implying a transgressive effect on heat tolerance of meiosis. Furthermore, correlation and cytogenetic analyses suggest that homolog pairing and synapsis have an impact on heat tolerance of chromosome morphology and stability at postrecombination stages. This study reveals natural heat resilience factors for meiosis in Arabidopsis, which have the great potential to be exploited in breeding programs.
Collapse
Affiliation(s)
- Jiayi 嘉怡 Zhao 赵
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Huiqi Fu
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Zhengze Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Zhang
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Yaoqiong Liang
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Xueying Cui
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Wenjing Pan
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Ziming Ren
- Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yujie Zhang
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Xin Gui
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Li Huo
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Xiaoning Lei
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chong Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Hamburg 22609, Germany
| | | | - Bing Liu
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
3
|
Li C, Chen W, Cui Y, Zhang D, Yuan Q, Yu X, He Z. Essential Regulation of YAP1 in Fate Determinations of Spermatogonial Stem Cells and Male Fertility by Interacting with RAD21 and Targeting NEDD4 in Humans and Mice. RESEARCH (WASHINGTON, D.C.) 2024; 7:0544. [PMID: 39659446 PMCID: PMC11628678 DOI: 10.34133/research.0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Spermatogenesis is a sophisticated biological process by which spermatogonial stem cells (SSCs) undergo self-renewal and differentiation into spermatozoa. Molecular mechanisms underlying fate determinations of human SSCs by key genes and signaling pathways remain elusive. Here, we report for the first time that Yes1-associated transcriptional regulator (YAP1) is required for fate determinations of SSCs and male fertility by interacting with RAD21 and targeting NEDD4 in humans and mice. YAP1 was mainly located at cell nuclei of human SSCs. YAP1 silencing resulted in the decreases in proliferation and DNA synthesis as well as an enhancement in apoptosis of human SSCs both in vivo and in vitro. RNA sequencing and real-time polymerase chain reaction assays identified NEDD4 as a target of YAP1, and NEDD4 knockdown inhibited the proliferation of human SSCs and increased their apoptosis. Furthermore, YAP1 interacted with RAD21 to regulate NEDD4 transcription in human SSCs. Importantly, YAP1 abnormalities were found to be associated with non-obstructive azoospermia (NOA) as manifested as lower expression level of YAP1 in testicular tissues of NOA patients and YAP1 single-nucleotide variants (SNVs) in 777 NOA patients. Finally, Yap1 germline conditional knockout (cKO) mice assumed mitotic arrest, low sperm count, and motility. Collectively, these results highlight a critical role of YAP1 in determining the fate determinations of human SSCs and male infertility through the YAP1/RAD21/NEDD4 pathway. This study provides new insights into the genetic regulatory mechanisms underlying human spermatogenesis and the pathogenesis of NOA, and it offers new targets for gene therapy of male infertility.
Collapse
Affiliation(s)
- Chunyun Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province;
Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Wei Chen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province;
Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Yinghong Cui
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province;
Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Dong Zhang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province;
Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Qingqing Yuan
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200135, China
| | - Xing Yu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province;
Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Zuping He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province;
Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| |
Collapse
|
4
|
Kim S, Guo MS. Temporospatial control of topoisomerases by essential cellular processes. Curr Opin Microbiol 2024; 82:102559. [PMID: 39520813 DOI: 10.1016/j.mib.2024.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Topoisomerases are essential, ubiquitous enzymes that break and rejoin the DNA strand to control supercoiling. Because topoisomerases are DNA scissors, these enzymes are highly regulated to avoid excessive DNA cleavage, a vulnerability exploited by many antibiotics. Topoisomerase activity must be co-ordinated in time and space with transcription, replication, and cell division or else these processes stall, leading to genome loss. Recent work in Escherichia coli has revealed that topoisomerases do not act alone. Most topoisomerases interact with the essential process that they promote, a coupling that may stimulate topoisomerase activity precisely when and where cleavage is required. Surprisingly, in E. coli and most other bacteria, gyrase is not apparently regulated in this manner. We review how each E. coli topoisomerase is regulated, propose possible solutions to 'the gyrase problem', and conclude by highlighting how this regulation may present opportunities for antimicrobial development.
Collapse
Affiliation(s)
- Sora Kim
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Monica S Guo
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
5
|
Yuan K, Tang Y, Ding Z, Peng L, Zeng J, Wu H, Yi Q. Mutant ATRX: pathogenesis of ATRX syndrome and cancer. Front Mol Biosci 2024; 11:1434398. [PMID: 39479502 PMCID: PMC11521912 DOI: 10.3389/fmolb.2024.1434398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
The transcriptional regulator ATRX, a genetic factor, is associated with a range of disabilities, including intellectual, hematopoietic, skeletal, facial, and urogenital disabilities. ATRX mutations substantially contribute to the pathogenesis of ATRX syndrome and are frequently detected in gliomas and many other cancers. These mutations disrupt the organization, subcellular localization, and transcriptional activity of ATRX, leading to chromosomal instability and affecting interactions with key regulatory proteins such as DAXX, EZH2, and TERRA. ATRX also functions as a transcriptional regulator involved in the pathogenesis of neuronal disorders and various diseases. In conclusion, ATRX is a central protein whose abnormalities lead to multiple diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Huaying Wu
- Key Laboratory of Model Animals and Stem Cell Biology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Qi Yi
- Key Laboratory of Model Animals and Stem Cell Biology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Tortora MMC, Fudenberg G. The physical chemistry of interphase loop extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609419. [PMID: 39229088 PMCID: PMC11370536 DOI: 10.1101/2024.08.23.609419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Loop extrusion constitutes a universal mechanism of genome organization, whereby structural maintenance of chromosomes (SMC) protein complexes load onto the chromatin fiber and generate DNA loops of increasingly-larger sizes until their eventual release. In mammalian interphase cells, loop extrusion is mediated by the cohesin complex, which is dynamically regulated by the interchange of multiple accessory proteins. Although these regulators bind the core cohesin complex only transiently, their disruption can dramatically alter cohesin dynamics, gene expression, chromosome morphology and contact patterns. Still, a theory of how cohesin regulators and their molecular interplay with the core complex modulate genome folding remains at large. Here we derive a model of cohesin loop extrusion from first principles, based on in vivo measurements of the abundance and dynamics of cohesin regulators. We systematically evaluate potential chemical reaction networks that describe the association of cohesin with its regulators and with the chromatin fiber. Remarkably, experimental observations are consistent with only a single biochemical reaction cycle, which results in a unique minimal model that may be fully parameterized by quantitative protein measurements. We demonstrate how distinct roles for cohesin regulators emerge simply from the structure of the reaction network, and how their dynamic exchange can regulate loop extrusion kinetics over time-scales that far exceed their own chromatin residence times. By embedding our cohesin biochemical reaction network within biophysical chromatin simulations, we evidence how variations in regulatory protein abundance can alter chromatin architecture across multiple length- and time-scales. Predictions from our model are corroborated by biophysical and biochemical assays, optical microscopy observations, and Hi-C conformation capture techniques. More broadly, our theoretical and numerical framework bridges the gap between in vitro observations of extrusion motor dynamics at the molecular scale and their structural consequences at the genome-wide level.
Collapse
Affiliation(s)
- Maxime M C Tortora
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Geoffrey Fudenberg
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| |
Collapse
|
7
|
Pati D. Role of chromosomal cohesion and separation in aneuploidy and tumorigenesis. Cell Mol Life Sci 2024; 81:100. [PMID: 38388697 PMCID: PMC10884101 DOI: 10.1007/s00018-024-05122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Cell division is a crucial process, and one of its essential steps involves copying the genetic material, which is organized into structures called chromosomes. Before a cell can divide into two, it needs to ensure that each newly copied chromosome is paired tightly with its identical twin. This pairing is maintained by a protein complex known as cohesin, which is conserved in various organisms, from single-celled ones to humans. Cohesin essentially encircles the DNA, creating a ring-like structure to handcuff, to keep the newly synthesized sister chromosomes together in pairs. Therefore, chromosomal cohesion and separation are fundamental processes governing the attachment and segregation of sister chromatids during cell division. Metaphase-to-anaphase transition requires dissolution of cohesins by the enzyme Separase. The tight regulation of these processes is vital for safeguarding genomic stability. Dysregulation in chromosomal cohesion and separation resulting in aneuploidy, a condition characterized by an abnormal chromosome count in a cell, is strongly associated with cancer. Aneuploidy is a recurring hallmark in many cancer types, and abnormalities in chromosomal cohesion and separation have been identified as significant contributors to various cancers, such as acute myeloid leukemia, myelodysplastic syndrome, colorectal, bladder, and other solid cancers. Mutations within the cohesin complex have been associated with these cancers, as they interfere with chromosomal segregation, genome organization, and gene expression, promoting aneuploidy and contributing to the initiation of malignancy. In summary, chromosomal cohesion and separation processes play a pivotal role in preserving genomic stability, and aberrations in these mechanisms can lead to aneuploidy and cancer. Gaining a deeper understanding of the molecular intricacies of chromosomal cohesion and separation offers promising prospects for the development of innovative therapeutic approaches in the battle against cancer.
Collapse
Affiliation(s)
- Debananda Pati
- Texas Children's Cancer Center, Department of Pediatrics Hematology/Oncology, Molecular and Cellular Biology, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Psakhye I, Kawasumi R, Abe T, Hirota K, Branzei D. PCNA recruits cohesin loader Scc2 to ensure sister chromatid cohesion. Nat Struct Mol Biol 2023; 30:1286-1294. [PMID: 37592094 PMCID: PMC10497406 DOI: 10.1038/s41594-023-01064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
Sister chromatid cohesion, established during replication by the ring-shaped multiprotein complex cohesin, is essential for faithful chromosome segregation. Replisome-associated proteins are required to generate cohesion by two independent pathways. One mediates conversion of cohesins bound to unreplicated DNA ahead of replication forks into cohesive entities behind them, while the second promotes cohesin de novo loading onto newly replicated DNA. The latter process depends on the cohesin loader Scc2 (NIPBL in vertebrates) and the alternative PCNA loader CTF18-RFC. However, the mechanism of de novo cohesin loading during replication is unknown. Here we show that PCNA physically recruits the yeast cohesin loader Scc2 via its C-terminal PCNA-interacting protein motif. Binding to PCNA is crucial, as the scc2-pip mutant deficient in Scc2-PCNA interaction is defective in cohesion when combined with replisome mutants of the cohesin conversion pathway. Importantly, the role of NIPBL recruitment to PCNA for cohesion generation is conserved in vertebrate cells.
Collapse
Affiliation(s)
- Ivan Psakhye
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Ryotaro Kawasumi
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Japan
| | - Takuya Abe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Japan
| | - Dana Branzei
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy.
| |
Collapse
|
9
|
Yang FC, Agosto-Peña J. Epigenetic regulation by ASXL1 in myeloid malignancies. Int J Hematol 2023; 117:791-806. [PMID: 37062051 DOI: 10.1007/s12185-023-03586-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 04/17/2023]
Abstract
Myeloid malignancies are clonal hematopoietic disorders that are comprised of a spectrum of genetically heterogeneous disorders, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), chronic myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML). Myeloid malignancies are characterized by excessive proliferation, abnormal self-renewal, and/or differentiation defects of hematopoietic stem cells (HSCs) and myeloid progenitor cells hematopoietic stem/progenitor cells (HSPCs). Myeloid malignancies can be caused by genetic and epigenetic alterations that provoke key cellular functions, such as self-renewal, proliferation, biased lineage commitment, and differentiation. Advances in next-generation sequencing led to the identification of multiple mutations in myeloid neoplasms, and many new gene mutations were identified as key factors in driving the pathogenesis of myeloid malignancies. The polycomb protein ASXL1 was identified to be frequently mutated in all forms of myeloid malignancies, with mutational frequencies of 20%, 43%, 10%, and 20% in MDS, CMML, MPN, and AML, respectively. Significantly, ASXL1 mutations are associated with a poor prognosis in all forms of myeloid malignancies. The fact that ASXL1 mutations are associated with poor prognosis in patients with CMML, MDS, and AML, points to the possibility that ASXL1 mutation is a key factor in the development of myeloid malignancies. This review summarizes the recent advances in understanding myeloid malignancies with a specific focus on ASXL1 mutations.
Collapse
Affiliation(s)
- Feng-Chun Yang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Joel Agosto-Peña
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
10
|
Thangavel G, Hofstatter PG, Mercier R, Marques A. Tracing the evolution of the plant meiotic molecular machinery. PLANT REPRODUCTION 2023; 36:73-95. [PMID: 36646915 PMCID: PMC9957857 DOI: 10.1007/s00497-022-00456-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Meiosis is a highly conserved specialised cell division in sexual life cycles of eukaryotes, forming the base of gene reshuffling, biological diversity and evolution. Understanding meiotic machinery across different plant lineages is inevitable to understand the lineage-specific evolution of meiosis. Functional and cytogenetic studies of meiotic proteins from all plant lineage representatives are nearly impossible. So, we took advantage of the genomics revolution to search for core meiotic proteins in accumulating plant genomes by the highly sensitive homology search approaches, PSI-BLAST, HMMER and CLANS. We could find that most of the meiotic proteins are conserved in most of the lineages. Exceptionally, Arabidopsis thaliana ASY4, PHS1, PRD2, PRD3 orthologs were mostly not detected in some distant algal lineages suggesting their minimal conservation. Remarkably, an ancestral duplication of SPO11 to all eukaryotes could be confirmed. Loss of SPO11-1 in Chlorophyta and Charophyta is likely to have occurred, suggesting that SPO11-1 and SPO11-2 heterodimerisation may be a unique feature in land plants of Viridiplantae. The possible origin of the meiotic proteins described only in plants till now, DFO and HEIP1, could be traced and seems to occur in the ancestor of vascular plants and Streptophyta, respectively. Our comprehensive approach is an attempt to provide insights about meiotic core proteins and thus the conservation of meiotic pathways across plant kingdom. We hope that this will serve the meiotic community a basis for further characterisation of interesting candidates in future.
Collapse
Affiliation(s)
- Gokilavani Thangavel
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| | | | - Raphaël Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| |
Collapse
|
11
|
Minamino M, Bouchoux C, Canal B, Diffley JFX, Uhlmann F. A replication fork determinant for the establishment of sister chromatid cohesion. Cell 2023; 186:837-849.e11. [PMID: 36693376 DOI: 10.1016/j.cell.2022.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/08/2022] [Accepted: 12/22/2022] [Indexed: 01/24/2023]
Abstract
Concomitant with DNA replication, the chromosomal cohesin complex establishes cohesion between newly replicated sister chromatids. Cohesion establishment requires acetylation of conserved cohesin lysine residues by Eco1 acetyltransferase. Here, we explore how cohesin acetylation is linked to DNA replication. Biochemical reconstitution of replication-coupled cohesin acetylation reveals that transient DNA structures, which form during DNA replication, control the acetylation reaction. As polymerases complete lagging strand replication, strand displacement synthesis produces DNA flaps that are trimmed to result in nicked double-stranded DNA. Both flaps and nicks stimulate cohesin acetylation, while subsequent nick ligation to complete Okazaki fragment maturation terminates the acetylation reaction. A flapped or nicked DNA substrate constitutes a transient molecular clue that directs cohesin acetylation to a window behind the replication fork, next to where cohesin likely entraps both sister chromatids. Our results provide an explanation for how DNA replication is linked to sister chromatid cohesion establishment.
Collapse
Affiliation(s)
- Masashi Minamino
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Céline Bouchoux
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Berta Canal
- Chromosome Replication Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
12
|
Yoon S, Choi EH, Park SJ, Kim KP. α-Kleisin subunit of cohesin preserves the genome integrity of embryonic stem cells. BMB Rep 2023; 56:108-113. [PMID: 36571142 PMCID: PMC9978357 DOI: 10.5483/bmbrep.2022-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/30/2022] [Accepted: 12/22/2022] [Indexed: 10/10/2023] Open
Abstract
Cohesin is a ring-shaped protein complex that comprises the SMC1, SMC3, and α-kleisin proteins, STAG1/2/3 subunits, and auxiliary factors. Cohesin participates in chromatin remodeling, chromosome segregation, DNA replication, and gene expression regulation during the cell cycle. Mitosis-specific α-kleisin factor RAD21 and meiosis-specific α-kleisin factor REC8 are expressed in embryonic stem cells (ESCs) to maintain pluripotency. Here, we demonstrated that RAD21 and REC8 were involved in maintaining genomic stability and modulating chromatin modification in murine ESCs. When the kleisin subunits were depleted, DNA repair genes were downregulated, thereby reducing cell viability and causing replication protein A (RPA) accumulation. This finding suggested that the repair of exposed single-stranded DNA was inefficient. Furthermore, the depletion of kleisin subunits induced DNA hypermethylation by upregulating DNA methylation proteins. Thus, we proposed that the cohesin complex plays two distinct roles in chromatin remodeling and genomic integrity to ensure the maintenance of pluripotency in ESCs. [BMB Reports 2023; 56(2): 108-113].
Collapse
Affiliation(s)
- Seobin Yoon
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Seo Jung Park
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Keun Pil Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
13
|
Yoon S, Choi EH, Park SJ, Kim KP. α-Kleisin subunit of cohesin preserves the genome integrity of embryonic stem cells. BMB Rep 2023; 56:108-113. [PMID: 36571142 PMCID: PMC9978357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/30/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Cohesin is a ring-shaped protein complex that comprises the SMC1, SMC3, and α-kleisin proteins, STAG1/2/3 subunits, and auxiliary factors. Cohesin participates in chromatin remodeling, chromosome segregation, DNA replication, and gene expression regulation during the cell cycle. Mitosis-specific α-kleisin factor RAD21 and meiosis-specific α-kleisin factor REC8 are expressed in embryonic stem cells (ESCs) to maintain pluripotency. Here, we demonstrated that RAD21 and REC8 were involved in maintaining genomic stability and modulating chromatin modification in murine ESCs. When the kleisin subunits were depleted, DNA repair genes were downregulated, thereby reducing cell viability and causing replication protein A (RPA) accumulation. This finding suggested that the repair of exposed single-stranded DNA was inefficient. Furthermore, the depletion of kleisin subunits induced DNA hypermethylation by upregulating DNA methylation proteins. Thus, we proposed that the cohesin complex plays two distinct roles in chromatin remodeling and genomic integrity to ensure the maintenance of pluripotency in ESCs. [BMB Reports 2023; 56(2): 108-113].
Collapse
Affiliation(s)
- Seobin Yoon
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Seo Jung Park
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Keun Pil Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
14
|
Yu D, Chen G, Wang Y, Wang Y, Lin R, Liu N, Zhu P, Liu H, Hu T, Feng R, Feng H, Lan F, Cai J, Chen H. Regulation of cohesin-mediated chromosome folding by PDS5 in mammals. EMBO Rep 2022; 23:e54853. [PMID: 36129789 PMCID: PMC9638874 DOI: 10.15252/embr.202254853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 09/23/2023] Open
Abstract
Cohesin regulates sister chromatid cohesion but also contributes to chromosome folding by promoting the formation of chromatin loops, a process mediated by loop extrusion. Although PDS5 regulates cohesin dynamics on chromatin, the exact function of PDS5 in cohesin-mediated chromatin looping remains unclear. Two paralogs of PDS5 exist in vertebrates, PDS5A and PDS5B. Here we show that PDS5A and PDS5B co-localize with RAD21 and CTCF at loop anchors. Rapid PDS5A or PDS5B degradation in liver cancer cells using an inducible degron system reduces chromatin loops and increases loop size. RAD21 enrichment at loop anchors is decreased upon depletion of PDS5A or PDS5B. PDS5B loss also reduces CTCF signals at loop anchors and has a stronger effect on loop enlargement compared with PDS5A. Co-depletion of PDS5A and PDS5B reduces RAD21 levels at loop anchors although the amount of cohesin on chromatin is increased. Our study provides insight into how PDS5 proteins regulate cohesin-mediated chromatin looping.
Collapse
Affiliation(s)
- Dingdang Yu
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Guoyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji HospitalShanghaiChina
- Renji‐Med X Clinical Stem Cell Research Center, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuci Wang
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yining Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Risheng Lin
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Nanbo Liu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Ping Zhu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Hang Liu
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Tao Hu
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Rui Feng
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji HospitalShanghaiChina
- Renji‐Med X Clinical Stem Cell Research Center, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fei Lan
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jiabin Cai
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Hao Chen
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
15
|
Gárate-Rascón M, Recalde M, Rojo C, Fernández-Barrena MG, Ávila MA, Arechederra M, Berasain C. SLU7: A New Hub of Gene Expression Regulation—From Epigenetics to Protein Stability in Health and Disease. Int J Mol Sci 2022; 23:ijms232113411. [PMID: 36362191 PMCID: PMC9658179 DOI: 10.3390/ijms232113411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
SLU7 (Splicing factor synergistic lethal with U5 snRNA 7) was first identified as a splicing factor necessary for the correct selection of 3′ splice sites, strongly impacting on the diversity of gene transcripts in a cell. More recent studies have uncovered new and non-redundant roles of SLU7 as an integrative hub of different levels of gene expression regulation, including epigenetic DNA remodeling, modulation of transcription and protein stability. Here we review those findings, the multiple factors and mechanisms implicated as well as the cellular functions affected. For instance, SLU7 is essential to secure liver differentiation, genome integrity acting at different levels and a correct cell cycle progression. Accordingly, the aberrant expression of SLU7 could be associated with human diseases including cancer, although strikingly, it is an essential survival factor for cancer cells. Finally, we discuss the implications of SLU7 in pathophysiology, with particular emphasis on the progression of liver disease and its possible role as a therapeutic target in human cancer.
Collapse
Affiliation(s)
- María Gárate-Rascón
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
| | - Miriam Recalde
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
| | - Carla Rojo
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
| | - Maite G. Fernández-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Matías A. Ávila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - María Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-948-194700; Fax: +34-948-194717
| |
Collapse
|
16
|
Matityahu A, Onn I. It's all in the numbers: Cohesin stoichiometry. Front Mol Biosci 2022; 9:1010894. [PMID: 36330215 PMCID: PMC9623059 DOI: 10.3389/fmolb.2022.1010894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/05/2022] [Indexed: 01/09/2024] Open
Abstract
Cohesin, a structural maintenance of chromosome (SMC) complex, organizes chromatin into three-dimensional structures by threading chromatin into loops and stabilizing long-range chromatin interactions. Four subunits in a 1:1:1:1 ratio compose the cohesin core, which is regulated by auxiliary factors that interact with or modify the core subunits. An ongoing debate about cohesin's mechanism of action regards its stoichiometry. Namely, is cohesin activity mediated by a single complex or cooperation between several complexes that organize into dimers or oligomers? Several investigations that used various experimental approaches have tried to resolve this dispute. Some have convincingly demonstrated that the cohesin monomer is the active unit. However, others have revealed the formation of cohesin dimers and higher-order clusters on and off chromosomes. Elucidating the biological function of cohesin clusters and determining what regulates their formation are just two of the many new questions raised by these findings. We briefly review the history of the argument about cohesin stoichiometry and the central evidence for cohesin activity as a monomer vs. an oligomer. Finally, we discuss the possible biological significance of cohesin oligomerization and present open questions that remain to be answered.
Collapse
Affiliation(s)
| | - Itay Onn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Safed, Israel
| |
Collapse
|
17
|
Fold-change of chromatin condensation in yeast is a conserved property. Sci Rep 2022; 12:17393. [PMID: 36253460 PMCID: PMC9576780 DOI: 10.1038/s41598-022-22340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/13/2022] [Indexed: 01/10/2023] Open
Abstract
During mitosis, chromatin is condensed and organized into mitotic chromosomes. Condensation is critical for genome stability and dynamics, yet the degree of condensation is significantly different between multicellular and single-cell eukaryotes. What is less clear is whether there is a minimum degree of chromosome condensation in unicellular eukaryotes. Here, we exploited two-photon microscopy to analyze chromatin condensation in live and fixed cells, enabling studies of some organisms that are not readily amenable to genetic modification. This includes the yeasts Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, and Candida albicans, as well as a protist Trypanosoma brucei. We found that mitotic chromosomes in this range of species are condensed about 1.5-fold relative to interphase chromatin. In addition, we used two-photon microscopy to reveal that chromatin reorganization in interphase human hepatoma cells infected by the hepatitis C virus is decondensed compared to uninfected cells, which correlates with the previously reported viral-induced changes in chromatin dynamics. This work demonstrates the power of two-photon microscopy to analyze chromatin in a broad range of cell types and conditions, including non-model single-cell eukaryotes. We suggest that similar condensation levels are an evolutionarily conserved property in unicellular eukaryotes and important for proper chromosome segregation. Furthermore, this provides new insights into the process of chromatin condensation during mitosis in unicellular organisms as well as the response of human cells to viral infection.
Collapse
|
18
|
Choudhary K, Itzkovich Z, Alonso-Perez E, Bishara H, Dunn B, Sherlock G, Kupiec M. S. cerevisiae Cells Can Grow without the Pds5 Cohesin Subunit. mBio 2022; 13:e0142022. [PMID: 35708277 PMCID: PMC9426526 DOI: 10.1128/mbio.01420-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 12/11/2022] Open
Abstract
During DNA replication, the newly created sister chromatids are held together until their separation at anaphase. The cohesin complex is in charge of creating and maintaining sister chromatid cohesion (SCC) in all eukaryotes. In Saccharomyces cerevisiae cells, cohesin is composed of two elongated proteins, Smc1 and Smc3, bridged by the kleisin Mcd1/Scc1. The latter also acts as a scaffold for three additional proteins, Scc3/Irr1, Wpl1/Rad61, and Pds5. Although the HEAT-repeat protein Pds5 is essential for cohesion, its precise function is still debated. Deletion of the ELG1 gene, encoding a PCNA unloader, can partially suppress the temperature-sensitive pds5-1 allele, but not a complete deletion of PDS5. We carried out a genetic screen for high-copy-number suppressors and another for spontaneously arising mutants, allowing the survival of a pds5Δ elg1Δ strain. Our results show that cells remain viable in the absence of Pds5 provided that there is both an elevation in the level of Mcd1 (which can be due to mutations in the CLN2 gene, encoding a G1 cyclin), and an increase in the level of SUMO-modified PCNA on chromatin (caused by lack of PCNA unloading in elg1Δ mutants). The elevated SUMO-PCNA levels increase the recruitment of the Srs2 helicase, which evicts Rad51 molecules from the moving fork, creating single-stranded DNA (ssDNA) regions that serve as sites for increased cohesin loading and SCC establishment. Thus, our results delineate a double role for Pds5 in protecting the cohesin ring and interacting with the DNA replication machinery. IMPORTANCE Sister chromatid cohesion is vital for faithful chromosome segregation, chromosome folding into loops, and gene expression. A multisubunit protein complex known as cohesin holds the sister chromatids from S phase until the anaphase stage. In this study, we explore the function of the essential cohesin subunit Pds5 in the regulation of sister chromatid cohesion. We performed two independent genetic screens to bypass the function of the Pds5 protein. We observe that Pds5 protein is a cohesin stabilizer, and elevating the levels of Mcd1 protein along with SUMO-PCNA accumulation on chromatin can compensate for the loss of the PDS5 gene. In addition, Pds5 plays a role in coordinating the DNA replication and sister chromatid cohesion establishment. This work elucidates the function of cohesin subunit Pds5, the G1 cyclin Cln2, and replication factors PCNA, Elg1, and Srs2 in the proper regulation of sister chromatid cohesion.
Collapse
Affiliation(s)
- Karan Choudhary
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Ziv Itzkovich
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Elisa Alonso-Perez
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Hend Bishara
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Barbara Dunn
- Departments of Genetics, Stanford University, Stanford, California, USA
| | - Gavin Sherlock
- Departments of Genetics, Stanford University, Stanford, California, USA
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
19
|
Wang J, Thomas HR, Chen Y, Percival SM, Waldrep SC, Ramaker RC, Thompson RG, Cooper SJ, Chong Z, Parant JM. Reduced sister chromatid cohesion acts as a tumor penetrance modifier. PLoS Genet 2022; 18:e1010341. [PMID: 35994499 PMCID: PMC9436123 DOI: 10.1371/journal.pgen.1010341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/01/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sister chromatid cohesion (SCC) is an important process in chromosome segregation. ESCO2 is essential for establishment of SCC and is often deleted/altered in human cancers. We demonstrate that esco2 haploinsufficiency results in reduced SCC and accelerates the timing of tumor onset in both zebrafish and mouse p53 heterozygous null models, but not in p53 homozygous mutant or wild-type animals. These data indicate that esco2 haploinsufficiency accelerates tumor onset in a loss of heterozygosity (LOH) sensitive background. Analysis of The Cancer Genome Atlas (TCGA) confirmed ESCO2 deficient tumors have elevated number of LOH events throughout the genome. Further, we demonstrated heterozygous loss of sgo1, important in maintaining SCC, also results in reduced SCC and accelerated tumor formation in a p53 heterozygous background. Surprisingly, while we did observe elevated levels of chromosome missegregation and micronuclei formation in esco2 heterozygous mutant animals, this chromosomal instability did not contribute to the accelerated tumor onset in a p53 heterozygous background. Interestingly, SCC also plays a role in homologous recombination, and we did observe elevated levels of mitotic recombination derived p53 LOH in tumors from esco2 haploinsufficient animals; as well as elevated levels of mitotic recombination throughout the genome of human ESCO2 deficient tumors. Together these data suggest that reduced SCC contributes to accelerated tumor penetrance through elevated mitotic recombination. Tumorigenesis often involves the inactivation of tumor suppressor genes. This often encompasses an inactivation mutation in one allele and loss of the other wild-type allele, referred to as loss of heterozygosity (LOH). The rate at which the cells lose the wild-type allele can influence the timing of tumor onset, and therefore an indicator of a patient’s risk of cancer. Factors that influence this process could be used as a predictive indicator of cancer risk, however these factors are still unclear. We demonstrate that partial impairment of sister chromatid cohesion (SCC), a fundamental component of the chromosome segregation in mitosis and homologous recombination repair, enhanced tumorigenesis. Our data suggest this is through elevated levels of mitotic recombination derived p53 LOH. This study emphasizes the importance of understanding how impaired SCC, mitotic recombination rates, and LOH rates influence cancer risk.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Holly R. Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Yu Chen
- Department of Genetics, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
- Informatics Institute, University of Alabama at Birmingham Heersink School of Medicine, Alabama, United States of America
| | - Stefanie M. Percival
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Stephanie C. Waldrep
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Ryne C. Ramaker
- Hudson Alpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Robert G. Thompson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Sara J. Cooper
- Hudson Alpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Zechen Chong
- Department of Genetics, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
- Informatics Institute, University of Alabama at Birmingham Heersink School of Medicine, Alabama, United States of America
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
20
|
Fleck K, Raj R, Erceg J. The 3D genome landscape: Diverse chromosomal interactions and their functional implications. Front Cell Dev Biol 2022; 10:968145. [PMID: 36036013 PMCID: PMC9402908 DOI: 10.3389/fcell.2022.968145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Genome organization includes contacts both within a single chromosome and between distinct chromosomes. Thus, regulatory organization in the nucleus may include interplay of these two types of chromosomal interactions with genome activity. Emerging advances in omics and single-cell imaging technologies have allowed new insights into chromosomal contacts, including those of homologs and sister chromatids, and their significance to genome function. In this review, we highlight recent studies in this field and discuss their impact on understanding the principles of chromosome organization and associated functional implications in diverse cellular processes. Specifically, we describe the contributions of intra-chromosomal, inter-homolog, and inter-sister chromatid contacts to genome organization and gene expression.
Collapse
Affiliation(s)
- Katherine Fleck
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Romir Raj
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Jelena Erceg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
21
|
Fréville A, Gnangnon B, Tremp AZ, De Witte C, Cailliau K, Martoriati A, Aliouat EM, Fernandes P, Chhuon C, Silvie O, Marion S, Guerrera IC, Dessens JT, Pierrot C, Khalife J. Plasmodium berghei leucine-rich repeat protein 1 downregulates protein phosphatase 1 activity and is required for efficient oocyst development. Open Biol 2022; 12:220015. [PMID: 35920043 PMCID: PMC9346556 DOI: 10.1098/rsob.220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Protein phosphatase 1 (PP1) is a key enzyme for Plasmodium development. However, the detailed mechanisms underlying its regulation remain to be deciphered. Here, we report the functional characterization of the Plasmodium berghei leucine-rich repeat protein 1 (PbLRR1), an orthologue of SDS22, one of the most ancient and conserved PP1 interactors. Our study shows that PbLRR1 is expressed during intra-erythrocytic development of the parasite, and up to the zygote stage in mosquitoes. PbLRR1 can be found in complex with PbPP1 in both asexual and sexual stages and inhibits its phosphatase activity. Genetic analysis demonstrates that PbLRR1 depletion adversely affects the development of oocysts. PbLRR1 interactome analysis associated with phospho-proteomics studies identifies several novel putative PbLRR1/PbPP1 partners. Some of these partners have previously been characterized as essential for the parasite sexual development. Interestingly, and for the first time, Inhibitor 3 (I3), a well-known and direct interactant of Plasmodium PP1, was found to be drastically hypophosphorylated in PbLRR1-depleted parasites. These data, along with the detection of I3 with PP1 in the LRR1 interactome, strongly suggest that the phosphorylation status of PbI3 is under the control of the PP1-LRR1 complex and could contribute (in)directly to oocyst development. This study provides new insights into previously unrecognized PbPP1 fine regulation of Plasmodium oocyst development through its interaction with PbLRR1.
Collapse
Affiliation(s)
- Aline Fréville
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Bénédicte Gnangnon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Annie Z. Tremp
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, WC1E 7HT London, UK
| | - Caroline De Witte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Alain Martoriati
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - El Moukthar Aliouat
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Priyanka Fernandes
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, F-75013 Paris, France
| | - Cerina Chhuon
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, F-75013 Paris, France
| | - Sabrina Marion
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Ida Chiara Guerrera
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Johannes T. Dessens
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, WC1E 7HT London, UK
| | - Christine Pierrot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| |
Collapse
|
22
|
Popay TM, Dixon JR. Coming full circle: On the origin and evolution of the looping model for enhancer-promoter communication. J Biol Chem 2022; 298:102117. [PMID: 35691341 PMCID: PMC9283939 DOI: 10.1016/j.jbc.2022.102117] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022] Open
Abstract
In mammalian organisms, enhancers can regulate transcription from great genomic distances. How enhancers affect distal gene expression has been a major question in the field of gene regulation. One model to explain how enhancers communicate with their target promoters, the chromatin looping model, posits that enhancers and promoters come in close spatial proximity to mediate communication. Chromatin looping has been broadly accepted as a means for enhancer-promoter communication, driven by accumulating in vitro and in vivo evidence. The genome is now known to be folded into a complex 3D arrangement, created and maintained in part by the interplay of the Cohesin complex and the DNA-binding protein CTCF. In the last few years, however, doubt over the relationship between looping and transcriptional activation has emerged, driven by studies finding that only a modest number of genes are perturbed with acute degradation of looping machinery components. In parallel, newer models describing distal enhancer action have also come to prominence. In this article, we explore the emergence and development of the looping model as a means for enhancer-promoter communication and review the contrasting evidence between historical gene-specific and current global data for the role of chromatin looping in transcriptional regulation. We also discuss evidence for alternative models to chromatin looping and their support in the literature. We suggest that, while there is abundant evidence for chromatin looping as a major mechanism for enhancer function, enhancer-promoter communication is likely mediated by more than one mechanism in an enhancer- and context-dependent manner.
Collapse
Affiliation(s)
- Tessa M Popay
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Jesse R Dixon
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA.
| |
Collapse
|
23
|
Molecular Mechanisms Contributing to the Etiology of Congenital Diaphragmatic Hernia: A Review and Novel Cases. J Pediatr 2022; 246:251-265.e2. [PMID: 35314152 DOI: 10.1016/j.jpeds.2022.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 12/25/2022]
|
24
|
Scherzer M, Giordano F, Ferran MS, Ström L. Recruitment of Scc2/4 to double-strand breaks depends on γH2A and DNA end resection. Life Sci Alliance 2022; 5:e202101244. [PMID: 35086935 PMCID: PMC8807874 DOI: 10.26508/lsa.202101244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Homologous recombination enables cells to overcome the threat of DNA double-strand breaks (DSBs), allowing for repair without the loss of genetic information. Central to the homologous recombination repair process is the de novo loading of cohesin around a DSB by its loader complex Scc2/4. Although cohesin's DSB accumulation has been explored in numerous studies, the prerequisites for Scc2/4 recruitment during the repair process are still elusive. To address this question, we combine chromatin immunoprecipitation-qPCR with a site-specific DSB in vivo, in Saccharomyces cerevisiae We find that Scc2 DSB recruitment relies on γH2A and Tel1, but as opposed to cohesin, not on Mec1. We further show that the binding of Scc2, which emanates from the break site, depends on and coincides with DNA end resection. Absence of chromatin remodeling at the DSB affects Scc2 binding and DNA end resection to a comparable degree, further indicating the latter to be a major driver for Scc2 recruitment. Our results shed light on the intricate DSB repair cascade leading to the recruitment of Scc2/4 and subsequent loading of cohesin.
Collapse
Affiliation(s)
- Martin Scherzer
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fosco Giordano
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Solé Ferran
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lena Ström
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
MAPRE2 regulates the first meiotic progression in mouse oocytes. Exp Cell Res 2022; 416:113135. [DOI: 10.1016/j.yexcr.2022.113135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
|
26
|
Choi EH, Yoon S, Koh YE, Hong TK, Do JT, Lee BK, Hahn Y, Kim KP. Meiosis-specific cohesin complexes display essential and distinct roles in mitotic embryonic stem cell chromosomes. Genome Biol 2022; 23:70. [PMID: 35241136 PMCID: PMC8892811 DOI: 10.1186/s13059-022-02632-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cohesin is a chromosome-associated SMC-kleisin complex that mediates sister chromatid cohesion, recombination, and most chromosomal processes during mitosis and meiosis. However, it remains unclear whether meiosis-specific cohesin complexes are functionally active in mitotic chromosomes. RESULTS Through high-resolution 3D-structured illumination microscopy (3D-SIM) and functional analyses, we report multiple biological processes associated with the meiosis-specific cohesin components, α-kleisin REC8 and STAG3, and the distinct loss of function of meiotic cohesin during the cell cycle of embryonic stem cells (ESCs). First, we show that STAG3 is required for the efficient localization of REC8 to the nucleus by interacting with REC8. REC8-STAG3-containing cohesin regulates topological properties of chromosomes and maintains sister chromatid cohesion. Second, REC8-cohesin has additional sister chromatid cohesion roles in concert with mitotic RAD21-cohesin on ESC chromosomes. SIM imaging of REC8 and RAD21 co-staining revealed that the two types of α-kleisin subunits exhibited distinct loading patterns along ESC chromosomes. Third, knockdown of REC8 or RAD21-cohesin not only leads to higher rates of premature sister chromatid separation and delayed replication fork progression, which can cause proliferation and developmental defects, but also enhances chromosome compaction by hyperloading of retinoblastoma protein-condensin complexes from the prophase onward. CONCLUSIONS Our findings indicate that the delicate balance between mitotic and meiotic cohesins may regulate ESC-specific chromosomal organization and the mitotic program.
Collapse
Affiliation(s)
- Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Seobin Yoon
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Young Eun Koh
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Tae Kyung Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, South Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, South Korea
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University of Albany-State University of New York, Rensselaer, NY, USA
| | - Yoonsoo Hahn
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Keun P Kim
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
27
|
Sakuno T, Hiraoka Y. Rec8 Cohesin: A Structural Platform for Shaping the Meiotic Chromosomes. Genes (Basel) 2022; 13:200. [PMID: 35205245 PMCID: PMC8871791 DOI: 10.3390/genes13020200] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
Meiosis is critically different from mitosis in that during meiosis, pairing and segregation of homologous chromosomes occur. During meiosis, the morphology of sister chromatids changes drastically, forming a prominent axial structure in the synaptonemal complex. The meiosis-specific cohesin complex plays a central role in the regulation of the processes required for recombination. In particular, the Rec8 subunit of the meiotic cohesin complex, which is conserved in a wide range of eukaryotes, has been analyzed for its function in modulating chromosomal architecture during the pairing and recombination of homologous chromosomes in meiosis. Here, we review the current understanding of Rec8 cohesin as a structural platform for meiotic chromosomes.
Collapse
Affiliation(s)
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan;
| |
Collapse
|
28
|
Nambu M, Kishikawa A, Yamada T, Ichikawa K, Kira Y, Itabashi Y, Honda A, Yamada K, Murakami H, Yamamoto A. Direct evaluation of cohesin-mediated sister kinetochore associations at meiosis I in fission yeast. J Cell Sci 2022; 135:jcs259102. [PMID: 34851403 DOI: 10.1242/jcs.259102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022] Open
Abstract
Kinetochores drive chromosome segregation by mediating chromosome interactions with the spindle. In higher eukaryotes, sister kinetochores are separately positioned on opposite sides of sister centromeres during mitosis, but associate with each other during meiosis I. Kinetochore association facilitates the attachment of sister chromatids to the same pole, enabling the segregation of homologous chromosomes toward opposite poles. In the fission yeast, Schizosaccharomyces pombe, Rec8-containing meiotic cohesin is suggested to establish kinetochore associations by mediating cohesion of the centromere cores. However, cohesin-mediated kinetochore associations on intact chromosomes have never been demonstrated directly. In the present study, we describe a novel method for the direct evaluation of kinetochore associations on intact chromosomes in live S. pombe cells, and demonstrate that sister kinetochores and the centromere cores are positioned separately on mitotic chromosomes but associate with each other on meiosis I chromosomes. Furthermore, we demonstrate that kinetochore association depends on meiotic cohesin and the cohesin regulators Moa1 and Mrc1, and requires mating-pheromone signaling for its establishment. These results confirm cohesin-mediated kinetochore association and its regulatory mechanisms, along with the usefulness of the developed method for its analysis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Masashi Nambu
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Atsuki Kishikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Takatomi Yamada
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kento Ichikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Yunosuke Kira
- Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Yuta Itabashi
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Akira Honda
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Kohei Yamada
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hiroshi Murakami
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Ayumu Yamamoto
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
29
|
Ray-Jones H, Spivakov M. Transcriptional enhancers and their communication with gene promoters. Cell Mol Life Sci 2021; 78:6453-6485. [PMID: 34414474 PMCID: PMC8558291 DOI: 10.1007/s00018-021-03903-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Transcriptional enhancers play a key role in the initiation and maintenance of gene expression programmes, particularly in metazoa. How these elements control their target genes in the right place and time is one of the most pertinent questions in functional genomics, with wide implications for most areas of biology. Here, we synthesise classic and recent evidence on the regulatory logic of enhancers, including the principles of enhancer organisation, factors that facilitate and delimit enhancer-promoter communication, and the joint effects of multiple enhancers. We show how modern approaches building on classic insights have begun to unravel the complexity of enhancer-promoter relationships, paving the way towards a quantitative understanding of gene control.
Collapse
Affiliation(s)
- Helen Ray-Jones
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK
| | - Mikhail Spivakov
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK.
| |
Collapse
|
30
|
Pathania A, Liu W, Matityahu A, Irudayaraj J, Onn I. Chromosome loading of cohesin depends on conserved residues in Scc3. Curr Genet 2021; 67:447-459. [PMID: 33404730 DOI: 10.1007/s00294-020-01150-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Cohesin is essential for sister chromatid cohesion, which ensures equal segregation of the chromatids to daughter cells. However, the molecular mechanism by which cohesin mediates this function is elusive. Scc3, one of the four core subunits of cohesin, is vital to cohesin activity. However, the mechanism by which Scc3 contributes to the activity and identity of its functional domains is not fully understood. Here, we describe an in-frame five-amino acid insertion mutation after glutamic acid 704 (scc3-E704ins) in yeast Scc3, located in the middle of the second armadillo repeat. Mutated cohesin-scc3-E704ins complexes are unable to establish cohesion. Detailed molecular and genetic analyses revealed that the mutated cohesin has reduced affinity to the Scc2 loader. This inhibits its enrichment at centromeres and chromosomal arms. Mutant complexes show a slow diffusion rate in live cells suggesting that they induce a major conformational change in the complex. The analysis of systematic mutations in the insertion region of Scc3 revealed two conserved aspartic acid residues that are essential for the activity. The study offers a better understanding of the contribution of Scc3 to cohesin activity and the mechanism by which cohesin tethers the sister chromatids during the cell cycle.
Collapse
Affiliation(s)
- Anjali Pathania
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, P.O. Box 1589, 1311502, Safed, Israel
| | - Wenjie Liu
- Micro and Nanotechnology Laboratory, Department of Bioengineering, Beckman Institute, Carl Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carle Foundation Hospital, Mills Breast Cancer Institute, Urbana, IL, USA
| | - Avi Matityahu
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, P.O. Box 1589, 1311502, Safed, Israel
| | - Joseph Irudayaraj
- Micro and Nanotechnology Laboratory, Department of Bioengineering, Beckman Institute, Carl Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carle Foundation Hospital, Mills Breast Cancer Institute, Urbana, IL, USA
| | - Itay Onn
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, P.O. Box 1589, 1311502, Safed, Israel.
| |
Collapse
|
31
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
32
|
Shake It Off: The Elimination of Erroneous Kinetochore-Microtubule Attachments and Chromosome Oscillation. Int J Mol Sci 2021; 22:ijms22063174. [PMID: 33804687 PMCID: PMC8003821 DOI: 10.3390/ijms22063174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 01/17/2023] Open
Abstract
Cell proliferation and sexual reproduction require the faithful segregation of chromosomes. Chromosome segregation is driven by the interaction of chromosomes with the spindle, and the attachment of chromosomes to the proper spindle poles is essential. Initial attachments are frequently erroneous due to the random nature of the attachment process; however, erroneous attachments are selectively eliminated. Proper attachment generates greater tension at the kinetochore than erroneous attachments, and it is thought that attachment selection is dependent on this tension. However, studies of meiotic chromosome segregation suggest that attachment elimination cannot be solely attributed to tension, and the precise mechanism of selective elimination of erroneous attachments remains unclear. During attachment elimination, chromosomes oscillate between the spindle poles. A recent study on meiotic chromosome segregation in fission yeast has suggested that attachment elimination is coupled to chromosome oscillation. In this review, the possible contribution of chromosome oscillation in the elimination of erroneous attachment is discussed in light of the recent finding.
Collapse
|
33
|
Abstract
Cohesin helps mediate sister chromatid cohesion, chromosome condensation, DNA repair, and transcription regulation. We exploited proximity-dependent labeling to define the in vivo interactions of cohesin domains with DNA or with other cohesin domains that lie within the same or in different cohesin complexes. Our results suggest that both cohesin's head and hinge domains are proximal to DNA, and cohesin structure is dynamic with differential folding of its coiled coil regions to generate butterfly confirmations. This method also reveals that cohesins form ordered clusters on and off DNA. The levels of cohesin clusters and their distribution on chromosomes are cell cycle-regulated. Cohesin clustering is likely necessary for cohesion maintenance because clustering and maintenance uniquely require the same subset of cohesin domains and the auxiliary cohesin factor Pds5p. These conclusions provide important new mechanistic and biological insights into the architecture of the cohesin complex, cohesin-cohesin interactions, and cohesin's tethering and loop-extruding activities.
Collapse
Affiliation(s)
- Siheng Xiang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
34
|
Gregan J. The Spatial Organization of Sister Chromatids. Trends Biochem Sci 2021; 46:255-257. [PMID: 33593592 DOI: 10.1016/j.tibs.2021.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/19/2022]
Abstract
Understanding how genomes are spatially organized is central to many aspects of cell biology. However, it has been difficult to study the relationships between sister chromatids because sequencing-based techniques such as Hi-C could not distinguish identical sister DNAs. Here, I discuss recent developments that provide insights into sister chromatid organization.
Collapse
Affiliation(s)
- Juraj Gregan
- Advanced Microscopy Facility, VBCF, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
35
|
Wakiya M, Nishi E, Kawai S, Yamada K, Katsumata K, Hirayasu A, Itabashi Y, Yamamoto A. Chiasmata and the kinetochore component Dam1 are crucial for elimination of erroneous chromosome attachments and centromere oscillation at meiosis I. Open Biol 2021; 11:200308. [PMID: 33529549 PMCID: PMC8061696 DOI: 10.1098/rsob.200308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Establishment of proper chromosome attachments to the spindle requires elimination of erroneous attachments, but the mechanism of this process is not fully understood. During meiosis I, sister chromatids attach to the same spindle pole (mono-oriented attachment), whereas homologous chromosomes attach to opposite poles (bi-oriented attachment), resulting in homologous chromosome segregation. Here, we show that chiasmata that link homologous chromosomes and kinetochore component Dam1 are crucial for elimination of erroneous attachments and oscillation of centromeres between the spindle poles at meiosis I in fission yeast. In chiasma-forming cells, Mad2 and Aurora B kinase, which provides time for attachment correction and destabilizes erroneous attachments, respectively, caused elimination of bi-oriented attachments of sister chromatids, whereas in chiasma-lacking cells, they caused elimination of mono-oriented attachments. In chiasma-forming cells, in addition, homologous centromere oscillation was coordinated. Furthermore, Dam1 contributed to attachment elimination in both chiasma-forming and chiasma-lacking cells, and drove centromere oscillation. These results demonstrate that chiasmata alter attachment correction patterns by enabling error correction factors to eliminate bi-oriented attachment of sister chromatids, and suggest that Dam1 induces elimination of erroneous attachments. The coincidental contribution of chiasmata and Dam1 to centromere oscillation also suggests a potential link between centromere oscillation and attachment elimination.
Collapse
Affiliation(s)
- Misuzu Wakiya
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Eriko Nishi
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Shinnosuke Kawai
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Kohei Yamada
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Kazuhiro Katsumata
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Ami Hirayasu
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Yuta Itabashi
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Ayumu Yamamoto
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
36
|
Matityahu A, Onn I. Hit the brakes - a new perspective on the loop extrusion mechanism of cohesin and other SMC complexes. J Cell Sci 2021; 134:jcs247577. [PMID: 33419949 DOI: 10.1242/jcs.247577] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The three-dimensional structure of chromatin is determined by the action of protein complexes of the structural maintenance of chromosome (SMC) family. Eukaryotic cells contain three SMC complexes, cohesin, condensin, and a complex of Smc5 and Smc6. Initially, cohesin was linked to sister chromatid cohesion, the process that ensures the fidelity of chromosome segregation in mitosis. In recent years, a second function in the organization of interphase chromatin into topologically associated domains has been determined, and loop extrusion has emerged as the leading mechanism of this process. Interestingly, fundamental mechanistic differences exist between mitotic tethering and loop extrusion. As distinct molecular switches that aim to suppress loop extrusion in different biological contexts have been identified, we hypothesize here that loop extrusion is the default biochemical activity of cohesin and that its suppression shifts cohesin into a tethering mode. With this model, we aim to provide an explanation for how loop extrusion and tethering can coexist in a single cohesin complex and also apply it to the other eukaryotic SMC complexes, describing both similarities and differences between them. Finally, we present model-derived molecular predictions that can be tested experimentally, thus offering a new perspective on the mechanisms by which SMC complexes shape the higher-order structure of chromatin.
Collapse
Affiliation(s)
- Avi Matityahu
- 8 Henrietta Szold St., The Azrieli Faculty of Medicine, Bar-Ilan University, P.O. Box 1589 Safed, Israel
| | - Itay Onn
- 8 Henrietta Szold St., The Azrieli Faculty of Medicine, Bar-Ilan University, P.O. Box 1589 Safed, Israel
| |
Collapse
|
37
|
Dyson S, Segura J, Martínez‐García B, Valdés A, Roca J. Condensin minimizes topoisomerase II-mediated entanglements of DNA in vivo. EMBO J 2021; 40:e105393. [PMID: 33155682 PMCID: PMC7780148 DOI: 10.15252/embj.2020105393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/10/2020] [Accepted: 10/07/2020] [Indexed: 12/24/2022] Open
Abstract
The juxtaposition of intracellular DNA segments, together with the DNA-passage activity of topoisomerase II, leads to the formation of DNA knots and interlinks, which jeopardize chromatin structure and gene expression. Recent studies in budding yeast have shown that some mechanism minimizes the knotting probability of intracellular DNA. Here, we tested whether this is achieved via the intrinsic capacity of topoisomerase II for simplifying the equilibrium topology of DNA; or whether it is mediated by SMC (structural maintenance of chromosomes) protein complexes like condensin or cohesin, whose capacity to extrude DNA loops could enforce dissolution of DNA knots by topoisomerase II. We show that the low knotting probability of DNA does not depend on the simplification capacity of topoisomerase II nor on the activities of cohesin or Smc5/6 complexes. However, inactivation of condensin increases the occurrence of DNA knots throughout the cell cycle. These results suggest an in vivo role for the DNA loop extrusion activity of condensin and may explain why condensin disruption produces a variety of alterations in interphase chromatin, in addition to persistent sister chromatid interlinks in mitotic chromatin.
Collapse
Grants
- BFU2015-67007-P Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- PID2019-109482GB-I00 Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- BES-2016-077806 Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- BES-2012-061167 Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- BES-2015-071597 Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
Collapse
Affiliation(s)
- Sílvia Dyson
- Molecular Biology Institute of Barcelona (IBMB)Spanish National Research Council (CSIC)BarcelonaSpain
| | - Joana Segura
- Molecular Biology Institute of Barcelona (IBMB)Spanish National Research Council (CSIC)BarcelonaSpain
| | - Belén Martínez‐García
- Molecular Biology Institute of Barcelona (IBMB)Spanish National Research Council (CSIC)BarcelonaSpain
| | - Antonio Valdés
- Molecular Biology Institute of Barcelona (IBMB)Spanish National Research Council (CSIC)BarcelonaSpain
| | - Joaquim Roca
- Molecular Biology Institute of Barcelona (IBMB)Spanish National Research Council (CSIC)BarcelonaSpain
| |
Collapse
|
38
|
Mfarej MG, Skibbens RV. DNA damage induces Yap5-dependent transcription of ECO1/CTF7 in Saccharomyces cerevisiae. PLoS One 2020; 15:e0242968. [PMID: 33373396 PMCID: PMC7771704 DOI: 10.1371/journal.pone.0242968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Yeast Eco1 (ESCO2 in humans) acetyltransferase converts chromatin-bound cohesins to a DNA tethering state, thereby establishing sister chromatid cohesion. Eco1 establishes cohesion during DNA replication, after which Eco1 is targeted for degradation by SCF E3 ubiquitin ligase. SCF E3 ligase, and sequential phosphorylations that promote Eco1 ubiquitination and degradation, remain active throughout the M phase. In this way, Eco1 protein levels are high during S phase, but remain low throughout the remaining cell cycle. In response to DNA damage during M phase, however, Eco1 activity increases-providing for a new wave of cohesion establishment (termed Damage-Induced Cohesion, or DIC) which is critical for efficient DNA repair. To date, little evidence exists as to the mechanism through which Eco1 activity increases during M phase in response to DNA damage. Possibilities include that either the kinases or E3 ligase, that target Eco1 for degradation, are inhibited in response to DNA damage. Our results reveal instead that the degradation machinery remains fully active during M phase, despite the presence of DNA damage. In testing alternate models through which Eco1 activity increases in response to DNA damage, the results reveal that DNA damage induces new transcription of ECO1 and at a rate that exceeds the rate of Eco1 turnover, providing for rapid accumulation of Eco1 protein. We further show that DNA damage induction of ECO1 transcription is in part regulated by Yap5-a stress-induced transcription factor. Given the role for mutated ESCO2 (homolog of ECO1) in human birth defects, this study highlights the complex nature through which mutation of ESCO2, and defects in ESCO2 regulation, may promote developmental abnormalities and contribute to various diseases including cancer.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
39
|
Ketharnathan S, Labudina A, Horsfield JA. Cohesin Components Stag1 and Stag2 Differentially Influence Haematopoietic Mesoderm Development in Zebrafish Embryos. Front Cell Dev Biol 2020; 8:617545. [PMID: 33365313 PMCID: PMC7750468 DOI: 10.3389/fcell.2020.617545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Cohesin is a multiprotein complex made up of core subunits Smc1, Smc3, and Rad21, and either Stag1 or Stag2. Normal haematopoietic development relies on crucial functions of cohesin in cell division and regulation of gene expression via three-dimensional chromatin organization. Cohesin subunit STAG2 is frequently mutated in myeloid malignancies, but the individual contributions of Stag variants to haematopoiesis or malignancy are not fully understood. Zebrafish have four Stag paralogues (Stag1a, Stag1b, Stag2a, and Stag2b), allowing detailed genetic dissection of the contribution of Stag1-cohesin and Stag2-cohesin to development. Here we characterize for the first time the expression patterns and functions of zebrafish stag genes during embryogenesis. Using loss-of-function CRISPR-Cas9 zebrafish mutants, we show that stag1a and stag2b contribute to primitive embryonic haematopoiesis. Both stag1a and stag2b mutants present with erythropenia by 24 h post-fertilization. Homozygous loss of either paralogue alters the number of haematopoietic/vascular progenitors in the lateral plate mesoderm. The lateral plate mesoderm zone of scl-positive cells is expanded in stag1a mutants with concomitant loss of kidney progenitors, and the number of spi1-positive cells are increased, consistent with skewing toward primitive myelopoiesis. In contrast, stag2b mutants have reduced haematopoietic/vascular mesoderm and downregulation of primitive erythropoiesis. Our results suggest that Stag1 and Stag2 proteins cooperate to balance the production of primitive haematopoietic/vascular progenitors from mesoderm.
Collapse
Affiliation(s)
- Sarada Ketharnathan
- Department of Pathology, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Anastasia Labudina
- Department of Pathology, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Otago Medical School, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
40
|
Costantino L, Hsieh THS, Lamothe R, Darzacq X, Koshland D. Cohesin residency determines chromatin loop patterns. eLife 2020; 9:e59889. [PMID: 33170773 PMCID: PMC7655110 DOI: 10.7554/elife.59889] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
The organization of chromatin into higher order structures is essential for chromosome segregation, the repair of DNA-damage, and the regulation of gene expression. Using Micro-C XL to detect chromosomal interactions, we observed the pervasive presence of cohesin-dependent loops with defined positions throughout the genome of budding yeast, as seen in mammalian cells. In early S phase, cohesin stably binds to cohesin associated regions (CARs) genome-wide. Subsequently, positioned loops accumulate with CARs at the bases of the loops. Cohesin regulators Wpl1 and Pds5 alter the levels and distribution of cohesin at CARs, changing the pattern of positioned loops. From these observations, we propose that cohesin with loop extrusion activity is stopped by preexisting CAR-bound cohesins, generating positioned loops. The patterns of loops observed in a population of wild-type and mutant cells can be explained by this mechanism, coupled with a heterogeneous residency of cohesin at CARs in individual cells.
Collapse
Affiliation(s)
- Lorenzo Costantino
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Tsung-Han S Hsieh
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Rebecca Lamothe
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
41
|
Abstract
The organization of chromatin into higher order structures is essential for chromosome segregation, the repair of DNA-damage, and the regulation of gene expression. Using Micro-C XL to detect chromosomal interactions, we observed the pervasive presence of cohesin-dependent loops with defined positions throughout the genome of budding yeast, as seen in mammalian cells. In early S phase, cohesin stably binds to cohesin associated regions (CARs) genome-wide. Subsequently, positioned loops accumulate with CARs at the bases of the loops. Cohesin regulators Wpl1 and Pds5 alter the levels and distribution of cohesin at CARs, changing the pattern of positioned loops. From these observations, we propose that cohesin with loop extrusion activity is stopped by preexisting CAR-bound cohesins, generating positioned loops. The patterns of loops observed in a population of wild-type and mutant cells can be explained by this mechanism, coupled with a heterogeneous residency of cohesin at CARs in individual cells.
Collapse
Affiliation(s)
- Lorenzo Costantino
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Tsung-Han S Hsieh
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Rebecca Lamothe
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
42
|
Cheblal A, Challa K, Seeber A, Shimada K, Yoshida H, Ferreira HC, Amitai A, Gasser SM. DNA Damage-Induced Nucleosome Depletion Enhances Homology Search Independently of Local Break Movement. Mol Cell 2020; 80:311-326.e4. [PMID: 32970994 DOI: 10.1016/j.molcel.2020.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 01/02/2023]
Abstract
To determine whether double-strand break (DSB) mobility enhances the physical search for an ectopic template during homology-directed repair (HDR), we tested the effects of factors that control chromatin dynamics, including cohesin loading and kinetochore anchoring. The former but not the latter is altered in response to DSBs. Loss of the nonhistone high-mobility group protein Nhp6 reduces histone occupancy and increases chromatin movement, decompaction, and ectopic HDR. The loss of nucleosome remodeler INO80-C did the opposite. To see whether enhanced HDR depends on DSB mobility or the global chromatin response, we tested the ubiquitin ligase mutant uls1Δ, which selectively impairs local but not global movement in response to a DSB. Strand invasion occurs in uls1Δ cells with wild-type kinetics, arguing that global histone depletion rather than DSB movement is rate limiting for HDR. Impaired break movement in uls1Δ correlates with elevated MRX and cohesin loading, despite normal resection and checkpoint activation.
Collapse
Affiliation(s)
- Anaïs Cheblal
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, 4056 Basel, Switzerland
| | - Kiran Challa
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Present address: Center for Advanced Imaging, Northwest Building, 52 Oxford St, Suite 147, Harvard University, Cambridge, MA 02138, USA
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Haruka Yoshida
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Helder C Ferreira
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Assaf Amitai
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, 4056 Basel, Switzerland.
| |
Collapse
|
43
|
Francia ME, Bhavsar S, Ting LM, Croken MM, Kim K, Dubremetz JF, Striepen B. A Homolog of Structural Maintenance of Chromosome 1 Is a Persistent Centromeric Protein Which Associates With Nuclear Pore Components in Toxoplasma gondii. Front Cell Infect Microbiol 2020; 10:295. [PMID: 32714878 PMCID: PMC7343853 DOI: 10.3389/fcimb.2020.00295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/19/2020] [Indexed: 01/02/2023] Open
Abstract
Apicomplexa are obligate intracellular parasites which cause various animal and human diseases including malaria, toxoplasmosis, and cryptosporidiosis. They proliferate by a unique mechanism that combines physically separated semi-closed mitosis of the nucleus and assembly of daughter cells by internal budding. Mitosis occurs in the presence of a nuclear envelope and with little appreciable chromatin condensation. A long standing question in the field has been how parasites keep track of their uncondensed chromatin chromosomes throughout their development, and hence secure proper chromosome segregation during division. Past work demonstrated that the centromeres, the region of kinetochore assembly at chromosomes, of Toxoplasma gondii remain clustered at a defined region of the nuclear periphery proximal to the main microtubule organizing center of the cell, the centrosome. We have proposed that this mechanism is likely involved in the process. Here we set out to identify underlying molecular players involved in centromere clustering. Through pharmacological treatment and structural analysis we show that centromere clustering is not mediated by persistent microtubules of the mitotic spindle. We identify the chromatin binding factor a homolog of structural maintenance of chromosomes 1 (SMC1). Additionally, we show that both TgSMC1, and a centromeric histone, interact with TgExportin1, a predicted soluble component of the nuclear pore complex. Our results suggest that the nuclear envelope, and in particular the nuclear pore complex may play a role in positioning centromeres in T. gondii.
Collapse
Affiliation(s)
- Maria E Francia
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Sheila Bhavsar
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Li-Min Ting
- Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| | - Matthew M Croken
- Pathology, Molecular and Cell Based Medicine, Mount Sinai Medical Center, New York, NY, United States
| | - Kami Kim
- Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| | | | - Boris Striepen
- Department of Cellular Biology, University of Georgia, Athens, GA, United States.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
44
|
Yu J, Qin B, Moyer AM, Nowsheen S, Tu X, Dong H, Boughey JC, Goetz MP, Weinshilboum R, Lou Z, Wang L. Regulation of sister chromatid cohesion by nuclear PD-L1. Cell Res 2020; 30:590-601. [PMID: 32350394 PMCID: PMC7343880 DOI: 10.1038/s41422-020-0315-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/31/2020] [Indexed: 12/31/2022] Open
Abstract
Programmed death ligand-1 (PD-L1 or B7-H1) is well known for its role in immune checkpoint regulation, but its function inside the tumor cells has rarely been explored. Here we report that nuclear PD-L1 is important for cancer cell sister chromatid cohesion. We found that depletion of PD-L1 suppresses cancer cell proliferation, colony formation in vitro, and tumor growth in vivo in immune-deficient NSG mice independent of its role in immune checkpoint. Specifically, PD-L1 functions as a subunit of the cohesin complex, and its deficiency leads to formation of multinucleated cells and causes a defect in sister chromatid cohesion. Mechanistically, PD-L1 compensates for the loss of Sororin, whose expression is suppressed in cancer cells overexpressing PD-L1. PD-L1 competes with Wing Apart-Like (WAPL) for binding to PDS5B, and secures proper sister chromatid cohesion and segregation. Our findings suggest an important role for nuclear PD-L1 in cancer cells independent of its function in immune checkpoint.
Collapse
Affiliation(s)
- Jia Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Bo Qin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Somaira Nowsheen
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic School of Medicine and the Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xinyi Tu
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Haidong Dong
- Departments of Urology and Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Judy C Boughey
- Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthew P Goetz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
45
|
Pan H, Jin M, Ghadiyaram A, Kaur P, Miller HE, Ta HM, Liu M, Fan Y, Mahn C, Gorthi A, You C, Piehler J, Riehn R, Bishop AJR, Tao YJ, Wang H. Cohesin SA1 and SA2 are RNA binding proteins that localize to RNA containing regions on DNA. Nucleic Acids Res 2020; 48:5639-5655. [PMID: 32352519 PMCID: PMC7261166 DOI: 10.1093/nar/gkaa284] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/28/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Cohesin SA1 (STAG1) and SA2 (STAG2) are key components of the cohesin complex. Previous studies have highlighted the unique contributions by SA1 and SA2 to 3D chromatin organization, DNA replication fork progression, and DNA double-strand break (DSB) repair. Recently, we discovered that cohesin SA1 and SA2 are DNA binding proteins. Given the recently discovered link between SA2 and RNA-mediated biological pathways, we investigated whether or not SA1 and SA2 directly bind to RNA using a combination of bulk biochemical assays and single-molecule techniques, including atomic force microscopy (AFM) and the DNA tightrope assay. We discovered that both SA1 and SA2 bind to various RNA containing substrates, including ssRNA, dsRNA, RNA:DNA hybrids, and R-loops. Importantly, both SA1 and SA2 localize to regions on dsDNA that contain RNA. We directly compared the SA1/SA2 binding and R-loops sites extracted from Chromatin Immunoprecipitation sequencing (ChIP-seq) and DNA-RNA Immunoprecipitation sequencing (DRIP-Seq) data sets, respectively. This analysis revealed that SA1 and SA2 binding sites overlap significantly with R-loops. The majority of R-loop-localized SA1 and SA2 are also sites where other subunits of the cohesin complex bind. These results provide a new direction for future investigation of the diverse biological functions of SA1 and SA2.
Collapse
Affiliation(s)
- Hai Pan
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Miao Jin
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Ashwin Ghadiyaram
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Henry E Miller
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, TX 78229, USA
| | - Hai Minh Ta
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Ming Liu
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Yanlin Fan
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Chelsea Mahn
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Aparna Gorthi
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, TX 78229, USA
| | - Changjiang You
- Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany
| | - Robert Riehn
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, TX 78229, USA
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
- Toxiology Program, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
46
|
Shi D, Zhao S, Zuo MQ, Zhang J, Hou W, Dong MQ, Cao Q, Lou H. The acetyltransferase Eco1 elicits cohesin dimerization during S phase. J Biol Chem 2020; 295:7554-7565. [PMID: 32312753 PMCID: PMC7261783 DOI: 10.1074/jbc.ra120.013102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/09/2020] [Indexed: 01/26/2023] Open
Abstract
Cohesin is a DNA-associated protein complex that forms a tripartite ring controlling sister chromatid cohesion, chromosome segregation and organization, DNA replication, and gene expression. Sister chromatid cohesion is established by the protein acetyltransferase Eco1, which acetylates two conserved lysine residues on the cohesin subunit Smc3 and thereby ensures correct chromatid separation in yeast (Saccharomyces cerevisiae) and other eukaryotes. However, the consequence of Eco1-catalyzed cohesin acetylation is unknown, and the exact nature of the cohesive state of chromatids remains controversial. Here, we show that self-interactions of the cohesin subunits Scc1/Rad21 and Scc3 occur in a DNA replication-coupled manner in both yeast and human cells. Using cross-linking MS-based and in vivo disulfide cross-linking analyses of purified cohesin, we show that a subpopulation of cohesin may exist as dimers. Importantly, upon temperature-sensitive and auxin-induced degron-mediated Eco1 depletion, the cohesin-cohesin interactions became significantly compromised, whereas deleting either the deacetylase Hos1 or the Eco1 antagonist Wpl1/Rad61 increased cohesin dimer levels by ∼20%. These results indicate that cohesin dimerizes in the S phase and monomerizes in mitosis, processes that are controlled by Eco1, Wpl1, and Hos1 in the sister chromatid cohesion-dissolution cycle. These findings suggest that cohesin dimerization is controlled by the cohesion cycle and support the notion that a double-ring cohesin model operates in sister chromatid cohesion.
Collapse
Affiliation(s)
- Di Shi
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, No. 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Shuaijun Zhao
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, No. 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Mei-Qing Zuo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jingjing Zhang
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, No. 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Wenya Hou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, No. 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qinhong Cao
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, No. 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, No. 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| |
Collapse
|
47
|
Liu W, Biton E, Pathania A, Matityahu A, Irudayaraj J, Onn I. Monomeric cohesin state revealed by live-cell single-molecule spectroscopy. EMBO Rep 2020; 21:e48211. [PMID: 31886609 PMCID: PMC7001500 DOI: 10.15252/embr.201948211] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
The cohesin complex plays an important role in the maintenance of genome stability. Cohesin is composed of four core subunits and a set of regulatory subunits that interact with the core subunits. Less is known about cohesin dynamics in live cells and on the contribution of individual subunits to the overall complex. Understanding the tethering mechanism of cohesin is still a challenge, especially because the proposed mechanisms are still not conclusive. Models proposed to describe tethering depend on either the monomeric cohesin ring or a cohesin dimer. Here, we investigate the role of cohesin dynamics and stoichiometry in live yeast cells at single-molecule resolution. We explore the effect of regulatory subunit deletion on cohesin mobility and found that depletion of different regulatory subunits has opposing effects. Finally, we show that cohesin exists mostly as a canonical monomer throughout the cell cycle, and its monomeric form is independent of its regulatory factors. Our results demonstrate that single-molecule tools have the potential to provide new insights into the cohesin mechanism of action in live cells.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Bioengineering, Micro and Nanotechnology LaboratoryCancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Mills Breast Cancer InstituteCarle Foundation HospitalUrbanaILUSA
| | - Elisheva Biton
- The Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | - Anjali Pathania
- The Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | - Avi Matityahu
- The Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | - Joseph Irudayaraj
- Department of Bioengineering, Micro and Nanotechnology LaboratoryCancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Mills Breast Cancer InstituteCarle Foundation HospitalUrbanaILUSA
| | - Itay Onn
- The Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| |
Collapse
|
48
|
Khaminets A, Ronnen-Oron T, Baldauf M, Meier E, Jasper H. Cohesin controls intestinal stem cell identity by maintaining association of Escargot with target promoters. eLife 2020; 9:e48160. [PMID: 32022682 PMCID: PMC7002041 DOI: 10.7554/elife.48160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/18/2020] [Indexed: 12/27/2022] Open
Abstract
Intestinal stem cells (ISCs) maintain regenerative capacity of the intestinal epithelium. Their function and activity are regulated by transcriptional changes, yet how such changes are coordinated at the genomic level remains unclear. The Cohesin complex regulates transcription globally by generating topologically-associated DNA domains (TADs) that link promotor regions with distant enhancers. We show here that the Cohesin complex prevents premature differentiation of Drosophila ISCs into enterocytes (ECs). Depletion of the Cohesin subunit Rad21 and the loading factor Nipped-B triggers an ISC to EC differentiation program that is independent of Notch signaling, but can be rescued by over-expression of the ISC-specific escargot (esg) transcription factor. Using damID and transcriptomic analysis, we find that Cohesin regulates Esg binding to promoters of differentiation genes, including a group of Notch target genes involved in ISC differentiation. We propose that Cohesin ensures efficient Esg-dependent gene repression to maintain stemness and intestinal homeostasis.
Collapse
Affiliation(s)
| | | | - Maik Baldauf
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Elke Meier
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Heinrich Jasper
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
- Buck Institute for Research on AgingNovatoUnited States
- Immunology DiscoveryGenentech, IncSouth San FranciscoUnited States
| |
Collapse
|
49
|
Zhang M, Liang C, Chen Q, Yan H, Xu J, Zhao H, Yuan X, Liu J, Lin S, Lu W, Wang F. Histone H2A phosphorylation recruits topoisomerase IIα to centromeres to safeguard genomic stability. EMBO J 2020; 39:e101863. [PMID: 31769059 PMCID: PMC6996575 DOI: 10.15252/embj.2019101863] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/23/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023] Open
Abstract
Chromosome segregation in mitosis requires the removal of catenation between sister chromatids. Timely decatenation of sister DNAs at mitotic centromeres by topoisomerase IIα (TOP2A) is crucial to maintain genomic stability. The chromatin factors that recruit TOP2A to centromeres during mitosis remain unknown. Here, we show that histone H2A Thr-120 phosphorylation (H2ApT120), a modification generated by the mitotic kinase Bub1, is necessary and sufficient for the centromeric localization of TOP2A. Phosphorylation at residue-120 enhances histone H2A binding to TOP2A in vitro. The C-gate and the extreme C-terminal region are important for H2ApT120-dependent localization of TOP2A at centromeres. Preventing H2ApT120-mediated accumulation of TOP2A at mitotic centromeres interferes with sister chromatid disjunction, as evidenced by increased frequency of anaphase ultra-fine bridges (UFBs) that contain catenated DNA. Tethering TOP2A to centromeres bypasses the requirement for H2ApT120 in suppressing anaphase UFBs. These results demonstrate that H2ApT120 acts as a landmark that recruits TOP2A to mitotic centromeres to decatenate sister DNAs. Our study reveals a fundamental role for histone phosphorylation in resolving centromere DNA entanglements and safeguarding genomic stability during mitosis.
Collapse
Affiliation(s)
- Miao Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Cai Liang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Qinfu Chen
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Haiyan Yan
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Junfen Xu
- Department of Gynecologic OncologyWomen's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Hongxia Zhao
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Xueying Yuan
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jingbo Liu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Shixian Lin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Weiguo Lu
- Department of Gynecologic OncologyWomen's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Women's Reproductive Health Key Research Laboratory of Zhejiang ProvinceWomen's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Fangwei Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
- Department of Gynecologic OncologyWomen's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
50
|
Gutierrez-Escribano P, Newton MD, Llauró A, Huber J, Tanasie L, Davy J, Aly I, Aramayo R, Montoya A, Kramer H, Stigler J, Rueda DS, Aragon L. A conserved ATP- and Scc2/4-dependent activity for cohesin in tethering DNA molecules. SCIENCE ADVANCES 2019; 5:eaay6804. [PMID: 31807710 PMCID: PMC6881171 DOI: 10.1126/sciadv.aay6804] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/22/2019] [Indexed: 05/13/2023]
Abstract
Sister chromatid cohesion requires cohesin to act as a protein linker to hold chromatids together. How cohesin tethers chromatids remains poorly understood. We have used optical tweezers to visualize cohesin as it holds DNA molecules. We show that cohesin complexes tether DNAs in the presence of Scc2/Scc4 and ATP demonstrating a conserved activity from yeast to humans. Cohesin forms two classes of tethers: a "permanent bridge" resisting forces over 80 pN and a force-sensitive "reversible bridge." The establishment of bridges requires physical proximity of dsDNA segments and occurs in a single step. "Permanent" cohesin bridges slide when they occur in trans, but cannot be removed when in cis. Therefore, DNAs occupy separate physical compartments in cohesin molecules. We finally demonstrate that cohesin tetramers can compact linear DNA molecules stretched by very low force (below 1 pN), consistent with the possibility that, like condensin, cohesin is also capable of loop extrusion.
Collapse
Affiliation(s)
- Pilar Gutierrez-Escribano
- Cell Cycle Group, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Matthew D. Newton
- Single Molecule Imaging Group, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
- Molecular Virology, Department of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Aida Llauró
- LUMICKS, De Boelelaan 1085, 1081 HV, Amsterdam, Netherlands
| | - Jonas Huber
- Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Loredana Tanasie
- Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Joseph Davy
- Cell Cycle Group, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Isabel Aly
- Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Ricardo Aramayo
- Microscopy Facility, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Alex Montoya
- Biological Mass Spectrometry and Proteomics Facility, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Holger Kramer
- Biological Mass Spectrometry and Proteomics Facility, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Johannes Stigler
- Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - David S. Rueda
- Single Molecule Imaging Group, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
- Molecular Virology, Department of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Luis Aragon
- Cell Cycle Group, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| |
Collapse
|