1
|
Dudaniec RY, Yadav S, Catchen J, Kleindorfer S. Genomic Introgression Between Critically Endangered and Stable Species of Darwin's Tree Finches on the Galapagos Islands. Evol Appl 2025; 18:e70066. [PMID: 39760018 PMCID: PMC11695273 DOI: 10.1111/eva.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/24/2024] [Accepted: 12/15/2024] [Indexed: 01/07/2025] Open
Abstract
Natural hybridisation among rare or endangered species and stable congenerics is increasingly topical for the conservation of species-level diversity under anthropogenic impacts. Evidence for beneficial genes being introgressed into or selected for in hybrids raises concurrent questions about its evolutionary significance. In Darwin's tree finches on the island of Floreana (Galapagos Islands, Ecuador), the Critically Endangered medium tree finch (Camarhynchus pauper) undergoes introgression with the stable small tree finch (Camarhynchus parvulus), and hybrids regularly backcross with C. parvulus. Earlier studies in 2005-2013 documented an increase in the frequency of Camarhynchus hybridisation on Floreana using field-based and microsatellite data. With single nucleotide polymorphism (SNP) data from the same Floreana tree finches sampled in 2005 and 2013 (n = 95), we examine genome-wide divergence across parental and hybrid birds and evidence for selection in hybrids. We found that just 18% of previously assigned hybrid birds based on microsatellites could be assigned to hybrids using SNPs. Over half of the previously assigned hybrids (63%) were reassigned to C. parvulus, though parental species showed concordance with prior assignments. Of 4869 private alleles found in hybrid birds, 348 were at a high frequency (≥ 0.30) that exceeded their parental species of origin 89%-96% of the time. For private alleles detected in both years (N = 536) between 11%-76% of alleles underwent a frequency increase and 13%-61% a frequency decrease between 2005 and 2013, which was sensitive to sampling effort. We identified 28 private alleles that were candidates under selection via local PCA and outlier tests. Alleles were annotated to genes associated with inflammation, immunity, brain function and development. We provide evidence that introgression among a critically endangered and stable species of Darwin's tree finch across years may aid in the retention of adaptive alleles and genetic diversity in birds threatened with extinction.
Collapse
Affiliation(s)
- Rachael Y. Dudaniec
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Sonu Yadav
- Biosecurity and Animal WelfareNorthern Territory GovernmentDarwinNorthwest TerritoriesAustralia
- Research Institute for the Environment and Livelihoods, Faculty of Science and TechnologyCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Julian Catchen
- Department of Evolution, Ecology, and BehaviorUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Sonia Kleindorfer
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- Konrad Lorenz Research Center for Behavior and CognitionCore Facility of the University of ViennaViennaAustria
- Department of Behavioral and Cognitive BiologyUniversity of ViennaViennaAustria
| |
Collapse
|
2
|
Baeza JA, Minish JJ, Michael TP. Assembly of Mitochondrial Genomes Using Nanopore Long-Read Technology in Three Sea Chubs (Teleostei: Kyphosidae). Mol Ecol Resour 2025; 25:e14034. [PMID: 39403800 DOI: 10.1111/1755-0998.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/03/2024] [Accepted: 10/01/2024] [Indexed: 12/16/2024]
Abstract
Complete mitochondrial genomes have become markers of choice to explore phylogenetic relationships at multiple taxonomic levels and they are often assembled using whole genome short-read sequencing. Herein, using three species of sea chubs as an example, we explored the accuracy of mitochondrial chromosomes assembled using Oxford Nanopore Technology (ONT) Kit 14 R10.4.1 long reads at different sequencing depths (high, low and very low or genome skimming) by comparing them to 'gold' standard reference mitochondrial genomes assembled using Illumina NovaSeq short reads. In two species of sea chubs, Girella nigricans and Kyphosus azureus, ONT long-read assembled mitochondrial genomes at high sequencing depths (> 25× whole [nuclear] genome) were identical to their respective short-read assembled mitochondrial genomes. Not a single 'homopolymer insertion', 'homopolymer deletion', 'simple substitution', 'single insertion', 'short insertion', 'single deletion' or 'short deletion' were detected in the long-read assembled mitochondrial genomes after aligning each one of them to their short-read counterparts. In turn, in a third species, Medialuna californiensis, a 25× sequencing depth long-read assembled mitochondrial genome was 14 nucleotides longer than its short-read counterpart. The difference in total length between the latter two assemblies was due to the presence of a short motif 14 bp long that was repeated (twice) in the long read but not in the short-read assembly. Read subsampling at a sequencing depth of 1× resulted in the assembly of partial or complete mitochondrial genomes with numerous errors, including, among others, simple indels, and indels at homopolymer regions. At 3× and 5× subsampling, genomes were identical (perfect) or almost identical (quasiperfect, 99.5% over 16,500 bp) to their respective Illumina assemblies. The newly assembled mitochondrial genomes exhibit identical gene composition and organisation compared with cofamilial species and a phylomitogenomic analysis based on translated protein-coding genes suggested that the family Kyphosidae is not monophyletic. The same analysis detected possible cases of misidentification of mitochondrial genomes deposited in GenBank. This study demonstrates that perfect (complete and fully accurate) or quasiperfect (complete but with a single or a very few errors) mitochondrial genomes can be assembled at high (> 25×) and low (3-5×) but not very low (1×, genome skimming) sequencing depths using ONT long reads and the latest ONT chemistries (Kit 14 and R10.4.1 flowcells with SUP basecalling). The newly assembled and annotated mitochondrial genomes can be used as a reference in environmental DNA studies focusing on bioprospecting and biomonitoring of these and other coastal species experiencing environmental insult. Given the small size of the sequencing device and low cost, we argue that ONT technology has the potential to improve access to high-throughput sequencing technologies in low- and moderate-income countries.
Collapse
Affiliation(s)
- J Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Smithsonian Marine Station at Fort Pierce, Smithsonian Institution, Fort Pierce, Florida, USA
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Jeremiah J Minish
- The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
3
|
van Westerhoven AC, Dijkstra J, Aznar Palop JL, Wissink K, Bell J, Kema GHJ, Seidl MF. Frequent genetic exchanges revealed by a pan-mitogenome graph of a fungal plant pathogen. mBio 2024; 15:e0275824. [PMID: 39535230 PMCID: PMC11633160 DOI: 10.1128/mbio.02758-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Mitochondria are present in almost all eukaryotic lineages. The mitochondrial genomes (mitogenomes) evolve separately from nuclear genomes, and they can therefore provide relevant insights into the evolution of their host species. Fusarium oxysporum is a major fungal plant pathogen that is assumed to reproduce clonally. However, horizontal chromosome transfer between strains can occur through heterokaryon formation, and recently, signs of sexual recombination have been observed. Similarly, signs of recombination in F. oxysporum mitogenomes challenged the prevailing assumption of clonal reproduction in this species. Here, we construct, to our knowledge, the first fungal pan-mitogenome graph of nearly 500 F. oxysporum mitogenome assemblies to uncover the variation and evolution. In general, the gene order of fungal mitogenomes is not well conserved, yet the mitogenome of F. oxysporum and related species are highly colinear. We observed two strikingly contrasting regions in the F. oxysporum pan-mitogenome, comprising a highly conserved core mitogenome and a long variable region (6-16 kb in size), of which we identified three distinct types. The pan-mitogenome graph reveals that only five intron insertions occurred in the core mitogenome and that the long variable regions drive the difference between mitogenomes. Moreover, we observed that their evolution is neither concurrent with the core mitogenome nor with the nuclear genome. Our large-scale analysis of long variable regions uncovers frequent recombination between mitogenomes, even between strains that belong to different taxonomic clades. This challenges the common assumption of incompatibility between genetically diverse F. oxysporum strains and provides new insights into the evolution of this fungal species.IMPORTANCEInsights into plant pathogen evolution is essential for the understanding and management of disease. Fusarium oxysporum is a major fungal pathogen that can infect many economically important crops. Pathogenicity can be transferred between strains by the horizontal transfer of pathogenicity chromosomes. The fungus has been thought to evolve clonally, yet recent evidence suggests active sexual recombination between related isolates, which could at least partially explain the horizontal transfer of pathogenicity chromosomes. By constructing a pan-genome graph of nearly 500 mitochondrial genomes, we describe the genetic variation of mitochondria in unprecedented detail and demonstrate frequent mitochondrial recombination. Importantly, recombination can occur between genetically diverse isolates from distinct taxonomic clades and thus can shed light on genetic exchange between fungal strains.
Collapse
Affiliation(s)
- Anouk C. van Westerhoven
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, Netherlands
| | - Jelmer Dijkstra
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, Netherlands
| | - Jose L. Aznar Palop
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Kyran Wissink
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Jasper Bell
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Gert H. J. Kema
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, Netherlands
| | - Michael F. Seidl
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Nielsen TM, Baldwin J, Danis M, Fedorka KM. Support for Y-compensation of mother's curse affecting lifespan in Drosophila melanogaster. Heredity (Edinb) 2024; 133:418-425. [PMID: 39369145 PMCID: PMC11589675 DOI: 10.1038/s41437-024-00726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
Mother's curse refers to male-biased deleterious mutations that may accumulate on mitochondria due to its strict maternal inheritance. If these mutations persist, males should ideally compensate through mutations on Y-chromosomes given its strict paternal inheritance. Previous work addressed this hypothesis by comparing coevolved and non-coevolved Y-mitochondria pairs placed alongside completely foreign autosomal backgrounds, expecting males with coevolved pairs to exhibit greater fitness due to Y-compensation. To date, no evidence for Y-compensation has been found. That experimental design assumes Y-chromosomes compensate via direct interaction with mitochondria and/or coevolved autosomes are unimportant in its function or elucidation. If Y-chromosomes instead compensate by modifying autosomal targets (or its elucidation requires coevolved autosomes), then this design could fail to detect Y-compensation. Here we address if Y-chromosomes ameliorate mitochondrial mutations affecting male lifespan in Drosophila melanogaster. Using three disparate populations we compared lifespan among males with coevolved and non-coevolved Y-mitochondria pairs placed alongside autosomal backgrounds coevolved with mitochondria. We found coevolved pairs exhibited lower mortality risk relative to non-coevolved pairs. In contrast, no such pattern was observed when coevolved and non-coevolved pairs were placed alongside non-coevolved autosomes, as with previous studies. These data are consistent with Y-compensation and highlight the importance of autosomes in this capacity. However, we cannot fully exclude the possibility that Y-autosomal coevolution independent of mitochondrial mutations contributed to our results. Regardless, modern practices in medicine, conservation, and agriculture that introduce foreign Y-chromosomes into non-coevolved backgrounds should be used with caution, as they may disrupt Y-autosome coadaptation and/or inadvertently unbridle mother's curse.
Collapse
Affiliation(s)
- Tobias Møgelvang Nielsen
- University of Central Florida, Biological Sciences Building, 4110 Libra Dr., Orlando, FL, 32816, USA
| | - Jaden Baldwin
- University of Central Florida, Biological Sciences Building, 4110 Libra Dr., Orlando, FL, 32816, USA
| | - Megan Danis
- University of Central Florida, Biological Sciences Building, 4110 Libra Dr., Orlando, FL, 32816, USA
| | - Kenneth M Fedorka
- University of Central Florida, Biological Sciences Building, 4110 Libra Dr., Orlando, FL, 32816, USA.
| |
Collapse
|
5
|
Zhao J, Huang CJ, Jiang LJ, He ZR, Yang S, Zhu ZM, Zhang L, Yu H, Zhou XM, Wang JG. Phylogenomic analyses of the pantropical Platycerium Desv. (Platycerioideae) reveal their complex evolution and historical biogeography. Mol Phylogenet Evol 2024; 201:108213. [PMID: 39393764 DOI: 10.1016/j.ympev.2024.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Platycerium is a genus of pantropical epiphytic ferns consisting of ca. 18 species and are highly sought after by horticultural enthusiasts. Although the monophyly of this genus has been well supported in previous molecular studies, as an intercontinentally disjunct genus, the origin and distribution pattern of Platycerium were elusive and controversial. This is mainly due to limited taxon sampling, a plastid representing only a single coalescent history, the lack of fossil evidence, and so on. Here, by utilizing genome-skimming sequencing, transcriptome sequencing, and flow cytometry, we integrated chloroplast genomes, data of single-copy nuclear genes, ploidy levels, morphology, and geographic distribution to understand the species phylogeny and the evolutionary and biogeographic history of Platycerium. Our major results include: (1) based on both plastid and nuclear datasets, Platycerium is consistently resolved into three fully supported clades: the Afro-American (AA) clade, the Javan-Australian (JA) clade, and the Malayan-Asian (MA) clade. The AA clade and MA clade are further divided into three and two subclades, respectively; (2) a large amount of gene tree conflict, as well as cytonuclear discordance, was found and can be explained by hybridization and incomplete lineage sorting, and most of the hybridization hypotheses represented ancient hybridization events; (3) through molecular dating, the crown age of Platycerium is determined to be at approximately 32.79 Ma based on the plastid dataset or 29.08 Ma based on the nuclear dataset in the Middle Oligocene; (4) ancestral area reconstruction analysis from different datasets showed that Platycerium most likely originated from Indochina; (5) current distribution patterns are resultant from long-distance dispersals, ancient orogeny, and an ancient climate event; and (6) species diversification was driven by polyploidization, dispersal, and hybridization. This study presented here will help understand the evolution of tropical plant flora and provide a reference for the cultivation and breeding of staghorn ferns.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Li-Ju Jiang
- Gardening and Horticulture Center, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Shuai Yang
- Plant Fairyland, Boda Road, Chenggong District, Kunming 650503, Yunnan, China
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Liang Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Jia-Guan Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| |
Collapse
|
6
|
Chen Y, Yuan Y, Yang W, Storey KB, Zhang J, Yu D. Insight into the Phylogenetic Relationships of Phasmatodea and Selection Pressure Analysis of Phraortes liaoningensis Chen & He, 1991 (Phasmatodea: Lonchodidae) Using Mitogenomes. INSECTS 2024; 15:858. [PMID: 39590457 PMCID: PMC11595267 DOI: 10.3390/insects15110858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
Stick and leaf insects are a group among the Insecta that are famous for their extraordinary mimicry ability. Since the establishment of the Phasmatodea, their internal classification has been constantly revised. Mitochondrial genes as molecular markers have been widely used for species classification, but the phylogenetic relationships within the Phasmatodea remain to be thoroughly discussed. In the present study, five mitogenomes of Phasmatodea ranging from 15,746 bp to 16,747 bp in length were sequenced. Bayesian inference (BI) and maximum likelihood (ML) analyses were carried out based on a 13 PCGs data matrix (nt123) and a combined matrix of 13 PCGs and two rRNA genes (nt123_rRNA). The present study supports the conclusion that Phylliidae was the basal group of Neophasmatodea and confirms the monophyly of Lonchodinae and Necrosciinae, but it shows that Lonchodidae was polyphyletic. A sister group of Bacillidae and Pseudophasmatidae was also recovered. The phylogenetic tree based on the nt_123 dataset showed higher node support values. The construction of a divergent time tree in this study supported the conclusion that extant Phasmatodea originated in the Jurassic (170 Mya) and most lineages diverged after the Cretaceous-Paleogene extinction event. To explore whether the mitochondrial genes of Phraortes liaoningensis collected from high latitudes where low temperatures occur for eight months of the year are under selection pressure, this study used the branch-site model and the branch model to analyze the selection pressure on the 13 mitochondria protein-coding genes (PCGs). We found that both ND2 and ND4L of Ph. liaoningensis exhibited positive selection sites using the branch-site model. This study shows that a low-temperature environment causes mitochondrial genes to be selected to meet the energy requirements for survival.
Collapse
Affiliation(s)
- Yuxin Chen
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yani Yuan
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Wenhui Yang
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jiayong Zhang
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Danna Yu
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
7
|
Cheung K, Rollins LA, Hammond JM, Barton K, Ferguson JM, Eyck HJF, Shine R, Edwards RJ. Repeat-Rich Regions Cause False-Positive Detection of NUMTs: A Case Study in Amphibians Using an Improved Cane Toad Reference Genome. Genome Biol Evol 2024; 16:evae246. [PMID: 39548850 PMCID: PMC11606642 DOI: 10.1093/gbe/evae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Mitochondrial DNA (mtDNA) has been widely used in genetics research for decades. Contamination from nuclear DNA of mitochondrial origin (NUMTs) can confound studies of phylogenetic relationships and mtDNA heteroplasmy. Homology searches with mtDNA are widely used to detect NUMTs in the nuclear genome. Nevertheless, false-positive detection of NUMTs is common when handling repeat-rich sequences, while fragmented genomes might result in missing true NUMTs. In this study, we investigated different NUMT detection methods and how the quality of the genome assembly affects them. We presented an improved nuclear genome assembly (aRhiMar1.3) of the invasive cane toad (Rhinella marina) with additional long-read Nanopore and 10× linked-read sequencing. The final assembly was 3.47 Gb in length with 91.3% of tetrapod universal single-copy orthologs (n = 5,310), indicating the gene-containing regions were well assembled. We used 3 complementary methods (NUMTFinder, dinumt, and PALMER) to study the NUMT landscape of the cane toad genome. All 3 methods yielded consistent results, showing very few NUMTs in the cane toad genome. Furthermore, we expanded NUMT detection analyses to other amphibians and confirmed a weak relationship between genome size and the number of NUMTs present in the nuclear genome. Amphibians are repeat-rich, and we show that the number of NUMTs found in highly repetitive genomes is prone to inflation when using homology-based detection without filters. Together, this study provides an exemplar of how to robustly identify NUMTs in complex genomes when confounding effects on mtDNA analyses are a concern.
Collapse
Affiliation(s)
- Kelton Cheung
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, Australia
- Evolution & Ecology Research Centre, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Lee Ann Rollins
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Jillian M Hammond
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
| | - Kirston Barton
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - James M Ferguson
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
| | - Harrison J F Eyck
- National Collections and Marine Infrastructure, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Richard Shine
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Richard J Edwards
- Evolution & Ecology Research Centre, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Western Australia, Australia
| |
Collapse
|
8
|
Zheng HX, Yan S, Zhang M, Gu Z, Wang J, Jin L. Mitochondrial DNA Genomes Reveal Relaxed Purifying Selection During Human Population Expansion after the Last Glacial Maximum. Mol Biol Evol 2024; 41:msae175. [PMID: 39162340 PMCID: PMC11373649 DOI: 10.1093/molbev/msae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Modern humans have experienced explosive population growth in the past thousand years. We hypothesized that recent human populations have inhabited environments with relaxation of selective constraints, possibly due to the more abundant food supply after the Last Glacial Maximum. The ratio of nonsynonymous to synonymous mutations (N/S ratio) is a useful and common statistic for measuring selective constraints. In this study, we reconstructed a high-resolution phylogenetic tree using a total of 26,419 East Eurasian mitochondrial DNA genomes, which were further classified into expansion and nonexpansion groups on the basis of the frequencies of their founder lineages. We observed a much higher N/S ratio in the expansion group, especially for nonsynonymous mutations with moderately deleterious effects, indicating a weaker effect of purifying selection in the expanded clades. However, this observation on N/S ratio was unlikely in computer simulations where all individuals were under the same selective constraints. Thus, we argue that the expanded populations were subjected to weaker selective constraints than the nonexpanded populations were. The mildly deleterious mutations were retained during population expansion, which could have a profound impact on present-day disease patterns.
Collapse
Affiliation(s)
- Hong-Xiang Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Shi Yan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Menghan Zhang
- Institute of Modern Languages and Linguistics, Fudan University, Shanghai, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
| | - Zhenglong Gu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
- Research Unit of Dissecting Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
- Research Unit of Dissecting Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Feng B, Wang Z, Zhao X, Niu H, Wang Y, Wang K, Jiang K, Zhang H. Self-Internal Standard Fluorescence for Ultrasensitive Detecting of mtDNA to Evaluate Matrilineal Genetic Defect Levels. Anal Chem 2024; 96:14125-14132. [PMID: 38978161 DOI: 10.1021/acs.analchem.4c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondrial DNA (mtDNA) is a unique genetic material characterized by maternal inheritance. It possesses a circular structure devoid of histone protection and exhibits low cellular abundance, which poses great challenges for its sensitive and selective detection at the living cell level. Herein, we have designed three bis-naphthylimide probes with varying linker lengths (NANn-OH, n = 0, 2, 6), facilitating the formation of distinct twisted or folded molecular conformations in the free state. These probes emit the red fluorescence around 627 nm with different fluorescence quantum yields (ΦNAN0-OH = 0.0016, ΦNAN2-OH = 0.0136, and ΦNAN6-OH = 0.0125). When encountering mtDNA (0.4-3.4 μg/mL), these probes undergo conformational changes depending on the length of the attached C-strand and exhibit a gradually increasing fluorescence signal around 453 nm. The fluorescence intensity increased to 13.5-fold, 1.9-fold, and 8.2-fold, respectively. Notably, the red fluorescence intensities around 627 nm remain constant throughout this process, thus serving as an inherent correction mechanism for proportional fluorescence signal enhancement to improve selectivity and sensitivity. NAN0-OH, NAN2-OH, and NAN6-OH showed good linearity for mtDNA in the range of 0.4-3.4 μg/mL with detection limits of LODNAN0-OH = 1.04 μg/mL, LODNAN2-OH = 1.10 μg/mL, and LODNAN6-OH = 1.15 μg/mL. Cellular experiments reveal that NAN6-OH effectively monitors curcumin-induced mtDNA damage in HepG-2 cells while enabling monitoring of genetic mtDNA damage. We anticipate that this tool holds significant potential for the precise evaluation of maternal genetic defects, thereby enhancing hypersensitive assessment in clinical medicine.
Collapse
Affiliation(s)
- Beidou Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- College of the Environment, Henan Normal University, Xinxiang 453007, China
| | - Zhe Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiaoli Zhao
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Xinxiang 453007, China
| | - Huiyu Niu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yafu Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Kui Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- College of the Environment, Henan Normal University, Xinxiang 453007, China
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Xinxiang 453007, China
| |
Collapse
|
10
|
Chen Z, Chen L, Tan J, Mao Y, Hao M, Li Y, Wang Y, Li J, Wang J, Jin L, Zheng HX. Natural selection shaped the protective effect of the mtDNA lineage against obesity in Han Chinese populations. J Genet Genomics 2024:S1673-8527(24)00129-2. [PMID: 38880354 DOI: 10.1016/j.jgg.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Mitochondria play a key role in lipid metabolism, and mitochondrial DNA (mtDNA) mutations are thus considered to affect obesity susceptibility by altering oxidative phosphorylation and mitochondrial function. In this study, we investigated mtDNA variants that may affect obesity risk in 2877 Han Chinese individuals from three independent populations. The association analysis of 16 basal mtDNA haplogroups with body mass index, waist circumference, and waist-to-hip ratio revealed that only haplogroup M7 was significantly negatively correlated with all three adiposity-related anthropometric traits in the overall cohort, verified by the analysis of a single population, i.e., the Zhengzhou population. Furthermore, subhaplogroup analysis suggested that M7b1a1 was the most likely haplogroup associated with a decreased obesity risk, and the variation T12811C (causing Y159H in ND5) harbored in M7b1a1 may be the most likely candidate for altering the mitochondrial function. Specifically, we found that proportionally more nonsynonymous mutations accumulated in M7b1a1 carriers, indicating that M7b1a1 was either under positive selection or subject to a relaxation of selective constraints. We also found that nuclear variants, especially in DACT2 and PIEZO1, may functionally interact with M7b1a1.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Lu Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jingze Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Yizhen Mao
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Meng Hao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Yi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Yi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Jinxi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China; Research Unit of Dissecting Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China; Research Unit of Dissecting Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Hong-Xiang Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China.
| |
Collapse
|
11
|
Iverson ENK. Conservation Mitonuclear Replacement: Facilitated mitochondrial adaptation for a changing world. Evol Appl 2024; 17:e13642. [PMID: 38468713 PMCID: PMC10925831 DOI: 10.1111/eva.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 03/13/2024] Open
Abstract
Most species will not be able to migrate fast enough to cope with climate change, nor evolve quickly enough with current levels of genetic variation. Exacerbating the problem are anthropogenic influences on adaptive potential, including the prevention of gene flow through habitat fragmentation and the erosion of genetic diversity in small, bottlenecked populations. Facilitated adaptation, or assisted evolution, offers a way to augment adaptive genetic variation via artificial selection, induced hybridization, or genetic engineering. One key source of genetic variation, particularly for climatic adaptation, are the core metabolic genes encoded by the mitochondrial genome. These genes influence environmental tolerance to heat, drought, and hypoxia, but must interact intimately and co-evolve with a suite of important nuclear genes. These coadapted mitonuclear genes form some of the important reproductive barriers between species. Mitochondrial genomes can and do introgress between species in an adaptive manner, and they may co-introgress with nuclear genes important for maintaining mitonuclear compatibility. Managers should consider the relevance of mitonuclear genetic variability in conservation decision-making, including as a tool for facilitating adaptation. I propose a novel technique dubbed Conservation Mitonuclear Replacement (CmNR), which entails replacing the core metabolic machinery of a threatened species-the mitochondrial genome and key nuclear loci-with those from a closely related species or a divergent population, which may be better-adapted to climatic changes or carry a lower genetic load. The most feasible route to CmNR is to combine CRISPR-based nuclear genetic editing with mitochondrial replacement and assisted reproductive technologies. This method preserves much of an organism's phenotype and could allow populations to persist in the wild when no other suitable conservation options exist. The technique could be particularly important on mountaintops, where rising temperatures threaten an alarming number of species with almost certain extinction in the next century.
Collapse
Affiliation(s)
- Erik N. K. Iverson
- Department of Integrative BiologyThe University of Texas at AustinAustinTexasUSA
| |
Collapse
|
12
|
Khatun D, Tanaka T, Aranishi F. Population structure and demographic history for year cohort dynamics of landlocked ayu Plecoglossus altivelis altivelis in dam reservoir of Japan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10896-10910. [PMID: 38214853 DOI: 10.1007/s11356-023-31743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Ayu Plecoglossus altivelis altivelis is a valuable osmeroid species for inland fishery in Japan. It is classified into two ecological forms of amphidromous migrating between rivers and sea and landlocked migrating between rivers and lakes or dam reservoirs. The number of dams and their reservoirs has remarkably increased in the twenty-first century under climate change, because of their respective roles in hydropower generation with negligible carbon emissions and in flood control. Dam reservoirs therefore become increasingly important as inland nursery grounds of ayu. In this study, we investigated the reproduction status of landlocked ayu migrating in the Haidzuka Dam reservoir and the Tabusa River in western Japan by molecular phylogenetic analysis based on population structure and demographic history for year cohort dynamics. A total of 849 individuals were collected monthly from October 2018 to September 2021 according to an annual life cycle of ayu. Nucleotide sequences of the partial mitochondrial DNA control region yielded 31 haplotypes, consisting of 4 shared haplotypes among the 2019, 2020 and 2021 cohorts and 27 unique haplotypes. The overall haplotype diversity and nucleotide diversity were calculated to be relatively low at 0.3503 ± 0.0206 and 0.0077 ± 0.0045, respectively, suggesting a founder event by dominant haplotypes. Star-shaped radiational haplotypes from dominant shared haplotypes on the median-joining network likely support a founder event. Although pairwise ФST values were determined to be very low among the year cohorts, only the 2019 cohort was found to have a significant difference from the 2020 and 2021 cohorts, for both of which Tajima's D values were also statistically significant. For the overall population, multimodal mismatch distribution and negative Tajima's D and Fu's Fs values in the neutrality test suggested population expansion or population subdivision. The native riverine population in the Tabusa River suffered habitat fragmentation and population bottleneck from dam construction, and therefore severe founder effect remained behind the artificially landlocked population with a low level of genetic diversity in the Haidzuka Dam reservoir.
Collapse
Affiliation(s)
- Dalia Khatun
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 6808553, Japan
| | - Tomomi Tanaka
- Fisheries Ecosystem Project Center, Shimane University, Matsue, 6908504, Japan
| | - Futoshi Aranishi
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 6808553, Japan.
- Fisheries Ecosystem Project Center, Shimane University, Matsue, 6908504, Japan.
- Institute of Agricultural and Life Sciences, Shimane University, Matsue, 6908504, Japan.
| |
Collapse
|
13
|
Phillips JD, Griswold CK, Young RG, Hubert N, Hanner RH. A Measure of the DNA Barcode Gap for Applied and Basic Research. Methods Mol Biol 2024; 2744:375-390. [PMID: 38683332 DOI: 10.1007/978-1-0716-3581-0_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
DNA barcoding has largely established itself as a mainstay for rapid molecular taxonomic identification in both academic and applied research. The use of DNA barcoding as a molecular identification method depends on a "DNA barcode gap"-the separation between the maximum within-species difference and the minimum between-species difference. Previous work indicates the presence of a gap hinges on sampling effort for focal taxa and their close relatives. Furthermore, both theory and empirical work indicate a gap may not occur for related pairs of biological species. Here, we present a novel evaluation approach in the form of an easily calculated set of nonparametric metrics to quantify the extent of proportional overlap in inter- and intraspecific distributions of pairwise differences among target species and their conspecifics. The metrics are based on a simple count of the number of overlapping records for a species falling within the bounds of maximum intraspecific distance and minimum interspecific distance. Our approach takes advantage of the asymmetric directionality inherent in pairwise genetic distance distributions, which has not been previously done in the DNA barcoding literature. We apply the metrics to the predatory diving beetle genus Agabus as a case study because this group poses significant identification challenges due to its morphological uniformity despite both relative sampling ease and well-established taxonomy. Results herein show that target species and their nearest neighbor species were found to be tightly clustered and therefore difficult to distinguish. Such findings demonstrate that DNA barcoding can fail to fully resolve species in certain cases. Moving forward, we suggest the implementation of the proposed metrics be integrated into a common framework to be reported in any study that uses DNA barcoding for identification. In so doing, the importance of the DNA barcode gap and its components for the success of DNA-based identification using DNA barcodes can be better appreciated.
Collapse
Affiliation(s)
- Jarrett D Phillips
- School of Computer Science, University of Guelph, Guelph, ON, Canada.
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
| | - Cortland K Griswold
- School of Computer Science, University of Guelph, Guelph, ON, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Robert G Young
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Nicolas Hubert
- UMR ISEM (IRD, UM, CNRS), Université de Montpellier, Montpellier, France
| | - Robert H Hanner
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
14
|
Hunt EP, Willis SC, Conway KW, Portnoy DS. Interrelationships and biogeography of the New World pufferfish genus Sphoeroides (Tetraodontiformes: Tetraodontidae) inferred using ultra-conserved DNA elements. Mol Phylogenet Evol 2023; 189:107935. [PMID: 37778529 DOI: 10.1016/j.ympev.2023.107935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Colonization of the New World by marine taxa has been hypothesized to have occurred through the Tethys Sea or by crossing the East Pacific Barrier. To better understand patterns and timing of diversification, geological events can be coupled with time calibrated phylogenetic hypotheses to infer major drivers of diversification. Phylogenetic relationships among members of Sphoeroides, a genus of four toothed pufferfishes (Tetraodontiformes: Tetraodontidae) which are found nearly exclusively in the New World (eastern Pacific and western Atlantic), were reconstructed using sequences from ultra-conserved DNA elements, nuclear markers with clear homology among many vertebrate taxa. Hypotheses derived from concatenated maximum-likelihood and species tree summary methods support a paraphyletic Sphoeroides, with Colomesus deeply nested within the genus. Analyses also revealed S. pachygaster, a pelagic species with a cosmopolitan distribution, as the sister taxon to the remainder of Sphoeroides and recovered distinct lineages within S. pachygaster, indicating that this cosmopolitan species may represent a species complex. Ancestral range reconstruction may suggest the genus colonized the New World through the eastern Pacific before diversifying in the western Atlantic, though date estimates for these events are uncertain due to the lack of reliable fossil record for the genus.
Collapse
Affiliation(s)
- Elizabeth P Hunt
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX 78412, USA.
| | - Stuart C Willis
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX 78412, USA; Columbia River Inter-Tribal Fish Commission - Hagerman Genetics Lab, 3059-F National Fish Hatchery Road, Hagerman, ID 83332, USA
| | - Kevin W Conway
- Department of Ecology and Conservation Biology and Biodiversity Research and Teaching Collections, Texas A&M University, 534 John Kimbrough Blvd., College Station, TX 77843, USA
| | - David S Portnoy
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX 78412, USA
| |
Collapse
|
15
|
Kayhani K, Barreto FS. Disproportionate role of nuclear-encoded proteins in organismal and mitochondrial thermal performance in a copepod. J Exp Biol 2023; 226:jeb246085. [PMID: 37947077 DOI: 10.1242/jeb.246085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Determining the mechanisms by which organisms evolve thermal tolerance is crucial to predicting how populations may respond to changes in local temperature regimes. Although evidence of relationships between mitochondrial background and thermal adaptation have been found, the presence of both nuclear-encoded and mitochondrial DNA (mtDNA)-encoded proteins warrants experiments aimed at parsing out the relative role of each genome in thermal adaptation. We investigated the relative role of mtDNA-encoded products in thermal tolerance between two divergent populations of Tigriopus californicus using first-generation (F1) hybrids that vary in maternally inherited mtDNA but are heterozygous for population-specific alleles across nuclear loci. We tested two measures of thermal tolerance, (1) survivorship to acute thermal stress and (2) thermal stability of mitochondrial performance in Complex I-fueled ATP synthesis, both across a range of increasing temperatures. We found that the southern population (San Diego, CA, USA) outperformed the northern population (Strawberry Hill, OR, USA) in survivorship, and that both reciprocal F1 hybrid crosses had intermediate survival. Mitochondria from the San Diego population displayed greater stability in ATP synthesis with increasing temperatures compared with those from Strawberry Hill. Interestingly, hybrids from both cross directions had synthesis profiles that were very similar to that of Strawberry Hill. Taken together, these results suggest that the relative role of the mtDNA in these phenotypes is negligible compared with that of elements encoded by nuclear DNA in this system.
Collapse
Affiliation(s)
- Kamron Kayhani
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
16
|
Chang H, Guo J, Li M, Gao Y, Wang S, Wang X, Liu Y. Comparative genome and phylogenetic analysis revealed the complex mitochondrial genome and phylogenetic position of Conopomorpha sinensis Bradley. Sci Rep 2023; 13:4989. [PMID: 36973296 PMCID: PMC10042987 DOI: 10.1038/s41598-023-30570-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Conopomorpha sinensis Bradley is a destructive pest that causes severe economic damage to litchi and longan. Previous C. sinensis research has focused on population life tables, oviposition selectivity, pest population prediction, and control technology. However, there are few studies on its mitogenome and phylogenetic evolution. In this study, we sequenced the whole mitogenome of C. sinensis by the third-generation sequencing, and analyzed the characteristics of its mitogenome by comparative genome. The complete mitogenome of C. sinensis is a typical circular and double-stranded structure. The ENC-plot analyses revealed that natural selection could affect the information of codon bias of the protein-coding genes in the mitogenome of C. sinensis in the evolutionary process. Compared with 12 other Tineoidea species, the trnA-trnF gene cluster of tRNA in the C. sinensis mitogenome appears to have a new arrangement pattern. This new arrangement has not been found in other Tineoidea or other Lepidoptera, which needs further exploration. Meanwhile, a long AT repeated sequence was inserted between trnR and trnA, trnE and trnF, ND1 and trnS in the mitogenome of C. sinensis, and the reason for this sequence remains to be further studied. Furthermore, the results of phylogenetic analysis showed that the litchi fruit borer belonged to Gracillariidae, and Gracillariidae was monophyletic. The results will contribute to an improved understanding of the complex mitogenome and phylogeny of C. sinensis. It also will provide a molecular basis for further research on the genetic diversity and population differentiation of C. sinensis.
Collapse
Affiliation(s)
- Hong Chang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Jianglong Guo
- Key Laboratory of Integrated Pest Management On Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Center of Hebei Province, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, 071000, China
| | - Mingzhi Li
- Bio&Data Biotechnologies Co. Ltd., Guangzhou, 510640, China
| | - Yan Gao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Siwei Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Xiaonan Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Yanping Liu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China.
| |
Collapse
|
17
|
Duong T, Nguyen NT, Tran DD, Le TH, Nor SAM. Multiple genetic lineages of anadromous migratory Mekong catfish Pangasius krempfi revealed by mtDNA control region and cytochrome b. Ecol Evol 2023; 13:e9845. [PMID: 36820247 PMCID: PMC9937891 DOI: 10.1002/ece3.9845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/20/2023] Open
Abstract
Population genetic structure of migratory fishes can reflect ecological and evolutionary processes. Pangasius krempfi is a critically important anadromous catfish in the Mekong River, and its migration pathways and genetic structure have attracted much interest. To investigate, we quantified the genetic diversity of this species using the control region (D-loop) and Cytochrome b (Cytb) of the mitochondrial genome. Fish were sampled (n = 91) along the Mekong tributaries from upstream to estuaries and coastal areas in the Mekong Delta and compared to three samples from Pakse (Laos). The D-loop haplotype (0.941 ± 0.014) and nucleotide diversity (0.0083 ± 0.0005) were high in all populations, but that of Cytb was low (0.331 ± 0.059 and 0.00063 ± 0.00011, respectively). No genetic difference was detected between populations, indicating strong gene flow and confirming a long migration distance for this species. Pangasius krempfi was not genetically structured according to geographical populations but was delineated into three haplogroups, suggesting multiple genetic lineages. The presence of haplogroups in each sampling location implies that migration downstream is random but parallel when the fish enter two river tributaries bifurcating from the main Mekong River. Individuals can also migrate along the coast, far from the estuaries, suggesting a longer migration path than previously reported, which is crucial for maintaining diverse genetic origin and migration pathways for P. krempfi.
Collapse
Affiliation(s)
- Thuy‐Yen Duong
- College of Aquaculture and FisheriesCan Tho UniversityCan Tho CityVietnam
| | | | - Dac Dinh Tran
- College of Aquaculture and FisheriesCan Tho UniversityCan Tho CityVietnam
| | - Thanh Hoa Le
- Immunology DepartmentInstitute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST)Ho Chi Minh CityVietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST)Ho Chi Minh CityVietnam
| | - Siti Azizah Mohd Nor
- Institute of Marine BiotechnologyUniversiti Malaysia TerengganuTerengganuMalaysia
| |
Collapse
|
18
|
Sathyan R, Engelbrecht A, Couldridge VC. Phylogeographic investigation of the bladder grasshopper Bullacris unicolor (Orthoptera Pneumoroidea) in South Africa. ETHOL ECOL EVOL 2023. [DOI: 10.1080/03949370.2022.2157892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Rekha Sathyan
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| | - Adriaan Engelbrecht
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| | - Vanessa C.K. Couldridge
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
19
|
Coomber A, Saville A, Carbone I, Ristaino JB. An open-access T-BAS phylogeny for emerging Phytophthora species. PLoS One 2023; 18:e0283540. [PMID: 37011062 PMCID: PMC10069789 DOI: 10.1371/journal.pone.0283540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Phytophthora species cause severe diseases on food, forest, and ornamental crops. Since the genus was described in 1876, it has expanded to comprise over 190 formally described species. There is a need for an open access phylogenetic tool that centralizes diverse streams of sequence data and metadata to facilitate research and identification of Phytophthora species. We used the Tree-Based Alignment Selector Toolkit (T-BAS) to develop a phylogeny of 192 formally described species and 33 informal taxa in the genus Phytophthora using sequences of eight nuclear genes. The phylogenetic tree was inferred using the RAxML maximum likelihood program. A search engine was also developed to identify microsatellite genotypes of P. infestans based on genetic distance to known lineages. The T-BAS tool provides a visualization framework allowing users to place unknown isolates on a curated phylogeny of all Phytophthora species. Critically, the tree can be updated in real-time as new species are described. The tool contains metadata including clade, host species, substrate, sexual characteristics, distribution, and reference literature, which can be visualized on the tree and downloaded for other uses. This phylogenetic resource will allow data sharing among research groups and the database will enable the global Phytophthora community to upload sequences and determine the phylogenetic placement of an isolate within the larger phylogeny and to download sequence data and metadata. The database will be curated by a community of Phytophthora researchers and housed on the T-BAS web portal in the Center for Integrated Fungal Research at NC State. The T-BAS web tool can be leveraged to create similar metadata enhanced phylogenies for other Oomycete, bacterial or fungal pathogens.
Collapse
Affiliation(s)
- Allison Coomber
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
- Functional Genomics Program, NC State University, Raleigh, North Carolina, United States of America
| | - Amanda Saville
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
| | - Ignazio Carbone
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
- Center for Integrated Fungal Research, NC State University, Raleigh, North Carolina, United States of America
| | - Jean Beagle Ristaino
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
- Emerging Plant Disease and Global Food Security Cluster, NC State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
20
|
Jiang J, Wu T, Deng J, Peng L. A Compositional Heterogeneity Analysis of Mitochondrial Phylogenomics in Chalcidoidea Involving Two Newly Sequenced Mitogenomes of Eupelminae (Hymenoptera: Chalcidoidea). Genes (Basel) 2022; 13:2340. [PMID: 36553606 PMCID: PMC9778353 DOI: 10.3390/genes13122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
As next-generation sequencing technology becomes more mature and the cost of sequencing continues to fall, researchers are increasingly using mitochondrial genomes to explore phylogenetic relationships among different groups. In this study, we sequenced and analyzed the complete mitochondrial genomes of Eupelmus anpingensis and Merostenus sp. We predicted the secondary-structure tRNA genes of these two species and found that 21 of the 22 tRNA genes in Merostenus sp. exhibited typical clover-leaf structures, with trnS1 being the lone exception. In E. anpingensis, we found that, in addition to trnS1, the secondary structure of trnE was also incomplete, with only DHU arms and anticodon loop remaining. In addition, we found that compositional heterogeneity and variable rates of evolution are prevalent in Chalcidoidea. Under the homogeneity model, a Eupelmidae + Encyrtidae sister group relationship was proposed. Different datasets based on the heterogeneity model produced different tree topologies, but all tree topologies contained Chalcididae and Trichogrammatidae in the basal position of the tree. This is the first study to consider the phylogenetic relationships of Chalcidoidea by comparing a heterogeneity model with a homogeneity model.
Collapse
Affiliation(s)
| | | | | | - Lingfei Peng
- Biological Control Research Institute, Fujian Agriculture and Forestry University, China Fruit Fly Research and Control Center of FAO/IAEA, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
| |
Collapse
|
21
|
Milec LJM, Vanhove MPM, Bukinga FM, De Keyzer ELR, Kapepula VL, Masilya PM, Mulimbwa N, Wagner CE, Raeymaekers JAM. Complete mitochondrial genomes and updated divergence time of the two freshwater clupeids endemic to Lake Tanganyika (Africa) suggest intralacustrine speciation. BMC Ecol Evol 2022; 22:127. [PMID: 36329403 PMCID: PMC9635120 DOI: 10.1186/s12862-022-02085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Background The hydrogeological history of Lake Tanganyika paints a complex image of several colonization and adaptive radiation events. The initial basin was formed around 9–12 million years ago (MYA) from the predecessor of the Malagarasi–Congo River and only 5–6 MYA, its sub-basins fused to produce the clear, deep waters of today. Next to the well-known radiations of cichlid fishes, the lake also harbours a modest clade of only two clupeid species, Stolothrissatanganicae and Limnothrissamiodon. They are members of Pellonulini, a tribe of clupeid fishes that mostly occur in freshwater and that colonized West and Central-Africa during a period of high sea levels during the Cenozoic. There is no consensus on the phylogenetic relationships between members of Pellonulini and the timing of the colonization of Lake Tanganyika by clupeids. Results We use short-read next generation sequencing of 10X Chromium libraries to sequence and assemble the full mitochondrial genomes of S.tanganicae and L.miodon. We then use Maximum likelihood and Bayesian inference to place them into the phylogeny of Pellonulini and other clupeiforms, taking advantage of all available full mitochondrial clupeiform genomes. We identify Potamothrissaobtusirostris as the closest living relative of the Tanganyika sardines and confirm paraphyly for Microthrissa. We estimate the divergence of the Tanganyika sardines around 3.64 MYA [95% CI: 0.99, 6.29], and from P.obtusirostris around 10.92 MYA [95% CI: 6.37–15.48]. Conclusions These estimates imply that the ancestor of the Tanganyika sardines diverged from a riverine ancestor and entered the proto-lake Tanganyika around the time of its formation from the Malagarasi–Congo River, and diverged into the two extant species at the onset of deep clearwater conditions. Our results prompt a more thorough examination of the relationships within Pellonulini, and the new mitochondrial genomes provide an important resource for the future study of this tribe, e.g. as a reference for species identification, genetic diversity, and macroevolutionary studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02085-8.
Collapse
Affiliation(s)
- Leona J. M. Milec
- grid.465487.cFaculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway ,grid.12155.320000 0001 0604 5662Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Maarten P. M. Vanhove
- grid.12155.320000 0001 0604 5662Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Charles Déberiotstraat 32, 3000 Leuven, Belgium
| | - Fidel Muterezi Bukinga
- Centre de Recherche en Hydrobiologie-Uvira (CRH-Uvira), Uvira, Sud-Kivu Democratic Republic of Congo
| | - Els L. R. De Keyzer
- grid.5596.f0000 0001 0668 7884Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Charles Déberiotstraat 32, 3000 Leuven, Belgium ,grid.5284.b0000 0001 0790 3681Evolutionary Ecology Group (EVECO), Universiteit Antwerpen, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Vercus Lumami Kapepula
- Centre de Recherche en Hydrobiologie-Uvira (CRH-Uvira), Uvira, Sud-Kivu Democratic Republic of Congo ,grid.7942.80000 0001 2294 713XUniversité Catholique de Louvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
| | - Pascal Mulungula Masilya
- Centre de Recherche en Hydrobiologie-Uvira (CRH-Uvira), Uvira, Sud-Kivu Democratic Republic of Congo ,Unité d’Enseignement et de Recherche en Hydrobiologie Appliquée (UERHA)-ISP/Bukavu, Bukavu, Sud-Kivu Democratic Republic of Congo
| | - N’Sibula Mulimbwa
- Centre de Recherche en Hydrobiologie-Uvira (CRH-Uvira), Uvira, Sud-Kivu Democratic Republic of Congo
| | - Catherine E. Wagner
- grid.135963.b0000 0001 2109 0381University of Wyoming, 1000 E University Ave, Laramie, WY 82071 USA
| | - Joost A. M. Raeymaekers
- grid.465487.cFaculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| |
Collapse
|
22
|
Bargues MD, Halajian A, Artigas P, Luus-Powell WJ, Valero MA, Mas-Coma S. Paleobiogeographical origins of Fasciola hepatica and F. gigantica in light of new DNA sequence characteristics of F. nyanzae from hippopotamus. Front Vet Sci 2022; 9:990872. [PMID: 36157179 PMCID: PMC9500510 DOI: 10.3389/fvets.2022.990872] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Fascioliasis is a highly pathogenic disease affecting humans and livestock worldwide. It is caused by the liver flukes Fasciola hepatica transmitted by Galba/Fossaria lymnaeid snails in Europe, Asia, Africa, the Americas and Oceania, and F. gigantica transmitted by Radix lymnaeids in Africa and Asia. An evident founder effect appears in genetic studies as the consequence of their spread by human-guided movements of domestic ruminants, equines and Old World camelids in the post-domestication period from the beginning of the Neolithic. Establishing the geographical origins of fasciolid expansion is multidisciplinary crucial for disease assessment. Sequencing of selected nuclear ribosomal and mitochondrial DNA markers of F. nyanzae infecting hippopotamuses (Hippopotamus amphibius) in South Africa and their comparative analyses with F. hepatica and F. gigantica, and the two Fascioloides species, Fs. jacksoni from Asian elephants and Fs. magna from Holarctic cervids, allow to draw a tuned-up evolutionary scenario during the pre-domestication period. Close sequence similarities indicate a direct derivation of F. hepatica and F. gigantica from F. nyanzae by speciation after host capture phenomena. Phylogenetic reconstruction, genetic distances and divergence estimates fully fit fossil knowledge, past interconnecting bridges between continents, present fasciolid infection in the wild fauna, and lymnaeid distribution. The paleobiogeographical analyses suggest an origin for F. gigantica by transfer from primitive hippopotamuses to grazing bovid ancestors of Reduncinae, Bovinae and Alcelaphinae, by keeping the same vector Radix natalensis in warm lowlands of southeastern Africa in the mid-Miocene, around 13.5 mya. The origin of F. hepatica should have occurred after capture from primitive, less amphibious Hexaprotodon hippopotamuses to mid-sized ovicaprines as the wild bezoar Capra aegagrus and the wild mouflon Ovis gmelini, and from R. natalensis to Galba truncatula in cooler areas and mountainous foothills of Asian Near East in the latest Miocene to Early Pliocene, around 6.0 to 4.0 mya and perhaps shortly afterwards.
Collapse
Affiliation(s)
- María Dolores Bargues
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
- *Correspondence: María Dolores Bargues
| | - Ali Halajian
- DSI-NRF SARChi Chair (Ecosystem Health), Department of Biodiversity, University of Limpopo, Sovenga, South Africa
- Research Administration and Development, University of Limpopo, Sovenga, South Africa
| | - Patricio Artigas
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - Wilmien J. Luus-Powell
- DSI-NRF SARChi Chair (Ecosystem Health), Department of Biodiversity, University of Limpopo, Sovenga, South Africa
| | - M. Adela Valero
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - Santiago Mas-Coma
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| |
Collapse
|
23
|
Mitogenome selection in the evolution of key ecological strategies in the ancient hexapod class Collembola. Sci Rep 2022; 12:14810. [PMID: 36045215 PMCID: PMC9433435 DOI: 10.1038/s41598-022-18407-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
A longstanding question in evolutionary biology is how natural selection and environmental pressures shape the mitochondrial genomic architectures of organisms. Mitochondria play a pivotal role in cellular respiration and aerobic metabolism, making their genomes functionally highly constrained. Evaluating selective pressures on mitochondrial genes can provide functional and ecological insights into the evolution of organisms. Collembola (springtails) are an ancient hexapod group that includes the oldest terrestrial arthropods in the fossil record, and that are closely associated with soil environments. Of interest is the diversity of habitat stratification preferences (life forms) exhibited by different species within the group. To understand whether signals of positive selection are linked to the evolution of life forms, we analysed 32 published Collembola mitogenomes in a phylomitogenomic framework. We found no evidence that signatures of selection are correlated with the evolution of novel life forms, but rather that mutations have accumulated as a function of time. Our results highlight the importance of nuclear-mitochondrial interactions in the evolution of collembolan life forms and that mitochondrial genomic data should be interpreted with caution, as complex selection signals may complicate evolutionary inferences.
Collapse
|
24
|
Wang Y, Niu H, Wang K, Wang G, Liu J, James TD, Zhang H. mtDNA-Specific Ultrasensitive Near-Infrared Fluorescent Probe Enables the Differentiation of Healthy and Apoptotic Cells. Anal Chem 2022; 94:7510-7519. [PMID: 35588727 DOI: 10.1021/acs.analchem.1c05582] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mitochondrial DNA (mtDNA) as a class of important genetic material is easily damaged, which can result in a series of metabolic diseases, hereditary disease, and so on. mtDNA is an ultrasensitive indicator for the health of living cells due to the extremely short physiological response time of mtDNA toward damage (ca. 5.0 min). Therefore, the development of specific ultrasensitive fluorescent probes that can in real-time monitor mtDNA in vivo are of great value. With this research, we developed a near-infrared twisted intramolecular charge transfer (TICT) fluorescent probe YON. YON is a thread-like molecule with an A-π-D-π-A structure, based on the dicyanoisophorone fluorophore. The molecular design of YON enabled the specific binding with dsDNA (binding constant (K) = 8.5 × 105 M-1) within 1.3 min. And the appropriate water-oil amphiphilicity makes YON significantly accumulate in the mitochondria, enabling the specific binding to mtDNA. The fluorescence intensity at 640 nm of YON enhanced linearly with increasing concentrations of mtDNA. Dicyanoisophorone as the strong electron-withdrawing group that was introduced into both ends of the molecule resulted in YON being a classic quadrupole, so it could ultrasensitively detect trace mtDNA. The minimum detection limit was 71 ng/mL. Moreover, the large Stokes shift (λex = 435 nm, λem = 640 nm) makes YON suitable for "interference-free" imaging of mtDNA. Therefore, YON was used to monitor trace changes of mtDNA in living cells; more importantly, it could be used to evaluate the health of cells by monitoring microchanges of mtDNA, enabling the ultrasensitive evaluation of apoptosis.
Collapse
Affiliation(s)
- Yafu Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Huiyu Niu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Kui Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Ge Wang
- Xinxiang Medical University, Xinxiang 453000, P. R. China
| | - Junwei Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tony D James
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.,Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
25
|
Baeza JA, García-De León FJ. Are we there yet? Benchmarking low-coverage nanopore long-read sequencing for the assembling of mitochondrial genomes using the vulnerable silky shark Carcharhinus falciformis. BMC Genomics 2022; 23:320. [PMID: 35459089 PMCID: PMC9027416 DOI: 10.1186/s12864-022-08482-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/18/2022] [Indexed: 12/28/2022] Open
Abstract
Background Whole mitochondrial genomes are quickly becoming markers of choice for the exploration of within-species genealogical and among-species phylogenetic relationships. Most often, ‘primer walking’ or ‘long PCR’ strategies plus Sanger sequencing or low-pass whole genome sequencing using Illumina short reads are used for the assembling of mitochondrial chromosomes. In this study, we first confirmed that mitochondrial genomes can be sequenced from long reads using nanopore sequencing data exclusively. Next, we examined the accuracy of the long-reads assembled mitochondrial chromosomes when comparing them to a ‘gold’ standard reference mitochondrial chromosome assembled using Illumina short-reads sequencing. Results Using a specialized bioinformatics tool, we first produced a short-reads mitochondrial genome assembly for the silky shark C. falciformis with an average base coverage of 9.8x. The complete mitochondrial genome of C. falciformis was 16,705 bp in length and 934 bp shorter than a previously assembled genome (17,639 bp in length) that used bioinformatics tools not specialized for the assembly of mitochondrial chromosomes. Next, low-pass whole genome sequencing using a MinION ONT pocket-sized platform plus customized de-novo and reference-based workflows assembled and circularized a highly accurate mitochondrial genome in the silky shark Carcharhinus falciformis. Indels at the flanks of homopolymer regions explained most of the dissimilarities observed between the ‘gold’ standard reference mitochondrial genome (assembled using Illumina short reads) and each of the long-reads mitochondrial genome assemblies. Although not completely accurate, mitophylogenomics and barcoding analyses (using entire mitogenomes and the D-Loop/Control Region, respectively) suggest that long-reads assembled mitochondrial genomes are reliable for identifying a sequenced individual, such as C. falciformis, and separating the same individual from others belonging to closely related congeneric species. Conclusions This study confirms that mitochondrial genomes can be sequenced from long-reads nanopore sequencing data exclusively. With further development, nanopore technology can be used to quickly test in situ mislabeling in the shark fin fishing industry and thus, improve surveillance protocols, law enforcement, and the regulation of this fishery. This study will also assist with the transferring of high-throughput sequencing technology to middle- and low-income countries so that international scientists can explore population genomics in sharks using inclusive research strategies. Lastly, we recommend assembling mitochondrial genomes using specialized assemblers instead of other assemblers developed for bacterial and/or nuclear genomes.
Collapse
Affiliation(s)
- J Antonio Baeza
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC, 29634, USA. .,Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida, 34949, USA. .,Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile.
| | - F J García-De León
- Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste, S.C., La Paz, Baja California Sur, Mexico
| |
Collapse
|
26
|
Chan KO, Hertwig ST, Neokleous DN, Flury JM, Brown RM. Widely used, short 16S rRNA mitochondrial gene fragments yield poor and erratic results in phylogenetic estimation and species delimitation of amphibians. BMC Ecol Evol 2022; 22:37. [PMID: 35346025 PMCID: PMC8959075 DOI: 10.1186/s12862-022-01994-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background The 16S mitochondrial rRNA gene is the most widely sequenced molecular marker in amphibian systematic studies, making it comparable to the universal CO1 barcode that is more commonly used in other animal groups. However, studies employ different primer combinations that target different lengths/regions of the 16S gene ranging from complete gene sequences (~ 1500 bp) to short fragments (~ 500 bp), the latter of which is the most ubiquitously used. Sequences of different lengths are often concatenated, compared, and/or jointly analyzed to infer phylogenetic relationships, estimate genetic divergence (p-distances), and justify the recognition of new species (species delimitation), making the 16S gene region, by far, the most influential molecular marker in amphibian systematics. Despite their ubiquitous and multifarious use, no studies have ever been conducted to evaluate the congruence and performance among the different fragment lengths. Results Using empirical data derived from both Sanger-based and genomic approaches, we show that full-length 16S sequences recover the most accurate phylogenetic relationships, highest branch support, lowest variation in genetic distances (pairwise p-distances), and best-scoring species delimitation partitions. In contrast, widely used short fragments produce inaccurate phylogenetic reconstructions, lower and more variable branch support, erratic genetic distances, and low-scoring species delimitation partitions, the numbers of which are vastly overestimated. The relatively poor performance of short 16S fragments is likely due to insufficient phylogenetic information content. Conclusions Taken together, our results demonstrate that short 16S fragments are unable to match the efficacy achieved by full-length sequences in terms of topological accuracy, heuristic branch support, genetic divergences, and species delimitation partitions, and thus, phylogenetic and taxonomic inferences that are predicated on short 16S fragments should be interpreted with caution. However, short 16S fragments can still be useful for species identification, rapid assessments, or definitively coupling complex life stages in natural history studies and faunal inventories. While the full 16S sequence performs best, it requires the use of several primer pairs that increases cost, time, and effort. As a compromise, our results demonstrate that practitioners should utilize medium-length primers in favor of the short-fragment primers because they have the potential to markedly improve phylogenetic inference and species delimitation without additional cost. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01994-y.
Collapse
Affiliation(s)
- Kin Onn Chan
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, Singapore, 117377, Singapore.
| | - Stefan T Hertwig
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005, Bern, Switzerland.,Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Dario N Neokleous
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005, Bern, Switzerland.,Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Jana M Flury
- Leibniz-Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Rafe M Brown
- Department of Ecology and Evolutionary Biology, Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd, Dyche Hall, Lawrence, KS, 66045, USA
| |
Collapse
|
27
|
Repetto SA, Quarroz Braghini J, Risso MG, Argüello LB, Batalla EI, Stecher DR, Sierra MF, Burgos JM, Radisic MV, González Cappa SM, Ruybal P. Molecular typing of Strongyloides stercoralis in Latin America, the clinical connection. Parasitology 2022; 149:24-34. [PMID: 35184784 PMCID: PMC11010477 DOI: 10.1017/s0031182021001517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022]
Abstract
This study analysed Strongyloides stercoralis genetic variability based on a 404 bp region of the cox1 gene from Latin-American samples in a clinical context including epidemiological, diagnosis and follow-up variables. A prospective, descriptive, observational study was conducted to evaluate clinical and parasitological evolution after ivermectin treatment of 41 patients infected with S. stercoralis. Reactivation of the disease was defined both by clinical symptoms appearance and/or direct larvae detection 30 days after treatment or later. We described 10 haplotypes organized in two clusters. Most frequent variants were also described in the Asian continent in human (HP24 and HP93) and canine (HP24) samples. Clinical presentation (intestinal, severe, cutaneous and asymptomatic), immunological status and eosinophil count were not associated with specific haplotypes or clusters. Nevertheless, presence of cluster 1 haplotypes during diagnosis increased the risk of reactivation with an odds ratio (OR) of 7.51 [confidence interval (CI) 95% 1.38–44.29, P = 0.026]. In contrast, reactivation probability was 83 times lower if cluster 2 (I152V mutation) was detected (OR = 0.17, CI 95% 0.02–0.80, P = 0.02). This is the first analysis of S. stercoralis cox1 diversity in the clinical context. Determination of clusters during the diagnosis could facilitate and improve the design of follow-up strategies to prevent severe reactivations of this chronic disease.
Collapse
Affiliation(s)
- Silvia Analía Repetto
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
- Universidad de Buenos Aires, Hospital de Clínicas “José de San Martín”, División Infectología, Buenos Aires, Argentina
| | - Juan Quarroz Braghini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Marikena Guadalupe Risso
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Lisana Belén Argüello
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Estela Inés Batalla
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Daniel Ricardo Stecher
- Universidad de Buenos Aires, Hospital de Clínicas “José de San Martín”, División Infectología, Buenos Aires, Argentina
| | - Mariela Fernanda Sierra
- Universidad de Buenos Aires, Hospital de Clínicas “José de San Martín”, División Infectología, Buenos Aires, Argentina
| | - Juan Miguel Burgos
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Marcelo Víctor Radisic
- División de Enfermedades Infecciosas, Instituto de Nefrología/Nephrology, Buenos Aires, Argentina
| | - Stella Maris González Cappa
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Paula Ruybal
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| |
Collapse
|
28
|
Mitochondrial genome of the critically endangered Baer's Pochard, Aythya baeri, and its phylogenetic relationship with other Anatidae species. Sci Rep 2021; 11:24302. [PMID: 34934156 PMCID: PMC8692624 DOI: 10.1038/s41598-021-03868-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/09/2021] [Indexed: 11/27/2022] Open
Abstract
Historically, the diving duck, Baer’s Pochard (Aythya baeri) was widely distributed in East and South Asia, but according to a recent estimate, its global population is now less than 1000 individuals. To date, the mitochondrial genome of A. baeri has not been deposited and is not available in GenBank. Therefore, we aimed to sequence the complete mitochondrial genome of this species. The genome was 16,623 bp in length, double stranded, circular in shape, and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and one non-coding control region. Many structural and compositional similarities were discovered between A. baeri and the other three Aythya mitochondrial genomes. Among 13 protein-coding genes of the four Aythya species, the fastest-evolving gene was ATP8 while the slowest-evolving gene was COII. Furthermore, the phylogenetic tree of Anatidae based on Bayesian inference and maximum likelihood methods showed that the relationships among 15 genera of the Anatidae family were as follows: Dendrocygna was an early diverging lineage that was fairly distant from the other ingroup taxa; Cygnus, Branta, and Anser were clustered into one branch that corresponded to the Anserinae subfamily; and Aythya, Asarcornis, Netta, Anas, Mareca, Mergus, Lophodytes, Bucephala, Tadorna, Cairina, and Aix were clustered into another branch that corresponded to the Anatinae subfamily. Our target species and three other Aythya species formed a monophyletic group. These results provide new mitogenomic information to support further phylogenetic and taxonomic studies and genetic conservation of Anatidae species.
Collapse
|
29
|
The Sequence Analysis of Mitochondrial DNA Revealed Some Major Centers of Horse Domestications: The Archaeologist's Cut. J Equine Vet Sci 2021; 109:103830. [PMID: 34871751 DOI: 10.1016/j.jevs.2021.103830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
The question about the time and the place of horse domestication, a process which had a profound impact on the progress of mankind, is disputable. According to the most widely accepted hypothesis, the earliest domestication of the horse happened in the western parts of the Eurasian steppes, between the Northern Black Sea region and present-day Kazakhstan and Turkmenistan. It seems that it occurred not earlier than the first half and most probably during the middle (even the last third) of the fourth millennium BC (from ∼ 5.5 kya). The next steps of large-scale horse breeding occurred almost simultaneously in Eurasia and North Africa due to the development of the social structure of human communities. On the other hand, the morphological differences between wild and domestic animals are rather vague and the genetic introgression between them is speculative. In this review, we have tried to gather all available scientific data on the existing possible hypotheses for the earliest domestication of the horse, as well as to highlight some data on the most plausible ones. This is due to the frequency of some significant data on the frequency of strictly defined mitotypes in different historical periods of human civilizations existing in the same periods.
Collapse
|
30
|
Machado L, Harris DJ, Salvi D. Biogeographic and demographic history of the Mediterranean snakes Malpolon monspessulanus and Hemorrhois hippocrepis across the Strait of Gibraltar. BMC Ecol Evol 2021; 21:210. [PMID: 34809580 PMCID: PMC8609814 DOI: 10.1186/s12862-021-01941-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The contribution of North Africa to the assembly of biodiversity within the Western Palaearctic is still poorly documented. Since the Miocene, multiple biotic exchanges occurred across the Strait of Gibraltar, underlying the high biogeographic affinity between the western European and African sides of the Mediterranean basin. We investigated the biogeographic and demographic dynamics of two large Mediterranean-adapted snakes across the Strait and assess their relevance to the origin and diversity patterns of current European and North African populations. RESULTS We inferred phylogeographic patterns and demographic history of M. monspessulanus and H. hippocrepis, based on range-wide multilocus data, combined with fossil data and species distribution modelling, under present and past bioclimatic envelopes. For both species we identified endemic lineages in the High Atlas Mountains (Morocco) and in eastern Iberia, suggesting their persistence in Europe during the Pleistocene. One lineage is shared between North Africa and southern Iberia and likely spread from the former to the latter during the sea-level low stand of the last glacial stage. During this period M. monspessulanus shows a sudden demographic expansion, associated with increased habitat suitability in North Africa. Lower habitat suitability is predicted for both species during interglacial stages, with suitable areas restricted to coastal and mountain ranges of Iberia and Morocco. Compiled fossil data for M. monspessulanus show a continuous fossil record in Iberia at least since the Pliocene and throughout the Pleistocene. CONCLUSIONS The previously proposed hypothesis of Pleistocene glacial extinction of both species in Europe is not supported based on genetic data, bioclimatic envelopes models, and the available fossil record. A model of range retraction to mountain refugia during arid periods and of glacial expansion (demographic and spatial) associated to an increase of Mediterranean habitats during glacial epochs emerges as a general pattern for mesic vertebrates in North Africa. Moreover, the phylogeographic pattern of H. hippocrepis conforms to a well-established biogeographic partition between western and eastern Maghreb.
Collapse
Affiliation(s)
- Luis Machado
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - D James Harris
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal
| | - Daniele Salvi
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
31
|
Zhao Z, Oosthuizen J, Heideman N. How many species does the
Psammobates tentorius
(tent tortoise) species complex (Reptilia, Testudinidae) comprise? A taxonomic solution potentially applicable to species complexes. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhongning Zhao
- Department of Zoology and Entomology University of the Free State Bloemfontein South Africa
| | - Jaco Oosthuizen
- School of Pathology University of the Free Bloemfontein South Africa
| | - Neil Heideman
- Department of Zoology and Entomology University of the Free State Bloemfontein South Africa
| |
Collapse
|
32
|
Weitemier K, Penaluna BE, Hauck LL, Longway LJ, Garcia T, Cronn R. Estimating the genetic diversity of Pacific salmon and trout using multigene eDNA metabarcoding. Mol Ecol 2021; 30:4970-4990. [PMID: 33594756 PMCID: PMC8597136 DOI: 10.1111/mec.15811] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
Genetic diversity underpins species conservation and management goals, and ultimately determines a species' ability to adapt. Using freshwater environmental DNA (eDNA) samples, we examined mitochondrial genetic diversity using multigene metabarcode sequence data from four Oncorhynchus species across 16 sites in Oregon and northern California. Our multigene metabarcode panel included targets commonly used in population genetic NADH dehydrogenase 2 (ND2), phylogenetic cytochrome c oxidase subunit 1 (COI) and eDNA (12S ribosomal DNA) screening. The ND2 locus showed the greatest within-species haplotype diversity for all species, followed by COI and then 12S rDNA for all species except Oncorhynchus kisutch. Sequences recovered for O. clarkii clarkii were either identical to, or one mutation different from, previously characterized haplotypes (95.3% and 4.5% of reads, respectively). The greatest diversity in O. c. clarkii was among coastal watersheds, and subsets of this diversity were shared with fish in inland watersheds. However, coastal streams and the Umpqua River watershed appear to harbour unique haplotypes. Sequences from O. mykiss revealed a disjunction between the Willamette watershed and southern watersheds suggesting divergent histories. We also identified similarities between populations in the northern Deschutes and southern Klamath watersheds, consistent with previously hypothesized connections between the two via inland basins. Oncorhynchus kisutch was only identified in coastal streams and the Klamath River watershed, with most diversity concentrated in the coastal Coquille watershed. Oncorhynchus tshawytscha was only observed at one site, but contained multiple haplotypes at each locus. The characterization of genetic diversity at multiple loci expands the knowledge gained from eDNA sampling and provides crucial information for conservation actions and genetic management.
Collapse
Affiliation(s)
- Kevin Weitemier
- Department of Fisheries and WildlifeOregon State UniversityCorvallisORUSA
| | - Brooke E. Penaluna
- U.S. Department of Agriculture, Forest ServicePacific Northwest Research StationCorvallisORUSA
| | - Laura L. Hauck
- U.S. Department of Agriculture, Forest ServicePacific Northwest Research StationCorvallisORUSA
| | - Lucas J. Longway
- Department of Fisheries and WildlifeOregon State UniversityCorvallisORUSA
| | - Tiffany Garcia
- Department of Fisheries and WildlifeOregon State UniversityCorvallisORUSA
| | - Richard Cronn
- U.S. Department of Agriculture, Forest ServicePacific Northwest Research StationCorvallisORUSA
| |
Collapse
|
33
|
Kambal S, Abdelrahim AE, Hanotte O, Nakao R, Alkhaibari AM, Salim B. Demographic expansion and high level of matrilineal diversity in two populations of East African Baggara cattle. J Anim Breed Genet 2021; 139:161-169. [PMID: 34520084 DOI: 10.1111/jbg.12648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022]
Abstract
Western Baggara cattle breed (WBCB) is an East African zebu inhabiting Sudan, well-known as beef-producing cattle. We investigated herein two phenotypically and geographically distinct populations of this breed, namely Nyalawi and Daeinawi, which are renowned for their unique meat production capabilities and adaptation attributes, with the aim to contribute to our understanding of their maternal genetic diversity and demography dynamics. Genetic polymorphism analysis of the full-length D-loop mtDNA region revealed 44 and 35 polymorphic sites defining 28 and 24 distinct haplotypes in the Nyalawi and the Daeinawi, respectively. Observed genetic diversity is high within the population with a low level of genetic differentiation between populations. Approximate Bayesian computation via the calculation of Bayesian skyline plots and neutrality tests support past expansion with a higher maternal effective population size (Ne ) in Nyalawi compared with the Daeinawi population and a population expansion beginning around 4,500 YBP and 3,500 YBP, respectively, before the arrival of zebu into the continent.
Collapse
Affiliation(s)
- Sumaya Kambal
- Department of Bioinformatics and Biostatistics, National University Biomedical Research Institute, National University-Sudan, Khartoum, Sudan.,International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Amina E Abdelrahim
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum-North, Sudan
| | - Olivier Hanotte
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK.,LiveGene - CTLGH, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Ryo Nakao
- Department of Disease Control, Laboratory of Parasitology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Abeer M Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Bashir Salim
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum-North, Sudan
| |
Collapse
|
34
|
Villacis-Perez E, Snoeck S, Kurlovs AH, Clark RM, Breeuwer JAJ, Van Leeuwen T. Adaptive divergence and post-zygotic barriers to gene flow between sympatric populations of a herbivorous mite. Commun Biol 2021; 4:853. [PMID: 34244609 PMCID: PMC8270941 DOI: 10.1038/s42003-021-02380-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Plant-herbivore interactions promote the generation and maintenance of both plant and herbivore biodiversity. The antagonistic interactions between plants and herbivores lead to host race formation: the evolution of herbivore types specializing on different plant species, with restricted gene flow between them. Understanding how ecological specialization promotes host race formation usually depends on artificial approaches, using laboratory experiments on populations associated with agricultural crops. However, evidence on how host races are formed and maintained in a natural setting remains scarce. Here, we take a multidisciplinary approach to understand whether populations of the generalist spider mite Tetranychus urticae form host races in nature. We demonstrate that a host race co-occurs among generalist conspecifics in the dune ecosystem of The Netherlands. Extensive field sampling and genotyping of individuals over three consecutive years showed a clear pattern of host associations. Genome-wide differences between the host race and generalist conspecifics were found using a dense set of SNPs on field-derived iso-female lines and previously sequenced genomes of T. urticae. Hybridization between lines of the host race and sympatric generalist lines is restricted by post-zygotic breakdown, and selection negatively impacts the survival of generalists on the native host of the host race. Our description of a host race among conspecifics with a larger diet breadth shows how ecological and reproductive isolation aid in maintaining intra-specific variation in sympatry, despite the opportunity for homogenization through gene flow. Our findings highlight the importance of explicitly considering the spatial and temporal scale on which plant-herbivore interactions occur in order to identify herbivore populations associated with different plant species in nature. This system can be used to study the underlying genetic architecture and mechanisms that facilitate the use of a large range of host plant taxa by extreme generalist herbivores. In addition, it offers the chance to investigate the prevalence and mechanisms of ecological specialization in nature.
Collapse
Affiliation(s)
- Ernesto Villacis-Perez
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, Netherlands.
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium.
| | - Simon Snoeck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- Department of Biology, University of Washington, Seattle, USA
| | - Andre H Kurlovs
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Richard M Clark
- School of Biological Sciences and Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA
| | - Johannes A J Breeuwer
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, Netherlands.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium.
| |
Collapse
|
35
|
Riyaz M, Shah RA, Savarimuthu I, Kuppusamy S. Comparative mitochondrial genome analysis of Eudocima salaminia (Cramer, 1777) (Lepidoptera: Noctuoidea), novel gene rearrangement and phylogenetic relationship within the superfamily Noctuoidea. Mol Biol Rep 2021; 48:4449-4463. [PMID: 34109499 DOI: 10.1007/s11033-021-06465-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
The species Eudocima salaminia (Cramer, 1777) commonly known as the fruit-piercing moth belongs to family Erebidae. Its distribution varies from India and across South-east Asia, pacific islands and parts of Australia. The insect is a devastating pest of citrus, longans and lychees. In the present study, complete mitochondrial genome of Eudocima salaminia was sequenced and analyzed using Illumina sequencer. The phylogenetic tree was reconstructed based on nucleotide sequences of 13 PCGs using Maximum likelihood method-General Reversible mitochondrial (mtREV) model. The mitogenome has 15,597 base pairs (bp) in length, comprising of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and A + T-rich region. All protein-coding genes (PCGs) initiate with canonical start codon ATN. The gene order (trnQ-trnI-trnM) of tRNA shows a different rearrangement compared to ancestral insect gene order (trnI-trnQ-trnM). Almost all tRNAs have a typical cloverleaf secondary structure except for trnS1 (AGN) which lacks the dihydrouridine arm. At the beginning of the control region, we observed a conserved polyT", motif "ATTTA" and microsatellite (TA)n element. There are 21 intergenic regions and five overlapping regions ranging from 1 to 73 bp and 1 to 8 bp, respectively. The phylogenetic relationships based on nucleotide sequences of 13 PCGs using Maximum likelihood method showed the family level relationships as (Notodontidae + (Euteliidae + Noctuidae + (Erebidae + Nolidae))). The present study represents the similarity to phylogenetic analysis of Noctuoidea mitogenome. Moreover, the family Erebidae is the sister to the families of (Euteliidae + Noctuidae + Nolidae).
Collapse
Affiliation(s)
- Muzafar Riyaz
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India
| | - Rauf Ahmad Shah
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India
| | | | - Sivasankaran Kuppusamy
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India.
| |
Collapse
|
36
|
Shi L, Liu L, Li X, Wu Y, Tian X, Shi Y, Wang Z. Phylogeny and evolution of Lasiopodomys in subfamily Arvivolinae based on mitochondrial genomics. PeerJ 2021; 9:e10850. [PMID: 33777513 PMCID: PMC7977381 DOI: 10.7717/peerj.10850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/06/2021] [Indexed: 01/02/2023] Open
Abstract
The species of Lasiopodomys Lataste 1887 with their related genera remains undetermined owing to inconsistent morphological characteristics and molecular phylogeny. To investigate the phylogenetic relationship and speciation among species of the genus Lasiopodomys, we sequenced and annotated the whole mitochondrial genomes of three individual species, namely Lasiopodomys brandtii Radde 1861, L. mandarinus Milne-Edwards 1871, and Neodon (Lasiopodomys) fuscus Büchner 1889. The nucleotide sequences of the circular mitogenomes were identical for each individual species of L. brandtii, L. mandarinus, and N. fuscus. Each species contained 13 protein-coding genes (PCGs), 22 transfer RNAs, and 2 ribosomal RNAs, with mitochondrial genome lengths of 16,557 bp, 16,562 bp, and 16,324 bp, respectively. The mitogenomes and PCGs showed positive AT skew and negative GC skew. Mitogenomic phylogenetic analyses suggested that L. brandtii, L. mandarinus, and L. gregalis Pallas 1779 belong to the genus Lasiopodomys, whereas N. fuscus belongs to the genus Neodon grouped with N. irene. Lasiopodomys showed the closest relationship with Microtus fortis Büchner 1889 and M. kikuchii Kuroda 1920, which are considered as the paraphyletic species of genera Microtus. TMRCA and niche model analysis revealed that Lasiopodomys may have first appeared during the early Pleistocene epoch. Further, L. gregalis separated from others over 1.53 million years ago (Ma) and then diverged into L. brandtii and L. mandarinus 0.76 Ma. The relative contribution of climatic fluctuations to speciation and selection in this group requires further research.
Collapse
Affiliation(s)
- Luye Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Likuan Liu
- School of Life Sciences, Qinghai Normal University, Xining, Qinghai, China
| | - Xiujuan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangyu Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
37
|
Kazemi E, Nazarizadeh M, Fatemizadeh F, Khani A, Kaboli M. The phylogeny, phylogeography, and diversification history of the westernmost Asian cobra (Serpentes: Elapidae: Naja oxiana) in the Trans-Caspian region. Ecol Evol 2021; 11:2024-2039. [PMID: 33717439 PMCID: PMC7920780 DOI: 10.1002/ece3.7144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 11/21/2022] Open
Abstract
We conducted a comprehensive analysis of the phylogenetic, phylogeographic, and demographic relationships of Caspian cobra (Naja oxiana; Eichwald, 1831) populations based on a concatenated dataset of two mtDNA genes (cyt b and ND4) across the species' range in Iran, Afghanistan, and Turkmenistan, along with other members of Asian cobras (i.e., subgenus Naja Laurenti, 1768). Our results robustly supported that the Asiatic Naja are monophyletic, as previously suggested by other studies. Furthermore, N. kaouthia and N. sagittifera were recovered as sister taxa to each other, and in turn sister clades to N. oxiana. Our results also highlighted the existence of a single major evolutionary lineage for populations of N. oxiana in the Trans-Caspian region, suggesting a rapid expansion of this cobra from eastern to western Asia, coupled with a rapid range expansion from east of Iran toward the northeast. However, across the Iranian range of N. oxiana, subdivision of populations was not supported, and thus, a single evolutionary significant unit is proposed for inclusion in future conservation plans in this region.
Collapse
Affiliation(s)
- Elmira Kazemi
- Department of EnvironmentFaculty of Natural Resources and EnvironmentScience and Research BranchIslamic Azad UniversityTehranIran
| | - Masoud Nazarizadeh
- Department of ParasitologyFaculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Institute of ParasitologyBiology Centre CAS, v.v.i.České BudějoviceCzech Republic
| | - Faezeh Fatemizadeh
- Department of Environmental ScienceFaculty of Natural ResourcesUniversity of TehranKarajIran
| | - Ali Khani
- Department of EnvironmentKhorasan RazaviMashhadIran
| | - Mohammad Kaboli
- Department of Environmental ScienceFaculty of Natural ResourcesUniversity of TehranKarajIran
| |
Collapse
|
38
|
Verma RK, Kalyakulina A, Giuliani C, Shinde P, Kachhvah AD, Ivanchenko M, Jalan S. Analysis of human mitochondrial genome co-occurrence networks of Asian population at varying altitudes. Sci Rep 2021; 11:133. [PMID: 33420243 PMCID: PMC7794584 DOI: 10.1038/s41598-020-80271-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Networks have been established as an extremely powerful framework to understand and predict the behavior of many large-scale complex systems. We studied network motifs, the basic structural elements of networks, to describe the possible role of co-occurrence of genomic variations behind high altitude adaptation in the Asian human population. Mitochondrial DNA (mtDNA) variations have been acclaimed as one of the key players in understanding the biological mechanisms behind adaptation to extreme conditions. To explore the cumulative effects of variations in the mitochondrial genome with the variation in the altitude, we investigated human mt-DNA sequences from the NCBI database at different altitudes under the co-occurrence motifs framework. Analysis of the co-occurrence motifs using similarity clustering revealed a clear distinction between lower and higher altitude regions. In addition, the previously known high altitude markers 3394 and 7697 (which are definitive sites of haplogroup M9a1a1c1b) were found to co-occur within their own gene complexes indicating the impact of intra-genic constraint on co-evolution of nucleotides. Furthermore, an ancestral 'RSRS50' variant 10,398 was found to co-occur only at higher altitudes supporting the fact that a separate route of colonization at these altitudes might have taken place. Overall, our analysis revealed the presence of co-occurrence interactions specific to high altitude at a whole mitochondrial genome level. This study, combined with the classical haplogroups analysis is useful in understanding the role of co-occurrence of mitochondrial variations in high altitude adaptation.
Collapse
Affiliation(s)
- Rahul K Verma
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India
| | - Alena Kalyakulina
- Department of Applied Mathematics and Centre of Bioinformatics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology & Center for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Pramod Shinde
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Ajay Deep Kachhvah
- Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India
| | - Mikhail Ivanchenko
- Department of Applied Mathematics and Centre of Bioinformatics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Sarika Jalan
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India. .,Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India. .,Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia. .,Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
| |
Collapse
|
39
|
Baeza JA. Yes, we can use it: a formal test on the accuracy of low-pass nanopore long-read sequencing for mitophylogenomics and barcoding research using the Caribbean spiny lobster Panulirus argus. BMC Genomics 2020; 21:882. [PMID: 33297960 PMCID: PMC7726883 DOI: 10.1186/s12864-020-07292-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Background Whole mitogenomes or short fragments (i.e., 300–700 bp of the cox1 gene) are the markers of choice for revealing within- and among-species genealogies. Protocols for sequencing and assembling mitogenomes include ‘primer walking’ or ‘long PCR’ followed by Sanger sequencing or Illumina short-read low-coverage whole genome (LC-WGS) sequencing with or without prior enrichment of mitochondrial DNA. The aforementioned strategies assemble complete and accurate mitochondrial genomes but are time consuming and/or expensive. In this study, I first tested whether mitogenomes can be sequenced from long-read nanopore sequencing data exclusively. Second, I explored the accuracy of the long-read assembled genomes by comparing them to a ‘gold’ standard reference mitogenome retrieved from the same individual using Illumina sequencing. Third and lastly, I tested if the long-read assemblies are useful for mitophylogenomics and barcoding research. To accomplish these goals, I used the Caribbean spiny lobster Panulirus argus, an ecologically relevant species in shallow water coral reefs and target of the most lucrative fishery in the greater Caribbean region. Results LC-WGS using a MinION ONT device and various de-novo and reference-based assembly pipelines retrieved a complete and highly accurate mitogenome for the Caribbean spiny lobster Panulirus argus. Discordance between each of the long-read assemblies and the reference mitogenome was mostly due to indels at the flanks of homopolymer regions. Although not ‘perfect’, phylogenetic analyses using entire mitogenomes or a fragment of the cox1 gene demonstrated that mitogenomes assembled using long reads reliably identify the sequenced specimen as belonging to P. argus and distinguish it from other related species in the same genus, family, and superorder. Conclusions This study serves as a proof-of-concept for the future implementation of in-situ surveillance protocols using the MinION to detect mislabeling in P. argus across its supply chain. Mislabeling detection will improve fishery management in this overexploited lobster. This study will additionally aid in decreasing costs for exploring meta-population connectivity in the Caribbean spiny lobster and will aid with the transfer of genomics technology to low-income countries.
Collapse
Affiliation(s)
- J Antonio Baeza
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA. .,Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida, 34949, USA. .,Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.
| |
Collapse
|
40
|
Iketani G, Pimentel L, Torres EDS, Rêgo PSD, Sampaio I. Mitochondrial heteroplasmy and pseudogenes in the freshwater prawn, Macrobrachium amazonicum (Heller, 1862): DNA barcoding and phylogeographic implications. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 32:1-11. [PMID: 33164622 DOI: 10.1080/24701394.2020.1844677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mitochondrial cytochrome oxidase c subunit 1 (COI) gene has been widely used in phylogenetic studies of crustaceans and analyses in population genetics. As COI studies have become more popular, there has been an increase in the number of reports of the presence of nuclear insertions of mitochondrial DNA (Numts) and mitochondrial heteroplasmy. Here, we provide evidence of both types of event in the COI sequences of Macrobrachium amazonicum, an economically important freshwater prawn, which is widespread in South America. Heteroplasmy and Numts were confirmed by different methods of DNA extraction (genomic, mitochondrial, and nuclear-enriched DNA), cloning, and sequencing, and were observed in 11 of the 14 populations sampled, primarily in the Amazon region. We discuss how the occurrence of these events affects the interpretation of the genetic relationships among the M. amazonicum populations, and we recommend caution when using COI for genetic inferences in prawns of the genus Macrobrachium, and in particular that any analysis should include nuclear markers.
Collapse
Affiliation(s)
- Gabriel Iketani
- Laboratório de Educação e Evolução Prof. Horacio Schneider, Instituto de Ciências da Educação, Universidade Federal do Oeste do Pará, Santarém, Brasil
| | - Luciana Pimentel
- Laboratório de Educação e Evolução Prof. Horacio Schneider, Instituto de Ciências da Educação, Universidade Federal do Oeste do Pará, Santarém, Brasil
| | - Ezequias Dos Santos Torres
- Laboratório de Educação e Evolução Prof. Horacio Schneider, Instituto de Ciências da Educação, Universidade Federal do Oeste do Pará, Santarém, Brasil
| | - Péricles Sena do Rêgo
- Laboratório de Genética e Conservação, Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Brasil.,CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Iracilda Sampaio
- Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Brasil
| |
Collapse
|
41
|
Bektaş M, Orhan F, Erman ÖK, Barış Ö. Bacterial microbiota on digestive structure of Cybister lateralimarginalis torquatus (Fischer von Waldheim, 1829) (Dytiscidae: Coleoptera). Arch Microbiol 2020; 203:635-641. [PMID: 33011828 DOI: 10.1007/s00203-020-02049-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
In the List of World Edible Insects, Cybister sp. (Dytiscidae) genus of species is known to be consumed by humans. Dried Cybister lateralimarginalis torquatus (Fischer von Waldheim, 1829) which has been collected in Turkey long before and compared to other edible insects having large body, belonging to the Dytiscidae family from the aquatic beetle fauna was aimed to determine microbiota (in digestive structure) of the insect species. In this study, Lelliottia amnigena (Enterobacter amnigenus) (male insect) and Citrobacter freundii (female insect) bacteria species were detected from insect digestion structures. Finally, the DNA sequences of the obtained bacteria were matched from the Gene Bank with the accessory numbers. Moreover, levels of some heavy elements (Al, Cr, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Hg, Pb) were evaluated in this study to observe whether Dytiscidae (Coleoptera) is a useful candidate for biomonitoring studies. The result of the study analyzes agricultural, ecological and health research, influence on the microbial flora and the effect of environment would be and how big the problem we would face in our future. Calculated analysis of the results will give a positive impetus and the fighting method to destroy it in the source.
Collapse
Affiliation(s)
- Mehmet Bektaş
- Hınıs Vocational Training High School, Ataturk University, Erzurum, Turkey.
| | - Figen Orhan
- Health Services Vocational Training School Erzurum, Ataturk University, Erzurum, Turkey
| | - Ömer Köksal Erman
- Biology Department, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Özlem Barış
- Biology Department, Science Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
42
|
Immonen E, Berger D, Sayadi A, Liljestrand‐Rönn J, Arnqvist G. An experimental test of temperature-dependent selection on mitochondrial haplotypes in Callosobruchus maculatus seed beetles. Ecol Evol 2020; 10:11387-11398. [PMID: 33144972 PMCID: PMC7593184 DOI: 10.1002/ece3.6775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial DNA (mtDNA) consists of few but vital maternally inherited genes that interact closely with nuclear genes to produce cellular energy. How important mtDNA polymorphism is for adaptation is still unclear. The assumption in population genetic studies is often that segregating mtDNA variation is selectively neutral. This contrasts with empirical observations of mtDNA haplotypes affecting fitness-related traits and thermal sensitivity, and latitudinal clines in mtDNA haplotype frequencies. Here, we experimentally test whether ambient temperature affects selection on mtDNA variation, and whether such thermal effects are influenced by intergenomic epistasis due to interactions between mitochondrial and nuclear genes, using replicated experimental evolution in Callosobruchus maculatus seed beetle populations seeded with a mixture of different mtDNA haplotypes. We also test for sex-specific consequences of mtDNA evolution on reproductive success, given that mtDNA mutations can have sexually antagonistic fitness effects. Our results demonstrate natural selection on mtDNA haplotypes, with some support for thermal environment influencing mtDNA evolution through mitonuclear epistasis. The changes in male and female reproductive fitness were both aligned with changes in mtDNA haplotype frequencies, suggesting that natural selection on mtDNA is sexually concordant in stressful thermal environments. We discuss the implications of our findings for the evolution of mtDNA.
Collapse
Affiliation(s)
- Elina Immonen
- Department of Ecology and Evolution/Evolutionary BiologyUppsala UniversityUppsalaSweden
| | - David Berger
- Department of Ecology and Evolution/Animal EcologyUppsala UniversityUppsalaSweden
| | - Ahmed Sayadi
- Department of Ecology and Evolution/Animal EcologyUppsala UniversityUppsalaSweden
| | | | - Göran Arnqvist
- Department of Ecology and Evolution/Animal EcologyUppsala UniversityUppsalaSweden
| |
Collapse
|
43
|
Patterns of genetic partitioning and gene flow in the endangered San Bernardino kangaroo rat (Dipodomys merriami parvus) and implications for conservation management. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01289-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
DNA barcoding for identification of fish species from freshwater in Enugu and Anambra States of Nigeria. CONSERV GENET RESOUR 2020. [DOI: 10.1007/s12686-020-01155-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractWithin Enugu and Anambra States, Nigeria, identification of fishes has been based on morphological traits and do not account for existing biodiversity. For DNA barcoding, assessment of biodiversity, conservation and fishery management, 44 fish sampled from Enugu and Anambra States were isolated, amplified and sequenced with mitochondrial cytochrome oxidase subunit I (COI). Twenty groups clustering at 100% bootstrap value including monophyletic ones were identified. The phylogenetic diversity (PD) ranged from 0.0397 (Synodontis obesus) to 0.2147 (Parachanna obscura). The highest percentage of genetic distance based on Kimura 2-parameter was 37.00 ± 0.0400. Intergeneric distances ranged from 15.8000 to 37.0000%. Congeneric distances were 6.9000 ± 0.0140–28.1000 ± 0.0380, with Synodontis as the existing synonymous genus. Confamilial distances in percentage were 16.0000 ± 0.0140 and 25.7000 ± 0.0300. Forty-two haplotypes and haplotype diversity of 0.9990 ± 0.0003 were detected. Nucleotide diversity was 0.7372, while Fu and Li’s D* test statistic was 2.1743 (P < 0.02). Tajima’s D was 0.2424 (P > 0.10) and nucleotide frequencies were C (17.70%), T (29.40%), A (24.82%), G (18.04%) and A + T (54.22%). Transitional mutations were more than transversions. Twenty species (99–100%) were identified with the e-value, maximum coverage and bit-score of 1e−43, 99–100 and 185–1194, respectively. Seventeen genera and 12 families were found and Clariidae (n = 14) was the most dominant among other families. The fish species resolution, diversity assessment and phylogenetic relationships were successfully obtained with the COI marker. Clariidae had the highest number of genera and families. Phylogenetic diversity analysis identified Parachanna obscura as the most evolutionarily divergent one. This study will contribute to fishery management, and conservation of freshwater fishes in Enugu and Anambra States, Nigeria.
Collapse
|
45
|
Princepe D, De Aguiar MAM. Modeling Mito-nuclear Compatibility and Its Role in Species Identification. Syst Biol 2020; 70:133-144. [PMID: 32497198 DOI: 10.1093/sysbio/syaa044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/27/2023] Open
Abstract
Mitochondrial genetic material (mtDNA) is widely used for phylogenetic reconstruction and as a barcode for species identification. The utility of mtDNA in these contexts derives from its particular molecular properties, including its high evolutionary rate, uniparental inheritance, and small size. But mtDNA may also play a fundamental role in speciation-as suggested by recent observations of coevolution with the nuclear DNA, along with the fact that respiration depends on coordination of genes from both sources. Here, we study how mito-nuclear interactions affect the accuracy of species identification by mtDNA, as well as the speciation process itself. We simulate the evolution of a population of individuals who carry a recombining nuclear genome and a mitochondrial genome inherited maternally. We compare a null model fitness landscape that lacks any mito-nuclear interaction against a scenario in which interactions influence fitness. Fitness is assigned to individuals according to their mito-nuclear compatibility, which drives the coevolution of the nuclear and mitochondrial genomes. Depending on the model parameters, the population breaks into distinct species and the model output then allows us to analyze the accuracy of mtDNA barcode for species identification. Remarkably, we find that species identification by mtDNA is equally accurate in the presence or absence of mito-nuclear coupling and that the success of the DNA barcode derives mainly from population geographical isolation during speciation. Nevertheless, selection imposed by mito-nuclear compatibility influences the diversification process and leaves signatures in the genetic content and spatial distribution of the populations, in three ways. First, speciation is delayed and the resulting phylogenetic trees are more balanced. Second, clades in the resulting phylogenetic tree correlate more strongly with the spatial distribution of species and clusters of more similar mtDNA's. Third, there is a substantial increase in the intraspecies mtDNA similarity, decreasing the number of alleles substitutions per locus and promoting the conservation of genetic information. We compare the evolutionary patterns observed in our model to empirical data from copepods (Tigriopus californicus). We find good qualitative agreement in the geographic patterns and the topology of the phylogenetic tree, provided the model includes selection based on mito-nuclear interactions. These results highlight the role of mito-nuclear compatibility in the speciation process and its reconstruction from genetic data.[Mito-nuclear coevolution; mtDNA barcode; parapatry; phylogeny.].
Collapse
Affiliation(s)
| | - Marcus A M De Aguiar
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas - 13083-859, Campinas, SP, Brazil
| |
Collapse
|
46
|
Kieran TJ, Bayona-Vásquez NJ, Varian CP, Saldaña A, Samudio F, Calzada JE, Gottdenker NL, Glenn TC. Population genetics of two chromatic morphs of the Chagas disease vector Rhodnius pallescens Barber, 1932 in Panamá. INFECTION GENETICS AND EVOLUTION 2020; 84:104369. [PMID: 32442632 DOI: 10.1016/j.meegid.2020.104369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022]
Abstract
Rhodnius pallescens is the principal vector of Chagas disease in Panama. Recently a dark chromatic morph has been discovered in the highlands of Veraguas Province. Limited genetic studies have been conducted with regards to the population structure and dispersal potential of Triatominae vectors, particularly in R. pallescens. Next generation sequencing methods such as RADseq and complete mitochondrial DNA (mtDNA) genome sequencing have great potential for examining vector biology across space and time. Here we utilize a RADseq method (3RAD), along with complete mtDNA sequencing, to examine the population structure of the two chromatic morpho types of R. pallescens in Panama. We sequenced 105 R. pallescens samples from five localities in Panama. We generated a 2216 SNP dataset and 6 complete mtDNA genomes. RADseq showed significant differentiation among the five localities (FCT = 0.695; P = .004), but most of this was between localities with the dark vs. light chromatic morphs (Veraguas vs. Panama Oeste). The mtDNA genomes showed a 97-98% similarity between dark and light chromatic morphs across all genes and a 502 bp insert in light morphs. Thus, both the RADseq and mtDNA data showed highly differentiated clades with essentially no gene flow between the dark and light chromatic morphs from Veraguas and central Panama respectively. We discuss the growing evidence showing clear distinctions between these two morpho types with the possibility that these are separate species, an area of research that requires further investigation. Finally, we discuss the cost-effectiveness of 3RAD which is a third of the cost compared to other RADseq methods used recently in Chagas disease vector research.
Collapse
Affiliation(s)
- Troy J Kieran
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Natalia J Bayona-Vásquez
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, The University of Georgia, Athens, GA, USA
| | - Christina P Varian
- Center for the Ecology of Infectious Diseases, The University of Georgia, Athens, GA, USA; Department of Veterinary Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Azael Saldaña
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama; Centro de Investigación y Diagnóstico de Enfermedades Parasitarias (CIDEP), Facultad de Medicina, Universidad de Panamá, Panama
| | - Franklyn Samudio
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama
| | - Jose E Calzada
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama
| | - Nicole L Gottdenker
- Center for the Ecology of Infectious Diseases, The University of Georgia, Athens, GA, USA; Department of Veterinary Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA; Odum School of Ecology, The University of Georgia, Athens, GA, USA
| | - Travis C Glenn
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, The University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
47
|
Matumba TG, Oliver J, Barker NP, McQuaid CD, Teske PR. Intraspecific mitochondrial gene variation can be as low as that of nuclear rRNA. F1000Res 2020; 9:339. [PMID: 32934803 PMCID: PMC7475959 DOI: 10.12688/f1000research.23635.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Mitochondrial DNA (mtDNA) has long been used to date historical demographic events. The idea that it is useful for molecular dating rests on the premise that its evolution is neutral. Even though this idea has long been challenged, the evidence against clock-like evolution of mtDNA is often ignored. Here, we present a particularly clear and simple example to illustrate the implications of violations of the assumption of selective neutrality. Methods: DNA sequences were generated for the mtDNA COI gene and the nuclear 28S rRNA of two closely related rocky shore snails, and species-level variation was compared. Nuclear rRNA is not usually used to study intraspecific variation in species that are not spatially structured, presumably because this marker is assumed to evolve so slowly that it is more suitable for phylogenetics. Results: Even though high inter-specific divergence reflected the faster evolutionary rate of COI, intraspecific genetic variation was similar for both markers. As a result, estimates of population expansion times based on mismatch distributions differed between the two markers by millions of years. Conclusions: Assuming that 28S evolution is more clock-like, these findings can be explained by variation-reducing purifying selection in mtDNA at the species level, and an elevated divergence rate caused by diversifying selection between the two species. Although these two selective forces together make mtDNA suitable as a marker for species identifications by means of DNA barcoding because they create a ‘barcoding gap’, estimates of demographic change based on this marker can be expected to be highly unreliable. Our study contributes to the growing evidence that the utility of mtDNA sequence data beyond DNA barcoding is limited.
Collapse
Affiliation(s)
- Tshifhiwa G Matumba
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa.,Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Jody Oliver
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Nigel P Barker
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, 0028, South Africa
| | - Christopher D McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Peter R Teske
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| |
Collapse
|
48
|
Matumba TG, Oliver J, Barker NP, McQuaid CD, Teske PR. Intraspecific mitochondrial gene variation can be as low as that of nuclear rRNA. F1000Res 2020; 9:339. [PMID: 32934803 PMCID: PMC7475959 DOI: 10.12688/f1000research.23635.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2020] [Indexed: 11/22/2023] Open
Abstract
Background: Mitochondrial DNA (mtDNA) has long been used to date historical demographic events. The idea that it is useful for molecular dating rests on the premise that its evolution is neutral. Even though this idea has long been challenged, the evidence against clock-like evolution of mtDNA is often ignored. Here, we present a particularly clear and simple example to illustrate the implications of violations of the assumption of selective neutrality. Methods: DNA sequences were generated for the mtDNA COI gene and the nuclear 28S rRNA of two closely related rocky shore snails, and species-level variation was compared. Nuclear rRNA is not usually used to study intraspecific variation in species that are not spatially structured, presumably because this marker is assumed to evolve so slowly that it is more suitable for phylogenetics. Results: Even though high inter-specific divergence reflected the faster evolutionary rate of COI, intraspecific genetic variation was similar for both markers. As a result, estimates of population expansion times based on mismatch distributions differed between the two markers by millions of years. Conclusions: Assuming that 28S evolution is more clock-like, these findings can be explained by variation-reducing purifying selection in mtDNA at the species level, and an elevated divergence rate caused by diversifying selection between the two species. Although these two selective forces together make mtDNA suitable as a marker for species identifications by means of DNA barcoding because they create a 'barcoding gap', estimates of demographic change based on this marker can be expected to be highly unreliable. Our study contributes to the growing evidence that the utility of mtDNA sequence data beyond DNA barcoding is limited.
Collapse
Affiliation(s)
- Tshifhiwa G. Matumba
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Jody Oliver
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Nigel P. Barker
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, 0028, South Africa
| | - Christopher D. McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Peter R. Teske
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| |
Collapse
|
49
|
Wilke T, Ahlrichs WH, Bininda‐Emonds ORP. The evolution of Synchaetidae (Rotifera: Monogononta) with a focus on
Synchaeta
: An integrative approach combining molecular and morphological data. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tanja Wilke
- AG Systematik und Evolutionsbiologie Institut für Biologie und Umweltwissenschaften (IBU) Carl von Ossietzky Universität Oldenburg Oldenburg Germany
| | - Wilko H. Ahlrichs
- AG Systematik und Evolutionsbiologie Institut für Biologie und Umweltwissenschaften (IBU) Carl von Ossietzky Universität Oldenburg Oldenburg Germany
| | - Olaf R. P. Bininda‐Emonds
- AG Systematik und Evolutionsbiologie Institut für Biologie und Umweltwissenschaften (IBU) Carl von Ossietzky Universität Oldenburg Oldenburg Germany
| |
Collapse
|
50
|
Vaught RC, Voigt S, Dobler R, Clancy DJ, Reinhardt K, Dowling DK. Interactions between cytoplasmic and nuclear genomes confer sex-specific effects on lifespan in Drosophila melanogaster. J Evol Biol 2020; 33:694-713. [PMID: 32053259 DOI: 10.1111/jeb.13605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022]
Abstract
Genetic variation outside of the cell nucleus can affect the phenotype. The cytoplasm is home to the mitochondria, and in arthropods often hosts intracellular bacteria such as Wolbachia. Although numerous studies have implicated epistatic interactions between cytoplasmic and nuclear genetic variation as mediators of phenotypic expression, two questions remain. Firstly, it remains unclear whether outcomes of cyto-nuclear interactions will manifest differently across the sexes, as might be predicted given that cytoplasmic genomes are screened by natural selection only through females as a consequence of their maternal inheritance. Secondly, the relative contribution of mitochondrial genetic variation to other cytoplasmic sources of variation, such as Wolbachia infection, in shaping phenotypic outcomes of cyto-nuclear interactions remains unknown. Here, we address these questions, creating a fully crossed set of replicated cyto-nuclear populations derived from three geographically distinct populations of Drosophila melanogaster, measuring the lifespan of males and females from each population. We observed that cyto-nuclear interactions shape lifespan and that the outcomes of these interactions differ across the sexes. Yet, we found no evidence that placing the cytoplasms from one population alongside the nuclear background of others (generating putative cyto-nuclear mismatches) leads to decreased lifespan in either sex. Although it was difficult to partition mitochondrial from Wolbachia effects, our results suggest at least some of the cytoplasmic genotypic contribution to lifespan was directly mediated by an effect of sequence variation in the mtDNA. Future work should explore the degree to which cyto-nuclear interactions result in sex differences in the expression of other components of organismal life history.
Collapse
Affiliation(s)
- Rebecca C Vaught
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Susanne Voigt
- Faculty of Biology, Applied Zoology, TU Dresden, Dresden, Germany
| | - Ralph Dobler
- Faculty of Biology, Applied Zoology, TU Dresden, Dresden, Germany
| | - David J Clancy
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster, UK
| | - Klaus Reinhardt
- Faculty of Biology, Applied Zoology, TU Dresden, Dresden, Germany
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|