1
|
Guessous G, Blake L, Bui A, Woo Y, Manzanarez G. Disentangling the Web: An Interdisciplinary Review on the Potential and Feasibility of Spider Silk Bioproduction. ACS Biomater Sci Eng 2024; 10:5412-5438. [PMID: 39136701 PMCID: PMC11388149 DOI: 10.1021/acsbiomaterials.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The remarkable material properties of spider silk, such as its high toughness and tensile strength combined with its low density, make it a highly sought-after material with myriad applications. In addition, the biological nature of spider silk makes it a promising, potentially sustainable alternative to many toxic or petrochemical-derived materials. Therefore, interest in the heterologous production of spider silk proteins has greatly increased over the past few decades, making recombinant spider silk an important frontier in biomanufacturing. This has resulted in a diversity of potential host organisms, a large space for sequence design, and a variety of downstream processing techniques and product applications for spider silk production. Here, we highlight advances in each of these technical aspects as well as white spaces therein, still ripe for further investigation and discovery. Additionally, industry landscaping, patent analyses, and interviews with Key Opinion Leaders help define both the research and industry landscapes. In particular, we found that though textiles dominated the early products proposed by companies, the versatile nature of spider silk has opened up possibilities in other industries, such as high-performance materials in automotive applications or biomedical therapies. While continuing enthusiasm has imbued scientists and investors alike, many technical and business considerations still remain unsolved before spider silk can be democratized as a high-performance product. We provide insights and strategies for overcoming these initial hurdles, and we highlight the importance of collaboration between academia, industry, and policy makers. Linking technical considerations to business and market entry strategies highlights the importance of a holistic approach for the effective scale-up and commercial viability of spider silk bioproduction.
Collapse
Affiliation(s)
- Ghita Guessous
- Department of Physics, University of California at San Diego, La Jolla, California 92092, United States
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
| | - Lauren Blake
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Tufts University Center for Cellular Agriculture (TUCCA), Tufts University, Medford, Massachusetts 02155, United States
| | - Anthony Bui
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14850, United States
| | - Yelim Woo
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Questrom School of Business, Boston University, Boston, Massachusetts 02215, United States
| | - Gabriel Manzanarez
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92092, United States
| |
Collapse
|
2
|
Leggett MA, Vink CJ, Nelson XJ. Adaptation and Survival of Marine-Associated Spiders (Araneae). ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:481-501. [PMID: 37788437 DOI: 10.1146/annurev-ento-062923-102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Aquatic environments are an unusual habitat for most arthropods. Nevertheless, many arthropod species that were once terrestrial dwelling have transitioned back to marine and freshwater environments, either as semiaquatic or, more rarely, as fully aquatic inhabitants. Transition to water from land is exceptional, and without respiratory modifications to allow for extended submergence and the associated hypoxic conditions, survival is limited. In this article, we review marine-associated species that have made this rare transition in a generally terrestrial group, spiders. We include several freshwater spider species for comparative purposes. Marine-associated spiders comprise less than 0.3% of spider species worldwide but are found in over 14% of all spider families. As we discuss, these spiders live in environments that, with tidal action, hydraulic forces, and saltwater, are more extreme than freshwater habitats, often requiring physiological and behavioral adaptations to survive. Spiders employ many methods to survive inundation from encroaching tides, such as air bubble respiration, airtight nests, hypoxic comas, and fleeing incoming tides. While airway protection is the primary survival strategy, further survival adaptations include saltwater-induced osmotic regulation, dietary composition, predator avoidance, reproduction, locomotory responses, and adaptation to extreme temperatures and hydrostatic pressures that challenge existence in marine environments.
Collapse
Affiliation(s)
- Marlene A Leggett
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand;
| | - Cor J Vink
- Department of Pest Management and Conservation, Lincoln University, Lincoln, New Zealand
| | - Ximena J Nelson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand;
| |
Collapse
|
3
|
Hopfe C, Ospina-Jara B, Schulze T, Tischer M, Morales D, Reinhartz V, Esfahani RE, Valderrama C, Pérez-Rigueiro J, Bleidorn C, Feldhaar H, Cabra-García J, Scheibel T. Impact of environmental factors on spider silk properties. Curr Biol 2024; 34:56-67.e5. [PMID: 38118450 DOI: 10.1016/j.cub.2023.11.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/11/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
Spider orb webs have evolved to stop flying prey, fast and slow alike. One of the main web elements dissipating impact energy is the radial fibers, or major ampullate silks, which possess a toughness surpassing most man-made materials. Orb webs are extended phenotypes, and as such their architectural elements, including major ampullate silks, have been selected to optimize prey capture under the respective environmental conditions. In this study, we investigated the correlation of three landscape scales and three microhabitat characteristics with intrinsic silk properties (elastic modulus, yield stress, tensile strength, extensibility, and toughness) to understand underlying ecological patterns. For this purpose, we collected and mechanically tested major ampullate silks from 50 spider species inhabiting large altitudinal and climatic gradients in Colombia. Using regression analysis and model selection, we investigated the environmental drivers of inter- and intra-specific patterns of major ampullate silk properties, taking into account phylogenetic relatedness based on newly sequenced mitochondrial genomes. We found that the total amount of energy absorbed, i.e., toughness and tensile strength, is higher for fibers from species inhabiting regions where heavy rainfall is common. Interestingly, we observe the same general trend between individuals of the same species, stressing the importance of this environmental driver. We also observe a phylogenetic conservation in the relation of environmental variables with silk tensile strength and yield stress. In conclusion, the increase in major ampullate silk tensile strength and toughness may reflect an adaptation to prevent frequent rain damage to orb webs and the associated energetic loss.
Collapse
Affiliation(s)
- Charlotte Hopfe
- Department of Biomaterials, Universität Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, Bayreuth 95447, Germany.
| | - Bryan Ospina-Jara
- Department of Biology, Universidad del Valle, Cl. 13 #100-00, Cali 760042, Colombia
| | - Thilo Schulze
- Department of Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Untere Karspüle 2, Göttingen 37073, Germany
| | - Marta Tischer
- Department of Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Untere Karspüle 2, Göttingen 37073, Germany
| | - Diego Morales
- Department of Biology, Universidad del Valle, Cl. 13 #100-00, Cali 760042, Colombia
| | - Vivien Reinhartz
- Department of Biomaterials, Universität Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, Bayreuth 95447, Germany
| | - Rashin Eshghi Esfahani
- Department of Biomaterials, Universität Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, Bayreuth 95447, Germany
| | - Carlos Valderrama
- Facultad de Ciencias, Universidad del Rosario, Cl. 12c #6-25, Bogotá 111711, Colombia
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Crta. M40, Madrid 28223, Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, C/Prof. Aranguren 3, Madrid 28040, Spain; Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain; Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/ Prof. Martín Lagos s/n, Madrid 28040, Spain
| | - Christoph Bleidorn
- Department of Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Untere Karspüle 2, Göttingen 37073, Germany
| | - Heike Feldhaar
- Department of Animal Ecology I, Bayreuth Center of Ecology and Environmental Research (BayCEER), Universität Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany
| | - Jimmy Cabra-García
- Department of Biology, Universidad del Valle, Cl. 13 #100-00, Cali 760042, Colombia
| | - Thomas Scheibel
- Department of Biomaterials, Universität Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, Bayreuth 95447, Germany; Bayreuther Zentrum für Kolloide und Grenzflächen, Universität Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany; Bayreuther Materialzentrum, Universität Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany; Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany; Bayrisches Polymerinstitut, Universität Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany.
| |
Collapse
|
4
|
Agnarsson I. Biomechanics: Rain yields tougher spider silks. Curr Biol 2024; 34:R30-R33. [PMID: 38194927 DOI: 10.1016/j.cub.2023.11.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Broad ecological sampling of spider silks from multiple species shows that the biomechanical properties of spider silk reflect the habitat in which their orb webs are built. Silk toughness is highest in habitats with dense rain.
Collapse
Affiliation(s)
- Ingi Agnarsson
- Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland; Department of Entomology, National Museum of Natural History, Washington, DC 20013-7012, USA; School of Life Sciences, Hubei University, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Jin P, Zhu B, Jia Y, Zhang Y, Wang W, Shen Y, Zhong Y, Zheng Y, Wang Y, Tong Y, Zhang W, Li S. Single-cell transcriptomics reveals the brain evolution of web-building spiders. Nat Ecol Evol 2023; 7:2125-2142. [PMID: 37919396 PMCID: PMC10697844 DOI: 10.1038/s41559-023-02238-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Spiders are renowned for their efficient capture of flying insects using intricate aerial webs. How the spider nervous systems evolved to cope with this specialized hunting strategy and various environmental clues in an aerial space remains unknown. Here we report a brain-cell atlas of >30,000 single-cell transcriptomes from a web-building spider (Hylyphantes graminicola). Our analysis revealed the preservation of ancestral neuron types in spiders, including the potential coexistence of noradrenergic and octopaminergic neurons, and many peptidergic neuronal types that are lost in insects. By comparing the genome of two newly sequenced plesiomorphic burrowing spiders with three aerial web-building spiders, we found that the positively selected genes in the ancestral branch of web-building spiders were preferentially expressed (42%) in the brain, especially in the three mushroom body-like neuronal types. By gene enrichment analysis and RNAi experiments, these genes were suggested to be involved in the learning and memory pathway and may influence the spiders' web-building and hunting behaviour. Our results provide key sources for understanding the evolution of behaviour in spiders and reveal how molecular evolution drives neuron innovation and the diversification of associated complex behaviours.
Collapse
Affiliation(s)
- Pengyu Jin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bingyue Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinjun Jia
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yiming Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Guangxi Normal University, Guilin, China
| | - Yunxiao Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yami Zheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Tong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shuqiang Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Lewbart GA, Zachariah TT. Aquatic and Terrestrial Invertebrate Welfare. Animals (Basel) 2023; 13:3375. [PMID: 37958134 PMCID: PMC10649180 DOI: 10.3390/ani13213375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Invertebrates are a diverse group of animals that make up the majority of the animal kingdom and encompass a wide array of species with varying adaptations and characteristics. Invertebrates are found in nearly all of the world's habitats, including aquatic, marine, and terrestrial environments. There are many misconceptions about invertebrate sentience, welfare requirements, the need for environmental enrichment, and overall care and husbandry for this amazing group of animals. This review addresses these topics and more for a select group of invertebrates with biomedical, economical, display, and human companionship importance.
Collapse
Affiliation(s)
- Gregory A. Lewbart
- College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA
| | - Trevor T. Zachariah
- Brevard Zoo|Sea Turtle Healing Center, 8225 North Wickham Road, Melbourne, FL 32940, USA;
| |
Collapse
|
7
|
Mi J, Zhou X, Sun R, Han J. Disabling spidroin N-terminal homologs' reverse reaction unveils why its intermolecular disulfide bonds have not evolved for 380 million years. Int J Biol Macromol 2023; 249:125974. [PMID: 37499718 DOI: 10.1016/j.ijbiomac.2023.125974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Spiders, ubiquitous predators known for their powerful silks, rely on spidroins that self-assemble from high-concentration solutions stored in silk glands, which are mediated by the NT and CT domains. CT homodimers containing intermolecular disulfide bonds enhance silk performance, promoting spider survival and reproduction. However, no NT capable of forming such disulfide bonds has been identified. Our study reveals that NT homodimers with sulfur substitution can form under alkaline conditions, shedding light on why spiders have not evolved intermolecular disulfide bonds in the NT module during their 380 million years of evolution. This discovery significantly advances our comprehension of spider evolution and silk spinning mechanisms, while also providing novel insights into protein storage, assembly, as well as the mechanisms and therapeutic strategies for neurodegenerative diseases associated with protein aggregation.
Collapse
Affiliation(s)
- Junpeng Mi
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xingping Zhou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Rou Sun
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Jiaojiao Han
- Department of Clinical Hematology and osology, Shanghai center for clinical laboratory, Shanghai 200126, China.
| |
Collapse
|
8
|
Naderinejad M, Junge K, Hughes J. Exploration of the Design of Spiderweb-Inspired Structures for Vibration-Driven Sensing. Biomimetics (Basel) 2023; 8:111. [PMID: 36975341 PMCID: PMC10046129 DOI: 10.3390/biomimetics8010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
In the quest to develop large-area soft sensors, we can look to nature for many examples. Spiderwebs show many fascinating properties that we can seek to understand and replicate in order to develop large-area, soft, and deformable sensing structures. Spiders' webs are used not only to capture prey, but also to localize their prey through the vibrations that they feel through their legs. Inspired by spiderwebs, we developed a large-area tactile sensor for localizing contact points through vibration sensing. We hypothesize that the structure of a web can be leveraged to amplify, filter, or otherwise morphologically tune vibrations to improve sensing capabilities. To explore this design space, we created a means of computationally designing and 3D printing web structures. By using vibration sensors mounted on the edges of webs to simulate a spider monitoring vibrations, we show how varying the structural properties affects the localization performance when using vibration sensors and long short-term memory (LSTM)-based neural network classifiers. We seek to explain the classification performance seen in different webs by considering various metrics of information content for different webs and, hence, provide insight into how bio-inspired spiderwebs can be used to assist large-area sensing structures.
Collapse
Affiliation(s)
- Mahdi Naderinejad
- Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
- CREATE Lab, IGM, STI, EPFL, 1015 Lausanne, Switzerland
| | - Kai Junge
- CREATE Lab, IGM, STI, EPFL, 1015 Lausanne, Switzerland
| | - Josie Hughes
- CREATE Lab, IGM, STI, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Hu W, Jia A, Ma S, Zhang G, Wei Z, Lu F, Luo Y, Zhang Z, Sun J, Yang T, Xia T, Li Q, Yao T, Zheng J, Jiang Z, Xu Z, Xia Q, Wang Y. A molecular atlas reveals the tri-sectional spinning mechanism of spider dragline silk. Nat Commun 2023; 14:837. [PMID: 36792670 PMCID: PMC9932165 DOI: 10.1038/s41467-023-36545-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
The process of natural silk production in the spider major ampullate (Ma) gland endows dragline silk with extraordinary mechanical properties and the potential for biomimetic applications. However, the precise genetic roles of the Ma gland during this process remain unknown. Here, we performed a systematic molecular atlas of dragline silk production through a high-quality genome assembly for the golden orb-weaving spider Trichonephila clavata and a multiomics approach to defining the Ma gland tri-sectional architecture: Tail, Sac, and Duct. We uncovered a hierarchical biosynthesis of spidroins, organic acids, lipids, and chitin in the sectionalized Ma gland dedicated to fine silk constitution. The ordered secretion of spidroins was achieved by the synergetic regulation of epigenetic and ceRNA signatures for genomic group-distributed spidroin genes. Single-cellular and spatial RNA profiling identified ten cell types with partitioned functional division determining the tri-sectional organization of the Ma gland. Convergence analysis and genetic manipulation further validated that this tri-sectional architecture of the silk gland was analogous across Arthropoda and inextricably linked with silk formation. Collectively, our study provides multidimensional data that significantly expand the knowledge of spider dragline silk generation and ultimately benefit innovation in spider-inspired fibers.
Collapse
Affiliation(s)
- Wenbo Hu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Anqiang Jia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Guoqing Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zhaoyuan Wei
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Fang Lu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Yongjiang Luo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zhisheng Zhang
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiahe Sun
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Tianfang Yang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - TingTing Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qinhui Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Ting Yao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Jiangyu Zheng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zijie Jiang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zehui Xu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China.
| | - Yi Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Miller J, Zimin AV, Gordus A. Chromosome-level genome and the identification of sex chromosomes in Uloborus diversus. Gigascience 2022; 12:giad002. [PMID: 36762707 PMCID: PMC9912274 DOI: 10.1093/gigascience/giad002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/18/2022] [Accepted: 01/03/2023] [Indexed: 02/11/2023] Open
Abstract
The orb web is a remarkable example of animal architecture that is observed in families of spiders that diverged over 200 million years ago. While several genomes exist for araneid orb-weavers, none exist for other orb-weaving families, hampering efforts to investigate the genetic basis of this complex behavior. Here we present a chromosome-level genome assembly for the cribellate orb-weaving spider Uloborus diversus. The assembly reinforces evidence of an ancient arachnid genome duplication and identifies complete open reading frames for every class of spidroin gene, which encode the proteins that are the key structural components of spider silks. We identified the 2 X chromosomes for U. diversus and identify candidate sex-determining loci. This chromosome-level assembly will be a valuable resource for evolutionary research into the origins of orb-weaving, spidroin evolution, chromosomal rearrangement, and chromosomal sex determination in spiders.
Collapse
Affiliation(s)
- Jeremiah Miller
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew Gordus
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
11
|
Correa-Garhwal SM, Baker RH, Clarke TH, Ayoub NA, Hayashi CY. The evolutionary history of cribellate orb-weaver capture thread spidroins. BMC Ecol Evol 2022; 22:89. [PMID: 35810286 PMCID: PMC9270836 DOI: 10.1186/s12862-022-02042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Background Spiders have evolved two types of sticky capture threads: one with wet adhesive spun by ecribellate orb-weavers and another with dry adhesive spun by cribellate spiders. The evolutionary history of cribellate capture threads is especially poorly understood. Here, we use genomic approaches to catalog the spider-specific silk gene family (spidroins) for the cribellate orb-weaver Uloborus diversus. Results We show that the cribellar spidroin, which forms the puffy fibrils of cribellate threads, has three distinct repeat units, one of which is conserved across cribellate taxa separated by ~ 250 Mya. We also propose candidates for a new silk type, paracribellar spidroins, which connect the puffy fibrils to pseudoflagelliform support lines. Moreover, we describe the complete repeat architecture for the pseudoflagelliform spidroin (Pflag), which contributes to extensibility of pseudoflagelliform axial fibers. Conclusions Our finding that Pflag is closely related to Flag, supports homology of the support lines of cribellate and ecribellate capture threads. It further suggests an evolutionary phase following gene duplication, in which both Flag and Pflag were incorporated into the axial lines, with subsequent loss of Flag in uloborids, and increase in expression of Flag in ecribellate orb-weavers, explaining the distinct mechanical properties of the axial lines of these two groups. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02042-5.
Collapse
|
12
|
Arakawa K, Kono N, Malay AD, Tateishi A, Ifuku N, Masunaga H, Sato R, Tsuchiya K, Ohtoshi R, Pedrazzoli D, Shinohara A, Ito Y, Nakamura H, Tanikawa A, Suzuki Y, Ichikawa T, Fujita S, Fujiwara M, Tomita M, Blamires SJ, Chuah JA, Craig H, Foong CP, Greco G, Guan J, Holland C, Kaplan DL, Sudesh K, Mandal BB, Norma-Rashid Y, Oktaviani NA, Preda RC, Pugno NM, Rajkhowa R, Wang X, Yazawa K, Zheng Z, Numata K. 1000 spider silkomes: Linking sequences to silk physical properties. SCIENCE ADVANCES 2022; 8:eabo6043. [PMID: 36223455 PMCID: PMC9555773 DOI: 10.1126/sciadv.abo6043] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Spider silks are among the toughest known materials and thus provide models for renewable, biodegradable, and sustainable biopolymers. However, the entirety of their diversity still remains elusive, and silks that exceed the performance limits of industrial fibers are constantly being found. We obtained transcriptome assemblies from 1098 species of spiders to comprehensively catalog silk gene sequences and measured the mechanical, thermal, structural, and hydration properties of the dragline silks of 446 species. The combination of these silk protein genotype-phenotype data revealed essential contributions of multicomponent structures with major ampullate spidroin 1 to 3 paralogs in high-performance dragline silks and numerous amino acid motifs contributing to each of the measured properties. We hope that our global sampling, comprehensive testing, integrated analysis, and open data will provide a solid starting point for future biomaterial designs.
Collapse
Affiliation(s)
- Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-8520, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | - Ali D. Malay
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Ayaka Tateishi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Nao Ifuku
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo 679-5198, Japan
| | - Ryota Sato
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Spiber Inc., Tsuruoka, Yamagata 997-0052, Japan
| | - Kousuke Tsuchiya
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Rintaro Ohtoshi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Spiber Inc., Tsuruoka, Yamagata 997-0052, Japan
| | | | | | - Yusuke Ito
- Spiber Inc., Tsuruoka, Yamagata 997-0052, Japan
| | - Hiroyuki Nakamura
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Spiber Inc., Tsuruoka, Yamagata 997-0052, Japan
| | - Akio Tanikawa
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Yuya Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| | - Takeaki Ichikawa
- Kokugakuin Kugayama High School, Suginami, Tokyo 168-0082, Japan
| | - Shohei Fujita
- Graduate School of Agriculture, Saga University, Saga 840-8502, Japan
| | - Masayuki Fujiwara
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-8520, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | - Sean J. Blamires
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jo-Ann Chuah
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hamish Craig
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Choon P. Foong
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Gabriele Greco
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, I-38123 Trento, Italy
| | - Juan Guan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Chris Holland
- Natural Materials Group, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781 039 Assam, India
- Center for Nanotechnology, IITG, Guwahati, 781 039 Assam, India
- School of Health Sciences and Technology, IITG, Guwahati, 781 039 Assam, India
| | - Y. Norma-Rashid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur A. Oktaviani
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Rucsanda C. Preda
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Nicola M. Pugno
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, I-38123 Trento, Italy
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, UK
| | - Rangam Rajkhowa
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Xiaoqin Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Kenjiro Yazawa
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Zhaozhu Zheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
13
|
Li X, Huang D. Predators or Herbivores: Cockroaches of Manipulatoridae Revisited with a New Genus from Cretaceous Myanmar Amber (Dictyoptera: Blattaria: Corydioidea). INSECTS 2022; 13:732. [PMID: 36005357 PMCID: PMC9409346 DOI: 10.3390/insects13080732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Manipulator modificaputis Vršanský and Bechly, 2015 (Manipulatoridae, Corydioidea) is a purported predatory cockroach from Cretaceous Myanmar amber, based on a single male. It is distinctive by the nimble head, elongate pronotum and legs, and particularly by the extraordinarily long maxillary palpi. In the present study, we redescribe Manipulator modificaputis based on six new fossils including males and females, and comment on the original description. The closely related Manipulatoides obscura gen. & sp. nov. is proposed on the basis of five fossils, including males and females. It differs from Manipulator in weaker spination of the legs, including the type-C forefemoral spination instead of the type-A of Manipulator. Some undetermined adults and nymphs are also described. We discuss the ethology of Manipulatoridae and speculate that they might feed on flowers. They are unlikely to be specialized predators since they lack necessary weaponry for capturing prey; in contrast, their unique morphotype appears to be suitable for efficient foraging and locomotion amid flowering twigs. The possibility of being kleptoparasites of the spider-web is also discussed. In addition, regenerated four-segmented tarsi are found from the new species.
Collapse
|
14
|
Joel AC, Schmitt D, Baumgart L, Menzel F. Insect cuticular hydrocarbon composition influences their interaction with spider capture threads. J Exp Biol 2022; 225:274274. [PMID: 35129200 DOI: 10.1242/jeb.242514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 02/02/2022] [Indexed: 11/20/2022]
Abstract
Insects represent the main prey of spiders, and spiders and insects co-diversified in evolutionary history. One of the main features characterizing spiders is their web as trap to capture prey. Phylogenetically, the cribellate thread is one of the earliest thread types that was specialized to capture prey. In contrast to capture threads, it lacks adhesive glue and consists of nanofibers, which do not only adhere to insects via van der Waals forces, but also interact with the insects' cuticular hydrocarbon (CHC) layer, thus enhancing adhesion. The CHC layer consist of multiple hydrocarbon types and is highly diverse between species. In this study, we show that CHC adhesion to cribellate capture threads is affected by CHC composition of the insect. We studied the interaction in detail for four different insect species with different CHC profiles and observed a differential migration of CHCs into the thread. The migration depends on the molecular structure of the hydrocarbon types as well as their viscosity, influenced by altering the ambient temperature during interaction. As a consequence, adhesion forces to CHC layers differ depending on their chemical composition. Our results match predictions based on biophysical properties of hydrocarbons, and show that cribellate spiders can exert selection pressure on the CHC composition of their insect prey.
Collapse
Affiliation(s)
- Anna-Christin Joel
- RWTH Aachen University, Institute of Zoology, Aachen, Germany.,Johannes Gutenberg-University, Institute of Organismic and Molecular Evolution, Mainz, Germany
| | - Dorothea Schmitt
- Johannes Gutenberg-University, Institute of Organismic and Molecular Evolution, Mainz, Germany
| | - Lucas Baumgart
- RWTH Aachen University, Institute of Zoology, Aachen, Germany
| | - Florian Menzel
- Johannes Gutenberg-University, Institute of Organismic and Molecular Evolution, Mainz, Germany
| |
Collapse
|
15
|
Li J, Li S, Huang J, Khan AQ, An B, Zhou X, Liu Z, Zhu M. Spider Silk-Inspired Artificial Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103965. [PMID: 34927397 PMCID: PMC8844500 DOI: 10.1002/advs.202103965] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Indexed: 05/14/2023]
Abstract
Spider silk is a natural polymeric fiber with high tensile strength, toughness, and has distinct thermal, optical, and biocompatible properties. The mechanical properties of spider silk are ascribed to its hierarchical structure, including primary and secondary structures of the spidroins (spider silk proteins), the nanofibril, the "core-shell", and the "nano-fishnet" structures. In addition, spider silk also exhibits remarkable properties regarding humidity/water response, water collection, light transmission, thermal conductance, and shape-memory effect. This motivates researchers to prepare artificial functional fibers mimicking spider silk. In this review, the authors summarize the study of the structure and properties of natural spider silk, and the biomimetic preparation of artificial fibers from different types of molecules and polymers by taking some examples of artificial fibers exhibiting these interesting properties. In conclusion, biomimetic studies have yielded several noteworthy findings in artificial fibers with different functions, and this review aims to provide indications for biomimetic studies of functional fibers that approach and exceed the properties of natural spider silk.
Collapse
Affiliation(s)
- Jiatian Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Sitong Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Jiayi Huang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Abdul Qadeer Khan
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Baigang An
- School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshan114051China
| | - Xiang Zhou
- Department of ScienceChina Pharmaceutical UniversityNanjing211198China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
- School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshan114051China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
16
|
Dal Poggetto VF, Bosia F, Greco G, Pugno NM. Prey Impact Localization Enabled by Material and Structural Interaction in Spider Orb Webs. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202100282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vinícius F. Dal Poggetto
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering University of Trento Trento 38123 Italy
| | | | - Gabriele Greco
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering University of Trento Trento 38123 Italy
| | - Nicola M. Pugno
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering University of Trento Trento 38123 Italy
- School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS UK
| |
Collapse
|
17
|
Xavier GM, Quero A, Moura RR, Vieira C, Meira FA, Gonzaga MO. Influence of web traits, height, and daily periods of exposition on prey captured by orb-weaver spiders. Behav Processes 2021; 193:104536. [PMID: 34728314 DOI: 10.1016/j.beproc.2021.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/23/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
Orb-webs show diversity in several traits, including silk types, architecture, physical properties, locale, and period of exposition. The investigation of how they determine the identity of intercepted prey is important to functional ecology and to the evaluation of trophic niche partitioning within communities. However, the influence of several of these variables on the composition of intercepted insects remains to be determined. In this study, we evaluated the effects of web architectural traits, height, and daily periods of exposition on the interception of different insects in terms of sizes, masses, and taxa. We conducted observations of prey intercepted by the orb webs of 16 sympatric spider species and artificial webs. We found that all orb webs mainly intercepted small and light insects, sharing the most abundant insect families found in the study area. However, spiders that show nocturnal activity, more radii in their webs, large and high webs captured heavier insects. Other orb-web traits, such as the density of capture threads did not influence the kind of intercepted insects. We discuss why some variables affected prey interceptions in terms of mass. Finally, we discuss the implications of these influential variables to functional ecology, niche differentiation, and how behavioral assessments can complete this investigation in future studies.
Collapse
Affiliation(s)
- Gabriel Máximo Xavier
- Pós-graduação em Ecologia e Conservação de Recursos Naturais, Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | - Adilson Quero
- Pós-graduação em Ecologia e Conservação de Recursos Naturais, Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rafael Rios Moura
- Pós-graduação em Ecologia e Conservação de Recursos Naturais, Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Núcleo de Extensão e Pesquisa em Ecologia e Evolução (NEPEE), Departamento de Ciências Agrárias e Naturais, Universidade do Estado de Minas Gerais, Ituiutaba, MG, Brazil
| | - Camila Vieira
- Pós-graduação em Ecologia e Conservação de Recursos Naturais, Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Felipe André Meira
- Pós-graduação em Ecologia e Conservação de Recursos Naturais, Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | |
Collapse
|
18
|
Guo X, Selden PA, Ren D. Maternal care in Mid-Cretaceous lagonomegopid spiders. Proc Biol Sci 2021; 288:20211279. [PMID: 34521253 PMCID: PMC8441120 DOI: 10.1098/rspb.2021.1279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/25/2021] [Indexed: 11/21/2022] Open
Abstract
Maternal care benefits the survival and fitness of offspring, often at a cost to the mother's future reproduction, and has evolved repeatedly throughout the animal kingdom. In extant spider species, this behaviour is very common and has different levels and diverse forms. However, evidence of maternal care in fossil spiders is quite rare. In this study, we describe four Mid-Cretaceous (approx. 99 Ma) amber specimens from northern Myanmar with an adult female, part of an egg sac and some spiderlings of the extinct family Lagonomegopidae preserved, which suggest that adult lagonomegopid females probably built and then guarded egg sacs in their retreats or nests, and the hatched spiderlings may have stayed together with their mother for some time. The new fossils represent early evidence of maternal care in fossil spiders, and enhance our understanding of the evolution of this behaviour.
Collapse
Affiliation(s)
- Xiangbo Guo
- College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, 105 Xisanhuanbeilu, Haidian District, Beijing 100048, People's Republic of China
| | - Paul A. Selden
- College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, 105 Xisanhuanbeilu, Haidian District, Beijing 100048, People's Republic of China
- Department of Geology, University of Kansas, 1414 Naismith Drive, Lawrence, KS 66045, USA
- Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Dong Ren
- College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, 105 Xisanhuanbeilu, Haidian District, Beijing 100048, People's Republic of China
| |
Collapse
|
19
|
Lüddecke T, Herzig V, von Reumont BM, Vilcinskas A. The biology and evolution of spider venoms. Biol Rev Camb Philos Soc 2021; 97:163-178. [PMID: 34453398 DOI: 10.1111/brv.12793] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
Spiders are diverse, predatory arthropods that have inhabited Earth for around 400 million years. They are well known for their complex venom systems that are used to overpower their prey. Spider venoms contain many proteins and peptides with highly specific and potent activities suitable for biomedical or agrochemical applications, but the key role of venoms as an evolutionary innovation is often overlooked, even though this has enabled spiders to emerge as one of the most successful animal lineages. In this review, we discuss these neglected biological aspects of spider venoms. We focus on the morphology of spider venom systems, their major components, biochemical and chemical plasticity, as well as ecological and evolutionary trends. We argue that the effectiveness of spider venoms is due to their unprecedented complexity, with diverse components working synergistically to increase the overall potency. The analysis of spider venoms is difficult to standardize because they are dynamic systems, fine-tuned and modified by factors such as sex, life-history stage and biological role. Finally, we summarize the mechanisms that drive spider venom evolution and highlight the need for genome-based studies to reconstruct the evolutionary history and physiological networks of spider venom compounds with more certainty.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Gießen, 35392, Germany.,LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Volker Herzig
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Björn M von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany.,Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen, 35392, Germany
| | - Andreas Vilcinskas
- Department for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Gießen, 35392, Germany.,LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany.,Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen, 35392, Germany
| |
Collapse
|
20
|
Li F, Bian C, Li D, Shi Q. Spider Silks: An Overview of Their Component Proteins for Hydrophobicity and Biomedical Applications. Protein Pept Lett 2021; 28:255-269. [PMID: 32895035 DOI: 10.2174/0929866527666200907104401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Spider silks have received extensive attention from scientists and industries around the world because of their remarkable mechanical properties, which include high tensile strength and extensibility. It is a leading-edge biomaterial resource, with a wide range of potential applications. Spider silks are composed of silk proteins, which are usually very large molecules, yet many silk proteins still remain largely underexplored. While there are numerous reviews on spider silks from diverse perspectives, here we provide a most up-to-date overview of the spider silk component protein family in terms of its molecular structure, evolution, hydrophobicity, and biomedical applications. Given the confusion regarding spidroin naming, we emphasize the need for coherent and consistent nomenclature for spidroins and provide recommendations for pre-existing spidroin names that are inconsistent with nomenclature. We then review recent advances in the components, identification, and structures of spidroin genes. We next discuss the hydrophobicity of spidroins, with particular attention on the unique aquatic spider silks. Aquatic spider silks are less known but may inspire innovation in biomaterials. Furthermore, we provide new insights into antimicrobial peptides from spider silk glands. Finally, we present possibilities for future uses of spider silks.
Collapse
Affiliation(s)
- Fan Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Chao Bian
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
21
|
Mammola S, Lunghi E, Bilandžija H, Cardoso P, Grimm V, Schmidt SI, Hesselberg T, Martínez A. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecol Evol 2021; 11:5911-5926. [PMID: 34141192 PMCID: PMC8207145 DOI: 10.1002/ece3.7556] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Caves and other subterranean habitats fulfill the requirements of experimental model systems to address general questions in ecology and evolution. Yet, the harsh working conditions of these environments and the uniqueness of the subterranean organisms have challenged most attempts to pursuit standardized research.Two main obstacles have synergistically hampered previous attempts. First, there is a habitat impediment related to the objective difficulties of exploring subterranean habitats and our inability to access the network of fissures that represents the elective habitat for the so-called "cave species." Second, there is a biological impediment illustrated by the rarity of most subterranean species and their low physiological tolerance, often limiting sample size and complicating laboratory experiments.We explore the advantages and disadvantages of four general experimental setups (in situ, quasi in situ, ex situ, and in silico) in the light of habitat and biological impediments. We also discuss the potential of indirect approaches to research. Furthermore, using bibliometric data, we provide a quantitative overview of the model organisms that scientists have exploited in the study of subterranean life.Our over-arching goal is to promote caves as model systems where one can perform standardized scientific research. This is important not only to achieve an in-depth understanding of the functioning of subterranean ecosystems but also to fully exploit their long-discussed potential in addressing general scientific questions with implications beyond the boundaries of this discipline.
Collapse
Affiliation(s)
- Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS)University of HelsinkiHelsinkiFinland
- Dark‐MEG: Molecular Ecology GroupWater Research Institute (IRSA)National Research Council (CNR)VerbaniaItaly
| | - Enrico Lunghi
- Key Laboratory of the Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Museo di Storia Naturale dell'Università degli Studi di Firenze“La Specola”FirenzeItaly
| | - Helena Bilandžija
- Department of Molecular BiologyRudjer Boskovic InstituteZagrebCroatia
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS)University of HelsinkiHelsinkiFinland
| | - Volker Grimm
- Department of Ecological ModellingHelmholtz Centre for Environmental Research – UFZLeipzigGermany
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Susanne I. Schmidt
- Institute of HydrobiologyBiology Centre CASČeské BudějoviceCzech Republic
| | | | - Alejandro Martínez
- Dark‐MEG: Molecular Ecology GroupWater Research Institute (IRSA)National Research Council (CNR)VerbaniaItaly
| |
Collapse
|
22
|
Hernández Duran L, Wilson DT, Briffa M, Rymer TL. Beyond spider personality: The relationships between behavioral, physiological, and environmental factors. Ecol Evol 2021; 11:2974-2989. [PMID: 33841759 PMCID: PMC8019048 DOI: 10.1002/ece3.7243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
Spiders are useful models for testing different hypotheses and methodologies relating to animal personality and behavioral syndromes because they show a range of behavioral types and unique physiological traits (e.g., silk and venom) that are not observed in many other animals. These characteristics allow for a unique understanding of how physiology, behavioral plasticity, and personality interact across different contexts to affect spider's individual fitness and survival. However, the relative effect of extrinsic factors on physiological traits (silk, venom, and neurohormones) that play an important role in spider survival, and which may impact personality, has received less attention. The goal of this review is to explore how the environment, experience, ontogeny, and physiology interact to affect spider personality types across different contexts. We highlight physiological traits, such as neurohormones, and unique spider biochemical weapons, namely silks and venoms, to explore how the use of these traits might, or might not, be constrained or limited by particular behavioral types. We argue that, to develop a comprehensive understanding of the flexibility and persistence of specific behavioral types in spiders, it is necessary to incorporate these underlying mechanisms into a synthesized whole, alongside other extrinsic and intrinsic factors.
Collapse
Affiliation(s)
- Linda Hernández Duran
- College of Science and EngineeringJames Cook UniversityCairnsQldAustralia
- Centre for Tropical Environmental and Sustainability SciencesJames Cook UniversityCairnsQldAustralia
| | - David Thomas Wilson
- Centre for Molecular TherapeuticsAustralian Institute for Tropical Health and MedicineJames Cook UniversityCairnsQldAustralia
| | - Mark Briffa
- School of Biological and Marine SciencesPlymouth UniversityPlymouthUK
| | - Tasmin Lee Rymer
- College of Science and EngineeringJames Cook UniversityCairnsQldAustralia
- Centre for Tropical Environmental and Sustainability SciencesJames Cook UniversityCairnsQldAustralia
| |
Collapse
|
23
|
Abstract
Invertebrate animals comprise more than 95% of the animal kingdom's species and approximately 40 separate phyla. Yet, invertebrates are an artificial taxon, in which all members simply possess a single negative trait: they lack a vertebral column (backbone). In fact, some invertebrates are more closely related to vertebrates than to their "fellow" invertebrates. For the purpose of this veterinary article, we have elected to review a handful of important groups: Coelenterates, Gastropods, Cephalopods, Chelicerates, Crustaceans, Insects, and Echinoderms. We have primarily included behaviors that may have an impact on clinical case outcome, or be of interest to the veterinary clinician.
Collapse
Affiliation(s)
- Gregory A Lewbart
- Department of Clinical Sciences, NC State University College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Laurie Bergmann
- NorthStar VETS, 315 Robbinsville-Allentown Road, Robbinsville, NJ 08691, USA
| |
Collapse
|
24
|
Unique behavioural modifications in the web structure of the cave orb spider Meta menardi (Araneae, Tetragnathidae). Sci Rep 2021; 11:92. [PMID: 33420121 PMCID: PMC7794372 DOI: 10.1038/s41598-020-79868-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
In the last decade there has been a renewed interest in the study of behavioural adaptations to environmental constraints with a focus on adaptations to challenging habitats due to their reduced ecological complexity. However, behavioural studies on organisms adapted to nutrient poor subterranean habitats are few and far between. Here, we compared both morphological traits, in terms of relative leg lengths, and behavioural traits, captured in the geometry of the spider web, between the cave-dwelling spider, Meta menardi, and two aboveground species from the same family (Tetragnathidae); Metellina mengei and Tetragnatha montana. We found that the webs of the cave spider differed significantly from the two surface-dwelling species. The most dramatic difference was the lack of frame threads with the radii in the webs instead attaching directly to the surrounding rock, but other differences in relative web size, web asymmetry and number of capture spiral threads were also found. We argue that these modifications are likely to be adaptations to allow for a novel foraging behaviour to additionally capture walking prey within the vicinity of the web. We found only limited evidence for morphological adaptations and suggest that the cave orb spider could act as a model organism for studies of behaviour in energy-poor environments.
Collapse
|
25
|
Environmental biodegradability of recombinant structural protein. Sci Rep 2021; 11:242. [PMID: 33420166 PMCID: PMC7794409 DOI: 10.1038/s41598-020-80114-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Next generation polymers needs to be produced from renewable sources and to be converted into inorganic compounds in the natural environment at the end of life. Recombinant structural protein is a promising alternative to conventional engineering plastics due to its good thermal and mechanical properties, its production from biomass, and its potential for biodegradability. Herein, we measured the thermal and mechanical properties of the recombinant structural protein BP1 and evaluated its biodegradability. Because the thermal degradation occurs above 250 °C and the glass transition temperature is 185 °C, BP1 can be molded into sheets by a manual hot press at 150 °C and 83 MPa. The flexural strength and modulus of BP1 were 115 ± 6 MPa and 7.38 ± 0.03 GPa. These properties are superior to those of commercially available biodegradable polymers. The biodegradability of BP1 was carefully evaluated. BP1 was shown to be efficiently hydrolyzed by some isolated bacterial strains in a dispersed state. Furthermore, it was readily hydrolyzed from the solid state by three isolated proteases. The mineralization was evaluated by the biochemical oxygen demand (BOD)-biodegradation testing with soil inocula. The BOD biodegradability of BP1 was 70.2 ± 6.0 after 33 days.
Collapse
|
26
|
Abstract
Spiders (Araneae) make up a remarkably diverse lineage of predators that have successfully colonized most terrestrial ecosystems. All spiders produce silk, and many species use it to build capture webs with an extraordinary diversity of forms. Spider diversity is distributed in a highly uneven fashion across lineages. This strong imbalance in species richness has led to several causal hypotheses, such as codiversification with insects, key innovations in silk structure and web architecture, and loss of foraging webs. Recent advances in spider phylogenetics have allowed testing of some of these hypotheses, but results are often contradictory, highlighting the need to consider additional drivers of spider diversification. The spatial and historical patterns of diversity and diversification remain contentious. Comparative analyses of spider diversification will advance only if we continue to make progress with studies of species diversity, distribution, and phenotypic traits, together with finer-scale phylogenies and genomic data.
Collapse
Affiliation(s)
- Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, 5020 Bergen, Norway;
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA;
| |
Collapse
|
27
|
Opatova V, Hamilton CA, Hedin M, De Oca LM, Král J, Bond JE. Phylogenetic Systematics and Evolution of the Spider Infraorder Mygalomorphae Using Genomic Scale Data. Syst Biol 2021; 69:671-707. [PMID: 31841157 DOI: 10.1093/sysbio/syz064] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
The infraorder Mygalomorphae is one of the three main lineages of spiders comprising over 3000 nominal species. This ancient group has a worldwide distribution that includes among its ranks large and charismatic taxa such as tarantulas, trapdoor spiders, and highly venomous funnel-web spiders. Based on past molecular studies using Sanger-sequencing approaches, numerous mygalomorph families (e.g., Hexathelidae, Ctenizidae, Cyrtaucheniidae, Dipluridae, and Nemesiidae) have been identified as non-monophyletic. However, these data were unable to sufficiently resolve the higher-level (intra- and interfamilial) relationships such that the necessary changes in classification could be made with confidence. Here, we present a comprehensive phylogenomic treatment of the spider infraorder Mygalomorphae. We employ 472 loci obtained through anchored hybrid enrichment to reconstruct relationships among all the mygalomorph spider families and estimate the timeframe of their diversification. We sampled nearly all currently recognized families, which has allowed us to assess their status, and as a result, propose a new classification scheme. Our generic-level sampling has also provided an evolutionary framework for revisiting questions regarding silk use in mygalomorph spiders. The first such analysis for the group within a strict phylogenetic framework shows that a sheet web is likely the plesiomorphic condition for mygalomorphs, as well as providing insights to the ancestral foraging behavior for all spiders. Our divergence time estimates, concomitant with detailed biogeographic analysis, suggest that both ancient continental-level vicariance and more recent dispersal events have played an important role in shaping modern day distributional patterns. Based on our results, we relimit the generic composition of the Ctenizidae, Cyrtaucheniidae, Dipluridae, and Nemesiidae. We also elevate five subfamilies to family rank: Anamidae (NEW RANK), Euagridae (NEW RANK), Ischnothelidae (NEW RANK), Pycnothelidae (NEW RANK), and Bemmeridae (NEW RANK). Three families Entypesidae (NEW FAMILY), Microhexuridae (NEW FAMILY), and Stasimopidae (NEW FAMILY), and one subfamily Australothelinae (NEW SUBFAMILY) are newly proposed. Such a major rearrangement in classification, recognizing nine newly established family-level rank taxa, is the largest the group has seen in over three decades. [Biogeography; molecular clocks; phylogenomics; spider web foraging; taxonomy.].
Collapse
Affiliation(s)
- Vera Opatova
- Department of Entomology and Nematology, University of California, 1282 Academic Surge, One Shields Avenue, Davis, CA 95616, USA
| | - Chris A Hamilton
- Department of Entomology, Plant Pathology & Nematology, University of Idaho, 875 Perimeter Dr. MS 2329, Moscow ID 83844-2329, USA
| | - Marshal Hedin
- Department of Biology, LSN 204E, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA
| | - Laura Montes De Oca
- Departamento de Ecología y Biología Evolutiva, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo 11600, Uruguay
| | - Jiři Král
- Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Viničná 5, Prague 2 128 44, Czech Republic
| | - Jason E Bond
- Department of Entomology and Nematology, University of California, 1282 Academic Surge, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
28
|
Abstract
In soft robotics, bio-inspiration ranges from hard- to software. Orb web spiders provide excellent examples for both. Adapted sensors on their legs may use morphological computing to fine-tune feedback loops that supervise the handling and accurate placement of silk threads. The spider's webs embody the decision rules of a complex behaviour that relies on navigation and piloting laid down in silk by behaviour charting inherited rules. Analytical studies of real spiders allow the modelling of path-finding construction rules optimized in evolutionary algorithms. We propose that deconstructing spiders and unravelling webs may lead to adaptable robots able to invent and construct complex novel structures using relatively simple rules of thumb.
Collapse
Affiliation(s)
- Fritz Vollrath
- Department of Zoology, University of Oxford, Mansfield Road, Oxford OX1 3ZS, UK
| | - Thiemo Krink
- Department of Computer Science, Aarhus Universitet, Åbogade 34, 8200 Aarhus, Denmark
| |
Collapse
|
29
|
Kono N, Nakamura H, Mori M, Tomita M, Arakawa K. Spidroin profiling of cribellate spiders provides insight into the evolution of spider prey capture strategies. Sci Rep 2020; 10:15721. [PMID: 32973264 PMCID: PMC7515903 DOI: 10.1038/s41598-020-72888-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/08/2020] [Indexed: 01/29/2023] Open
Abstract
Orb-weaving spiders have two main methods of prey capture: cribellate spiders use dry, sticky capture threads, and ecribellate spiders use viscid glue droplets. Predation behaviour is a major evolutionary driving force, and it is important on spider phylogeny whether the cribellate and ecribellate spiders each evolved the orb architecture independently or both strategies were derived from an ancient orb web. These hypotheses have been discussed based on behavioural and morphological characteristics, with little discussion on this subject from the perspective of molecular materials of orb web, since there is little information about cribellate spider-associated spidroin genes. Here, we present in detail a spidroin catalogue of six uloborid species of cribellate orb-weaving spiders, including cribellate and pseudoflagelliform spidroins, with transcriptome assembly complemented with long read sequencing, where silk composition is confirmed by proteomics. Comparative analysis across families (Araneidae and Uloboridae) shows that the gene architecture, repetitive domains, and amino acid frequencies of the orb web constituting silk proteins are similar among orb-weaving spiders regardless of the prey capture strategy. Notably, the fact that there is a difference only in the prey capture thread proteins strongly supports the monophyletic origin of the orb web.
Collapse
Affiliation(s)
- Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan.
| | - Hiroyuki Nakamura
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
| |
Collapse
|
30
|
Novel Amino Acid Assembly in the Silk Tubes of Arid-Adapted Segestriid Spiders. J Chem Ecol 2019; 46:48-62. [PMID: 31811439 DOI: 10.1007/s10886-019-01127-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/21/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
We investigated in different sites inside or outside the Namib Desert the amino acids composition of the protein material forming the tube silk of Ariadna spiders. These spiders belong to the primitive Segestriidae family and spend their life inside vertical silk burrows dug within the sandy and gravelly soil of arid areas. The silks, previously purified by solubilization in hexafluoroisopropanol, were subjected to partial or total acid hydrolysis. Partial hydrolyzed samples, analyzed by mass spectrometry (matrix assisted laser desorption/ionization and electrospray), led to relevant information on the amino acid sequences in the proteins. The free amino acids formed by complete hydrolysis were derivatized with the Marfey's reagent and characterized by electrospray mass spectrometry. The reconstruction of the amino acids highlights a homogeneous plan in the chemical structure of all the analyzed silks. Eight amino acids constituting the primary structure of the proteins were identified. Alanine and glycine are the most abundant ones, with a prevalence of alanine, constituting together at least 61% of the chemical composition of the protein material, differently from what occurs in known spidroins. High percentages of proline, serine and threonine and low percentages of leucine complete the peculiarity of these proteins. The purified silks were also characterized by Fourier-transform Infrared Spectroscopy and their thermal properties were investigated by differential scanning calorimetry. The comparison of the silk tubes among the various Namibian populations, carried out through a multivariate statistical analysis, shows significant differences in their amino acid assembly possibly due to habitat features.
Collapse
|
31
|
Heiby JC, Goretzki B, Johnson CM, Hellmich UA, Neuweiler H. Methionine in a protein hydrophobic core drives tight interactions required for assembly of spider silk. Nat Commun 2019; 10:4378. [PMID: 31558722 PMCID: PMC6763431 DOI: 10.1038/s41467-019-12365-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/05/2019] [Indexed: 01/21/2023] Open
Abstract
Web spiders connect silk proteins, so-called spidroins, into fibers of extraordinary toughness. The spidroin N-terminal domain (NTD) plays a pivotal role in this process: it polymerizes spidroins through a complex mechanism of dimerization. Here we analyze sequences of spidroin NTDs and find an unusually high content of the amino acid methionine. We simultaneously mutate all methionines present in the hydrophobic core of a spidroin NTD from a nursery web spider’s dragline silk to leucine. The mutated NTD is strongly stabilized and folds at the theoretical speed limit. The structure of the mutant is preserved, yet its ability to dimerize is substantially impaired. We find that side chains of core methionines serve to mobilize the fold, which can thereby access various conformations and adapt the association interface for tight binding. Methionine in a hydrophobic core equips a protein with the capacity to dynamically change shape and thus to optimize its function. Spider silk is of interest in material science research. Here the authors show that the tight binding of a spider silk protein domain relies on the amino acid methionine, which is abundant in the domain core where it facilitates dynamic shape adaption of the binding interface.
Collapse
Affiliation(s)
- Julia C Heiby
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Benedikt Goretzki
- Institute for Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim Becherweg 30, 55128, Mainz, Germany.,Center for Biomolecular Magnetic Resonance, Goethe-University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Christopher M Johnson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ute A Hellmich
- Institute for Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim Becherweg 30, 55128, Mainz, Germany. .,Center for Biomolecular Magnetic Resonance, Goethe-University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany.
| | - Hannes Neuweiler
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
32
|
Parthasarathy B, Somanathan H. Behavioral responses vary with prey species in the social spider, Stegodyphus sarasinorum. Behav Ecol 2019. [DOI: 10.1093/beheco/arz032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Predators living in social groups often show consistent interindividual differences in prey capture behavior that may be linked to personality. Though personality predisposes individuals for certain behaviors, responses can also be influenced by context. Studies examining personality-dependent participation in prey capture have largely employed only one prey species, offering the predator no choice. In nature, predators encounter a range of prey species, therefore participation in or leading a prey capture event must also depend on prey attributes (e.g., size and risk). In the social spider Stegodyphus sarasinorum, collective prey capture is mediated by personality types as a consequence of which some individuals are consistently more likely to attack. Here, we examined if an individual’s consistency to attack persisted within and between the 2 prey species (honeybees and grasshoppers) and if the same individuals attacked first with both prey species. Our results showed that interindividual differences in attacking persisted within and between the 2 prey species. Spiders showed greater participation in attacking grasshoppers relative to bees. Identities of the first attackers were not the same for bees and grasshoppers. Spiders showed greater consistency over time in attacking bees relative to grasshoppers. Bees attracted fewer attackers than size-matched grasshoppers. These results suggest that greater task specialization may be necessary to successfully subdue bees. Spiders handled bees more cautiously, which is likely to explain the observed plasticity in attacking the 2 prey species. Thus, participation in prey capture in social spiders is influenced by the attributes of prey species.
Collapse
Affiliation(s)
- Bharat Parthasarathy
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Hema Somanathan
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| |
Collapse
|
33
|
Michalik P, Piorkowski D, Blackledge TA, Ramírez MJ. Functional trade-offs in cribellate silk mediated by spinning behavior. Sci Rep 2019; 9:9092. [PMID: 31235797 PMCID: PMC6591232 DOI: 10.1038/s41598-019-45552-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/10/2019] [Indexed: 11/09/2022] Open
Abstract
Web-building spiders are an extremely diverse predatory group due to their use of physiologically differentiated silk types in webs. Major shifts in silk functional properties are classically attributed to innovations in silk genes and protein expression. Here, we disentangle the effects of spinning behavior on silk performance of the earliest types of capture threads in spider webs for the first time. Progradungula otwayensis produces two variations of cribellate silk in webs: ladder lines are stereotypically combed with the calamistrum while supporting rail lines contain silk that is naturally uncombed, spun without the intervention of the legs. Combed cribellate silk is highly extensible and adhesive suggesting that the reserve warp and cribellate fibrils brings them into tension only near or after the underlying axial fibers are broken. In contrast, these three fiber components are largely aligned in the uncombed threads and deform as a single composite unit that is 5-10x stronger, but significantly less adhesive, allowing them to act as structural elements in the web. Our study reveals that cribellate silk can occupy a surprisingly diverse performance space, accessible through simple changes in spider behavior, which may have facilitated the impressive diversification of web architectures utilizing this ancient silk.
Collapse
Affiliation(s)
- Peter Michalik
- Zoological Institute and Museum, University of Greifswald, Loitzer Straße 26, D-17489 Greifswald, Germany.
| | | | - Todd A Blackledge
- Department of Biology and Integrated Bioscience Program, The University of Akron, Akron, OH, USA
| | - Martín J Ramírez
- Division of Arachnology, Museo Argentino de Ciencias Naturales - CONICET, Buenos Aires, Argentina
| |
Collapse
|
34
|
Kan A, Joshi NS. Towards the directed evolution of protein materials. MRS COMMUNICATIONS 2019; 9:441-455. [PMID: 31750012 PMCID: PMC6867688 DOI: 10.1557/mrc.2019.28] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/22/2019] [Indexed: 05/06/2023]
Abstract
Protein-based materials have emerged as a powerful instrument for a new generation of biological materials, with many chemical and mechanical capabilities. Through the manipulation of DNA, researchers can design proteins at the molecular level, engineering a vast array of structural building blocks. However, our capability to rationally design and predict the properties of such materials is limited by the vastness of possible sequence space. Directed evolution has emerged as a powerful tool to improve biological systems through mutation and selection, presenting another avenue to produce novel protein materials. In this prospective review, we discuss the application of directed evolution for protein materials, reviewing current examples and developments that could facilitate the evolution of protein for material applications.
Collapse
Affiliation(s)
- Anton Kan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Neel S. Joshi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| |
Collapse
|
35
|
Localization of Sliding Movements Using Soft Tactile Sensing Systems with Three-axis Accelerometers. SENSORS 2019; 19:s19092036. [PMID: 31052311 PMCID: PMC6539104 DOI: 10.3390/s19092036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 11/16/2022]
Abstract
This paper presents a soft tactile sensor system for the localization of sliding movements on a large contact surface using an accelerometer. The system consists of a silicone rubber base with a chamber covered by a thin silicone skin in which a three-axis accelerometer is embedded. By pressurizing the chamber, the skin inflates, changing its sensitivity to the sliding movement on the skin's surface. Based on the output responses of the accelerometer, the sensor system localizes the sliding motion. First, we present the idea, design, fabrication process, and the operation principle of our proposed sensor. Next, we created a numerical simulation model to investigate the dynamic changes of the accelerometer's posture under sliding actions. Finally, experiments were conducted with various sliding conditions. By confirming the numerical simulation, dynamic analysis, and experimental results, we determined that the sensor system can detect the sliding movements, including the sliding directions, velocity, and localization of an object. We also point out the role of pressurization in the sensing system's sensitivity under sliding movements, implying the ideal pressurization for it. We also discuss its limitations and applicability. This paper reflects our developed research in intelligent integration and soft morphological computation for soft tactile sensing systems.
Collapse
|
36
|
Coddington JA, Agnarsson I, Hamilton CA, Bond JE. Spiders did not repeatedly gain, but repeatedly lost, foraging webs. PeerJ 2019; 7:e6703. [PMID: 30976470 PMCID: PMC6451839 DOI: 10.7717/peerj.6703] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/21/2019] [Indexed: 11/20/2022] Open
Abstract
Much genomic-scale, especially transcriptomic, data on spider phylogeny has accumulated in the last few years. These data have recently been used to investigate the diverse architectures and the origin of spider webs, concluding that the ancestral spider spun no foraging web, that spider webs evolved de novo 10-14 times, and that the orb web evolved at least three times. These findings in fact result from a particular phylogenetic character coding strategy, specifically coding the absence of webs as logically equivalent, and homologous to, 10 other observable (i.e., not absent) web architectures. "Absence" of webs should be regarded as inapplicable data. To be analyzed properly by character optimization algorithms, it should be coded as "?" because these codes-or their equivalent-are handled differently by such algorithms. Additional problems include critical misspellings of taxon names from one analysis to the next (misspellings cause some optimization algorithms to drop terminals, which affects taxon sampling and results), and mistakes in spider natural history. In sum, the method causes character optimization algorithms to produce counter-intuitive results, and does not distinguish absence from secondary loss. Proper treatment of missing entries and corrected data instead imply that foraging webs are primitive for spiders and that webs have been lost ∼5-7 times, not gained 10-14 times. The orb web, specifically, may be homologous (originated only once) although lost 2-6 times.
Collapse
Affiliation(s)
- Jonathan A. Coddington
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA
| | - Ingi Agnarsson
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Chris A. Hamilton
- Department of Entomology, Plant Pathology, & Nematology, University of Idaho, Moscow, ID, United States of America
| | - Jason E. Bond
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States of America
| |
Collapse
|
37
|
Huang L, Wang Z, Yu N, Li J, Liu Z. Toxin diversity revealed by the venom gland transcriptome of Pardosa pseudoannulata, a natural enemy of several insect pests. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:172-182. [DOI: 10.1016/j.cbd.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 02/03/2023]
|
38
|
Mizuuchi R, Kawase H, Shin H, Iwai D, Kondo S. Simple rules for construction of a geometric nest structure by pufferfish. Sci Rep 2018; 8:12366. [PMID: 30120331 PMCID: PMC6098008 DOI: 10.1038/s41598-018-30857-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/04/2018] [Indexed: 11/13/2022] Open
Abstract
A small (~10 cm) male pufferfish (Torquigener albomaculosus) builds a large (~2 m) sandy nest structure, resembling a mysterious crop circle, to attract females. The circle consists of radially arranged deep ditches in the outer ring region, and maze-like shallow ditches in the central region. The configuration is geometrical. Here, we examined the process of the outer ring construction, and extracted the ‘rules’ followed by the pufferfish. During construction, the pufferfish repeatedly excavates ditches from the outside in. Generally, excavation starts at lower positions, and occurs in straight lines. The entry position, the length, and the direction of each ditch were recorded. A simulation program based on these data successfully reproduced the circle pattern, suggesting that the complex circle structure can be created by the repetition of simple actions by the pufferfish.
Collapse
Affiliation(s)
- Ryo Mizuuchi
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Chemistry, Portland State University, PO Box 751, Portland, OR 97207, USA
| | - Hiroshi Kawase
- Coastal Branch of Natural History Museum and Institute, Chiba, 123 Yoshio, Katsuura, Chiba, 299-5242, Japan.
| | - Hirofumi Shin
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Daisuke Iwai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Shigeru Kondo
- Graduate School of Frontier Biosciences, Osaka University University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
39
|
Opell BD, Clouse ME, Andrews SF. Elastic modulus and toughness of orb spider glycoprotein glue. PLoS One 2018; 13:e0196972. [PMID: 29847578 PMCID: PMC5976159 DOI: 10.1371/journal.pone.0196972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/24/2018] [Indexed: 11/19/2022] Open
Abstract
An orb web's prey capture thread features tiny glue droplets, each formed of an adhesive glycoprotein core surrounded by an aqueous layer. Small molecules in the aqueous layer confer droplet hygroscopicity and maintain glycoprotein viscoelasticity, causing droplet volume and glycoprotein performance to track changes in environmental humidity. Droplet extension combines with that of a thread's supporting flagelliform fibers to sum the adhesive forces of multiple droplets, creating an effective adhesive system. We combined measurements of the force on an extending droplet, as gauged by the deflection of its support line, with measurements of glycoprotein volume and droplet extension to determine the Young's modulus (E) and toughness of three species' glycoproteins. We did this at five relative humidities between 20-90% to assess the effect of humidity on these properties. When droplets of a thread span extend, their extensions are constrained and their glycoprotein filaments remain covered by aqueous material. This was also the case during the first extension phase of the individual droplets that we examined. However, as extension progressed, the aqueous layer was progresses disrupted, exposing the glycoprotein. During the first extension phase E ranged from 0.00003 GPa, a value similar to that of fibronectin, a glycoprotein that anchors cells in the extracellular matrix, to 0.00292 GPa, a value similar to that of resilin in insect ligaments. Second phase E increased 4.7-19.4-fold. When compared at the same humidity the E of each species' glycoprotein was less than 5% of the value reported for its flagelliform fibers. This difference may facilitate the coordinated extension of these two capture thread components that is responsible for summing the thread's adhesive forces.
Collapse
Affiliation(s)
- Brent D. Opell
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Mary E. Clouse
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Sheree F. Andrews
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
40
|
Cheng DQ, Piel WH. The origins of the Psechridae: Web-building lycosoid spiders. Mol Phylogenet Evol 2018; 125:213-219. [PMID: 29635024 DOI: 10.1016/j.ympev.2018.03.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/21/2018] [Accepted: 03/30/2018] [Indexed: 01/09/2023]
Abstract
Psechrids are an enigmatic family of S.E. Asian spiders. This small family builds sheet webs and even orb webs, yet unlike other orb weavers, its putative relatives are largely cursorial lycosoids - a superfamily of approximately seven spider families related to wolf spiders. The orb web was invented at least twice: first in a very ancient event, and then second, within this clade of wolf-like spiders that reinvented this ability. Exactly how the spiders modified their silks, anatomy, and behaviors to accomplish this transition requires that we identify their precise evolutionary origins - yet, thus far, molecular phylogenies show poor support and considerable disagreement. Using phylogenomic methods based on whole body transcriptomes for psechrids and their putative relatives, we have recovered a well-supported phylogeny that places the Psechridae sister to the Ctenidae - a family of mostly cursorial habits but that, as with all psechrids, retains some cribellate species. Although this position reinforces the prevailing view that orb weaving in psechrids is largely a consequence of convergence, it is still possible that some components of this behavior are retained or resurrected in common with more distant true orb weaving ancestors.
Collapse
Affiliation(s)
- Dong-Qiang Cheng
- Yale-NUS College, 10 College Avenue West #01-101, Singapore 138609, Singapore
| | - William H Piel
- Yale-NUS College, 10 College Avenue West #01-101, Singapore 138609, Singapore; National University of Singapore, Department of Biological Sciences, Singapore.
| |
Collapse
|
41
|
Opell BD, Jain D, Dhinojwala A, Blackledge TA. Tuning orb spider glycoprotein glue performance to habitat humidity. J Exp Biol 2018; 221:221/6/jeb161539. [DOI: 10.1242/jeb.161539] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABSTRACT
Orb-weaving spiders use adhesive threads to delay the escape of insects from their webs until the spiders can locate and subdue the insects. These viscous threads are spun as paired flagelliform axial fibers coated by a cylinder of solution derived from the aggregate glands. As low molecular mass compounds (LMMCs) in the aggregate solution attract atmospheric moisture, the enlarging cylinder becomes unstable and divides into droplets. Within each droplet an adhesive glycoprotein core condenses. The plasticity and axial line extensibility of the glycoproteins are maintained by hygroscopic LMMCs. These compounds cause droplet volume to track changes in humidity and glycoprotein viscosity to vary approximately 1000-fold over the course of a day. Natural selection has tuned the performance of glycoprotein cores to the humidity of a species' foraging environment by altering the composition of its LMMCs. Thus, species from low-humidity habits have more hygroscopic threads than those from humid forests. However, at their respective foraging humidities, these species' glycoproteins have remarkably similar viscosities, ensuring optimal droplet adhesion by balancing glycoprotein adhesion and cohesion. Optimal viscosity is also essential for integrating the adhesion force of multiple droplets. As force is transferred to a thread's support line, extending droplets draw it into a parabolic configuration, implementing a suspension bridge mechanism that sums the adhesive force generated over the thread span. Thus, viscous capture threads extend an orb spider's phenotype as a highly integrated complex of large proteins and small molecules that function as a self-assembling, highly tuned, environmentally responsive, adhesive biomaterial. Understanding the synergistic role of chemistry and design in spider adhesives, particularly the ability to stick in wet conditions, provides insight in designing synthetic adhesives for biomedical applications.
Collapse
Affiliation(s)
- Brent D. Opell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Dharamdeep Jain
- Department of Polymer Science, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Ali Dhinojwala
- Department of Polymer Science, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Todd A. Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
42
|
Humenik M, Lang G, Scheibel T. Silk nanofibril self-assembly versus electrospinning. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1509. [PMID: 29393590 DOI: 10.1002/wnan.1509] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/18/2017] [Accepted: 12/19/2017] [Indexed: 01/16/2023]
Abstract
Natural silk fibers represent one of the most advanced blueprints for (bio)polymer scientists, displaying highly optimized mechanical properties due to their hierarchical structures. Biotechnological production of silk proteins and implementation of advanced processing methods enabled harnessing the potential of these biopolymer not just based on the mechanical properties. In addition to fibers, diverse morphologies can be produced, such as nonwoven meshes, films, hydrogels, foams, capsules and particles. Among them, nanoscale fibrils and fibers are particularly interesting concerning medical and technical applications due to their biocompatibility, environmental and mechanical robustness as well as high surface-to-volume ratio. Therefore, we introduce here self-assembly of silk proteins into hierarchically organized structures such as supramolecular nanofibrils and fabricated materials based thereon. As an alternative to self-assembly, we also present electrospinning a technique to produce nanofibers and nanofibrous mats. Accordingly, we introduce a broad range of silk-based dopes, used in self-assembly and electrospinning: natural silk proteins originating from natural spinning glands, natural silk protein solutions reconstituted from fibers, engineered recombinant silk proteins designed from natural blueprints, genetic fusions of recombinant silk proteins with other structural or functional peptides and moieties, as well as hybrids of recombinant silk proteins chemically conjugated with nonproteinaceous biotic or abiotic molecules. We highlight the advantages but also point out drawbacks of each particular production route. The scope includes studies of the natural self-assembly mechanism during natural silk spinning, production of silk fibrils as new nanostructured non-native scaffolds allowing dynamic morphological switches, as well as studying potential applications. This article is categorized under: Biology-Inspired Nanomaterials > Peptide-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Martin Humenik
- Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany
| | - Gregor Lang
- Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany.,Bayreuth Center for Colloids and Interfaces (BZKG), Research Center Bio-Macromolecules (BIOmac), Bayreuth Center for Molecular Biosciences (BZMB), Bayreuth Center for Material Science (BayMAT), Bavarian Polymer Institute (BPI), Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
43
|
Wolff JO, van der Meijden A, Herberstein ME. Distinct spinning patterns gain differentiated loading tolerance of silk thread anchorages in spiders with different ecology. Proc Biol Sci 2018; 284:rspb.2017.1124. [PMID: 28724739 DOI: 10.1098/rspb.2017.1124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/13/2017] [Indexed: 11/12/2022] Open
Abstract
Building behaviour in animals extends biological functions beyond bodies. Many studies have emphasized the role of behavioural programmes, physiology and extrinsic factors for the structure and function of buildings. Structure attachments associated with animal constructions offer yet unrealized research opportunities. Spiders build a variety of one- to three-dimensional structures from silk fibres. The evolution of economic web shapes as a key for ecological success in spiders has been related to the emergence of high performance silks and thread coating glues. However, the role of thread anchorages has been widely neglected in those models. Here, we show that orb-web (Araneidae) and hunting spiders (Sparassidae) use different silk application patterns that determine the structure and robustness of the joint in silk thread anchorages. Silk anchorages of orb-web spiders show a greater robustness against different loading situations, whereas the silk anchorages of hunting spiders have their highest pull-off resistance when loaded parallel to the substrate along the direction of dragline spinning. This suggests that the behavioural 'printing' of silk into attachment discs along with spinneret morphology was a prerequisite for the evolution of extended silk use in a three-dimensional space. This highlights the ecological role of attachments in the evolution of animal architectures.
Collapse
Affiliation(s)
- Jonas O Wolff
- Behavioural Ecology, Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Arie van der Meijden
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, No. 7, 4485-661 Vairão, Vila do Conde, Portugal
| | - Marie E Herberstein
- Behavioural Ecology, Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
44
|
Malay AD, Arakawa K, Numata K. Analysis of repetitive amino acid motifs reveals the essential features of spider dragline silk proteins. PLoS One 2017; 12:e0183397. [PMID: 28832627 PMCID: PMC5568437 DOI: 10.1371/journal.pone.0183397] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022] Open
Abstract
The extraordinary mechanical properties of spider dragline silk are dependent on the highly repetitive sequences of the component proteins, major ampullate spidroin 1 and 2 (MaSp2 and MaSp2). MaSp sequences are dominated by repetitive modules composed of short amino acid motifs; however, the patterns of motif conservation through evolution and their relevance to silk characteristics are not well understood. We performed a systematic analysis of MaSp sequences encompassing infraorder Araneomorphae based on the conservation of explicitly defined motifs, with the aim of elucidating the essential elements of MaSp1 and MaSp2. The results show that the GGY motif is nearly ubiquitous in the two types of MaSp, while MaSp2 is invariably associated with GP and di-glutamine (QQ) motifs. Further analysis revealed an extended MaSp2 consensus sequence in family Araneidae, with implications for the classification of the archetypal spidroins ADF3 and ADF4. Additionally, the analysis of RNA-seq data showed the expression of a set of distinct MaSp-like variants in genus Tetragnatha. Finally, an apparent association was uncovered between web architecture and the abundance of GP, QQ, and GGY motifs in MaSp2, which suggests a co-expansion of these motifs in response to the evolution of spiders' prey capture strategy.
Collapse
Affiliation(s)
- Ali D. Malay
- Enzyme Research Team, Center for Sustainable Resource Science, RIKEN, Wako-shi, Saitama, Japan
- * E-mail: (ADM); (KN)
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka, Yamagata, Japan
| | - Keiji Numata
- Enzyme Research Team, Center for Sustainable Resource Science, RIKEN, Wako-shi, Saitama, Japan
- * E-mail: (ADM); (KN)
| |
Collapse
|
45
|
Evolutionary shifts in gene expression decoupled from gene duplication across functionally distinct spider silk glands. Sci Rep 2017; 7:8393. [PMID: 28827773 PMCID: PMC5566633 DOI: 10.1038/s41598-017-07388-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/28/2017] [Indexed: 11/08/2022] Open
Abstract
Spider silk synthesis is an emerging model for the evolution of tissue-specific gene expression and the role of gene duplication in functional novelty, but its potential has not been fully realized. Accordingly, we quantified transcript (mRNA) abundance in seven silk gland types and three non-silk gland tissues for three cobweb-weaving spider species. Evolutionary analyses based on expression levels of thousands of homologous transcripts and phylogenetic reconstruction of 605 gene families demonstrated conservation of expression for each gland type among species. Despite serial homology of all silk glands, the expression profiles of the glue-forming aggregate glands were divergent from fiber-forming glands. Also surprising was our finding that shifts in gene expression among silk gland types were not necessarily coupled with gene duplication, even though silk-specific genes belong to multi-paralog gene families. Our results challenge widely accepted models of tissue specialization and significantly advance efforts to replicate silk-based high-performance biomaterials.
Collapse
|
46
|
|
47
|
Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review. Toxicon 2017; 130:91-103. [PMID: 28242227 DOI: 10.1016/j.toxicon.2017.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Abstract
Currently, new antimicrobial molecules extracted or obtained by natural sources, could be a valide alternative to traditional antibiotics. Most of these molecules are represented by antimicrobial peptides (AMPs), which are essential compounds of insect, arachnids and centipedes venom. AMPs, due to their strong effectiveness, low resistance rates and peculiar mode of action, seem to have all the suitable features to be a powerful weapon against several bacteria, especially considering the increasing antibiotic-resistance phenomena. The present literature review focuses on the antibacterial activity of bee, wasp, ant, scorpion, spider and scolopendra crude venom and of their main biological active compounds. After a brief overview of each animal and venom use in folkloristic medicine, this review reports, in a comprehensive table, the results obtained by the most relevant and recent researches carried out on the antibacterial activity of different venom and their AMPs. For each considered study, the table summarizes data concerning minimal inhibitory concentration values, minimal bactericidal concentration values, the methods employed, scientific name and common names and provenience of animal species from which the crude venom and its respective compounds were obtained.
Collapse
|
48
|
Vibert S, Scott C, Gries G. Vibration transmission through sheet webs of hobo spiders (Eratigena agrestis) and tangle webs of western black widow spiders (Latrodectus hesperus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:749-758. [DOI: 10.1007/s00359-016-1113-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
|
49
|
Zhong J, Ma M, Li W, Zhou J, Yan Z, He D. Self-assembly of regenerated silk fibroin from random coil nanostructures to antiparallel β-sheet nanostructures. Biopolymers 2016; 101:1181-92. [PMID: 25088327 DOI: 10.1002/bip.22532] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/12/2014] [Accepted: 07/22/2014] [Indexed: 01/26/2023]
Abstract
In this work, we studied the effects of incubation concentration and time on the self-assembly behaviors of regenerated silk fibroin (RSF). Our results showed the assembly ways of RSF were concentration-dependent and there were four self-assembly ways of RSF: (i) At relatively low concentration (≤0.015%), RSF molecules assembled into protofilaments (random coil), and then the thickness decreased and the secondary conformation changed to antiparallel β-sheet; (ii) at the concentration of 0.015%, RSF molecules assembled into protofilaments (random coil), and then assembled into protofibrils (antiparallel β-sheet). The protofibrils experienced the appearance and disappearance of phase periodic intervals in turn; (iii) at the concentration of 0.03%, RSF molecules assembled into bead-like oligomers (random coil), and then assembled into protofibrils (antiparallel β-sheet), and finally the height and phase periodic intervals of RSF protofibrils disappeared in turn; and (iv) at the relatively high concentration (≥0.15%), RSF molecules assembled into protofilaments (random coil), then aggregated into blurry cuboid-like micelles (random coil), and finally self-arranged to form smooth and clear cuboid-like micelles (antiparallel β-sheet). These results provide useful insights into the process by which the RSF molecules self-assemble into protofilaments, protofibrils and micelles. Furthermore, our work will be beneficial to basic understanding of the nanoscale structure formations in different silk-based biomaterials.
Collapse
Affiliation(s)
- Jian Zhong
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China
| | | | | | | | | | | |
Collapse
|
50
|
McMillan D, Hohu K, Edgerly JS. Choreography of silk spinning by webspinners (Insecta: Embioptera) reflects lifestyle and hints at phylogeny. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David McMillan
- Department of Biology; Santa Clara University; Santa Clara CA USA
| | - Kyle Hohu
- Department of Biology; Santa Clara University; Santa Clara CA USA
| | | |
Collapse
|