1
|
Yan J, Zhang M, Li J, Rondon SI, Gao Y. Synthesis and bioactivity studies of the potato tuber moth, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae) sex pheromone analogs. PEST MANAGEMENT SCIENCE 2024. [PMID: 39390786 DOI: 10.1002/ps.8482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/31/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Potato (Solanum tuberosum L.) is a staple food crop globally, but its production is consistently threatened by diseases and arthropod pests like the potato tuber moth, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). Phthorimaea operculella is often controlled by chemical applications. Sex pheromones have been used to detect, monitor, or control agricultural pests. Phthorimaea operculella sex pheromones mainly contain two chemical structures, 4E,7Z-trisadene-1-ol acetate and 4E,7Z,10Z-trisadene-1-ol acetate. However, the pheromone analogs are expected to act as mimics, synergists, antagonists, and inhibitors for pheromones and can be synthesized at a large scale. RESULT In this study, a total of 11 sex pheromone analogs of P. operculella were designed and synthesized. Results showed that the antennae exhibited a concentration-dependent response to sex pheromones and their analogs. Different analogs and dosages had significant effects on the electrophysiological response of the antennae. In the field trials, when used alone, A6, B3 and B5 exhibited significant trapping effects in tobacco and potato fields. When used alternately with sex pheromone components, the analog B3 had significantly higher trapping effects in both tobacco and potato fields compared to the control, while combinations containing fluorinated analogs showed lower trapping effects. CONCLUSION In summary, the use of sex pheromone analogs holds great promise for integration into pest management programs. Further investigation to fine-tune dosage and duration for optimal use is still needed. © 2024 Society of Chemical Industry. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Junjie Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Mengdi Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jing Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Silvia I Rondon
- Oregon Integrated Pest Management Center, Oregon State University, Corvallis, OR, USA
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
2
|
Qi W, Lu Y, Shao X, Maienfisch P. Effects of natural Ionones and derived novel analogues with simplified structures on behavioral responses of whiteflies. PEST MANAGEMENT SCIENCE 2024; 80:4523-4532. [PMID: 38747159 DOI: 10.1002/ps.8159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/02/2024] [Accepted: 04/25/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Whiteflies are major pests in agriculture, causing damage to crops and transmitting plant viruses. Using Volatile Organic Compounds (VOCs) as semiochemicals offers a sustainable approach for combating whiteflies. One such group of compounds, represented by β-ionone, has been found to possess repellent/attractant properties. To further explore the behavioral effects of these compounds on whiteflies, we selected five natural ionone compounds and synthesized six novel analogues to examine the impact of structural variations on whitefly behavior. RESULTS Our results demonstrated that β-ionone and its analogues have a significant impact on the behavior of whiteflies. Among them, 0.01% pseudo ionone solution exhibited an attractant effect on whiteflies. Notably, the application of 1% β-ionone and 0.1% β-ionol solution demonstrated a notable repellent effect and oviposition deterrent effect on whitefly. We also found that the novel ionone analogue (±)1A exhibited a strong repellent effect. Both β-ionol and compound (±)1A possess high logP values and low saturation vapor pressures, which contribute to enhanced lipophilicity, making them more likely to penetrate insect antennae and prolong their presence in the air. CONCLUSION The newly discovered ionone analogue (±)1A and β-ionol exhibit improved repellent effects, while pseudo ionone shows an attractant effect. These three compounds hold promising potential for development as novel biological control agents. Our work highlights the efficacy of VOCs as a protection method against whiteflies. These findings indicate that our new technology for a 'push-pull' control method of B. tabaci can offer a novel tool for integrated pest management (IPM). © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wensong Qi
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yiming Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- CreInSol Consulting & Biocontrols, Rodersdorf, Switzerland
| |
Collapse
|
3
|
Liu Y, Zhang S, Cao S, Jacquin-Joly E, Zhou Q, Liu Y, Wang G. An odorant receptor mediates the avoidance of Plutella xylostella against parasitoid. BMC Biol 2024; 22:61. [PMID: 38475722 DOI: 10.1186/s12915-024-01862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Ecosystems are brimming with myriad compounds, including some at very low concentrations that are indispensable for insect survival and reproduction. Screening strategies for identifying active compounds are typically based on bioassay-guided approaches. RESULTS Here, we selected two candidate odorant receptors from a major pest of cruciferous plants-the diamondback moth Plutella xylostella-as targets to screen for active semiochemicals. One of these ORs, PxylOR16, exhibited a specific, sensitive response to heptanal, with both larvae and adult P. xylostella displaying heptanal avoidance behavior. Gene knockout studies based on CRISPR/Cas9 experimentally confirmed that PxylOR16 mediates this avoidance. Intriguingly, rather than being involved in P. xylostella-host plant interaction, we discovered that P. xylostella recognizes heptanal from the cuticular volatiles of the parasitoid wasp Cotesia vestalis, possibly to avoid parasitization. CONCLUSIONS Our study thus showcases how the deorphanization of odorant receptors can drive discoveries about their complex functions in mediating insect survival. We also demonstrate that the use of odorant receptors as a screening platform could be efficient in identifying new behavioral regulators for application in pest management.
Collapse
Affiliation(s)
- Yipeng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Sai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, UPEC, UniversitéParis Cité, 78026, Versailles, IRD, France
| | - Qiong Zhou
- College of Life Sciences, Hunan Normal University, Changsha, 410006, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
4
|
Hellmann C, Greiner A, Vilcinskas A. Design of Polymer Carriers for Optimized Pheromone Release in Sustainable Insect Control Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304098. [PMID: 38145363 PMCID: PMC10916555 DOI: 10.1002/advs.202304098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/06/2023] [Indexed: 12/26/2023]
Abstract
Semiochemicals such as pheromones play a major role in communication between insects, influencing their spatial orientation, aggregation, defense, and mating. The rational chemical design of precision pheromone-releasing materials are increased the efficiency of pheromone-based plant protection agents. Decades of research is begun to unravel the complex communication structures regulated by semiochemicals, from the neuronal perception of specific chemical substances to the behavioral responses in hundreds of species, including many devastating pest insects. This article summarizes the most effective uses of semiochemicals in agriculture, the behavioral responses of selected target species, and controlled-release strategies based on formulations such as novel fibrous polymer carriers. This study helps scientists, decision-makers, farmers, and the public understand the importance of appropriate mating disruption techniques that reduce the need for broad-spectrum insecticides and limit their impact on non-target and beneficial insects.
Collapse
Affiliation(s)
- Christoph Hellmann
- Branch BioresourcesFraunhofer Institute for Molecular Biology and Applied Ecology IMEOhlebergsweg 1235392GiessenGermany
| | - Andreas Greiner
- Macromolecular Chemistry IIBavarian Polymer InstituteUniversity of BayreuthUniversitätsstrasse 3095440BayreuthGermany
| | - Andreas Vilcinskas
- Branch BioresourcesFraunhofer Institute for Molecular Biology and Applied Ecology IMEOhlebergsweg 1235392GiessenGermany
- Institute of Insect BiotechnologyJustus‐Liebig‐University GiessenHeinrich‐Buff‐Ring 26–3235392GiessenGermany
| |
Collapse
|
5
|
Corcoran JA, Mahaffee WF. Identification of a receptor for the sex pheromone of the vine mealybug, Planococcus ficus. CURRENT RESEARCH IN INSECT SCIENCE 2024; 5:100072. [PMID: 38314008 PMCID: PMC10837065 DOI: 10.1016/j.cris.2024.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024]
Abstract
The vine mealybug, Planococcus ficus, is a significant pest of vineyards in all major grape growing regions of the world. This pest causes significant aesthetic damage to berry clusters through its feeding behavior and secretion of "honeydew", which leads to significant decreases in crop marketability. More importantly, the vine mealybug is a vector of several grapevine viruses which are the causal agent of grapevine leafroll disease, one of the most destructive and economically devastating diseases of the grape industry worldwide. As there is no cure for grapevine leafroll disease, the only control measures available to reduce its spread are to remove infected vines whilst simultaneously controlling mealybug populations. Using transcriptomic libraries prepared from male and female mealybugs and a draft genome, we identified and evaluated expression levels of members of the odorant receptor gene family. Interestingly, of the 50 odorant receptors identified from these P. ficus genetic resources, only 23 were found to be expressed in females, suggesting this flightless life stage has a decreased reliance on the olfactory system. In contrast, 46 odorant receptors were found to be expressed in the alate male life stage. Heterologous expression of eight of these receptors, along with the obligate co-receptor, Orco, in HEK293 cells allowed for the identification of two receptors that respond to lavandulyl senecioate, the sole constituent of the sex pheromone used by this species. Interestingly, one of these receptors, PficOR8, also responded to the sex pheromone used by the Japanese mealybug, Planococcus kraunhiae. The data presented here represent the first report of odorant receptor gene family expression levels, as well as the identification of the first sex pheromone receptor, in soft-scale insects. The identification of a receptor for the vine mealybug sex pheromone will allow for the development of novel, species-specific pest control tools and monitoring devices.
Collapse
Affiliation(s)
- Jacob A Corcoran
- USDA - Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO, USA
| | - Walter F Mahaffee
- USDA - Agricultural Research Service, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
| |
Collapse
|
6
|
Saveer AM, Hu J, Strickland J, Krueger R, Clafford S, Zhang A. Reproductive Behavior and Development of the Global Insect Pest, Cotton Seed Bug Oxycarenus hyalinipennis. INSECTS 2024; 15:65. [PMID: 38249071 PMCID: PMC10816881 DOI: 10.3390/insects15010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Understanding the fundamental life cycle and reproductive behavior of a pest insect is essential for developing efficient control strategies; however, much of this knowledge remains elusive for a multitude of insects, including the cotton seed bug, Oxycarenus hyalinipennis. Here, we report the results of our comprehensive study on the cotton seed bug's life cycle, including mating behavior, adult lifespan, and egg-to-adulthood development. Our findings showed that adult males and females began mating as early as three days after emerging (75%), and the frequency of mating increased to 100% by the fifth day. Mated females commenced oviposition on cotton seeds as early as two days after mating, with a cumulative mean number of 151 fertile eggs oviposited during the first oviposition cycle. Furthermore, around 10% of eggs from both mated and unmated females remained unfertilized. The first instar nymphs began emerging approximately seven days following oviposition. To track their development, we monitored the newly hatched nymphs daily until they reached adulthood. There were five nymphal stages, which cumulatively took roughly 28 to 30 days. Notably, mating positively influenced the survivorship and lifespan of adult O. hyalinipennis. Mated males and females exhibited median lifespans of 28 and 25 days, respectively. In contrast, unmated males and females only lived for a median lifespan of 9.5 days, about one-third that of the mated O. hyalinipennis. Our study provides key insights into the O. hyalinipennis life history for new IPM strategies.
Collapse
Affiliation(s)
- Ahmed M. Saveer
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center-West, USDA-ARS, Beltsville, MD 20705, USA; (J.H.); (J.S.)
| | - Jing Hu
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center-West, USDA-ARS, Beltsville, MD 20705, USA; (J.H.); (J.S.)
| | - Jaime Strickland
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center-West, USDA-ARS, Beltsville, MD 20705, USA; (J.H.); (J.S.)
| | - Robert Krueger
- National Clonal Germplasm Repository for Citrus & Date, USDA-ARS, Riverside, CA 92507, USA;
| | - Shannon Clafford
- Orange County Agricultural Commissioner’s Office, Orange, CA 92865, USA;
| | - Aijun Zhang
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center-West, USDA-ARS, Beltsville, MD 20705, USA; (J.H.); (J.S.)
| |
Collapse
|
7
|
Li L, Shan C, Liu Q, Li B, Liu T. Comparative Analysis of the Metabolic Profiles of Strains of Tribolium castaneum (Herbst) Adults with Different Levels of Phosphine Resistance Based on Direct Immersion Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry. Molecules 2023; 28:7721. [PMID: 38067452 PMCID: PMC10707947 DOI: 10.3390/molecules28237721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
The management of phosphine (PH3) resistance in stored grain pests is an essential component of implementing timely and effective pest control strategies. The prevailing standard method for PH3 resistance testing involves the exposure of adult insects to a specific concentration over a fixed period. Although it is widely adopted, this method necessitates an extensive period for assay preparation and diagnosis. To address this issue, this study employed Direct Immersion Solid-Phase Microextraction (DI-SPME) coupled with Gas Chromatography-Mass Spectrometry (GC-MS) to compare and analyze the metabolic profiles of PH3-sensitive (TC-S), PH3 weak-resistant (TC-W), and PH3 strong-resistant (TC-SR) Tribolium castaneum (Herbst) adults. A total of 36 metabolites were identified from 3 different PH3-resistant strains of T. castaneum; 29 metabolites were found to present significant differences (p < 0.05) across these groups, with hydrocarbon and aromatic compounds being particularly prevalent. Seven metabolites showed no significant variations among the strains, consisting of four hydrocarbon compounds, two iodo-hydrocarbon compounds, and one alcohol compound. Further multivariate statistical analysis revealed a total of three, two, and nine differentially regulated metabolites between the TC-S versus TC-W, TC-S versus TC-SR, and TC-W versus TC-SR groups, respectively. Primarily, these metabolites comprised hydrocarbons and iodo-hydrocarbons, with the majority being associated with insect cuticle metabolism. This study demonstrates that DI-SPME technology is an effective method for studying differentially expressed metabolites in T. castaneum with different levels of PH3 resistance. This approach may help to provide a better understanding of the development of insect PH3 resistance and act as a valuable reference for the establishment of rapid diagnostic techniques for insect PH3 resistance.
Collapse
Affiliation(s)
| | | | | | | | - Tao Liu
- Institute of Equipment Technology, Chinese Academy of Inspection and Quarantine, No. A3 Gaobeidianbeilu, Chaoyang District, Beijing 100123, China; (L.L.); (C.S.); (Q.L.); (B.L.)
| |
Collapse
|
8
|
Scott AM, Johnson NS, Siefkes MJ, Li W. Synergistic behavioral antagonists of a sex pheromone reduce reproduction of invasive sea lamprey. iScience 2023; 26:107744. [PMID: 37810212 PMCID: PMC10550721 DOI: 10.1016/j.isci.2023.107744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Sex pheromones impart maximal attraction when their components are present at optimal ratios that confer balanced olfactory inputs in potential mates. Altering ratios or adding pheromone analogs to optimal mixtures may disrupt balanced olfactory antagonism and result in reduced attraction, however, tests in natural populations are lacking. We tested this hypothesis in sea lamprey (Petromyzon marinus), a fish whose male sex pheromone attracts females when two critical components, 3-keto petromyzonol sulfate (3kPZS) and petromyzonol sulfate (PZS), are present at certain ratios. Here, we report a pheromone analog, petromyzonol tetrasulfate (3sPZS), reduced female attraction to 3kPZS but not to PZS. 3sPZS mixed with additional PZS synergistically disrupted female attraction to the male pheromone and reduced spawning by 97% in a high-density population. Our results provide evidence of balanced olfactory antagonism in a vertebrate and establish a tactic to disrupt spawning of sea lamprey, a destructive invader of the Laurentian Great Lakes.
Collapse
Affiliation(s)
- Anne M. Scott
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Nicholas S. Johnson
- U.S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, Millersburg, MI 49759, USA
| | | | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Itoh T, Hayase S, Nokami T. Synthesis of Selectively gem-Difluorinated Molecules; Chiral gem-Difluorocyclopropanes via Chemo-Enzymatic Reaction and gem-Difluorinated Compounds via Radical Reaction. CHEM REC 2023; 23:e202300028. [PMID: 36949016 DOI: 10.1002/tcr.202300028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Indexed: 03/24/2023]
Abstract
The incorporation of fluorine atoms into an organic compound can alter the chemical reactivity or biological activity of the resulting compound due to the strong electron withdrawing nature of the fluorine atom. We have synthesized many original gem-difluorinated compounds and described the results in four sections. The first section describes the synthesis of optically active-gem-difluorocyclopropanes via the chemo-enzymatic reaction; we applied these compounds to liquid crystalline molecules, then further discovered a potent DNA cleavage activity for the gem-difluorocyclopropane derivatives. The second section describes the synthesis of selectively gem-difluorinated compounds via a radical reaction; we synthesized fluorinated analogues of a sex pheromone of the male African sugarcane borer, Eldana saccharina, and used the compounds as proof for investigating the origin of pheromone molecule recognition on the receptor protein. The third involves the synthesis of 2,2-difluorinated-esters by visible light-driven radical addition of 2,2-difluoroacetate with alkenes or alkynes in the presence of an organic pigment. The last section describes the synthesis of gem-difluorinated compounds via the ring-opening of gem-difluorocyclopropanes. We further developed a novel method of synthesizing gem-difluorohomoallylic alcohols via the ring-opening of gem-difluorocyclopropane and aerobic oxidation by photo-irradiation in the presence of an organic pigment. Since gem-difluorinated compounds that were prepared by the present method have two olefinic moieties with a different reactivity at the terminal position, we accomplished the synthesis of four types of gem-difluorinated cyclic alkenols via the ring-closing-metathesis (RCM) reaction.
Collapse
Affiliation(s)
- Toshiyuki Itoh
- Toyota Physical and Chemical Research Institute, Emeritus Professor of Tottori University, 41-1 Yokomichi, 480-1192, Nagakute city, Aichi, Japan
| | - Shuichi Hayase
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyama-minami, 680-8552, Tottori, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-minami, 680-8552, Tottori, Japan
| |
Collapse
|
10
|
Hart T, Frank DD, Lopes LE, Olivos-Cisneros L, Lacy KD, Trible W, Ritger A, Valdés-Rodríguez S, Kronauer DJC. Sparse and stereotyped encoding implicates a core glomerulus for ant alarm behavior. Cell 2023; 186:3079-3094.e17. [PMID: 37321218 PMCID: PMC10334690 DOI: 10.1016/j.cell.2023.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Ants communicate via large arrays of pheromones and possess expanded, highly complex olfactory systems, with antennal lobes in the brain comprising up to ∼500 glomeruli. This expansion implies that odors could activate hundreds of glomeruli, which would pose challenges for higher-order processing. To study this problem, we generated transgenic ants expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon imaging, we mapped complete glomerular responses to four ant alarm pheromones. Alarm pheromones robustly activated ≤6 glomeruli, and activity maps for the three pheromones inducing panic alarm in our study species converged on a single glomerulus. These results demonstrate that, rather than using broadly tuned combinatorial encoding, ants employ precise, narrowly tuned, and stereotyped representations of alarm pheromones. The identification of a central sensory hub glomerulus for alarm behavior suggests that a simple neural architecture is sufficient to translate pheromone perception into behavioral outputs.
Collapse
Affiliation(s)
- Taylor Hart
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Dominic D Frank
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Lindsey E Lopes
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Leonora Olivos-Cisneros
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Kip D Lacy
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Waring Trible
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; John Harvard Distinguished Science Fellowship Program, Harvard University, 52 Oxford Street, NW Cambridge, MA 02138, USA
| | - Amelia Ritger
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Marine Science Research Building, Bldg. 520, Santa Barbara, CA 93106, USA
| | - Stephany Valdés-Rodríguez
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
11
|
Klassen D, Lennox MD, Dumont MJ, Chouinard G, Tavares JR. Dispensers for pheromonal pest control. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116590. [PMID: 36419302 DOI: 10.1016/j.jenvman.2022.116590] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The detrimental effects of pesticides on the environment and human health have motivated the development of alternative pest control strategies. Pheromonal pest control is one alternative strategy that is attractive because most pheromones used commercially are non-toxic. Pheromones are also effective at low concentrations, and insects are slower to develop resistance to them compared to pesticides. Pheromones can be used to control pests by attracting them towards traps, repelling them from crops, or disrupting their mating behaviour. Viability of pheromonal control strategies must be evaluated on a case-by-case basis and depends on the target species, the pheromone being used, the specific control strategy, the method of dispensing pheromone, other pest control strategies pheromones being used alongside, and many other factors. The efficacy of pheromonal control has been demonstrated in commercial applications such as the control of palm weevils using traps releasing their male aggregation pheromone. Mating disruption using female sex pheromones has also been widely applied for control of both the codling moth Cydia Pomonella and the european grapevine moth Lobesia Botrana (Bangels and Beliën, 2012; Lucchi et al., 2018). Pheromones are volatiles that both degrade quickly in the environment and can be rapidly dispersed by wind. Consequently, administering pheromones to fields requires the use of dispensers that emits pheromone continuously or intermittently. Septum dispensers, membrane dispensers and solid matrix dispensers are best suited to treating smaller areas of cropland since they need to be installed by hand, a labor-intensive process. For treating a large area with pheromones, sprayable formulations and aerosol dispensers are alternative dispensing technologies that can be employed. The characteristics of these different dispenser designs are discussed as well as the kinetics governing pheromone release. Possible areas for future work in pheromone dispenser technology include examining new integrated strategies that employ pheromones alongside other pest control techniques in unique ways. The combination of pheromonal control with physical exclusion or predator release are examples of integrated strategies that are promising but have yet to be widely commercialized. Most commercial pheromonal dispensers are also noted to be impossible or impractical to reuse, apart from aerosol devices. Creating new types of rechargeable dispenser might have some cost saving benefits and would be an interesting area for future innovation in this field.
Collapse
Affiliation(s)
- Darius Klassen
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal, Montreal, Canada
| | - Martin D Lennox
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal, Montreal, Canada
| | - Marie-Josée Dumont
- CREPEC, Department of Chemical Engineering, Université Laval, Quebec, Canada
| | - Gérald Chouinard
- Institute de Recherche et Développement en Agroenvironnement (IRDA), Saint-Bruno-de-Montarville, Canada
| | - Jason R Tavares
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal, Montreal, Canada.
| |
Collapse
|
12
|
Li Y, Zhang Y, Xiang Y, Chen D, Hu J, Liu F. Comparative Transcriptome Analysis of Chemoreception Organs of Laodelphax striatellus in Response to Rice Stripe Virus Infection. Int J Mol Sci 2021; 22:ijms221910299. [PMID: 34638638 PMCID: PMC8532003 DOI: 10.3390/ijms221910299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Many vector-borne viruses possess the ability to manipulate vector behaviors to facilitate their transmission. There is evidence that the mechanism of this phenomenon has been described in part as direct manipulation through regulating vector chemosensation. Rice stripe virus (RSV) is transmitted by the small brown planthopper, Laodelphax striatellus (Fallen), in a persistent, circulative-propagative manner. The effect of RSV infection on the olfactory system of L. striatellus has not been fully elucidated. Here, we employed transcriptomic sequencing to analyze gene expression profiles in antennae, legs and heads (without antennae) from L. striatellus females and males with/without RSV infection. Comparisons of the differentially expressed genes (DEGs) among antennae, legs and heads indicated that tissue-specific changes in the gene expression profile were greater than sex-specific changes. A total of 17 olfactory related genes were differentially expressed in viruliferous antennae as compared to nonviruliferous antennae, including LstrOBP4/9, LstrCSP1/2/5, LstrGR28a/43a/43a-1, LstrIR1/2/NMDA1, LstrOR67/85e/56a/94 and LstrSNMP2/2-2. There are 23 olfactory related DEGs between viruliferous and nonviruliferous legs, including LstrOBP2/3/4/12/13, LstrCSP13/5/10, LstrIR1/2/Delta2/Delta2-1/kainate2/NMDA2, LstrOR12/21/31/68 and LstrORco. A low number of olfactory related DEGs were found between viruliferous and nonviruliferous heads, including LstrCSP1, LstrOBP2, LstrOR67 and LstrSNMP2-2. Among these DEGs, the expression patterns of LstrOBP2, LstrOBP3 and LstrOBP9 in three tissues was validated by quantitative real-time PCR. The demonstration of overall changes in the genes in L. striatellus' chemoreception organs in response to RSV infection would not only improve our understanding of the effect of RSV on the olfactory related genes of insect vectors but also provide insights into developing approaches to control the plant virus transmission and spread as well as pest management in the future.
Collapse
Affiliation(s)
- Yao Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225000, China; (Y.L.); (Y.Z.); (Y.X.); (D.C.); (J.H.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College, Yangzhou University, Yangzhou 225000, China
| | - Yunye Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225000, China; (Y.L.); (Y.Z.); (Y.X.); (D.C.); (J.H.)
| | - Yin Xiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225000, China; (Y.L.); (Y.Z.); (Y.X.); (D.C.); (J.H.)
| | - Danyu Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225000, China; (Y.L.); (Y.Z.); (Y.X.); (D.C.); (J.H.)
| | - Jia Hu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225000, China; (Y.L.); (Y.Z.); (Y.X.); (D.C.); (J.H.)
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225000, China; (Y.L.); (Y.Z.); (Y.X.); (D.C.); (J.H.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225000, China
- Correspondence: ; Tel.: +86-138-1580-2333
| |
Collapse
|
13
|
Twidle AM, Pilkington LI, Suckling DM, Barker D. Synthesis and Electrophysiological Testing of Carbonyl Pheromone Analogues for Carposinid Moths. ACS OMEGA 2021; 6:21016-21023. [PMID: 34423209 PMCID: PMC8375095 DOI: 10.1021/acsomega.1c02614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Sex pheromone analogues were synthesized and tested on two pest carposinid moth species: the guava moth, Coscinoptycha improbana, and the raspberry bud moth, Heterocrossa rubophaga. The pheromone analogues used for the electroantennogram testing included (Z)-11-methylenenonadec-7-ene, (Z)-nonadec-12-en-9-amine, (Z)-11-methoxynonadec-7-ene, (Z)-1-(octylsulfinyl)-dec-3-ene, and (Z)-nonadec-12-en-9-ol. An imine analogue, N-((Z)-nonadec-12-en-9-ylidene)cyclopropanamine, was also synthesized but was too unstable for testing with the moths. None of the analogue compounds elicited significant responses from the male moth antennae.
Collapse
Affiliation(s)
- Andrew M. Twidle
- The
New Zealand Institute for Plant and Food Research Ltd, Private Bag 4704, Christchurch Mail
Centre, Christchurch 8140, New Zealand
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Lisa I. Pilkington
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - David M. Suckling
- The
New Zealand Institute for Plant and Food Research Ltd, Private Bag 4704, Christchurch Mail
Centre, Christchurch 8140, New Zealand
- School
of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - David Barker
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| |
Collapse
|
14
|
Raspberry ketone supplements provided to immature male Queensland fruit fly, Bactrocera tryoni (Froggatt), increase the amount of volatiles in rectal glands. CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00333-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Twidle AM, Suckling DM, Chhagan A, Pilkington LI, Park KC, Barker D. Synthesis and Biological Testing of Ester Pheromone Analogues for Two Fruitworm Moths (Carposinidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9557-9567. [PMID: 32790295 DOI: 10.1021/acs.jafc.0c04131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A range of ester pheromone analogues for carposinid moths were synthesized and evaluated for biological activity. The analogues aimed to take advantage of the structural commonality of (7Z)-alken-11-ones found in this family. Analogues were tested on two pest species: Heterocrossa rubophaga and Coscinoptycha improbana. Two of the analogues, (2Z)-nonenyl nonanoate and (4Z)-heptyl undecenoate, elicited significant electroantennogram responses. Only (4Z)-heptyl undecenoate gave consistent responses with both moth species in single sensillum recording. Field trapping trials were conducted with these two analogues both individually and in combination with the pheromone of each of the two moth species. No attraction was observed to either of the analogues alone, by either moth species. However, when (4Z)-heptyl undecenoate was coupled with the pheromone, it produced a strong inhibitory effect in H. rubophaga, reducing male moth trap catch by over 95%. No inhibitory effect on male moth trap catch was observed in C. improbana.
Collapse
Affiliation(s)
- Andrew M Twidle
- The New Zealand Institute for Plant and Food Research Ltd., Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - David M Suckling
- The New Zealand Institute for Plant and Food Research Ltd., Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Asha Chhagan
- The New Zealand Institute for Plant and Food Research Ltd., 120 Mt Albert Road, Mt Albert, Auckland 1025, New Zealand
| | - Lisa I Pilkington
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Kye Chung Park
- The New Zealand Institute for Plant and Food Research Ltd., Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand
| | - David Barker
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| |
Collapse
|
16
|
Identification of a hyperactive pheromone analog in field tests of pheromone mimics for two click beetle species in the genus Cardiophorus (Coleoptera: Elateridae). CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00319-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
TLC-Based Bioassay to Isolate Kairomones from Tea Tree Essential Oil That Attract Male Mediterranean Fruit Flies, Ceratitis capitata (Wiedemann). Biomolecules 2020; 10:biom10050683. [PMID: 32354100 PMCID: PMC7277685 DOI: 10.3390/biom10050683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022] Open
Abstract
The Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) poses a major threat to fruit and vegetable production in the United States and throughout the world. New attractants and detection methods could improve control strategies for this invasive pest. In this study, we developed a method that combined thin-layer chromatography (TLC) of tea tree essential oil (TTO) (Melaleuca alternifolia) with short-range bioassays to isolate attractive kairomones for male C. capitata. After development, the TLC chromatogram indicated that TTO separated into five major spots, designated as zones 1 to 5. When the TLC plate was exposed to flies, zones 1 and 3 were strongly attractive to male C. capitata. To confirm activity, the developed TLC plate was cut into five zones which were then tested in short-range bioassays. Again, flies were observed to aggregate around zones 1 and 3, which corresponded with Rf values of 0.93 and 0.59. In addition, zones 1 to 5 were separated using preparative-TLC, and olfactory responses to volatile emissions from the five fractions were quantified by electroantennography (EAG). Highest amplitude EAG responses were recorded with fractions 1 and 3, further supporting the bioactivity of these samples. In conclusion, a TLC-based bioassay system can provide an effective, rapid screening protocol for initial isolation of insect kairomones from complex mixtures such as essential oils or plant extracts. Further analysis of TTO fractions 1 and 3 is needed to identify the specific constituents attractive to male C. capitata.
Collapse
|
18
|
Vitanović E, Aldrich JR, Boundy-Mills K, Čagalj M, Ebeler SE, Burrack H, Zalom FG. Olive Fruit Fly, Bactrocera oleae (Diptera: Tephritidae), Attraction to Volatile Compounds Produced by Host and Insect-Associated Yeast Strains. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:752-759. [PMID: 31879768 DOI: 10.1093/jee/toz341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 06/10/2023]
Abstract
The olive fruit fly, Bactrocera oleae (Rossi), is one of the most damaging insect pests of olives worldwide, requiring the use of insecticides for fruit protection in many orchards. Olive fruit flies are attracted to volatile composunds, including a female-produced pheromone, and host-plant and bacterial volatiles. Preliminary laboratory bioassays were conducted for olive fruit fly attraction to over 130 yeast strains from among 400 that were isolated from B. oleae adults and larvae or other insects, infested olives, and potential feeding sites. Kuraishia capsulata, Scheffersomyces ergatensis, Peterozyma xylosa, Wickerhamomyces subpelliculosus, and Lachancea thermotolerans appeared to attract B. oleae as well or better than did torula yeast pellets (Cyberlindnera jadinii; syn. Candida utilis). Volatile compounds emitted by these yeast strains were chemically identified, and included isobutanol, isoamyl alcohol, 2-phenethyl alcohol, isobutyl acetate, and 2-phenethyl acetate. The behavioral response of B. oleae adults to these volatile compounds at three concentrations was tested in a laboratory Y-tube olfactometer. The same volatile compounds were also tested in the field. Isoamyl alcohol was more attractive than the other compounds tested in both laboratory and field bioassays. Isobutanol was not attractive to B. oleae in either laboratory bioassay or field bioassay. Identifying yeast volatiles attractive to the olive fruit fly may lead to development of a more effective lure for detection, monitoring, and possibly control of B. oleae.
Collapse
Affiliation(s)
- Elda Vitanović
- Department of Entomology and Nematology, UC Davis, Davis, CA
- Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| | - Jeffrey R Aldrich
- Department of Entomology and Nematology, UC Davis, Davis, CA
- Consulting LLC, Marcell, MN
| | - Kyria Boundy-Mills
- Department of Food Science and Technology, Phaff Yeast Collection, UC Davis One Shields Avenue, Davis, CA
| | - Marin Čagalj
- Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| | - Susan E Ebeler
- Department of Viticulture and Enology, UC Davis, Davis, CA
| | - Hannah Burrack
- Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Frank G Zalom
- Department of Entomology and Nematology, UC Davis, Davis, CA
| |
Collapse
|
19
|
Li Y, Hu J, Xiang Y, Zhang Y, Chen D, Liu F. Identification and comparative expression profiles of chemosensory genes in major chemoreception organs of a notorious pests, Laodelphax striatellus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100646. [PMID: 31869635 DOI: 10.1016/j.cbd.2019.100646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 01/10/2023]
Abstract
The small brown planthopper, Laodelphax striatellus (Stål) (SBPH), is a notorious rice pest in East Asia and damages the host by feeding on the phloem and transmitting virus particles. Although SBPH relies on chemosensory perception for seeking the host, courtship, selecting oviposition sites and spreading virus particles, a systematic study of chemosensory genes in SBPH is lacking. In this study, we identified multi-gene chemosensory families from the transcriptome of SBPH olfactory organs and analyzed their expression patterns in male and female tissues. Among the chemosensory genes, 14 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 7 sensory neuron membrane proteins (SNMPs) and 95 odorant receptors (ORs) were identified and annotated in SBPH olfactory organs. Based on expression profile and phylogenetic analysis, LstrOBP1, 2, 5, 6, 7, 10, LstrSNMP1, and most LstrORs showed an antennae-enriched expression pattern, which suggests an olfactory role for these genes. Relative expression of LstrOBPs was validated by quantitative real-time PCR. Our findings provide the genetic information for disrupting the feeding behavior of SBPH, which is essential for developing eco-friendly pest management technologies.
Collapse
Affiliation(s)
- Yao Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jia Hu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yin Xiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yunye Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Danyu Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.
| |
Collapse
|
20
|
Wang AJ, Zhang KX, Gao YL, Weng AZ, Wang LY, Zhang YH, Zhang Z, She DM, Ning J, Mei XD. Synthesis and bioactivity studies of sex pheromone analogs of the diamond back moth, Plutella xylostella. PEST MANAGEMENT SCIENCE 2019; 75:1045-1055. [PMID: 30242939 DOI: 10.1002/ps.5214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Diamondback moth, Plutella xylostella L., is a very important pest of cruciferous vegetables causing excessive economic losses worldwide. Bioactivities of halo-, diazo-, and cyclopropane acetates of P. xylostella sex pheromone have been evaluated using electrophysiology and enzyme inhibition assays. RESULTS A total of 23 sex pheromone analogs of P. xylostella were designed and synthesized and the result shows that (11Z)-hexadec-11-en-1-yl 2,2,2-trifluoroacetate, (11Z)-hexadec-11-en-1-yl 2,2,3,3,3-pentafluoropropanoate, and (11Z)-hexadec-11-en-1-yl trifluoromethanesulfonate elicited potential inhibitory effects at all doses tested in the electrophysiology and enzyme inhibition assays. Interference of locating the sex pheromone source was found strongest when these three analogs were mixed with the sex pheromone at a 10:1 ratio. In addition, field test showed that the rate of mating disruption was over 90% when (11Z)-hexadec-11-en-1-yl 2,2,2-trifluoroacetate or (11Z)-hexadec-11-en-1-yl 2,2,3,3,3-pentafluoropropanoate was mixed with the sex pheromone at a 10:1 ratio. CONCLUSION Two sex pheromone antagonists were screen out by electrophysiology, enzyme inhibition assays, wind tunnel and field tests. We believe that these antagonists could be used to establish a novel eco-friendly measure to control P. xylostella and provide evidence for clarifying the specific functions and molecular mechanisms of sex pheromone antagonists. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- An-Jia Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai-Xin Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yu-Lin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ai-Zhen Weng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liu-Yang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yun-Hui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi Zhang
- Beijing Plant Protection Station, Beijing, China
| | - Dong-Mei She
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiang-Dong Mei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Park KC, Jeong SA, Kwon G, Oh HW. Olfactory attraction mediated by the maxillary palps in the striped fruit fly, Bactrocera scutellata: Electrophysiological and behavioral study. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21510. [PMID: 30350371 DOI: 10.1002/arch.21510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
Here, we report that the olfactory attraction of the striped fruit fly, Bactrocera scutellata (Hendel; Diptera: Tephritidae), a serious pest of pumpkin and other cucurbitaceae plants, to cue lure and raspberry ketone is mediated by the maxillary palps. The antennae, bearing three morphological types (basiconic, trichoid, and coeloconic) of olfactory sensilla, in male and female B. scutellata exhibited significant electroantennogram (EAG) responses to a plant volatile compound, 3-octanone, and methyl eugenol, whereas cue lure, raspberry ketone, and zingerone that are known to attract several other species of Bactrocera fruit flies elicited no significant EAG responses from both sexes. In contrast, maxillary palps, housing one morphological type of basiconic sensilla, displayed the largest electropalpogram (EPG) responses to cue lure followed by raspberry ketone among the five compounds tested in male and female B. scutellata, with only minor EPG responses to 3-octanone, which indicates that the maxillary palps are responsible for detecting cue lure and raspberry ketone in this species. In field trapping experiments, significant number of male B. scutellata were captured in the traps baited with cue lure or raspberry ketone, in which the attractiveness of cue lure was significantly higher than that of raspberry ketone. Methyl eugenol and zingerone were not behaviorally attractive to B. scutellata although they elicited significant EPG responses. Our study indicates that the behavioral attraction of B. scutellata to cue lure and raspberry ketone is mediated by the olfactory sensory neurons present in the maxillary palps.
Collapse
Affiliation(s)
- Kye Chung Park
- Bioprotection/Biosecurity, The New Zealand Institute for Plant & Food Research, Christchurch, New Zealand
| | - Seon Ah Jeong
- Core Facility Management Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
- Department of Biological Sciences, Hannam University, Daejeon, Korea
| | | | - Hyun-Woo Oh
- Core Facility Management Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| |
Collapse
|
22
|
Poivet E, Tahirova N, Peterlin Z, Xu L, Zou DJ, Acree T, Firestein S. Functional odor classification through a medicinal chemistry approach. SCIENCE ADVANCES 2018; 4:eaao6086. [PMID: 29487905 PMCID: PMC5817921 DOI: 10.1126/sciadv.aao6086] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/11/2018] [Indexed: 05/19/2023]
Abstract
Crucial for any hypothesis about odor coding is the classification and prediction of sensory qualities in chemical compounds. The relationship between perceptual quality and molecular structure has occupied olfactory scientists throughout the 20th century, but details of the mechanism remain elusive. Odor molecules are typically organic compounds of low molecular weight that may be aliphatic or aromatic, may be saturated or unsaturated, and may have diverse functional polar groups. However, many molecules conforming to these characteristics are odorless. One approach recently used to solve this problem was to apply machine learning strategies to a large set of odors and human classifiers in an attempt to find common and unique chemical features that would predict a chemical's odor. We use an alternative method that relies more on the biological responses of olfactory sensory neurons and then applies the principles of medicinal chemistry, a technique widely used in drug discovery. We demonstrate the effectiveness of this strategy through a classification for esters, an important odorant for the creation of flavor in wine. Our findings indicate that computational approaches that do not account for biological responses will be plagued by both false positives and false negatives and fail to provide meaningful mechanistic data. However, the two approaches used in tandem could resolve many of the paradoxes in odor perception.
Collapse
Affiliation(s)
- Erwan Poivet
- Neuroscience Institute, NYU Langone Medical Center, NY 10016, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Narmin Tahirova
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Zita Peterlin
- Corporate Research and Development, Firmenich Incorporated, Plainsboro, NJ 08536, USA
| | - Lu Xu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Dong-Jing Zou
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Terry Acree
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Stuart Firestein
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Corresponding author.
| |
Collapse
|
23
|
Knight AL, Light DM, Judd GJR, Witzgall P. Pear Ester – From Discovery to Delivery for Improved Codling Moth Management. ACS SYMPOSIUM SERIES 2018. [DOI: 10.1021/bk-2018-1294.ch008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Alan L. Knight
- Temperate Tree Fruit and Vegetable Research, Agricultural Research Service, U.S. Department of Agriculture, 5230 Konnowac Pass Road, Wapato, Washington 98951, United States
| | - Douglas M. Light
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany California 94710, United States
| | - Gary J. R. Judd
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, 4200 Highway 97, Summerland, British Columbia, Canada
| | - Peter Witzgall
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
24
|
Inhibitory effects of local anesthetics on the proteasome and their biological actions. Sci Rep 2017; 7:5079. [PMID: 28698635 PMCID: PMC5506043 DOI: 10.1038/s41598-017-04652-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 05/18/2017] [Indexed: 11/30/2022] Open
Abstract
Local anesthetics (LAs) inhibit endoplasmic reticulum-associated protein degradation, however the mechanisms remain elusive. Here, we show that the clinically used LAs pilsicainide and lidocaine bind directly to the 20S proteasome and inhibit its activity. Molecular dynamic calculation indicated that these LAs were bound to the β5 subunit of the 20S proteasome, and not to the other active subunits, β1 and β2. Consistently, pilsicainide inhibited only chymotrypsin-like activity, whereas it did not inhibit the caspase-like and trypsin-like activities. In addition, we confirmed that the aromatic ring of these LAs was critical for inhibiting the proteasome. These LAs stabilized p53 and suppressed proliferation of p53-positive but not of p53-negative cancer cells.
Collapse
|
25
|
Identification and testing of oviposition attractant chemical compounds for Musca domestica. Sci Rep 2016; 6:33017. [PMID: 27667397 PMCID: PMC5036095 DOI: 10.1038/srep33017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/18/2016] [Indexed: 11/08/2022] Open
Abstract
Oviposition attractants for the house fly Musca domestica have been investigated using electrophysiological tests, behavioural assays and field tests. Volatiles were collected via head space absorption method from fermented wheat bran, fresh wheat bran, rearing substrate residue and house fly maggots. A Y-tube olfactometer assay showed that the odor of fermented wheat bran was a significant attractant for female house flies. Bioactive compounds from fermented wheat bran for house fly females were identified by electrophysiology and mass spectrophotometry and confirmed with standard chemicals. Four electrophysiologically active compounds including ethyl palmitate, ethyl linoleate, methyl linoleate, and linoleic acid were found at a proportion of 10:24:6:0.2. Functional imaging in the female antennal lobes revealed an overlapped active pattern for all chemicals. Further multiple-choice behavioural bioassays showed that these chemicals, as well as a mixture that mimicked the naturally occurring combination, increased the attractiveness of non-preferred rearing substrates of cotton and maize powder. Finally, a field demonstration test revealed that, by adding this mimic blend into a rearing substrate used to attract and breed house flies in West Africa, egg numbers laid by females were increased. These chemicals could be utilized to improve house fly production systems or considered for lure traps.
Collapse
|
26
|
Hadapad AB, Prabhakar CS, Chandekar SC, Tripathi J, Hire RS. Diversity of bacterial communities in the midgut of Bactrocera cucurbitae (Diptera: Tephritidae) populations and their potential use as attractants. PEST MANAGEMENT SCIENCE 2016; 72:1222-1230. [PMID: 26299539 DOI: 10.1002/ps.4102] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/03/2015] [Accepted: 08/17/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The microbiota plays an important role in insect development and fitness. Understanding the gut microbiota composition is essential for the development of pest management strategies. Midgut bacteria were isolated from nine wild B. cucurbitae populations collected from different agroecological zones of India. These isolates were further studied for attractant potential of fruit fly adults, and the chemical constituents in the supernatants of gut bacteria were analysed. RESULTS Twenty-six bacterial isolates belonging to the families Enterobacteriaceae, Bacillaceae, Micrococcaceae and Staphylococcaceae were isolated and identified on the basis of 16S rRNA gene sequence analysis. The dominant species in the midgut of melon fly were from the genera Enterobacter (34.6%), Klebsiella (19.2%), Citrobacter (7.7%), Bacillus (15.4%) and Providencia (7.7%), and 3.8% each of Micrococcus, Staphylococcus, Leclercia and Exiguobacterium. Bactrocera cucurbitae and B. dorsalis adults were significantly attracted to bacterial whole cell cultures and their supernatants in the fruit fly attraction bioassays. Bacillus cereus, Enterobacter, Klebsiella, Citrobacter and Providencia species attracted both male and females of Bactrocera species. The supernatants of Klebsiella, Citrobacter and Providencia species attracted a significantly greater number of females than males. The most abundant chemical constituents in supernatants of K. oxytoca and C. freundii were 3-methyl-1-butanol, 2-phenylethanol, butyl isocyanatoacetate, 2-methyl-1-propanol and 3-hydroxy-2-butanone, as identified by gas chromatography-mass spectrometry. CONCLUSIONS The bacterial endosymbionts associated with melon fly exhibited attractant potential which could facilitate eco-friendly insect control strategies. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ashok B Hadapad
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Chandra S Prabhakar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Department of Entomology, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
| | - Snehal C Chandekar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Jyoti Tripathi
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Ramesh S Hire
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
27
|
Dominguez A, Puigmartı́ M, Bosch MP, Rosell G, Crehuet R, Ortiz A, Quero C, Guerrero A. Synthesis, Functional Assays, Electrophysiological Activity, and Field Tests of Pheromone Antagonists of the Tomato Leafminer, Tuta absoluta. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3523-3532. [PMID: 27088783 DOI: 10.1021/acs.jafc.6b00674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The tomato leafminer, Tuta absoluta, is one of the major pests of tomato and other Solanaceae in many regions worldwide. In the search for new strategies to control this pest, we present herewith the stereoselective synthesis, electrophysiological activity, functional analysis, and field tests of new chemicals as possible antagonists of the sex pheromone of the leafminer. The chemicals are methyl ketone (MK) and trifluoromethyl ketone (TFMK) structural analogues of both components of the pheromone. Most of the chemicals exerted per se some electrophysiological activity and inhibited the electroantennographic response to the pheromone when vapors of the inhibitor were passed over the antennae. Except TFMK 3, which elicited a modest effect, the compounds did not exhibit antiesterase activity on the pheromone-degrading enzymes of the antennae, but in the field the chemicals, particularly MK 5, notably decreased the number of catches when mixed with the pheromone in 1:1 and 10:1 ratios, regardless the infestation level of the plot. These results suggest that MK 5 is a good behavioral antagonist of the pheromone to be considered as a putative agent to control the pest in new future integrated pest management (IPM) strategies.
Collapse
Affiliation(s)
- Aroa Dominguez
- Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (CSIC) , Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Marc Puigmartı́
- Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (CSIC) , Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Pilar Bosch
- Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (CSIC) , Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Gloria Rosell
- Department of Pharmacology and Therapeutic Chemistry, Unit Associated to CSIC, Faculty of Pharmacy, University of Barcelona , Avinguda Diagonal s/n, 08028 Barcelona, Spain
| | - Ramon Crehuet
- Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (CSIC) , Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Antonio Ortiz
- Department of Inorganic and Organic Chemistry, EPSL, University of Jaén , Linares (Jaén), Spain
| | - Carmen Quero
- Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (CSIC) , Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Angel Guerrero
- Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (CSIC) , Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
28
|
Yao Q, Xu S, Dong Y, Lu K, Chen B. Identification and characterisation of two general odourant-binding proteins from the litchi fruit borer, Conopomorpha sinensis Bradley. PEST MANAGEMENT SCIENCE 2016; 72:877-887. [PMID: 26085035 DOI: 10.1002/ps.4062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/08/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The litchi fruit borer, Conopomorpha sinensis Bradley, is one of the most destructive pests of litchi and longan fruits in south-east Asia and southern China, yet the molecular biology and physiology of this pest remain poorly understood. Control of this insect pest may be achieved by interfering with its recognition of host plants. RESULTS In this study, two cDNAs encoding CsGOBP1 and CsGOBP2 were identified from the antennae of C. sinensis, and a comparative study on these two C. sinensis GOBPs (CsGOBPs) was conducted. The secondary structure of these two CsGOBPs mainly consists of six α-helices, but three-dimensional structural predictions of CsGOBP1 and CsGOBP2 indicated significant difference in the final 3D models. Results in real-time PCR assays indicated that the two CsGOBPs had different tissue- and sex-dependent expression patterns. A competitive binding assay revealed that CsGOBP1 considerably prefer the component exhibited in Guiwei or Feizixiao litchi cultivar, while CsGOBP2 bind to general volatile components from nine litchi cultivars. Additionally, ethyl acetate has higher binding affinities to CsGOBP2 protein than to CsGOBP1, and has remarkable attraction to female C. sinensis moths in Y-tube olfactometer assays. CONCLUSION These results strongly suggest functional difference between these two CsGOBPs in perception of host plant odourants.
Collapse
Affiliation(s)
- Qiong Yao
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Shu Xu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Yizhi Dong
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Kai Lu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Bingxu Chen
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| |
Collapse
|
29
|
Bohman B, Karton A, Dixon RCM, Barrow RA, Peakall R. Parapheromones for Thynnine Wasps. J Chem Ecol 2015; 42:17-23. [DOI: 10.1007/s10886-015-0660-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/17/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
|
30
|
Lin W, Yu Y, Zhou P, Zhang J, Dou L, Hao Q, Chen H, Zhu S. Identification and Knockdown of the Olfactory Receptor (OrCo) in Gypsy Moth, Lymantria dispar. Int J Biol Sci 2015; 11:772-80. [PMID: 26078719 PMCID: PMC4466458 DOI: 10.7150/ijbs.11898] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/08/2015] [Indexed: 11/05/2022] Open
Abstract
The gypsy moth, Lymantria dispar, is an important economic pest that causes large-scale damage to forests worldwide. Because of its important role in initiating and controlling insect behavior, olfaction-and olfaction-based pest management-has drawn increasing attention from entomologists. In this study, we identified the gene that encodes the olfactory receptor co-receptor (OrCo). Through amino acid sequence alignment, we found that LdisOrCo shares high identity with other OrCo proteins from different insect orders. Next, we performed RNA-interference (RNAi) to assess the role of OrCo in olfaction. Electroantennographic assays showed that after RNAi, the average value of males' response to sex pheromones was 0.636 mV, significantly lower than that of the positive control (average = 1.472 mV). Females showed no response to sex pheromones before or after RNAi. Finally, quantitative PCR showed a strong decrease in the expression of OrCo after RNAi, by ~74% in males and by 23% in females relative to the positive controls. These results indicate that OrCo is not only critical to odor recognition, but it may also represent a new target for development of semiochemicals that can influence insect behavior.
Collapse
Affiliation(s)
- Wei Lin
- 1. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China 100029; ; 2. College of Agriculture and Biotechnology, China Agricultural University, Beijing, China, 100193
| | - Yanxue Yu
- 1. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China 100029
| | - Ping Zhou
- 4. College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong Province, China, 271000
| | - Junhua Zhang
- 1. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China 100029
| | - Liduo Dou
- 1. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China 100029
| | - Qin Hao
- 1. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China 100029
| | - Hongjun Chen
- 3. Division of Animal and Plant Quarantine Supervision, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Beijing, China, 100088
| | - Shuifang Zhu
- 1. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China 100029
| |
Collapse
|
31
|
Guan D, Lu YY, Liao XL, Wang L, Chen L. Electroantennogram and behavioral responses of the imported fire ant, Solenopsis invicta Buren, to an alarm pheromone component and its analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11924-11932. [PMID: 25415443 DOI: 10.1021/jf505191s] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A characteristic behavior in ants is to move rapidly to emission sources of alarm pheromones. The addition of ant alarm pheromones to bait is expected to enhance its attractiveness. To search for candidate compounds for bait enhancement in fire ant control, 13 related alkylpyrazine analogues in addition to synthetic alarm pheromone component were evaluated for electroantennogram (EAG) and behavioral activities in Solenopsis invicta. Most compounds elicited dose-dependent EAG and behavioral responses. There exists a correlation between the EAG and behavioral responses. Among the 14 tested alkylpyrazines, three compounds, 2-ethyl-3,6(5)-dimethyl pyrazine (1), 2,3,5-trimethylpyrazine (7), and 2,3-diethyl-5-methylpyrazine (12), elicited significant alarm responses at a dose range of 0.1-1000 ng. Further bait discovery bioassay with the three most active alkylpyrazines demonstrated that food bait accompanied by sample-treated filter paper disk attracted significantly more fire ant workers in the first 15 min period. EAG and behavioral bioassays with pure pheromone isomers accumulated by semi-preparative high-performance liquid chromatography demonstrated that 2-ethyl-3,6-dimethylpyrazine was significantly more active than 2-ethyl-3,5-dimethylpyrazine.
Collapse
Affiliation(s)
- Di Guan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101, People's Republic of China
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Agrawal SK, Tikar S, Yadav R, Halve AK, Sathe M. The effect of aryl hydrazono ester containing dipeptides (AHEDs) on mosquito egg-laying behaviour. NEW J CHEM 2014. [DOI: 10.1039/c4nj00647j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fifteen peptide derivatives were synthesized to study oviposition responses in mosquitoes at two different concentrations. AHED-6 showed the maximum oviposition attractant activity while AHED-13 exhibited the highest oviposition deterrent activity.
Collapse
Affiliation(s)
| | - Sachin Tikar
- Vector Management Division
- Defence R & D Establishment
- Gwalior, India
| | - Ruchi Yadav
- Vector Management Division
- Defence R & D Establishment
- Gwalior, India
| | | | - Manisha Sathe
- Discovery Centre
- Defence R & D Establishment
- Gwalior, India
| |
Collapse
|
34
|
Sans A, Gago R, Mingot A, García W, Bosch D, Coll J, Rosell G, Bosch MP, Riba M, Guerrero A. Electrophilic derivatives antagonise pheromone attraction in Cydia pomonella. PEST MANAGEMENT SCIENCE 2013; 69:1280-1290. [PMID: 23554261 DOI: 10.1002/ps.3500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/19/2012] [Accepted: 01/29/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Pheromone antagonists are good disruptants of the pheromone communication in insects and, as such, have been used in mating disruption experiments. In this study, new non-fluorinated electrophilic keto derivatives structurally related to the pheromone of Cydia pomonella (codlemone) have been synthesised and tested as putative pheromone antagonists. RESULTS Codlemone (1) was prepared in excellent stereoselectivity in a new, iterative approach involving two Horner-Wadsworth-Emmons reactions. Methyl ketone (2), keto ester (3) and diketone (4) were obtained from codlemone in straightforward approaches in good overall yields and excellent stereochemical purity (≥98% E,E). In electrophysiology, only compound 2 displayed inhibition of the antennal response to the pheromone after presaturation of the antennal receptors. Compounds 2 to 4 did not inhibit the pheromone-degrading enzyme responsible for codlemone metabolism, but mixtures of ketone 2 and diketone 4 with codlemone elicited erratic flights on males in a wind tunnel. In the field, blends of either compound (2 or 4) with the pheromone caught significantly fewer males than codlemone alone. CONCLUSION Codlemone and the potential antagonists 2 to 4 have been synthesised in good yields and excellent stereoselectivity. These chemicals behave as pheromone antagonists of the codling moth both in the laboratory and in the field.
Collapse
Affiliation(s)
- Albert Sans
- University of Lleida, Centre UdL-IRTA, Lleida, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Malo EA, Rojas JC, Gago R, Guerrero Á. Inhibition of the responses to sex pheromone of the fall armyworm, Spodoptera frugiperda. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:134. [PMID: 24766416 PMCID: PMC4014043 DOI: 10.1673/031.013.13401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Trifluoromethyl ketones reversibly inhibit pheromone-degrading esterases in insect olfactory tissues, affecting pheromone detection and behavior of moth males. In this work, (Z)-9-tetradecenyl trifluoromethyl ketone (Z9-14:TFMK), a closely-related analogue of the pheromone of the fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), was prepared and tested in electroantennogram and field tests as possible inhibitors of the pheromone action. The electroantennogram parameters, amplitude, and the repolarization time of the antennal responses of S. frugiperda males were affected by Z9-14:TFMK vapors. Exposure of male antennae to a stream of air passing through 100 μg of the ketone produced a significant reduction of the amplitude and an increase of 2/3 repolarization time signals to the pheromone. The effect was reversible and dose-dependent. In the field, the analogue significantly decreased the number of males caught when mixed with the pheromone in 10:1 ratio. The results suggest that Z9-14:TFMK is a mating disruptant of S. frugiperda and may be a good candidate to consider in future strategies to control this pest.
Collapse
Affiliation(s)
- Edi A Malo
- 1 Departamento de Entomología Tropical, El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto Km 2.5, C.P. 30700, Tapachula, Chiapas, México
| | | | | | | |
Collapse
|
36
|
Augustin S, Boonham N, De Kogel WJ, Donner P, Faccoli M, Lees DC, Marini L, Mori N, Petrucco Toffolo E, Quilici S, Roques A, Yart A, Battisti A. A review of pest surveillance techniques for detecting quarantine pests in Europe. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/epp.2600] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sylvie Augustin
- INRA; UR0633 Zoologie Forestière; CS 400001; Ardon; 45075; Orléans Cedex 2; France
| | | | - Willem J. De Kogel
- Plant Research International B.V.; Wageningen UR; PO Box 69; 6700 AB; Wageningen; Netherlands
| | - Pierre Donner
- CIRAD Réunion; UMR PVBMT CIRAD/Université de La Réunion; Pôle de Protection des Plantes; 7 chemin de l'IRAT; 97410; Saint-Pierre; France
| | - Massimo Faccoli
- Università di Padova; DAFNAE-Entomologia; Agripolis; Viale dell'Università 16; 35020; Legnaro; Italy
| | - David C. Lees
- INRA; UR0633 Zoologie Forestière; CS 400001; Ardon; 45075; Orléans Cedex 2; France
| | - Lorenzo Marini
- Università di Padova; DAFNAE-Entomologia; Agripolis; Viale dell'Università 16; 35020; Legnaro; Italy
| | - Nicola Mori
- Università di Padova; DAFNAE-Entomologia; Agripolis; Viale dell'Università 16; 35020; Legnaro; Italy
| | - Edoardo Petrucco Toffolo
- Università di Padova; DAFNAE-Entomologia; Agripolis; Viale dell'Università 16; 35020; Legnaro; Italy
| | - Serge Quilici
- CIRAD Réunion; UMR PVBMT CIRAD/Université de La Réunion; Pôle de Protection des Plantes; 7 chemin de l'IRAT; 97410; Saint-Pierre; France
| | - Alain Roques
- INRA; UR0633 Zoologie Forestière; CS 400001; Ardon; 45075; Orléans Cedex 2; France
| | - Annie Yart
- INRA; UR0633 Zoologie Forestière; CS 400001; Ardon; 45075; Orléans Cedex 2; France
| | - Andrea Battisti
- Università di Padova; DAFNAE-Entomologia; Agripolis; Viale dell'Università 16; 35020; Legnaro; Italy
| |
Collapse
|
37
|
Post-control surveillance of Triatoma infestans and Triatoma sordida with chemically-baited sticky traps. PLoS Negl Trop Dis 2012; 6:e1822. [PMID: 23029583 PMCID: PMC3441417 DOI: 10.1371/journal.pntd.0001822] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 08/05/2012] [Indexed: 11/20/2022] Open
Abstract
Background Chagas disease prevention critically depends on keeping houses free of triatomine vectors. Insecticide spraying is very effective, but re-infestation of treated dwellings is commonplace. Early detection-elimination of re-infestation foci is key to long-term control; however, all available vector-detection methods have low sensitivity. Chemically-baited traps are widely used in vector and pest control-surveillance systems; here, we test this approach for Triatoma spp. detection under field conditions in the Gran Chaco. Methodology/Principal Findings Using a repeated-sampling approach and logistic models that explicitly take detection failures into account, we simultaneously estimate vector occurrence and detection probabilities. We then model detection probabilities (conditioned on vector occurrence) as a function of trapping system to measure the effect of chemical baits. We find a positive effect of baits after three (odds ratio [OR] 5.10; 95% confidence interval [CI95] 2.59–10.04) and six months (OR 2.20, CI95 1.04–4.65). Detection probabilities are estimated at p≈0.40–0.50 for baited and at just p≈0.15 for control traps. Bait effect is very strong on T. infestans (three-month assessment: OR 12.30, CI95 4.44–34.10; p≈0.64), whereas T. sordida is captured with similar frequency in baited and unbaited traps. Conclusions/Significance Chemically-baited traps hold promise for T. infestans surveillance; the sensitivity of the system at detecting small re-infestation foci rises from 12.5% to 63.6% when traps are baited with semiochemicals. Accounting for imperfect detection, infestation is estimated at 26% (CI95 16–40) after three and 20% (CI95 11–34) after six months. In the same assessments, traps detected infestation in 14% and 8.5% of dwellings, whereas timed manual searches (the standard approach) did so in just 1.4% of dwellings only in the first survey. Since infestation rates are the main indicator used for decision-making in control programs, the approach we present may help improve T. infestans surveillance and control program management. Triatoma infestans is the main vector of Chagas disease in southern South America. Dwelling-infesting populations are controlled through insecticide-spraying campaigns; however, dwellings are often re-infested when insecticide effects wane, and this leads to the re-establishment of disease transmission. Detecting and eliminating re-infestation foci is therefore crucial to prevent new cases. Unfortunately, available vector detection methods all have low sensitivity. Here, we show that simple sticky traps baited with widely available chemicals are significantly more sensitive than either unbaited traps or active manual searches by trained staff — the standard method used in control programs. Increased trap sensitivity (about 500% higher), together with an analytical approach that takes detection failures into account, allows us to estimate dwelling infestation rates at about 20–26%; in contrast, just 0–1.4% of dwellings were identified as infested by manual searches. This large difference highlights the importance of enhancing surveillance systems, and reveals how crude infestation indices may mislead decision-makers. We conclude that chemically baited sticky traps can help improve T. infestans surveillance systems and thus strengthen vector control program management.
Collapse
|
38
|
Xu P, Garczynski SF, Atungulu E, Syed Z, Choo YM, Vidal DM, Zitelli CHL, Leal WS. Moth sex pheromone receptors and deceitful parapheromones. PLoS One 2012; 7:e41653. [PMID: 22911835 PMCID: PMC3401280 DOI: 10.1371/journal.pone.0041653] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/22/2012] [Indexed: 12/03/2022] Open
Abstract
The insect's olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this “lock-and-key” tight selectivity. Formate analogs can be used as replacement for less chemically stable, long-chain aldehyde pheromones, because male moths respond physiologically and behaviorally to these parapheromones. However, it remained hitherto unknown how formate analogs interact with aldehyde-sensitive odorant receptors (ORs). Neuronal responses to semiochemicals were investigated with single sensillum recordings. Odorant receptors (ORs) were cloned using degenerate primers, and tested with the Xenopus oocyte expression system. Quality, relative quantity, and purity of samples were evaluated by gas chromatography and gas chromatography-mass spectrometry. We identified olfactory receptor neurons (ORNs) housed in trichoid sensilla on the antennae of male navel orangeworm that responded equally to the main constituent of the sex pheromone, (11Z,13Z)-hexadecadienal (Z11Z13-16Ald), and its formate analog, (9Z,11Z)-tetradecen-1-yl formate (Z9Z11-14OFor). We cloned an odorant receptor co-receptor (Orco) and aldehyde-sensitive ORs from the navel orangeworm, one of which (AtraOR1) was expressed specifically in male antennae. AtraOR1•AtraOrco-expressing oocytes responded mainly to Z11Z13-16Ald, with moderate sensitivity to another component of the sex pheromone, (11Z,13Z)-hexadecadien-1-ol. Surprisingly, this receptor was more sensitive to the related formate than to the natural sex pheromone. A pheromone receptor from Heliothis virescens, HR13 ( = HvirOR13) showed a similar profile, with stronger responses elicited by a formate analog than to the natural sex pheromone, (11Z)-hexadecenal thus suggesting this might be a common feature of moth pheromone receptors.
Collapse
Affiliation(s)
- Pingxi Xu
- Honorary Maeda-Duffey Laboratory, University of California Davis, Davis, California, United States of America
| | - Stephen F. Garczynski
- USDA-ARS, Yakima Agricultural Research Laboratory, Wapato, Washington, United States of America
| | - Elizabeth Atungulu
- Honorary Maeda-Duffey Laboratory, University of California Davis, Davis, California, United States of America
| | - Zainulabeuddin Syed
- Honorary Maeda-Duffey Laboratory, University of California Davis, Davis, California, United States of America
| | - Young-Moo Choo
- Honorary Maeda-Duffey Laboratory, University of California Davis, Davis, California, United States of America
| | - Diogo M. Vidal
- Honorary Maeda-Duffey Laboratory, University of California Davis, Davis, California, United States of America
| | - Caio H. L. Zitelli
- Honorary Maeda-Duffey Laboratory, University of California Davis, Davis, California, United States of America
| | - Walter S. Leal
- Honorary Maeda-Duffey Laboratory, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Oviposition and flight orientation response of Aedes aegypti to certain aromatic aryl hydrazono esters. Parasitol Res 2012; 111:975-82. [PMID: 22552771 DOI: 10.1007/s00436-012-2921-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
Aedes aegypti is a day-biting, highly anthropophilic mosquito and a potential vector of dengue and chikungunya in India. A. aegypti is a container breeder, generally oviposit in the stored and fresh water bodies, and discarded containers near residential areas that provide suitable habitats for oviposition by gravid females. The diurnal activity and endophilic nature of these mosquitoes have increased the frequency of contact with human being. Assured blood meal from human host in an infested area leads to increased disease occurrence. Gravid mosquitoes can potentially be lured to attractant-treated traps and could subsequently be killed with insecticides or growth regulators. In this direction, oviposition by A. aegypti females to aryl hydrazono esters (AHE)-treated bowls at 10 ppm concentration was tested in dual choice experiment, and their orientation response to these ester compounds was studied in Y-tube olfactometer. Among the esters tested, AHE-2, AHE-11 and AHE-12 elicited increased egg deposition with oviposition activity indices (OAI) of +0.39, +0.24 and +0.48, respectively, compared to control; in contrast, AHE-8, AHE-9 and AHE-10 showed negative oviposition response with OAI of -0.46, -0.35 and -0.29, respectively, at 10 mg/L. In the Y-tube olfactometer bioassay, AHE-2 attracted 60 % females compared to control, while to the odour of AHE-11 and AHE-12, about 70 % of the females were trapped in treated chambers. In contrast, only 27-30 % of gravid females entered the chamber releasing AHE-8, AHE-9 and AHE-10 odour plumes, while 70 % entered control chamber, evincing a possible non-preference of treatment odours as well as interference with olfactory receptors. These compounds have the potential for application as oviposition stimulants or deterrents for surveillance and control of mosquito population using ovitraps.
Collapse
|
40
|
Muñoz L, Bosch MP, Batllori L, Rosell G, Bosch D, Guerrero A, Avilla J. Synthesis of allylic trifluoromethyl ketones and their activity as inhibitors of the sex pheromone of the leopard moth, Zeuzera pyrina L. (Lepidoptera: Cossidae). PEST MANAGEMENT SCIENCE 2011; 67:956-964. [PMID: 21394886 DOI: 10.1002/ps.2139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 11/18/2010] [Accepted: 11/23/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND Trifluoromethyl ketones (TFMKs), structurally related to the pheromones, are good inhibitors of pheromone communication in insects. To determine their activity on Zeuzera pyrina L. (Lepidoptera: Cossidae), a polyphagous pest, the authors have prepared two diunsaturated TFMK analogues of the major (3) and the minor (4) pheromone components, and two monounsaturated ones (5, 6). Their biological activity in electroantennogram (EAG), wind tunnel and field tests is presented. RESULTS The synthetic strategy to obtain the allylic TFMKs 3 and 5 is based on the reactions of diene 10 and 1-octadecene with trifluoroacetaldehyde ethyl hemiacetal, followed by Dess-Martin oxidation of the resulting homoallylic trifluoromethyl alcohols. In EAG, topical application of analogues 3 and 4 on male antennae significantly reduced the pheromone response. In the wind tunnel, compound 4 reduced the number of contacts with the pheromone source. In the field, traps baited with mixtures of pheromone and inhibitors captured significantly fewer males than the pheromone alone. CONCLUSION An efficient synthesis of allylic TFMKs is reported, with good overall yield, regiospecificity and diastereoselectivity. These compounds are good inhibitors of the pheromone in electrophysiology, wind tunnel and field tests. The results show the importance of two unsaturations at positions 2 and 13 of the trifluoroacyl group in the structure of the analogues, the latter being critical for inhibitory activity.
Collapse
Affiliation(s)
- Lourdes Muñoz
- Departament de Quimica Biològica i Modelització Molecular (IQAC-CSIC), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Possible origin of modified EAG activity by point-fluorination of insect pheromones. Future Med Chem 2011; 1:835-45. [PMID: 21426083 DOI: 10.4155/fmc.09.73] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fluorine closely mimics the steric requirement of hydrogen at enzyme receptor sites, but its strong electronegativity significantly alters the reactivity of neighboring centers. Therefore, point-fluorination of biologically active molecules is an important technology with which to investigate the relationship between a biologically active compound with a receptor protein. We synthesized point-fluorinated pheromone analogues of eldanolide and measured their biological activity by electroantennography (EAG) to understand the importance of conformation in the specificity of ligand recognition by the olfactory receptor. By comparing EAG activities and conformational analysis of these molecules using density functional theory calculations, significant differences were found in the population of preferable conformers between EAG-active compounds and EAG-inactive compounds. Based on these results, we propose a working hypothesis for the possible origin of the diversity of relationship between enantiomer and activity in pheromone perception response. These results obtained in the investigation of the mechanism of chemical communication through pheromone molecules among insects should be useful to expand the horizons of medicinal chemists.
Collapse
|
42
|
Sharma K, Vander Meer RK, Fadamiro HY. Phorid fly, Pseudacteon tricuspis, response to alkylpyrazine analogs of a fire ant, Solenopsis invicta, alarm pheromone. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:939-944. [PMID: 21524656 DOI: 10.1016/j.jinsphys.2011.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/05/2011] [Accepted: 04/07/2011] [Indexed: 05/30/2023]
Abstract
The phorid fly, Pseudacteon tricuspis Borgmeier, is a parasitoid of the red imported fire ant, Solenopsis invicta Buren. This fly has been reported to use fire ant chemicals, specifically venom alkaloids and possibly alarm pheromone to locate its host. A recent study identified 2-ethyl-3,6-dimethyl pyrazine as a component of the alarm pheromone of S. invicta. To determine the possible involvement of this fire ant alarm pheromone component in mediating fire ant-phorid fly interactions, we tested electroantennogram (EAG) and behavioral responses of P. tricuspis females to the commercially available mixture of 2-ethyl-3,6-dimethyl pyrazine and its 3,5-dimethyl isomer, as well as six structurally related alkylpyrazine analogs at varying doses. Pseudacteon tricuspis females showed significant EAG response to 2-ethyl-3,6(or 5)-dimethyl pyrazine (herein referred to as pheromone-isomer) at all doses, 0.001-10 μg. Among the tested alkylpyrazine analogs, 2,3-diethyl-5-methyl pyrazine showed significant EAG activity at 0.1 and 1 μg. 2,3-dimethyl pyrazine also showed significant EAG activity at 0.1 μg. Results of four-choice olfactometer bioassays demonstrated significant attraction of P. tricuspis females to the pheromone-isomer (2-ethyl-3,6(or 5)-dimethyl pyrazine) at all tested doses (0.01, 0.1, 1 and 10 μg). The analogs, 2,3-diethyl-5-methyl pyrazine and 2,3-dimethyl pyrazine were significantly better than the control at the higher doses (0.1, 1 and 10 μg). The pheromone-isomer was significantly better than both analogs at two doses, 0.1 and 1 μg. These results confirm that the reported fire ant alarm pheromone component plays a role in mediating attraction of phorid flies to host workers. Venom alkaloids were previously shown to attract P. tricuspis; therefore, we propose that fire ant alarm pheromones may act in tandem or synergistically with venom alkaloids to attract phorid fly parasitoids to fire ant workers.
Collapse
Affiliation(s)
- Kavita Sharma
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | | | | |
Collapse
|
43
|
Bandyopadhyay P, Guha L, Seenivasagan T, Sathe M, Sharma P, Parashar B, Kaushik M. Synthesis and bio-evaluation of aryl hydrazono esters for oviposition responses in Aedes albopictus. Bioorg Med Chem Lett 2011; 21:794-7. [DOI: 10.1016/j.bmcl.2010.11.101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 11/12/2010] [Accepted: 11/20/2010] [Indexed: 11/16/2022]
|
44
|
Sellanes C, Rossini C, González A. Formate analogs as antagonists of the sex pheromone of the honeydew moth, Cryptoblabes gnidiella: electrophysiological, behavioral and field evidence. J Chem Ecol 2010; 36:1234-40. [PMID: 20859757 DOI: 10.1007/s10886-010-9861-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 07/15/2010] [Accepted: 09/07/2010] [Indexed: 11/25/2022]
Abstract
Cryptoblabes gnidiella Milliére (Lepidoptera: Pyralidae) is an economically important exotic pest of vineyards in Southern Brazil and Uruguay. The sex pheromone of C. gnidiella was identified as a mixture of (Z)-11-hexadecenal and (Z)-13-octadecenal, and has been used to monitor populations of this pest in Israel. The development of mating disruption for this species may be hampered by the chemical instability of the natural pheromone components. Therefore, studies on more stable pheromone analogs may provide tools for a control strategy based on behavior-modifying chemicals. We report here the electrophysiological and behavioral responses of C. gnidiella males to (Z)-9-tetradecenyl formate and (Z)-11-hexadecenyl formate, structural analogs of the pheromone components. In gas chromatography-electroantennogram detection (GC-EAD) studies, both analogs elicited responses from C. gnidiella male antennae. Pre-exposure to the formates did not affect the subsequent EAD responses to the natural pheromone components. The formates acted as pheromone antagonists in wind tunnel tests, inhibiting the responses of males toward both synthetic pheromone and calling females. In the field, captures of males in pheromone-baited traps decreased, in a dose-response pattern, when different amount of formates were added to the pheromone. These pheromone antagonists, thus, are potentially useful as mating disruptants for C. gnidiella in commercial vineyards.
Collapse
Affiliation(s)
- Carolina Sellanes
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República, Gral. Flores 2124, CP 11800 Montevideo, Uruguay
| | | | | |
Collapse
|
45
|
|
46
|
Abstract
A survey of the new environmentally safe strategies used for insect control is presented. The survey includes mating disruption, pheromone antagonists as chemical communication inhibitors, pheromones and plant-based volatiles, attractant-and-kill, and push-pull strategies. Important successes have been obtained, particularly in mating disruption with significant reduction in pesticide use in low to moderate pest infestations. One important factor of concern is the high cost of semiochemicals and formulations containing them in comparison to the conventional insecticide treatments, and a combined effort by scientists, producers, and farmers should be made to reduce the cost of application of these semiochemicals.
Collapse
|
47
|
Vargas RI, Shelly TE, Leblanc L, Piñero JC. Recent advances in methyl eugenol and cue-lure technologies for fruit fly detection, monitoring, and control in Hawaii. VITAMINS AND HORMONES 2010; 83:575-95. [PMID: 20831962 DOI: 10.1016/s0083-6729(10)83023-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Worldwide, an important aspect of invasive insect pest management is more effective, safer detection and control systems. Phenyl propanoids are attractive to numerous species of Dacinae fruit flies. Methyl eugenol (ME) (4-allyl-1, 2-dimethoxybenzene-carboxylate), cue-lure (C-L) (4-(p-acetoxyphenyl)-2-butanone), and raspberry ketone (RK) (4-(p-hydroxyphenyl)-2-butanone) are powerful male-specific lures. Most evidence suggests a role of ME and C-L/RK in pheromone synthesis and mate attraction. ME and C-L/RK are used in current fruit fly programs for detection, monitoring, and control. During the Hawaii Area-Wide Pest Management Program in the interest of worker safety and convenience, liquid C-L/ME and insecticide (i.e., naled and malathion) mixtures were replaced with solid lures and insecticides. Similarly, Male Annihilation Technique (MAT) with a sprayable Specialized Pheromone and Lure Application Technology (SPLAT), in combination with ME (against Bactrocera dorsalis, oriental fruit fly) or C-L/RK (against B. cucurbitae, melon fly), and the reduced-risk insecticide, spinosad, was developed for area-wide suppression of fruit flies. The nontarget effects of ME and C-L/RK to native invertebrates were examined. Although weak attractiveness was recorded to flower-visiting insects, including bees and syrphid flies, by ME, effects to native Drosophila and other Hawaiian endemics were found to be minimal. These results suggested that the majority of previously published records, including those of endemic Drosophilidae, were actually for attraction to dead flies inside fruit fly traps. Endemic insect attraction was not an issue with C-L/RK, because B. cucurbitae were rarely found in endemic environments.
Collapse
Affiliation(s)
- Roger I Vargas
- U.S. Pacific Basin Agricultural Research Center, USDA, ARS, Hilo, Hawaii, USA
| | | | | | | |
Collapse
|
48
|
Electroantennogram, flight orientation, and oviposition responses of Aedes aegypti to the oviposition pheromone n-heneicosane. Parasitol Res 2008; 104:827-33. [PMID: 19018567 DOI: 10.1007/s00436-008-1263-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
Oviposition pheromones specifically influence the females of many insects to lay eggs in the sites resulting in more egg deposition. A previous report describes the principal role of n-heneicosane (C(21)) identified and characterized from the larval cuticle of Aedes aegypti (L.) in attracting the gravid mosquitoes to oviposit in treated substrates among other chemical components. However, the means by which this compound is perceived by the females for oviposition has not been reported. In this study, we have recorded the peripheral olfactory responses from the antenna of Ae. aegypti from 10(-7) g to 10(-3) g doses of n-heneicosane. The EAG response of female mosquitoes increased in a dose-dependent manner with increasing stimulus strength. In the orientation assay using Y-maze olfactometer, female mosquitoes were attracted to the odor plume of 10(-6) g and 10(-5) g dose, while the higher dose of 10(-3) g plume enforced repellency to gravid mosquitoes. The response to oviposition substrates by gravid Ae. aegypti females differed across the range of concentrations of n-heneicosane under multiple choice conditions, larger number of eggs were deposited in 10 ppm (10 mg/l) solutions compared to lower and higher concentrations indicating 10 ppm was most attractive. Application of n-heneicosane at 10 ppm in breeding habitats will be a useful method to attract the gravid mosquitoes using ovitraps for surveillance and monitoring. The possible use of this compound in monitoring of mosquito population in endemic areas in relevance to integrated vector management strategies is discussed in detail.
Collapse
|
49
|
Chamorro ER, Sequeira AF, Zalazar MF, Peruchena NM. Theoretical analysis of the electronic properties of the sex pheromone and its analogue derivatives in the female processionary moth Thaumetopoea pytiocampa. Bioorg Med Chem 2008; 16:8535-45. [DOI: 10.1016/j.bmc.2008.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/28/2008] [Accepted: 08/04/2008] [Indexed: 11/28/2022]
|
50
|
Sharma KR, Seenivasagan T, Rao AN, Ganesan K, Agarwal OP, Malhotra RC, Prakash S. Oviposition responses of Aedes aegypti and Aedes albopictus to certain fatty acid esters. Parasitol Res 2008; 103:1065-73. [PMID: 18661154 DOI: 10.1007/s00436-008-1094-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
Abstract
Laboratory studies were carried out to observe the oviposition responses of Aedes aegypti (L.) and Aedes albopictus (Skuse) to several C21 fatty acid esters. The oviposition activity of these dengue and chikungunya vectors to the long-chain fatty acid esters of C21 length have not been reported earlier. From the multiple choice experiments on oviposition activity in standard mosquito cages, it was observed that compounds hexadecyl pentanoate, tetradecyl heptanoate and tridecyl octanoate presented significant oviposition repellent activity against the two mosquito species, while one compound propyl octadecanoate was found to attract A. aegypti to the treated oviposition substrate at 1- and 10-ppm concentrations. The possible utilization of these esters in integrated vector management is discussed.
Collapse
Affiliation(s)
- Kavita R Sharma
- Entomology Division, Defence R&D Establishment, Jhansi Road, Gwalior, 474 002, MP, India
| | | | | | | | | | | | | |
Collapse
|