1
|
Jin J, Wang D, Qian H, Ruan C, Yang Y, Li D, Wang G, Zhu X, Hu Y, Lei P. Precision pore structure optimization of additive manufacturing porous tantalum scaffolds for bone regeneration: A proof-of-concept study. Biomaterials 2025; 313:122756. [PMID: 39182327 DOI: 10.1016/j.biomaterials.2024.122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Currently, the treatment of bone defects in arthroplasty is a challenge in clinical practice. Nonetheless, commercially available orthopaedic scaffolds have shown limited therapeutic effects for large bone defects, especially for massiveand irregular defects. Additively manufactured porous tantalum, in particular, has emerged as a promising material for such scaffolds and is widely used in orthopaedics for its exceptional biocompatibility, osteoinduction, and mechanical properties. Porous tantalum has also exhibited unique advantages in personalised rapid manufacturing, which allows for the creation of customised scaffolds with complex geometric shapes for clinical applications at a low cost and high efficiency. However, studies on the effect of the pore structure of additively manufactured porous tantalum on bone regeneration have been rare. In this study, our group designed and fabricated a batch of precision porous tantalum scaffolds via laser powder bed fusion (LPBF) with pore sizes of 250 μm (Ta 250), 450 μm (Ta 450), 650 μm (Ta 650), and 850 μm (Ta 850). We then performed a series of in vitro experiments and observed that all four groups showed good biocompatibility. In particular, Ta 450 demonstrated the best osteogenic performance. Afterwards, our team used a rat bone defect model to determine the in vivo osteogenic effects. Based on micro-computed tomography and histology, we identified that Ta 450 exhibited the best bone ingrowth performance. Subsequently, sheep femur and hip defect models were used to further confirm the osteogenic effects of Ta 450 scaffolds. Finally, we verified the aforementioned in vitro and in vivo results via clinical application (seven patients waiting for revision total hip arthroplasty) of the Ta 450 scaffold. The clinical results confirmed that Ta 450 had satisfactory clinical outcomes up to the 12-month follow-up. In summary, our findings indicate that 450 μm is the suitable pore size for porous tantalum scaffolds. This study may provide a new therapeutic strategy for the treatment of massive, irreparable, and protracted bone defects in arthroplasty.
Collapse
Affiliation(s)
- Jiale Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dongyu Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Department of Orthopedic Surgery, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Hu Qian
- Department of Orthopedic Surgery, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Chengxin Ruan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yiqi Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dongdong Li
- Department of Orthopedic Surgery, Ningxia Medical University, Yinchuan, 200233, China
| | - Guohua Wang
- Hunan Huaxiang Medical Technology Co., Ltd, Changsha, 410008, China
| | - Xiaobo Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Yihe Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Pengfei Lei
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Department of Orthopedic Surgery, Xiangya Hospital Central South University, Changsha, 410008, China.
| |
Collapse
|
2
|
Kaneda G, Huang D, Pham N, Gonzalez AR, Tawackoli W, Lee S, Suzuki M, Nelson TJ, Glaeser JD, Millecamps M, Stone LS, Sheyn D, Metzger MF. Exercise improves load bearing bone structural properties in female secreted protein acidic and rich in cysteine (SPARC) null mice but not in males. J Orthop Res 2024; 42:2725-2734. [PMID: 39105654 DOI: 10.1002/jor.25950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is the most abundant glycoprotein in bone and is thought to play a critical role in bone remodeling and homeostasis. However, the effect of SPARC in relation to gender and exercise on bone quality is not well understood. The purpose of this study was to quantify differences in the structural and biomechanical properties between calvarial and femoral bone from male and female wild-type (WT) and SPARC null (SPARC(-/-)) mice as well as the ability of exercise to rescue bone health. Male and female WT and transgenic SPARC(-/-) mice were given either a fixed or rotating running wheel for exercise. Bone structural, biomechanical, and morphological parameters were quantified using micro computed tomography, push out testing for the calvaria, three-point flexural testing for the femurs, histological and immunofluorescent staining. Similar reductions in structural and biomechanical strength were observed in both male and female SPARC(-/-) calvaria, most of which were not significantly affected by exercise. In femurs, SPARC(-/-) had a significant effect on structural parameters in both sexes, but was more pronounced in females with some properties being rescued with running. Interestingly, the effect of SPARC(-/-) on bone mineral density was only detected in female SPARC(-/-) mice, not males, and was subsequently rescued with exercise. This study emphasizes the differences between sexes in WT and SPARC(-/-) mice in regard to structural parameters and biomechanical properties. Research into gender differences can help inform and personalize treatment options to more accurately meet patient needs.
Collapse
Affiliation(s)
- Giselle Kaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center (CSMC), Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, CSMC, Los Angeles, California, USA
- Department of Biomedical Sciences, CSMC, Los Angeles, California, USA
| | - Dave Huang
- Orthopaedic Biomechanics Laboratory, CSMC, Los Angeles, California, USA
| | - Nathalie Pham
- Orthopaedic Biomechanics Laboratory, CSMC, Los Angeles, California, USA
| | - Alfonso R Gonzalez
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center (CSMC), Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, CSMC, Los Angeles, California, USA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center (CSMC), Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, CSMC, Los Angeles, California, USA
- Department of Biomedical Sciences, CSMC, Los Angeles, California, USA
- Department of Orthopedics, CSMC, Los Angeles, California, USA
- Department of Surgery, CSMC, Los Angeles, California, USA
- Biomedical Imaging Research Institute, CSMC, Los Angeles, California, USA
| | - Seunghwan Lee
- The Alan Edwards Centre for Research on Pain, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Miyako Suzuki
- The Alan Edwards Centre for Research on Pain, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
- Department of Orthopedic Surgery, Chiba University, Chiba, Japan
| | - Trevor J Nelson
- Orthopaedic Biomechanics Laboratory, CSMC, Los Angeles, California, USA
| | - Juliane D Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center (CSMC), Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, CSMC, Los Angeles, California, USA
- Department of Orthopedics, CSMC, Los Angeles, California, USA
| | - Magali Millecamps
- The Alan Edwards Centre for Research on Pain, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Laura S Stone
- The Alan Edwards Centre for Research on Pain, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center (CSMC), Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, CSMC, Los Angeles, California, USA
- Department of Biomedical Sciences, CSMC, Los Angeles, California, USA
- Department of Orthopedics, CSMC, Los Angeles, California, USA
- Department of Surgery, CSMC, Los Angeles, California, USA
| | - Melodie F Metzger
- Orthopaedic Biomechanics Laboratory, CSMC, Los Angeles, California, USA
- Department of Orthopedics, CSMC, Los Angeles, California, USA
| |
Collapse
|
3
|
Gupta A, Saha S, Das A, Roy Chowdhury A. Evaluating the influence on osteocyte mechanobiology within the lacunar-canalicular system for varying lacunar equancy and perilacunar elasticity: A multiscale fluid-structure interaction analysis. J Mech Behav Biomed Mater 2024; 160:106767. [PMID: 39393133 DOI: 10.1016/j.jmbbm.2024.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
The lacunar morphology and perilacunar tissue properties of osteocytes in bone can vary under different physiological and pathological conditions. How these alterations collectively change the overall micromechanics of osteocytes in the lacunar-canalicular system (LCS) of an osteon still requires special focus. Therefore, a Haversian canal and LCS-based osteon model was established to evaluate the changes in the hydrodynamic environment around osteocytes under physiological loading using fluid-structure interaction analysis, followed by a sub-modelled finite element analysis to assess the mechanical responses of osteocytes and their components. Osteocytes were modelled with detailed configurations, including cytoplasm, nucleus, and cytoskeleton, and parametric variations in lacunar equancy (L.Eq) and perilacunar elasticity (Pl.E) were considered within the osteon model. The study aimed to conduct a comparative study among osteon models with varying L. Eq and Pl. E to check the resulting differences in osteocyte mechanobiology. The results demonstrated that the average mechanical stimulation of each subcellular component of osteocytes increased with decreases in L. Eq and Pl. E, reflecting conditions typically seen in young, healthy bone as per previous literature. However, hydrodynamic responses, such as fluid flow and fluid shear stress on osteocytes, varied proportionally with the elasticity difference between the bone matrix and the perilacunar region during Pl. E variation. Additionally, the findings revealed that a minimal percentage of energy was used to transmit mechanical responses through microtubules from the cell membrane to the nucleus, and this energy percentage increased with higher L. Eq. The outcomes of the study could help to quantify how the osteocyte microenvironment and its mechanosensitivity within cortical bone changes with L. Eq and Pl. E alterations in different bone conditions, from young to aged and healthy to diseased.
Collapse
Affiliation(s)
- Abhisek Gupta
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Subrata Saha
- Department of Restorative Dentistry, University of Washington, Seattle, WA, USA
| | - Apurba Das
- Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Amit Roy Chowdhury
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India.
| |
Collapse
|
4
|
Covato C, Pilipenco A, Scheberl A, Reimhult E, Subbiahdoss G. Osteoblasts win the race for the surface on DNA polyelectrolyte multilayer coatings against S. epidermidis but not against S. aureus. Colloids Surf B Biointerfaces 2024; 245:114336. [PMID: 39489986 DOI: 10.1016/j.colsurfb.2024.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Biomaterial-associated infections pose severe challenges in modern medicine. Previously, we reported that polyanionic DNA surface coatings repel bacterial adhesion and support osteoblast-like cell attachment in monoculture experiments, candidate for orthopaedic implant coatings. However, monocultures lack the influence of bacteria or bacterial toxins on osteoblast-like cell adhesion to biomaterial surfaces. In this study, co-culture of staphylococcus (S. epidermidis and S. aureus) and SaOS-2 osteosarcoma cells was studied on chitosan-DNA polyelectrolyte multilayer coated glass based on the concept of `the race for the surface`. Staphylococcus was first deposited onto the surface in a microfluidic chamber to mimic peri-operative contamination, and subsequently, SaOS-2 cells were seeded. Both staphylococcus and SaOS-2 cells were cultured together on the surfaces for 24 h under flow. The presence of S. epidermidis decreased SaOS-2 cell number on all surfaces after 24 h. However, the cells that adhered spread equally well in the presence of low virulent S. epidermidis. However, highly virulent S. aureus induced cell death of all adherent SaOS-2 cells on chitosan-DNA multilayer coated glass, a worse outcome than on uncoated glass. The outcome of our co-culture study highlights the limitations of monoculture models. It demonstrates the need for in vitro co-culture assays to meaningfully bridge the gap in lab testing of biomaterials and their clinical evaluations where bacterial infection can occur. The relative failure of cell-adhesive and bacteria-repelling DNA coatings in co-cultures also suggests the need to incorporate bactericidal in addition to non-adhesive functions to protect competitive cell spreading over a long period.
Collapse
Affiliation(s)
- Carmelo Covato
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria
| | - Alina Pilipenco
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 18200, Czech Republic
| | - Andrea Scheberl
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria
| | - Erik Reimhult
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria
| | - Guruprakash Subbiahdoss
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria.
| |
Collapse
|
5
|
Zimmermann EA, DeVet T, Cilla M, Albiol L, Kavaseri K, Andrea C, Julien C, Tiedemann K, Panahifar A, Alidokht SA, Chromik R, Komarova SV, Reinhardt DP, Zaslansky P, Willie BM. Tissue material properties, whole-bone morphology and mechanical behavior in the Fbn1 C1041G/+ mouse model of Marfan syndrome. Matrix Biol Plus 2024; 23:100155. [PMID: 39049903 PMCID: PMC11267061 DOI: 10.1016/j.mbplus.2024.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Marfan syndrome (MFS) is a connective tissue disorder caused by pathogenic mutations in FBN1. In bone, the protein fibrillin-1 is found in the extracellular matrix where it provides structural support of elastic fiber formation, stability for basement membrane, and regulates the bioavailability of growth factors. Individuals with MFS exhibit a range of skeletal complications including low bone mineral density and long bone overgrowth. However, it remains unknown if the bone phenotype is caused by alteration of fibrillin-1's structural function or distortion of its interactions with bone cells. To assess the structural effects of the fibrillin-1 mutation, we characterized bone curvature, microarchitecture, composition, porosity, and mechanical behavior in the Fbn1 C1041G/+ mouse model of MFS. Tibiae of 10, 26, and 52-week-old female Fbn1 C1041G/+ and littermate control (LC) mice were analyzed. Mechanical behavior was assessed via in vivo strain gauging, finite element analysis, ex vivo three-point bending, and nanoindentation. Tibial bone morphology and curvature were assessed with micro computed tomography (μCT). Bone composition was measured with Fourier transform infrared (FTIR) imaging. Vascular and osteocyte lacunar porosity were assessed by synchrotron computed tomography. Fbn1 C1041G/+ mice exhibited long bone overgrowth and osteopenia consistent with the MFS phenotype. Trabecular thickness was lower in Fbn1 C1041G/+ mice but cortical bone microarchitecture was similar in Fbn1 C1041G/+ and LC mice. Whole bone curvature was straighter below the tibio-fibular junction in the medial-lateral direction and more curved above in LC compared to Fbn1 C1041G/+ mice. The bone matrix crystallinity was 4 % lower in Fbn1 C1041G/+ mice compared to LC, implying that mineral platelets in LCs have greater crystal size and perfection than Fbn1 C1041G/+ mice. Structural and mechanical properties were similar between genotypes. Cortical diaphyseal lacunar porosity was lower in Fbn1 C1041G/+ mice compared to LC; this was a result of the average volume of an individual osteocyte lacunae being smaller. These data provide valuable insights into the bone phenotype and its contribution to fracture risk in this commonly used mouse model of MFS.
Collapse
Affiliation(s)
- Elizabeth A. Zimmermann
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Taylor DeVet
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Myriam Cilla
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Laia Albiol
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kyle Kavaseri
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Christine Andrea
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Catherine Julien
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Kerstin Tiedemann
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Arash Panahifar
- BioMedical Imaging and Therapy Beamline, Canadian Light Source, Saskatoon, Canada
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Canada
| | - Sima A. Alidokht
- Department of Mechanical Engineering, Memorial University of Newfoundland, St. John’s, Canada
- Department of Mining and Materials Engineering, McGill University, Montreal, Canada
| | - Richard Chromik
- Department of Mining and Materials Engineering, McGill University, Montreal, Canada
| | - Svetlana V. Komarova
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Dieter P. Reinhardt
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Paul Zaslansky
- Department for Operative, Preventive and Pediatric Dentistry, CC3 -Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M. Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
6
|
Hislop BD, Mercer AK, Whitley AG, Myers EP, Mackin M, Heveran CM, June RK. Osteochondral fluid transport in an ex vivo system. Osteoarthritis Cartilage 2024; 32:907-911. [PMID: 38631555 PMCID: PMC11182706 DOI: 10.1016/j.joca.2024.02.946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVE Alterations to bone-to-cartilage fluid transport may contribute to the development of osteoarthritis (OA). Larger biological molecules in bone may transport from bone-to-cartilage (e.g., insulin, 5 kDa). However, many questions remain about fluid transport between these tissues. The objectives of this study were to (1) test for diffusion of 3 kDa molecular tracers from bone-to-cartilage and (2) assess potential differences in bone-to-cartilage fluid transport between different loading conditions. DESIGN Osteochondral cores extracted from bovine femurs (N = 10 femurs, 10 cores/femur) were subjected to either no-load (i.e., pure diffusion), pre-load only, or cyclic compression (5 ± 2% or 10 ± 2% strain) in a two-chamber bioreactor. The bone was placed into the bone compartment followed by a 3 kDa dextran tracer, and tracer concentrations in the cartilage compartment were measured every 5 min for 120 min. Tracer concentrations were analyzed for differences in beginning, peak, and equilibrium concentrations, loading effects, and time-to-peak tracer concentration. RESULTS Peak tracer concentration in the cartilage compartment was significantly higher compared to the beginning and equilibrium tracer concentrations. Cartilage-compartment tracer concentration and maximum fluorescent intensity were influenced by strain magnitude. No time-to-peak relationship was found between strain magnitudes and cartilage-compartment tracer concentration. CONCLUSION This study shows that bone-to-cartilage fluid transport occurs with 3 kDa dextran molecules. These are larger molecules to move between bone and cartilage than previously reported. Further, these results demonstrate the potential impact of cyclic compression on osteochondral fluid transport. Determining the baseline osteochondral fluid transport in healthy tissues is crucial to elucidating the mechanisms OA pathology.
Collapse
Affiliation(s)
- Brady David Hislop
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Ara K Mercer
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | | | - Erik P Myers
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Marie Mackin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Chelsea M Heveran
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Ronald K June
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, USA; Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT, USA; Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Zhang Y, O'Mahony A, He Y, Barber T. Hydrodynamic shear stress' impact on mammalian cell properties and its applications in 3D bioprinting. Biofabrication 2024; 16:022003. [PMID: 38277669 DOI: 10.1088/1758-5090/ad22ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
As an effective cell assembly method, three-dimensional bioprinting has been widely used in building organ models and tissue repair over the past decade. However, different shear stresses induced throughout the entire printing process can cause complex impacts on cell integrity, including reducing cell viability, provoking morphological changes and altering cellular functionalities. The potential effects that may occur and the conditions under which these effects manifest are not clearly understood. Here, we review systematically how different mammalian cells respond under shear stress. We enumerate available experimental apparatus, and we categorise properties that can be affected under disparate stress patterns. We also summarise cell damaging mathematical models as a predicting reference for the design of bioprinting systems. We concluded that it is essential to quantify specific cell resistance to shear stress for the optimisation of bioprinting systems. Besides, as substantial positive impacts, including inducing cell alignment and promoting cell motility, can be generated by shear stress, we suggest that we find the proper range of shear stress and actively utilise its positive influences in the development of future systems.
Collapse
Affiliation(s)
- Yani Zhang
- School of Mechanical Engineering, UNSW, Sydney, NSW 2052, Australia
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Aidan O'Mahony
- Inventia Life Science Pty Ltd, Alexandria, Sydney, NSW 2015, Australia
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Tracie Barber
- School of Mechanical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Niroobakhsh M, Laughrey LE, Dallas SL, Johnson ML, Ganesh T. Computational modeling based on confocal imaging predicts changes in osteocyte and dendrite shear stress due to canalicular loss with aging. Biomech Model Mechanobiol 2024; 23:129-143. [PMID: 37642807 DOI: 10.1007/s10237-023-01763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
Exercise and physical activity exert mechanical loading on the bones which induces bone formation. However, the relationship between the osteocyte lacunar-canalicular morphology and mechanical stress experienced locally by osteocytes transducing signals for bone formation is not fully understood. In this study, we used computational modeling to predict the effect of canalicular density, the number of fluid inlets, and load direction on fluid flow shear stress (FFSS) and bone strains and how these might change following the microstructural deterioration of the lacunar-canalicular network that occurs with aging. Four distinct computational models were initially generated of osteocytes with either ten or eighteen dendrites using a fluid-structure interaction method with idealized geometries. Next, a young and a simulated aged osteocyte were developed from confocal images after FITC staining of the femur of a 4-month-old C57BL/6 mouse to estimate FFSS using a computational fluid dynamics approach. The models predicted higher fluid velocities in the canaliculi versus the lacunae. Comparison of idealized models with five versus one fluid inlet indicated that with four more inlets, one-half of the dendrites experienced FFSS greater than 0.8 Pa, which has been associated with osteogenic responses. Confocal image-based models of real osteocytes indicated a six times higher ratio of canalicular to lacunar surface area in the young osteocyte model than the simulated aged model and the average FFSS in the young model (FFSS = 0.46 Pa) was three times greater than the aged model (FFSS = 0.15 Pa). Interestingly, the surface area with FFSS values above 0.8 Pa was 23 times greater in the young versus the simulated aged model. These findings may explain the impaired mechano-responsiveness of osteocytes with aging.
Collapse
Affiliation(s)
- Mohammad Niroobakhsh
- Division of Natural and Built Environment, School of Science and Engineering, University of Missouri-Kansas City, 350 L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO, 64110, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Loretta E Laughrey
- Division of Natural and Built Environment, School of Science and Engineering, University of Missouri-Kansas City, 350 L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO, 64110, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Thiagarajan Ganesh
- Division of Natural and Built Environment, School of Science and Engineering, University of Missouri-Kansas City, 350 L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO, 64110, USA.
| |
Collapse
|
9
|
Easson M, Wong S, Moody M, Schmidt TA, Deymier A. Physiochemical effects of acid exposure on bone composition and function. J Mech Behav Biomed Mater 2024; 150:106304. [PMID: 38096610 DOI: 10.1016/j.jmbbm.2023.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 10/04/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024]
Abstract
Bone is primarily composed of collagen and apatite, two materials which exhibit a high sensitivity to pH dysregulation. As a result, acid exposure of bone, both clinically and in the laboratory is expected to cause compositional and mechanical changes to the tissue. Clinically, Metabolic acidosis (MA), a condition characterized by a reduced physiological pH, has been shown to have negative implications on bone health, including a decrease in bone mineral density and volume as well as increased fracture risk. The addition of bone-like apatite to ionic solutions such as phosphate buffered saline (PBS) and media has been shown to acidify the solution leading to bone acid exposure. Therefore, is it essential to understand how reduced pH physiochemically affects bone composition and in turn its mechanical properties. This study investigates the specific changes in bone due to physiochemical dissolution in acid. Excised murine bones were placed in PBS solutions at different pHs: a homeostatic pH level (pH 7.4), an acidosis equivalent (pH 7.0), and an extreme acidic solution (pH 5.5). After 5 days, the bones were removed from the solutions and characterized to determine compositional and material changes. We found that bones, without cells, were able to regulate pH via buffering, leading to a decrease in bone mineral content and an increase in collagen denaturation. Both of these compositional changes contributed to an increase in bone toughness by creating a more ductile bone surface and preventing crack propagation. Therefore, we conclude that the skeletal systems' physiochemical response to acid exposure includes multifaceted and spatially variable compositional changes that affect bone mechanics.
Collapse
Affiliation(s)
- Margaret Easson
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Stephanie Wong
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Mikayla Moody
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Tannin A Schmidt
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Alix Deymier
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
10
|
Silveira A, Greving I, Longo E, Scheel M, Weitkamp T, Fleck C, Shahar R, Zaslansky P. Deep learning to overcome Zernike phase-contrast nanoCT artifacts for automated micro-nano porosity segmentation in bone. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:136-149. [PMID: 38095668 PMCID: PMC10833422 DOI: 10.1107/s1600577523009852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024]
Abstract
Bone material contains a hierarchical network of micro- and nano-cavities and channels, known as the lacuna-canalicular network (LCN), that is thought to play an important role in mechanobiology and turnover. The LCN comprises micrometer-sized lacunae, voids that house osteocytes, and submicrometer-sized canaliculi that connect bone cells. Characterization of this network in three dimensions is crucial for many bone studies. To quantify X-ray Zernike phase-contrast nanotomography data, deep learning is used to isolate and assess porosity in artifact-laden tomographies of zebrafish bones. A technical solution is proposed to overcome the halo and shade-off domains in order to reliably obtain the distribution and morphology of the LCN in the tomographic data. Convolutional neural network (CNN) models are utilized with increasing numbers of images, repeatedly validated by `error loss' and `accuracy' metrics. U-Net and Sensor3D CNN models were trained on data obtained from two different synchrotron Zernike phase-contrast transmission X-ray microscopes, the ANATOMIX beamline at SOLEIL (Paris, France) and the P05 beamline at PETRA III (Hamburg, Germany). The Sensor3D CNN model with a smaller batch size of 32 and a training data size of 70 images showed the best performance (accuracy 0.983 and error loss 0.032). The analysis procedures, validated by comparison with human-identified ground-truth images, correctly identified the voids within the bone matrix. This proposed approach may have further application to classify structures in volumetric images that contain non-linear artifacts that degrade image quality and hinder feature identification.
Collapse
Affiliation(s)
- Andreia Silveira
- Department for Restorative, Preventive and Pediatric Dentistry, Charité-Universitaetsmedizin, Berlin, Germany
| | - Imke Greving
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Elena Longo
- Elettra – Sincrotrone Trieste SCpA, Basovizza, Trieste, Italy
| | | | | | - Claudia Fleck
- Fachgebiet Werkstofftechnik / Chair of Materials Science and Engineering, Institute of Materials Science and Technology, Faculty III Process Sciences, Technische Universität Berlin, Berlin, Germany
| | - Ron Shahar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | - Paul Zaslansky
- Department for Restorative, Preventive and Pediatric Dentistry, Charité-Universitaetsmedizin, Berlin, Germany
| |
Collapse
|
11
|
Mishra A, Kai R, Atkuru S, Dai Y, Piccinini F, Preshaw PM, Sriram G. Fluid flow-induced modulation of viability and osteodifferentiation of periodontal ligament stem cell spheroids-on-chip. Biomater Sci 2023; 11:7432-7444. [PMID: 37819086 DOI: 10.1039/d3bm01011b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Developing physiologically relevant in vitro models for studying periodontitis is crucial for understanding its pathogenesis and developing effective therapeutic strategies. In this study, we aimed to integrate the spheroid culture of periodontal ligament stem cells (PDLSCs) within a spheroid-on-chip microfluidic perfusion platform and to investigate the influence of interstitial fluid flow on morphogenesis, cellular viability, and osteogenic differentiation of PDLSC spheroids. PDLSC spheroids were seeded onto the spheroid-on-chip microfluidic device and cultured under static and flow conditions. Computational analysis demonstrated the translation of fluid flow rates of 1.2 μl min-1 (low-flow) and 7.2 μl min-1 (high-flow) to maximum fluid shear stress of 59 μPa and 360 μPa for low and high-flow conditions, respectively. The spheroid-on-chip microfluidic perfusion platform allowed for modulation of flow conditions leading to larger PDLSC spheroids with improved cellular viability under flow compared to static conditions. Modulation of fluid flow enhanced the osteodifferentiation potential of PDLSC spheroids, demonstrated by significantly enhanced alizarin red staining and alkaline phosphatase expression. Additionally, flow conditions, especially high-flow conditions, exhibited extensive calcium staining across both peripheral and central regions of the spheroids, in contrast to the predominantly peripheral staining observed under static conditions. These findings highlight the importance of fluid flow in shaping the morphological and functional properties of PDLSC spheroids. This work paves the way for future investigations exploring the interactions between PDLSC spheroids, microbial pathogens, and biomaterials within a controlled fluidic environment, offering insights for the development of innovative periodontal therapies, tissue engineering strategies, and regenerative approaches.
Collapse
Affiliation(s)
- Apurva Mishra
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Ren Kai
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Srividya Atkuru
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Yichen Dai
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Filippo Piccinini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore.
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
| |
Collapse
|
12
|
Østergaard M, Naver EB, Schüpbach D, Kaestner A, Strobl M, Brüel A, Thomsen JS, Schmidt S, Poulsen HF, Kuhn LT, Birkedal H. Correlative study of liquid in human bone by 3D neutron microscopy and lab-based X-ray μCT. Bone 2023; 175:116837. [PMID: 37419297 DOI: 10.1016/j.bone.2023.116837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Liquid plays an important role in bone that has a complex 3D hierarchical pore structure. However, liquid (water) is difficult to discern from e.g. an organic matrix by X-ray imaging. Therefore, we use a correlative approach using both high resolution X-ray and neutron imaging. Human femoral bone with liquid adsorbed into some of the pores was imaged with both the Neutron Microscope at the ICON beamline, SINQ at PSI, and by lab-based μCT using 2.7 μm voxel size. Segmentation of the two datasets showed that, even though the liquid was clearly distinguishable in the neutron data and not in the X-ray data, it remained challenging to segment it from bone due to overlaps of peaks in the gray level histograms. In consequence, segmentations from X-ray and neutron data varied significantly. To address this issue, the segmented X-ray porosities was overlaid on the neutron data, making it possible to localize the liquid in the vascular porosities of the bone sample and use the neutron attenuation to identify it as H2O. The contrast in the neutron images was lowered slightly between the bone and the liquid compared to the bone and the air. This correlative study shows that the complementary use of X-rays and neutrons is very favorable, since H2O is very distinct in the neutron data, while D2O, H2O, and organic matter can barely be distinguished from air in the X-ray data.
Collapse
Affiliation(s)
- Maja Østergaard
- Department of Chemistry and iNANO, Aarhus University, Aarhus, Denmark.
| | - Estrid Buhl Naver
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Delia Schüpbach
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen, Switzerland.
| | - Anders Kaestner
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen, Switzerland.
| | - Markus Strobl
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen, Switzerland; Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | | | - Søren Schmidt
- Data Management and Software Centre, European Spallation Source, Lund, Sweden.
| | | | - Luise Theil Kuhn
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Henrik Birkedal
- Department of Chemistry and iNANO, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
13
|
Solorzano A, Brady M, Bhatt N, Johnson A, Burgess B, Leyva H, Puangmalai N, Jerez C, Wood R, Kayed R, Deane R. Central and peripheral tau retention modulated by an anti-tau antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553682. [PMID: 37645819 PMCID: PMC10462070 DOI: 10.1101/2023.08.17.553682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tau protein blood levels dependent on its distribution to peripheral organs and possible elimination from the body. Thus, the peripheral distribution of CSF-derived tau protein was explored, especially since there is a transition to blood-based biomarkers and the emerging idea that tau pathology may spread beyond brain. Near infrared fluorescence (NIRF) was mainly used to analyze tau (tau-NIRF) distribution after its intracisternal or intravenous injection. There was a striking uptake of blood- or CSF-derived tau-NIRF protein by the skeletal structures, liver, small intestine (duodenum), gall bladder, kidneys, urinary bladder, lymph nodes, heart, and spleen. In aging and in older APP/PS1 mice, tau uptake in regions, such as the brain, liver, and skeleton, was increased. In bone (femur) injected tau protein was associated with integrin-binding sialoprotein (IBSP), a major non-collagenous glycoprotein that is associated with mineralization. Tau-NIRF was cleared slowly from CSF via mainly across the cribriform plate, and cervical lymph nodes. In brain, some of the CSF injected tau protein was associated with NeuN-positive and PDGFRý-positive cells, which may explain its retention. The presence of tau in the bladders suggested excretion routes of tau. CSF anti-tau antibody increased CSF tau clearance, while blood anti-tau antibody decreased tau accumulation in the femur but not in liver, kidney, and spleen. Thus, the data show a body-wide distribution and retention of CSF-derived tau protein, which increased with aging and in older APP/PS1 mice. Further work is needed to elucidate the relevance of tau accumulation in each organ to tauopathy.
Collapse
|
14
|
Wang X, Wang Y, Yang X, Mohd Nasiruddin NJB, Dong D, Samsudin SB, Qin XM. Effects of blood flow restriction training on bone metabolism: a systematic review and meta-analysis. Front Physiol 2023; 14:1212927. [PMID: 37621760 PMCID: PMC10445948 DOI: 10.3389/fphys.2023.1212927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction: The efficacy of low-intensity blood flow restriction (LI-BFR) training programs in bone metabolism remains unclear compared to low-intensity (LI) training and high-intensity (HI) training. The aim of this review was to quantitatively identify the effects of LI-BFR training on changes in bone formation markers (i.e., bone-specific alkaline phosphatase, BALP), bone resorption (i.e., C-terminal telopeptide of type I collagen, CTX) and bone mineral density (BMD) compared with conventional resistance training programmes. Additionally, the effectiveness of walking with and without BFR was assessed. Methods: PubMed, Scopus, SPORTDiscus, Web of Science and Google Scholar databases were searched for articles based on eligibility criteria. Review Manager Version 5.4 was used for Meta-analysis. Physiotherapy Evidence Database (PEDro) was applied to assess the methodological quality of studies. Results: 12 articles were included in the meta-analysis, with a total of 378 participants. Meta-results showed that compared with LI training, LI-BFR training induced greater increments in BALP (young adults: MD = 6.70, p < 0.001; old adults: MD = 3.94, p = 0.002), slight increments in BMD (young adults: MD = 0.05, p < 0.00001; old adults: MD = 0.01, p < 0.00001), and greater decrements in CTX (young adults: MD = -0.19, p = 0.15; old adults: MD = -0.07, p = 0.003). Compared with HI training, LI-BFR training produced smaller increments in BALP (young adults: MD = -6.87, p = 0.24; old adults: MD = -0.6, p = 0.58), similar increments in BMD (MD = -0.01, p = 0.76) and similar decrements in CTX (young adults: MD = 0, p = 0.96; old adults: MD = -0.08, p = 0.13). Although there were only two studies on walking training intervention, walking training with BFR had a better effect on bone metabolism than training without BFR. Discussion: In conclusion, LI-BFR training induces greater improvements in bone health than LI training, but is less effective than HI training. Therefore, LI-BFR training may be an effective and efficient way to improve bone health for untrained individuals, older adults, or those undergoing musculoskeletal rehabilitation. Clinical Trial Registration: [https://www.crd.york.ac.uk/prospero/], identifier [CRD42023411837].
Collapse
Affiliation(s)
- Xiaolin Wang
- Department of Sport Studies, Faculty of Educational Studies, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yifei Wang
- Department of Physical Education, Ludong University, Yantai, China
| | - Xuezhen Yang
- School of Nursing, Shandong First Medical University, Jinan, China
| | | | - Delong Dong
- Department of Physical Education, Ludong University, Yantai, China
| | - Shamsulariffin Bin Samsudin
- Department of Sport Studies, Faculty of Educational Studies, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Xin-Min Qin
- Department of Smart Health Science and Technology Convergence (Sport Science), Department of Sport Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
15
|
Kitase Y, Prideaux M. Regulation of the Osteocyte Secretome with Aging and Disease. Calcif Tissue Int 2023; 113:48-67. [PMID: 37148298 DOI: 10.1007/s00223-023-01089-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
As the most numerous and long-lived of all bone cells, osteocytes have essential functions in regulating skeletal health. Through the lacunar-canalicular system, secreted proteins from osteocytes can reach cells throughout the bone. Furthermore, the intimate connectivity between the lacunar-canalicular system and the bone vasculature allows for the transport of osteocyte-secreted factors into the circulation to reach the entire body. Local and endocrine osteocyte signaling regulates physiological processes such as bone remodeling, bone mechanoadaptation, and mineral homeostasis. However, these processes are disrupted by impaired osteocyte function induced by aging and disease. Dysfunctional osteocyte signaling is now associated with the pathogenesis of many disorders, including chronic kidney disease, cancer, diabetes mellitus, and periodontitis. In this review, we focus on the targeting of bone and extraskeletal tissues by the osteocyte secretome. In particular, we highlight the secreted osteocyte proteins, which are known to be dysregulated during aging and disease, and their roles during disease progression. We also discuss how therapeutic or genetic targeting of osteocyte-secreted proteins can improve both skeletal and systemic health.
Collapse
Affiliation(s)
- Yukiko Kitase
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
16
|
Bini F, Pica A, Marinozzi A, Marinozzi F. 3D Tortuosity and Diffusion Characterization in the Human Mineralized Collagen Fibril Using a Random Walk Model. Bioengineering (Basel) 2023; 10:bioengineering10050558. [PMID: 37237628 DOI: 10.3390/bioengineering10050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Bone tissue is mainly composed at the nanoscale of apatite minerals, collagen molecules and water that form the mineralized collagen fibril (MCF). In this work, we developed a 3D random walk model to investigate the influence of bone nanostructure on water diffusion. We computed 1000 random walk trajectories of water molecules within the MCF geometric model. An important parameter to analyse transport behaviour in porous media is tortuosity, computed as the ratio between the effective path length and the straight-line distance between initial and final points. The diffusion coefficient is determined from the linear fit of the mean squared displacement of water molecules as a function of time. To achieve more insight into the diffusion phenomenon within MCF, we estimated the tortuosity and diffusivity at different quotes in the longitudinal direction of the model. Tortuosity is characterized by increasing values in the longitudinal direction. As expected, the diffusion coefficient decreases as tortuosity increases. Diffusivity outcomes confirm the findings achieved by experimental investigations. The computational model provides insights into the relation between the MCF structure and mass transport behaviour that may contribute to the improvement of bone-mimicking scaffolds.
Collapse
Affiliation(s)
- Fabiano Bini
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Via Eudossiana, 18, 00184 Rome, Italy
| | - Andrada Pica
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Via Eudossiana, 18, 00184 Rome, Italy
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 43/B, 07100 Sassari, Italy
| | - Andrea Marinozzi
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Via Eudossiana, 18, 00184 Rome, Italy
| |
Collapse
|
17
|
Marques FC, Boaretti D, Walle M, Scheuren AC, Schulte FA, Müller R. Mechanostat parameters estimated from time-lapsed in vivo micro-computed tomography data of mechanically driven bone adaptation are logarithmically dependent on loading frequency. Front Bioeng Biotechnol 2023; 11:1140673. [PMID: 37113673 PMCID: PMC10126906 DOI: 10.3389/fbioe.2023.1140673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Mechanical loading is a key factor governing bone adaptation. Both preclinical and clinical studies have demonstrated its effects on bone tissue, which were also notably predicted in the mechanostat theory. Indeed, existing methods to quantify bone mechanoregulation have successfully associated the frequency of (re)modeling events with local mechanical signals, combining time-lapsed in vivo micro-computed tomography (micro-CT) imaging and micro-finite element (micro-FE) analysis. However, a correlation between the local surface velocity of (re)modeling events and mechanical signals has not been shown. As many degenerative bone diseases have also been linked to impaired bone (re)modeling, this relationship could provide an advantage in detecting the effects of such conditions and advance our understanding of the underlying mechanisms. Therefore, in this study, we introduce a novel method to estimate (re)modeling velocity curves from time-lapsed in vivo mouse caudal vertebrae data under static and cyclic mechanical loading. These curves can be fitted with piecewise linear functions as proposed in the mechanostat theory. Accordingly, new (re)modeling parameters can be derived from such data, including formation saturation levels, resorption velocity moduli, and (re)modeling thresholds. Our results revealed that the norm of the gradient of strain energy density yielded the highest accuracy in quantifying mechanoregulation data using micro-finite element analysis with homogeneous material properties, while effective strain was the best predictor for micro-finite element analysis with heterogeneous material properties. Furthermore, (re)modeling velocity curves could be accurately described with piecewise linear and hyperbola functions (root mean square error below 0.2 µm/day for weekly analysis), and several (re)modeling parameters determined from these curves followed a logarithmic relationship with loading frequency. Crucially, (re)modeling velocity curves and derived parameters could detect differences in mechanically driven bone adaptation, which complemented previous results showing a logarithmic relationship between loading frequency and net change in bone volume fraction over 4 weeks. Together, we expect this data to support the calibration of in silico models of bone adaptation and the characterization of the effects of mechanical loading and pharmaceutical treatment interventions in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Boucetta A, Ramtani S, Garzón-Alvarado DA. Both network architecture and micro cracks effects on lacuno-canalicular liquid flow efficiency within the context of multiphysics approach for bone remodeling. J Mech Behav Biomed Mater 2023; 141:105780. [PMID: 36989871 DOI: 10.1016/j.jmbbm.2023.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
When physical forces are applied to bone, its mechanical adaptive behaviors change according to the microarchitecture configuration. This leads to changes in biological and physical thresholds in the remodeling cell population, involving sensor cells (osteocytes) interacting with each other and changes in osteocyte shape due to variation in lacunar shape. The resulting alterations in fluid flow leads to changes in the membrane electrical potential and shear stress. Eventual creation of microcracks, may lead in turn to modify cell activity. In contrast, the redundancy in the lacuno canalicular network (LCN) interconnectivity maintains partial flow. Our goal was to investigate the role of fluid flow in LCN by proposing a model of electro-mechanical energy spread through inhomogeneous microarchitectures. We focused on mechano-sensitivity to changes in load-induced flow impacted by neighboring micro cracks and quantifying its critical role in changing, velocity, shear stress and orientation of liquid mass transportation from one cell to another. To enhance the concept of intricacy LCN micro-structure to fluid flow, we provide a new combined effects factor considered as osteocytes sensor efficiency. We customized an influence function for each osteocyte, coupling: in one hand, the spatial distribution within remodeling influence areas, conducting a significant fluid spread, leading hydro-dynamic behavior and impacted further by presence of micro cracks and; in other hand, the fluid electro kinetic behavior. As an attempt to fill the limitations stated by many of the recent studies, we reveal in numerical simulation, some results which cannot be measured in vitro/in vivo studies. Numerical calculations were performed in order to evaluate, among many others, how liquid flow conditions changes between lacunas, how the orientation and the magnitude of the governing flow in LCN can regulate osteocytes efficiency. In addition to be regulated by osteocytes, a direct effects of fluid flow are also acting on osteoblast activity. In summary, this new approach considers mechano-sensitivity in relation to liquid flow dynamic and suggests additional pathway for Osseo integration via osteoblast regulation. However, this novel modeling approach may help improve the mapping and design bone scaffolds and/or selection of scaffold implantation regions.
Collapse
Affiliation(s)
- Abdelkader Boucetta
- Université Sorbonne Paris Nord, CSPBA-LBPS, UMR CNRS 7244, Inst Galilee, 99 Ave JB Clement, Villetaneuse, France; GE VERNOVA, SS&O-OPS-O&M EMEA Regions, Algiers, Algeria.
| | - Salah Ramtani
- Université Sorbonne Paris Nord, CSPBA-LBPS, UMR CNRS 7244, Inst Galilee, 99 Ave JB Clement, Villetaneuse, France.
| | - Diego A Garzón-Alvarado
- Universidad Nacional de Colombia, Biomimetics Laboratory-Biotechnology Institute, Bogota, 571, Republic of Colombia.
| |
Collapse
|
19
|
Tang T, Landis W, Blouin S, Bertinetti L, Hartmann MA, Berzlanovich A, Weinkamer R, Wagermaier W, Fratzl P. Subcanalicular Nanochannel Volume Is Inversely Correlated With Calcium Content in Human Cortical Bone. J Bone Miner Res 2023; 38:313-325. [PMID: 36433915 DOI: 10.1002/jbmr.4753] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
The spatial distribution of mineralization density is an important signature of bone growth and remodeling processes, and its alterations are often related to disease. The extracellular matrix of some vertebrate mineralized tissues is known to be perfused by a lacunocanalicular network (LCN), a fluid-filled unmineralized structure that harbors osteocytes and their fine processes and transports extracellular fluid and its constituents. The current report provides evidence for structural and compositional heterogeneity at an even smaller, subcanalicular scale. The work reveals an extensive unmineralized three-dimensional (3D) network of nanochannels (~30 nm in diameter) penetrating the mineralized extracellular matrix of human femoral cortical bone and encompassing a greater volume fraction and surface area than these same parameters of the canaliculi comprising the LCN. The present study combines high-resolution focused ion beam-scanning electron microscopy (FIB-SEM) to investigate bone ultrastructure in 3D with quantitative backscattered electron imaging (qBEI) to estimate local bone mineral content. The presence of nanochannels has been found to impact qBEI measurements fundamentally, such that volume percentage (vol%) of nanochannels correlates inversely with weight percentage (wt%) of calcium. This mathematical relationship between nanochannel vol% and calcium wt% suggests that the nanochannels could potentially provide space for ion and small molecule transport throughout the bone matrix. Collectively, these data propose a reinterpretation of qBEI measurements, accounting for nanochannel presence in human bone tissue in addition to collagen and mineral. Further, the results yield insight into bone mineralization processes at the nanometer scale and present the possibility for a potential role of the nanochannel system in permitting ion and small molecule diffusion throughout the extracellular matrix. Such a possible function could thereby lead to the sequestration or occlusion of the ions and small molecules within the extracellular matrix. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tengteng Tang
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - William Landis
- Department of Preventive and Restorative Dental Sciences, University of California at San Francisco, San Francisco, CA, USA
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Department Hanusch Hospital, Vienna, Austria
| | - Luca Bertinetti
- Center for Molecular Bioengineering, TU Dresden, Dresden, Germany
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Department Hanusch Hospital, Vienna, Austria
| | | | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
20
|
Irandoust S, Müftü S. On computational predictions of fluid flow and its effects on bone healing in dental implant treatments: an investigation of spatiotemporal fluid flow in cyclic loading. Biomech Model Mechanobiol 2023; 22:85-104. [PMID: 36329356 DOI: 10.1007/s10237-022-01633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022]
Abstract
Fluid flow in (porous) bone plays an important role in its maintenance, adaptation, and healing after an injury. Experimental and computational studies apply mechanical loading on bone to predict fluid flow development and/or to find its material properties. In most cases, mechanical loading is applied as a linear function in time. Multiple loading functions-with identical peak load and loading frequency-were used to investigate load-induced fluid flow and predict bone healing surrounding a dental implant. Implementing an instantaneous healing stimulus led to major differences in healing predictions for slightly different loading functions. Load-induced fluid flow was found to be displacement-rate dependent with complex spatial-temporal variations and not necessarily symmetrical during loading and unloading phases. Haversine loading resulted in more numerical stability compared to ramped/triangular loading, providing the opportunity for further investigation of the effects of various physiological masticatory loadings. It was concluded that using the average healing stimulus during cyclic loading gives the most robust bone healing predictions.
Collapse
Affiliation(s)
- Soroush Irandoust
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA.
| | - Sinan Müftü
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
21
|
Abstract
Bone is a living organ that exhibits active metabolic processes, presenting constant bone formation and resorption. The bone cells that maintain local homeostasis are osteoblasts, osteoclasts, osteocytes and bone marrow stem cells, their progenitor cells. Osteoblasts are the main cells that govern bone formation, osteoclasts are involved in bone resorption, and osteocytes, the most abundant bone cells, also participate in bone remodeling. All these cells have active metabolic activities, are interconnected and influence each other, having both autocrine and paracrine effects. Ageing is associated with multiple and complex bone metabolic changes, some of which are currently incompletely elucidated. Ageing causes important functional changes in bone metabolism, influencing all resident cells, including the mineralization process of the extracellular matrix. With advancing age, a decrease in bone mass, the appearance of specific changes in the local microarchitecture, a reduction in mineralized components and in load-bearing capacity, as well as the appearance of an abnormal response to different humoral molecules have been observed. The present review points out the most important data regarding the formation, activation, functioning, and interconnection of these bone cells, as well as data on the metabolic changes that occur due to ageing.
Collapse
Affiliation(s)
- Anca Cardoneanu
- Department of Rheumatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, 1st Rheumatology Clinic, Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- IIIrd Medical Clinic, "Saint Spiridon" Clinic Emergency County Hospital, Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Elena Rezus
- Department of Rheumatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, 1st Rheumatology Clinic, Iasi, Romania
| |
Collapse
|
22
|
Hislop BD, Devine C, June RK, Heveran CM. Subchondral bone structure and synovial fluid metabolism are altered in injured and contralateral limbs 7 days after non-invasive joint injury in skeletally-mature C57BL/6 mice. Osteoarthritis Cartilage 2022; 30:1593-1605. [PMID: 36184957 PMCID: PMC9671828 DOI: 10.1016/j.joca.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/16/2022] [Accepted: 09/04/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Post-traumatic osteoarthritis (PTOA) commonly develops after ACL injury, but early changes to the joint soon after injury are insufficiently understood. The objectives of this study were (1) evaluate the response of subchondral bone tissue modulus to joint injury and (2) identify which bone structural, material, and metabolic outcomes are local (i.e., injured joint only) or systemic (i.e., injured and contralateral-to-injured). DESIGN Female C57Bl∖6N mice (19 weeks at injury) underwent tibial compression overload to simulate ACL injury (n = 8) or a small pre-load (n = 8). Synovial fluid was harvested at euthanasia 7 days later for metabolomic profiling. Bone outcomes included epiphyseal and SCB microarchitecture, SCB nanoindentation modulus, SCB formation rate, and osteoclast number density. RESULTS Injury decreased epiphyseal bone volume fraction ([-5.29, -1.38%], P = 0.0016) and decreased SCB thickness for injured vs sham-injured limbs ([2.2, 31.4 μm], P = 0.017)). Epiphyseal bone loss commonly occurred for contralateral-to-injured limbs. There was not sufficient evidence to conclude that SCB modulus changes with injury. Metabolomic analyses revealed dysregulated synovial fluid metabolism with joint injury but that many metabolic pathways are shared between injured and contralateral-to-injured limbs. CONCLUSION This study demonstrates rapid changes to bone structure and synovial fluid metabolism after injury with the potential for influencing the progression to PTOA. These changes are often evidenced in the contralateral-to-injured limb, indicating that systemic musculoskeletal responses to joint injury should not be overlooked.
Collapse
Affiliation(s)
- B D Hislop
- Department of Mechanical & Industrial Engineering, Montana State University, USA
| | - C Devine
- Department of Chemical & Biological Engineering, Montana State University, USA
| | - R K June
- Department of Mechanical & Industrial Engineering, Montana State University, USA; Department of Microbiology & Cell Biology, Montana State University, USA
| | - C M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, USA.
| |
Collapse
|
23
|
Zhang K, Ogando C, Filip A, Zhang T, Horton JA, Soman P. In vitromodel to study confined osteocyte networks exposed to flow-induced mechanical stimuli. Biomed Mater 2022; 17:10.1088/1748-605X/aca37c. [PMID: 36384043 PMCID: PMC10642715 DOI: 10.1088/1748-605x/aca37c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Osteocytes are considered the primary mechanical sensor in bone tissue and orchestrate the coupled bone remodeling activity of adjacent osteoblast and osteoclast cells.In vivoinvestigation of mechanically induced signal propagation through networks of interconnected osteocytes is confounded by their confinement within the mineralized bone matrix, which cannot be modeled in conventional culture systems. In this study, we developed a new model that mimics thisin vivoconfinement using gelatin methacrylate (GelMA) hydrogel or GelMA mineralized using osteoblast-like model cells. This model also enables real-time optical examination of osteocyte calcium (Ca2+) signaling dynamics in response to fluid shear stimuli cultured under confined conditions. Using this system, we discovered several distinct and previously undescribed patterns of Ca2+responses that vary across networks of interconnected osteocytes as a function of space, time and connectivity. Heterogeneity in Ca2+signaling may provide new insights into bone remodeling in response to mechanical loading. Overall, such a model can be extended to study signaling dynamics within cell networks exposed to flow-induced mechanical stimuli under confined conditions.
Collapse
Affiliation(s)
- Kairui Zhang
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA, 13244
- Syracuse Biomaterials Institute, Syracuse, NY, USA, 13244
| | - Courtney Ogando
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA, 13244
- Syracuse Biomaterials Institute, Syracuse, NY, USA, 13244
| | - Alex Filip
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA, 13244
- Syracuse Biomaterials Institute, Syracuse, NY, USA, 13244
| | - Teng Zhang
- Syracuse Biomaterials Institute, Syracuse, NY, USA, 13244
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, USA, 13244
| | - Jason A. Horton
- Syracuse Biomaterials Institute, Syracuse, NY, USA, 13244
- Dept. of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, NY, USA 13210
| | - Pranav Soman
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA, 13244
- Syracuse Biomaterials Institute, Syracuse, NY, USA, 13244
| |
Collapse
|
24
|
Changes in interstitial fluid flow, mass transport and the bone cell response in microgravity and normogravity. Bone Res 2022; 10:65. [PMID: 36411278 PMCID: PMC9678891 DOI: 10.1038/s41413-022-00234-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, our scientific interest in spaceflight has grown exponentially and resulted in a thriving area of research, with hundreds of astronauts spending months of their time in space. A recent shift toward pursuing territories farther afield, aiming at near-Earth asteroids, the Moon, and Mars combined with the anticipated availability of commercial flights to space in the near future, warrants continued understanding of the human physiological processes and response mechanisms when in this extreme environment. Acute skeletal loss, more severe than any bone loss seen on Earth, has significant implications for deep space exploration, and it remains elusive as to why there is such a magnitude of difference between bone loss on Earth and loss in microgravity. The removal of gravity eliminates a critical primary mechano-stimulus, and when combined with exposure to both galactic and solar cosmic radiation, healthy human tissue function can be negatively affected. An additional effect found in microgravity, and one with limited insight, involves changes in dynamic fluid flow. Fluids provide the most fundamental way to transport chemical and biochemical elements within our bodies and apply an essential mechano-stimulus to cells. Furthermore, the cell cytoplasm is not a simple liquid, and fluid transport phenomena together with viscoelastic deformation of the cytoskeleton play key roles in cell function. In microgravity, flow behavior changes drastically, and the impact on cells within the porous system of bone and the influence of an expanding level of adiposity are not well understood. This review explores the role of interstitial fluid motion and solute transport in porous bone under two different conditions: normogravity and microgravity.
Collapse
|
25
|
Niu D, Zhang Y, Chen J, Li D, He C, Liu H. Mechanobiology Platform Realized Using Photomechanical Mxene Nanocomposites: Bilayer Photoactuator Design and In Vitro Mechanical Forces Stimulation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6869. [PMID: 36234210 PMCID: PMC9570783 DOI: 10.3390/ma15196869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Mechanotransduction is the process by which cells convert external forces and physical constraints into biochemical signals that control several aspects of cellular behavior. A number of approaches have been proposed to investigate the mechanisms of mechanotransduction; however, it remains a great challenge to develop a platform for dynamic multivariate mechanical stimulation of single cells and small colonies of cells. In this study, we combined polydimethylsiloxane (PDMS) and PDMS/Mxene nanoplatelets (MNPs) to construct a soft bilayer nanocomposite for extracellular mechanical stimulation. Fast backlash actuation of the bilayer as a result of near-infrared irradiation caused mechanical force stimulation of cells in a controllable manner. The excellent controllability of the light intensity and frequency allowed backlash bending acceleration and frequency to be manipulated. As gastric gland carcinoma cell line MKN-45 was the research subject, mechanical force loading conditions could trigger apoptosis of the cells in a stimulation duration time-dependent manner. Cell apoptotic rates were positively related to the duration time. In the case of 6 min mechanical force loading, apoptotic cell percentage rose to 34.46% from 5.5% of the control. This approach helps apply extracellular mechanical forces, even with predesigned loading cycles, and provides a solution to study cell mechanotransduction in complex force conditions. It is also a promising therapeutic technique for combining physical therapy and biomechanics.
Collapse
Affiliation(s)
- Dong Niu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yanli Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Medical College, Xizang Minzu University, Xianyang 712082, China
| | - Jinlan Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Dachao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chunmeng He
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hongzhong Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- The Joint Key Laboratory of Graphene, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
26
|
Sun X, Li K, Li BY, Yokota H. Wnt signaling: a double-edged sword in protecting bone from cancer. J Bone Miner Metab 2022; 41:365-370. [PMID: 36040520 DOI: 10.1007/s00774-022-01363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022]
Abstract
Wnt signaling plays a critical role in loading-driven bone formation and bone homeostasis, whereas its activation in cancer cells promotes their progression. Currently, major research efforts in cancer treatment have been directed to the development of Wnt inhibitors. Recent studies on tumor-bone interactions, however, presented multiple lines of evidence that support a tumor-suppressive role of Lrp5, a Wnt co-receptor, and β-catenin, in Wnt signaling. This review describes the action of Wnt signaling as a double-edged sword in the bone microenvironment and suggests the possibility of a novel option for protecting bone from cancer.
Collapse
Affiliation(s)
- Xun Sun
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
| | - Kexin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA.
- Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
27
|
Ielo I, Calabrese G, De Luca G, Conoci S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int J Mol Sci 2022; 23:ijms23179721. [PMID: 36077119 PMCID: PMC9456225 DOI: 10.3390/ijms23179721] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Bone tissue is a nanocomposite consisting of an organic and inorganic matrix, in which the collagen component and the mineral phase are organized into complex and porous structures. Hydroxyapatite (HA) is the most used ceramic biomaterial since it mimics the mineral composition of the bone in vertebrates. However, this biomimetic material has poor mechanical properties, such as low tensile and compressive strength, which make it not suitable for bone tissue engineering (BTE). For this reason, HA is often used in combination with different polymers and crosslinkers in the form of composites to improve their mechanical properties and the overall performance of the implantable biomaterials developed for orthopedic applications. This review summarizes recent advances in HA-based biocomposites for bone regeneration, addressing the most widely employed inorganic matrices, the natural and synthetic polymers used as reinforcing components, and the crosslinkers added to improve the mechanical properties of the scaffolds. Besides presenting the main physical and chemical methods in tissue engineering applications, this survey shows that HA biocomposites are generally biocompatible, as per most in vitro and in vivo studies involving animal models and that the results of clinical studies on humans sometimes remain controversial. We believe this review will be helpful as introductory information for scientists studying HA materials in the biomedical field.
Collapse
Affiliation(s)
- Ileana Ielo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (G.C.); (G.D.L.)
| | - Giovanna De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (G.C.); (G.D.L.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy
| |
Collapse
|
28
|
Mechanical Disturbance of Osteoclasts Induces ATP Release That Leads to Protein Synthesis in Skeletal Muscle through an Akt-mTOR Signaling Pathway. Int J Mol Sci 2022; 23:ijms23169444. [PMID: 36012713 PMCID: PMC9408906 DOI: 10.3390/ijms23169444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Muscle and bone are tightly integrated through mechanical and biochemical signals. Osteoclasts are cells mostly related to pathological bone loss; however, they also start physiological bone remodeling. Therefore, osteoclast signals released during bone remodeling could improve both bone and skeletal muscle mass. Extracellular ATP is an autocrine/paracrine signaling molecule released by bone and muscle cells. Then, in the present work, it was hypothesized that ATP is a paracrine mediator released by osteoclasts and leads to skeletal muscle protein synthesis. RAW264.7-derived osteoclasts were co-cultured in Transwell® chambers with flexor digitorum brevis (FDB) muscle isolated from adult BalbC mice. The osteoclasts at the upper chamber were mechanically stimulated by controlled culture medium perturbation, resulting in a two-fold increase in protein synthesis in FDB muscle at the lower chamber. Osteoclasts released ATP to the extracellular medium in response to mechanical stimulation, proportional to the magnitude of the stimulus and partly dependent on the P2X7 receptor. On the other hand, exogenous ATP promoted Akt phosphorylation (S473) in isolated FDB muscle in a time- and concentration-dependent manner. ATP also induced phosphorylation of proteins downstream Akt: mTOR (S2448), p70S6K (T389) and 4E-BP1 (T37/46). Exogenous ATP increased the protein synthesis rate in FDB muscle 2.2-fold; this effect was blocked by Suramin (general P2X/P2Y antagonist), LY294002 (phosphatidylinositol 3 kinase inhibitor) and Rapamycin (mTOR inhibitor). These blockers, as well as apyrase (ATP metabolizing enzyme), also abolished the induction of FDB protein synthesis evoked by mechanical stimulation of osteoclasts in the co-culture model. Therefore, the present findings suggest that mechanically stimulated osteoclasts release ATP, leading to protein synthesis in isolated FDB muscle, by activating the P2-PI3K-Akt-mTOR pathway. These results open a new area for research and clinical interest in bone-to-muscle crosstalk in adaptive processes related to muscle use/disuse or in musculoskeletal pathologies.
Collapse
|
29
|
Gabetti S, Masante B, Cochis A, Putame G, Sanginario A, Armando I, Fiume E, Scalia AC, Daou F, Baino F, Salati S, Morbiducci U, Rimondini L, Bignardi C, Massai D. An automated 3D-printed perfusion bioreactor combinable with pulsed electromagnetic field stimulators for bone tissue investigations. Sci Rep 2022; 12:13859. [PMID: 35974079 PMCID: PMC9381575 DOI: 10.1038/s41598-022-18075-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
In bone tissue engineering research, bioreactors designed for replicating the main features of the complex native environment represent powerful investigation tools. Moreover, when equipped with automation, their use allows reducing user intervention and dependence, increasing reproducibility and the overall quality of the culture process. In this study, an automated uni-/bi-directional perfusion bioreactor combinable with pulsed electromagnetic field (PEMF) stimulation for culturing 3D bone tissue models is proposed. A user-friendly control unit automates the perfusion, minimizing the user dependency. Computational fluid dynamics simulations supported the culture chamber design and allowed the estimation of the shear stress values within the construct. Electromagnetic field simulations demonstrated that, in case of combination with a PEMF stimulator, the construct can be exposed to uniform magnetic fields. Preliminary biological tests on 3D bone tissue models showed that perfusion promotes the release of the early differentiation marker alkaline phosphatase. The histological analysis confirmed that perfusion favors cells to deposit more extracellular matrix (ECM) with respect to the static culture and revealed that bi-directional perfusion better promotes ECM deposition across the construct with respect to uni-directional perfusion. Lastly, the Real-time PCR results of 3D bone tissue models cultured under bi-directional perfusion without and with PEMF stimulation revealed that the only perfusion induced a ~ 40-fold up-regulation of the expression of the osteogenic gene collagen type I with respect to the static control, while a ~ 80-fold up-regulation was measured when perfusion was combined with PEMF stimulation, indicating a positive synergic pro-osteogenic effect of combined physical stimulations.
Collapse
Affiliation(s)
- Stefano Gabetti
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Beatrice Masante
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Andrea Cochis
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Giovanni Putame
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Alessandro Sanginario
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Ileana Armando
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Elisa Fiume
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Alessandro Calogero Scalia
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Farah Daou
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Francesco Baino
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | | | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Lia Rimondini
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Cristina Bignardi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Diana Massai
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy.
| |
Collapse
|
30
|
Buettmann EG, Goldscheitter GM, Hoppock GA, Friedman MA, Suva LJ, Donahue HJ. Similarities Between Disuse and Age-Induced Bone Loss. J Bone Miner Res 2022; 37:1417-1434. [PMID: 35773785 PMCID: PMC9378610 DOI: 10.1002/jbmr.4643] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/07/2022]
Abstract
Disuse and aging are known risk factors associated with low bone mass and quality deterioration, resulting in increased fracture risk. Indeed, current and emerging evidence implicate a large number of shared skeletal manifestations between disuse and aging scenarios. This review provides a detailed overview of current preclinical models of musculoskeletal disuse and the clinical scenarios they seek to recapitulate. We also explore and summarize the major similarities between bone loss after extreme disuse and advanced aging at multiple length scales, including at the organ/tissue, cellular, and molecular level. Specifically, shared structural and material alterations of bone loss are presented between disuse and aging, including preferential loss of bone at cancellous sites, cortical thinning, and loss of bone strength due to enhanced fragility. At the cellular level bone loss is accompanied, during disuse and aging, by increased bone resorption, decreased formation, and enhanced adipogenesis due to altered gap junction intercellular communication, WNT/β-catenin and RANKL/OPG signaling. Major differences between extreme short-term disuse and aging are discussed, including anatomical specificity, differences in bone turnover rates, periosteal modeling, and the influence of subject sex and genetic variability. The examination also identifies potential shared mechanisms underlying bone loss in aging and disuse that warrant further study such as collagen cross-linking, advanced glycation end products/receptor for advanced glycation end products (AGE-RAGE) signaling, reactive oxygen species (ROS) and nuclear factor κB (NF-κB) signaling, cellular senescence, and altered lacunar-canalicular connectivity (mechanosensation). Understanding the shared structural alterations, changes in bone cell function, and molecular mechanisms common to both extreme disuse and aging are paramount to discovering therapies to combat both age-related and disuse-induced osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Galen M Goldscheitter
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
31
|
Zhao D, Hua R, Riquelme MA, Cheng H, Guda T, Xu H, Gu S, Jiang JX. Osteocytes regulate bone anabolic response to mechanical loading in male mice via activation of integrin α5. Bone Res 2022; 10:49. [PMID: 35851577 PMCID: PMC9293884 DOI: 10.1038/s41413-022-00222-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Physical mechanical stimulation can maintain and even increase bone mass. Here, we report an important role of osteocytic integrin α5 in regulating the anabolic response of bone to mechanical loading using an Itga5 conditional gene knockout (cKO) mouse model. Integrin α5 gene deletion increased apoptotic osteocytes and reduced cortical anabolic responses to tibial compression including decreased endosteal osteoblasts and bone formation, and increased endosteal osteoclasts and bone resorption, contributing to the decreased bone area fraction and biomechanical properties, leading to an enlarged bone marrow area in cKO mice. Similar disruption of anabolic responses to mechanical loading was also detected in cKO trabecular bone. Moreover, integrin α5 deficiency impeded load-induced Cx43 hemichannel opening, and production and release of PGE2, an anabolic factor, resulting in attenuated effects of the loading on catabolic sclerostin (SOST) reduction and anabolic β-catenin increase. Together, this study shows an indispensable role of integrin α5 in osteocytes in the anabolic action of mechanical loading on skeletal tissue through activation of hemichannels and PGE2-evoked gene expression. Integrin α5 could act as a potential new therapeutic target for bone loss, especially in the elderly population with impeded mechanical sensitivity.
Collapse
Affiliation(s)
- Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Hongyun Cheng
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas, San Antonio, TX, USA
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
32
|
Tabata K, Hashimoto M, Takahashi H, Wang Z, Nagaoka N, Hara T, Kamioka H. A morphometric analysis of the osteocyte canaliculus using applied automatic semantic segmentation by machine learning. J Bone Miner Metab 2022; 40:571-580. [PMID: 35338405 DOI: 10.1007/s00774-022-01321-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Osteocytes play a role as mechanosensory cells by sensing flow-induced mechanical stimuli applied on their cell processes. High-resolution imaging of osteocyte processes and the canalicular wall are necessary for the analysis of this mechanosensing mechanism. Focused ion beam-scanning electron microscopy (FIB-SEM) enabled the visualization of the structure at the nanometer scale with thousands of serial-section SEM images. We applied machine learning for the automatic semantic segmentation of osteocyte processes and canalicular wall and performed a morphometric analysis using three-dimensionally reconstructed images. MATERIALS AND METHODS Six-week-old-mice femur were used. Osteocyte processes and canaliculi were observed at a resolution of 2 nm/voxel in a 4 × 4 μm region with 2000 serial-section SEM images. Machine learning was used for automatic semantic segmentation of the osteocyte processes and canaliculi from serial-section SEM images. The results of semantic segmentation were evaluated using the dice similarity coefficient (DSC). The segmented data were reconstructed to create three-dimensional images and a morphological analysis was performed. RESULTS The DSC was > 83%. Using the segmented data, a three-dimensional image of approximately 3.5 μm in length was reconstructed. The morphometric analysis revealed that the median osteocyte process diameter was 73.8 ± 18.0 nm, and the median pericellular fluid space around the osteocyte process was 40.0 ± 17.5 nm. CONCLUSION We used machine learning for the semantic segmentation of osteocyte processes and canalicular wall for the first time, and performed a morphological analysis using three-dimensionally reconstructed images.
Collapse
Affiliation(s)
- Kaori Tabata
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Mana Hashimoto
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, Okayama, 700-8558, Japan
| | - Haruka Takahashi
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, Okayama, 700-8558, Japan
| | - Ziyi Wang
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, Okayama, 700-8558, Japan
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Toru Hara
- Research Center for Structural Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, Okayama, 700-8558, Japan.
| |
Collapse
|
33
|
Rothweiler R, Gross C, Bortel E, Früh S, Gerber J, Boller E, Wüster J, Stricker A, Fretwurst T, Iglhaut G, Nahles S, Schmelzeisen R, Hesse B, Nelson K. Comparison of the 3D-Microstructure Between Alveolar and Iliac Bone for Enhanced Bioinspired Bone Graft Substitutes. Front Bioeng Biotechnol 2022; 10:862395. [PMID: 35782504 PMCID: PMC9248932 DOI: 10.3389/fbioe.2022.862395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
In oral- and maxillofacial bone augmentation surgery, non-vascularized grafts from the iliac crest demonstrate better clinical performance than alveolar bone grafts. The underlying mechanisms are not fully understood but are essential for the enhancement of bone regeneration scaffolds. Synchrotron Radiation µ-CT at a pixel size of 2.3 μm was used to characterize the gross morphology and the vascular and osteocyte lacuna porosity of patient-matched iliac crest/alveolar bone samples. The results suggest a difference in the spatial distribution of the vascular pore system. Fluid simulations reveal the permeability tensor to be more homogeneous in the iliac crest, indicating a more unidirectional fluid flow in alveolar bone. The average distance between bone mineral and the closest vessel pore boundary was found to be higher in alveolar bone. At the same time, osteocyte lacunae density is higher in alveolar bone, potentially compensating for the longer average distance between the bone mineral and vessel pores. The present study comprehensively quantified and compared the 3D microarchitecture of intraindividual human alveolar and iliac bone. The identified difference in pore network architecture may allow a bone graft from the iliac crest to exhibit higher regeneration potential due to an increased capacity to connect with the surrounding pore network of the residual bone. The results may contribute to understanding the difference in clinical performance when used as bone grafts and are essential for optimization of future scaffold materials.
Collapse
Affiliation(s)
- Rene Rothweiler
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Christian Gross
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | | | | | | | - Elodie Boller
- European Synchrotron Radiation Facility, Grenoble, France
| | - Jonas Wüster
- Department of Oral and Maxillofacial Surgery, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andres Stricker
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Tobias Fretwurst
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Gerhard Iglhaut
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Nahles
- Department of Oral and Maxillofacial Surgery, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rainer Schmelzeisen
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Bernhard Hesse
- Xploraytion GmbH, Berlin, Germany
- European Synchrotron Radiation Facility, Grenoble, France
- *Correspondence: Bernhard Hesse, ; Katja Nelson,
| | - Katja Nelson
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
- *Correspondence: Bernhard Hesse, ; Katja Nelson,
| |
Collapse
|
34
|
Peng Z, Mai Z, Xiao F, Liu G, Wang Y, Xie S, Ai H. MiR-20a: a mechanosensitive microRNA that regulates fluid shear stress-mediated osteogenic differentiation via the BMP2 signaling pathway by targeting BAMBI and SMAD6. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:683. [PMID: 35845505 PMCID: PMC9279817 DOI: 10.21037/atm-22-2753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 11/06/2022]
Abstract
Background MicroRNAs (miRNAs) are crucial regulators of diverse biological and pathological processes. This study aimed to investigate the role of microRNA 20a (miR-20a) in fluid shear stress (FSS)-mediated osteogenic differentiation. Methods In the present study, we subjected osteoblast MC3T3-E1 cells or mouse bone marrow stromal cells (BMSCs) to single bout short duration FSS (12 dyn/cm2 for 1 hour) using a parallel plate flow system. The expression of miR-20a was quantified by miRNA array profiling and real-time quantitative polymerase chain reaction (qRT-PCR) during FSS-mediated osteogenic differentiation. The expression of osteogenic differentiation markers such as Runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and SP7 transcription factor (SP7) was detected. Bioinformatics analysis and a luciferase assay were performed to confirm the potential targets of miR-20a. Results Osteoblast-expressed miR-20a is sensitive to the mechanical environments of FSS, which are differentially up-regulated during steady FSS-mediated osteogenic differentiation. MiR-20a enhances FSS-induced osteoblast differentiation by activating the bone morphogenetic protein 2 (BMP2) signaling pathway. Both BMP and activin membrane-bound inhibitor (BAMBI) and mothers against decapentaplegic family member 6 (SMAD6) are targets of miR-20a that negatively regulate the BMP2 signaling pathway. Conclusions MiR-20a is a novel mechanosensitive miRNA that can enhance osteoblast differentiation in FSS mechanical environments, implying that this miRNA might be a target for bone tissue engineering and orthodontic bone remodeling for regenerative medicine applications.
Collapse
Affiliation(s)
- Zhuli Peng
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhihui Mai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Feng Xiao
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guanqi Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yixuan Wang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shanshan Xie
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Ai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Paul GR, Vallaster P, Rüegg M, Scheuren AC, Tourolle DC, Kuhn GA, Wehrle E, Müller R. Tissue-Level Regeneration and Remodeling Dynamics are Driven by Mechanical Stimuli in the Microenvironment in a Post-Bridging Loaded Femur Defect Healing Model in Mice. Front Cell Dev Biol 2022; 10:856204. [PMID: 35686050 PMCID: PMC9171432 DOI: 10.3389/fcell.2022.856204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Bone healing and remodeling are mechanically driven processes. While the generalized response to mechanical stimulation in bone is well-understood, much less is known about the mechanobiology-regulating tissue-scale bone formation and resorption during the reparative and remodeling phases of fracture healing. In this study, we combined computational approaches in the form of finite element analysis and experimental approaches by using a loaded femoral defect model in mice to investigate the role of mechanical stimulation in the microenvironment of bone. Specifically, we used longitudinal micro-computed tomography to observe temporal changes in bone at different densities and micro-finite element analysis to map the mechanics of the microenvironment to tissue-scale formation, quiescence (no change in bone presence between time points), and resorption dynamics in the late reparative and remodeling phases (post bridging). Increasing levels of effective strain led to increasing conditional probability of bone formation, while decreasing levels of effective strain led to increasing probability of bone resorption. In addition, the analysis of mineralization dynamics showed both a temporal and effective strain level-dependent behavior. A logarithmic-like response was displayed, where the conditional probability of bone formation or resorption increased rapidly and plateaued or fell rapidly and plateaued as mechanical strain increased.
Collapse
|
36
|
Wang H, Du T, Li R, Main RP, Yang H. Interactive effects of various loading parameters on the fluid dynamics within the lacunar-canalicular system for a single osteocyte. Bone 2022; 158:116367. [PMID: 35181573 DOI: 10.1016/j.bone.2022.116367] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/26/2022]
Abstract
The osteocyte lacunar-canalicular system (LCS) serves as a mechanotransductive core where external loading applied to the skeleton is transduced into mechanical signals (e.g., fluid shear) that can be sensed by mechanosensors (osteocytes). The fluid velocity and shear stress within the LCS are affected by various loading parameters. However, the interactive effect of distinct loading parameters on the velocity and shear stress in the LCS remains unclear. To address this issue, we developed a multiscale modeling approach, combining a poroelastic finite element (FE) model with a single osteocytic LCS unit model to calculate the flow velocity and shear stress within the LCS. Next, a sensitivity analysis was performed to investigate individual and interactive effects of strain magnitude, strain rate, number of cycles, and intervening short rests between loading cycles on the velocity and shear stress around the osteocyte. Lastly, we developed a relatively simple regression model to predict those outcomes. Our results demonstrated that the strain magnitude or rate alone were the main factors affecting the velocity and shear stress; however, the combination of these two was not directly additive, and addition of a short rest between cycles could enhance the combination of these two related factors. These results show highly interactive effects of distinct loading parameters on fluid velocity and shear stress in the LCS. Specifically, our results suggest that an enhanced fluid dynamics environment in the LCS can be achieved with a brief number of load cycles combined with short rest insertion and high strain magnitude and rate.
Collapse
Affiliation(s)
- Huiru Wang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rui Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Russell P Main
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences, Purdue University, IN, USA; Weldon School of Biomedical Engineering, Purdue University, IN, USA
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
37
|
Calcined Hydroxyapatite with Collagen I Foam Promotes Human MSC Osteogenic Differentiation. Int J Mol Sci 2022; 23:ijms23084236. [PMID: 35457055 PMCID: PMC9028204 DOI: 10.3390/ijms23084236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Collagen I-based foams were modified with calcined or noncalcined hydroxyapatite or calcium phosphates with various particle sizes and pores to monitor their effect on cell interactions. The resulting scaffolds thus differed in grain size, changing from nanoscale to microscopic, and possessed diverse morphological characteristics and resorbability. The materials' biological action was shown on human bone marrow MSCs. Scaffold morphology was identified by SEM. Using viability test, qPCR, and immunohistochemical staining, we evaluated the biological activity of all of the materials. This study revealed that the most suitable scaffold composition for osteogenesis induction is collagen I foam with calcined hydroxyapatite with a pore size of 360 ± 130 µm and mean particle size of 0.130 µm. The expression of osteogenic markers RunX2 and ColI mRNA was promoted, and a strong synthesis of extracellular protein osteocalcin was observed. ColI/calcined HAP scaffold showed significant osteogenic potential, and can be easily manipulated and tailored to the defect size, which gives it great potential for bone tissue engineering applications.
Collapse
|
38
|
Esposito L, Minutolo V, Gargiulo P, Fraldi M. Symmetry breaking and effects of nutrient walkway in time-dependent bone remodeling incorporating poroelasticity. Biomech Model Mechanobiol 2022; 21:999-1020. [PMID: 35394267 PMCID: PMC9132879 DOI: 10.1007/s10237-022-01573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/07/2022] [Indexed: 12/03/2022]
Abstract
Bone is an extraordinary biological material that continuously adapts its hierarchical microstructure to respond to static and dynamic loads for offering optimal mechanical features, in terms of stiffness and toughness, across different scales, from the sub-microscopic constituents within osteons—where the cyclic activity of osteoblasts, osteoclasts, and osteocytes redesigns shape and percentage of mineral crystals and collagen fibers—up to the macroscopic level, with growth and remodeling processes that modify the architecture of both compact and porous bone districts. Despite the intrinsic complexity of the bone mechanobiology, involving coupling phenomena of micro-damage, nutrients supply driven by fluid flowing throughout hierarchical networks, and cells turnover, successful models and numerical algorithms have been presented in the literature to predict, at the macroscale, how bone remodels under mechanical stimuli, a fundamental issue in many medical applications such as optimization of femur prostheses and diagnosis of the risk fracture. Within this framework, one of the most classical strategies employed in the studies is the so-called Stanford’s law, which allows uploading the effect of the time-dependent load-induced stress stimulus into a biomechanical model to guess the bone structure evolution. In the present work, we generalize this approach by introducing the bone poroelasticity, thus incorporating in the model the role of the fluid content that, by driving nutrients and contributing to the removal of wastes of bone tissue cells, synergistically interacts with the classical stress fields to change homeostasis states, local saturation conditions, and reorients the bone density rate, in this way affecting growth and remodeling. Through two paradigmatic example applications, i.e. a cylindrical slice with internal prescribed displacements idealizing a tract of femoral diaphysis pushed out by the pressure exerted by a femur prosthesis and a bone element in a form of a bent beam, it is highlighted that the present model is capable to catch more realistically both the transition between spongy and cortical regions and the expected non-symmetrical evolution of bone tissue density in the medium–long term, unpredictable with the standard approach. A real study case of a femur is also considered at the end in order to show the effectiveness of the proposed remodeling algorithm.
Collapse
Affiliation(s)
- L Esposito
- Department Engineering, University of Campania "Luigi Vanvitelli", Aversa, Italy
| | - V Minutolo
- Department Engineering, University of Campania "Luigi Vanvitelli", Aversa, Italy
| | - P Gargiulo
- Institute for Biomedical and Neural Engineering, Reykjavík University, Reykjavík, Iceland
- Department of Science, Landspítali Hospital, Reykjavík, Iceland
| | - M Fraldi
- Department of Structures for Engineering and Architecture, University of Napoli "Federico II", Napoli, Italy.
| |
Collapse
|
39
|
Murshid SA. Bone permeability and mechanotransduction: Some current insights into the function of the lacunar-canalicular network. Tissue Cell 2022; 75:101730. [PMID: 35032785 DOI: 10.1016/j.tice.2022.101730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Lacunar-canalicular (LC) permeability involves the passage of fluids, nutrients, oxygen, ions, and signalling molecules through bone tissue, facilitating the maintenance of bone vitality and function and responses to various physiological conditions and diseases. LC permeability and fluid flow-shear stress/drag force play important roles in mechanotransduction in bone tissue by inducing mechanical stimuli in osteocytes, modulating cellular functions, and determining bone adaptation. Alterations in LC structure may therefore influence the fluid flow pattern through the LC network, thereby affecting the ability of osteocytes to sense and translate mechanical signals and possibly contributing to bone remodelling. Several bone-health conditions are associated with changes in LC structure and function and may affect mechanotransduction and responses, although the mechanisms underlying these associations are still not fully understood. In this review, recent studies of LC networks, their formation and transfer mechanical stimuli, and changes in structure, functional permeability, and mechanotransduction that result from age, pathology, and mechanical loading are discussed. Additionally, applications of vibration and low-intensity pulsed ultrasound in bone healthcare and regeneration fields are also presented.
Collapse
Affiliation(s)
- Sakhr Ahmed Murshid
- Institute for Globally Distributed Open Research and Education (IGDORE); Ilmajoki Health Public Dental Clinics, Social and Health Care Services in Jalasjärvi, Ilmajoki, Kurikka, Finland.
| |
Collapse
|
40
|
Shim JJ, Ateshian GA. A Hybrid Reactive Multiphasic Mixture With a Compressible Fluid Solvent. J Biomech Eng 2022; 144:011013. [PMID: 34318318 PMCID: PMC8547015 DOI: 10.1115/1.4051926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2021] [Indexed: 01/03/2023]
Abstract
Mixture theory is a general framework that has been used to model mixtures of solid, fluid, and solute constituents, leading to significant advances in modeling the mechanics of biological tissues and cells. Though versatile and applicable to a wide range of problems in biomechanics and biophysics, standard multiphasic mixture frameworks incorporate neither dynamics of viscous fluids nor fluid compressibility, both of which facilitate the finite element implementation of computational fluid dynamics solvers. This study formulates governing equations for reactive multiphasic mixtures where the interstitial fluid has a solvent which is viscous and compressible. This hybrid reactive multiphasic framework uses state variables that include the deformation gradient of the porous solid matrix, the volumetric strain and rate of deformation of the solvent, the solute concentrations, and the relative velocities between the various constituents. Unlike standard formulations which employ a Lagrange multiplier to model fluid pressure, this framework requires the formulation of a function of state for the pressure, which depends on solvent volumetric strain and solute concentrations. Under isothermal conditions the formulation shows that the solvent volumetric strain remains continuous across interfaces between hybrid multiphasic domains. Apart from the Lagrange multiplier-state function distinction for the fluid pressure, and the ability to accommodate viscous fluid dynamics, this hybrid multiphasic framework remains fully consistent with standard multiphasic formulations previously employed in biomechanics. With these additional features, the hybrid multiphasic mixture theory makes it possible to address a wider range of problems that are important in biomechanics and mechanobiology.
Collapse
Affiliation(s)
- Jay J Shim
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
41
|
Bortel E, Grover LM, Eisenstein N, Seim C, Suhonen H, Pacureanu A, Westenberger P, Raum K, Langer M, Peyrin F, Addison O, Hesse B. Interconnectivity Explains High Canalicular Network Robustness between Neighboring Osteocyte Lacunae in Human Bone. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Emely Bortel
- Xploraytion GmbH Bismarckstrasse 10-12 10625 Berlin Germany
| | - Liam M Grover
- School of Chemical Engineering University of Birmingham B15 2TT Birmingham UK
| | - Neil Eisenstein
- School of Chemical Engineering University of Birmingham B15 2TT Birmingham UK
| | - Christian Seim
- Xploraytion GmbH Bismarckstrasse 10-12 10625 Berlin Germany
- Technical University of Berlin: Institute of Optics and Atomic Physics 10623 Berlin Germany
| | - Heikki Suhonen
- University of Helsinki: Department of Physics 00560 Helsinki Finland
| | | | | | - Kay Raum
- Charité—Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universität zu Berlinand Berlin Institute of Health BCRT—Berlin Institute of Health Center for Regenerative Therapies 13353 Berlin Germany
| | - Max Langer
- Univ Lyon CNRS 5220Inserm U1294INSA Lyon 69621 Creatis Villeurbanne Cedex France
- Université Grenoble Alpes CNRSUMR 5525 VetAgro SupGrenoble INPTIMC F-38000 Grenoble France
| | - Francoise Peyrin
- ESRF: Experiment Division 38000 Grenoble France
- Univ Lyon CNRS 5220Inserm U1294INSA Lyon 69621 Creatis Villeurbanne Cedex France
| | - Owen Addison
- Faculty of Dentistry Oral and Craniofacial Sciences Kings College SE1 9RT London UK
| | - Bernhard Hesse
- Xploraytion GmbH Bismarckstrasse 10-12 10625 Berlin Germany
- ESRF: Experiment Division 38000 Grenoble France
| |
Collapse
|
42
|
Day RN, Day KH, Pavalko FM. Direct visualization by FRET-FLIM of a putative mechanosome complex involving Src, Pyk2 and MBD2 in living MLO-Y4 cells. PLoS One 2021; 16:e0261660. [PMID: 34941939 PMCID: PMC8699642 DOI: 10.1371/journal.pone.0261660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/08/2021] [Indexed: 01/12/2023] Open
Abstract
Earlier, we proposed the “mechanosome” concept as a testable model for understanding how mechanical stimuli detected by cell surface adhesion molecules are transmitted to modulate gene expression inside cells. Here, for the first time we document a putative mechanosome involving Src, Pyk2 and MBD2 in MLO-Y4 osteocytes with high spatial resolution using FRET-FLIM. Src-Pyk2 complexes were concentrated at the periphery of focal adhesions and the peri-nuclear region. Pyk2-MBD2 complexes were located primarily in the nucleus and peri-nuclear region. Lifetime measurements indicated that Src and MBD2 did not interact directly. Finally, mechanical stimulation by fluid flow induced apparent accumulation of Src-Pyk2 protein complexes in the peri-nuclear/nuclear region, consistent with the proposed behavior of a mechanosome in response to a mechanical stimulus.
Collapse
Affiliation(s)
- Richard N. Day
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kathleen H. Day
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Fredrick M. Pavalko
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
43
|
Moharrer Y, Boerckel JD. Tunnels in the rock: Dynamics of osteocyte morphogenesis. Bone 2021; 153:116104. [PMID: 34245936 PMCID: PMC8478866 DOI: 10.1016/j.bone.2021.116104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022]
Abstract
Osteocytes are dynamic, bone matrix-remodeling cells that form an intricate network of interconnected projections through the bone matrix, called the lacunar-canalicular system. Osteocytes are the dominant mechanosensory cells in bone and their mechanosensory and mechanotransductive functions follow their morphological form. During osteocytogenesis and development of the osteocyte lacunar-canalicular network, osteocytes must dramatically remodel both their cytoskeleton and their extracellular matrix. In this review, we summarize our current understanding of the mechanisms that govern osteocyte differentiation, cytoskeletal morphogenesis, mechanotransduction, and matrix remodeling. We postulate that the physiologic activation of matrix remodeling in adult osteocytes, known as perilacunar/canalicular remodeling (PLR) represents a re-activation of the developmental program by which the osteocyte network is first established. While much of osteocyte biology remains unclear, new tools and approaches make the present moment a particularly fruitful and exciting time to study the development of these remarkable cells.
Collapse
Affiliation(s)
- Yasaman Moharrer
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States of America; Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Joel D Boerckel
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States of America; Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, United States of America; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
44
|
Gapper KS, Stevens S, Antoni R, Hunt J, Allison SJ. Acute Response of Sclerostin to Whole-body Vibration with Blood Flow Restriction. Int J Sports Med 2021; 42:1174-1181. [PMID: 33975366 PMCID: PMC8635793 DOI: 10.1055/a-1422-3376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 02/27/2021] [Indexed: 11/07/2022]
Abstract
Blood flow restriction may augment the skeletal response to whole-body vibration. This study used a randomised, crossover design to investigate the acute response of serum sclerostin and bone turnover biomarkers to whole-body vibration with blood flow restriction. Ten healthy males (mean±standard deviation; age: 27±8 years) completed two experimental conditions separated by 7 days: (i) whole-body vibration (10 1-minute bouts of whole-body vibration with 30 s recovery) or (ii) whole-body vibration with lower-body blood flow restriction (10 cycles of 110 mmHg inflation with 30 s deflation during recovery). Fasting blood samples were obtained immediately before and immediately after exercise, then 1 hour, and 24 hours after exercise. Serum samples were analysed for sclerostin, cross-linked C-terminal telopeptide of type I collagen, and bone-specific alkaline phosphatase. There was a significant time × condition interaction for bone-specific alkaline phosphatase (p=0.003); bone-specific alkaline phosphatase values at 24 hours post-exercise were significantly higher following whole-body vibration compared to combined whole-body vibration and blood flow restriction (p=0.028). No significant time × condition interaction occurred for any other outcome measure (p>0.05). These findings suggest that a single session of whole-body vibration combined with blood flow restriction does not significantly affect serum sclerostin or bone turnover biomarkers.
Collapse
Affiliation(s)
- Kyle S Gapper
- Department of Bioscience & Medicine, University of Surrey,
Guildford, United Kingdom of Great Britain and Northern Ireland
| | - Sally Stevens
- Department of Bioscience & Medicine, University of Surrey,
Guildford, United Kingdom of Great Britain and Northern Ireland
| | - Rona Antoni
- Department of Bioscience & Medicine, University of Surrey,
Guildford, United Kingdom of Great Britain and Northern Ireland
| | - Julie Hunt
- Department of Bioscience & Medicine, University of Surrey,
Guildford, United Kingdom of Great Britain and Northern Ireland
| | - Sarah J Allison
- Department of Bioscience & Medicine, University of Surrey,
Guildford, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
45
|
Lewis KJ, Cabahug-Zuckerman P, Boorman-Padgett JF, Basta-Pljakic J, Louie J, Stephen S, Spray DC, Thi MM, Seref-Ferlengez Z, Majeska RJ, Weinbaum S, Schaffler MB. Estrogen depletion on In vivo osteocyte calcium signaling responses to mechanical loading. Bone 2021; 152:116072. [PMID: 34171514 PMCID: PMC8316427 DOI: 10.1016/j.bone.2021.116072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 11/27/2022]
Abstract
Microstructural adaptation of bone in response to mechanical stimuli is diminished with estrogen deprivation. Here we tested in vivo whether ovariectomy (OVX) alters the acute response of osteocytes, the principal mechanosensory cells of bone, to mechanical loading in mice. We also used super resolution microscopy (Structured Illumination microscopy or SIM) in conjunction with immunohistochemistry to assess changes in the number and organization of "osteocyte mechanosomes" - complexes of Panx1 channels, P2X7 receptors and CaV3 voltage-gated Ca2+ channels clustered around αvβ3 integrin foci on osteocyte processes. Third metatarsals bones of mice expressing an osteocyte-targeted genetically encoded Ca2+ indicator (DMP1-GCaMP3) were cyclically loaded in vivo to strains from 250 to 3000 με and osteocyte intracellular Ca2+ signaling responses were assessed in mid-diaphyses using multiphoton microscopy. The number of Ca2+ signaling osteocytes in control mice increase monotonically with applied strain magnitude for the physiological range of strains. The relationship between the number of Ca2+ signaling osteocytes and loading was unchanged at 2 days post-OVX. However, it was altered markedly at 28 days post-OVX. At loads up to 1000 με, there was a dramatic reduction in number of responding (i.e. Ca2+ signaling) osteocytes; however, at higher strains the numbers of Ca2+ signaling osteocytes were similar to control mice. OVX significantly altered the abundance, make-up and organization of osteocyte mechanosome complexes on dendritic processes. Numbers of αvβ3 foci also staining with either Panx 1, P2X7R or CaV3 declined by nearly half after OVX, pointing to a loss of osteocyte mechanosomes on the dendritic processes with estrogen depletion. At the same time, the areas of the remaining foci that stained for αvβ3 and channel proteins increased significantly, a redistribution of mechanosome components suggesting a potential compensatory response. These results demonstrate that the deleterious effects of estrogen depletion on skeletal mechanical adaptation appear at the level of mechanosensation; osteocytes lose the ability to sense small (physiological) mechanical stimuli. This decline may result at least partly from changes in the structure and organization of osteocyte mechanosomes, which contribute to the distinctive sensitivity of osteocytes (particularly their dendritic processes) to mechanical stimulation.
Collapse
Affiliation(s)
- Karl J Lewis
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - Pamela Cabahug-Zuckerman
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - James F Boorman-Padgett
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - Jelena Basta-Pljakic
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - Joyce Louie
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - Samuel Stephen
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Mia M Thi
- Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, United States of America; Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Zeynep Seref-Ferlengez
- Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Robert J Majeska
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - Sheldon Weinbaum
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - Mitchell B Schaffler
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America.
| |
Collapse
|
46
|
Lai X, Chung R, Li Y, Liu XS, Wang L. Lactation alters fluid flow and solute transport in maternal skeleton: A multiscale modeling study on the effects of microstructural changes and loading frequency. Bone 2021; 151:116033. [PMID: 34102350 PMCID: PMC8276854 DOI: 10.1016/j.bone.2021.116033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
The female skeleton undergoes significant material and ultrastructural changes to meet high calcium demands during reproduction and lactation. Through the peri-lacunar/canalicular remodeling (PLR), osteocytes actively resorb surrounding matrix and enlarge their lacunae and canaliculi during lactation, which are quickly reversed after weaning. How these changes alter the physicochemical environment of osteocytes, the most abundant and primary mechanosensing cells in bone, are not well understood. In this study, we developed a multiscale poroelastic modeling technique to investigate lactation-induced changes in stress, fluid pressurization, fluid flow, and solute transport across multiple length scales (whole bone, porous midshaft cortex, lacunar-canalicular pore system (LCS), and pericellular matrix (PCM) around osteocytes) in murine tibiae subjected to axial compression at 3 N peak load (~320 με) at 0.5, 2, or 4 Hz. Based on previously reported skeletal anatomical measurements from lactating and nulliparous mice, our models demonstrated that loading frequency, LCS porosity, and PCM density were major determinants of fluid and solute flows responsible for osteocyte mechanosensing, cell-cell signaling, and metabolism. When loaded at 0.5 Hz, lactation-induced LCS expansion and potential PCM reduction promoted solute transport and osteocyte mechanosensing via primary cilia, but suppressed mechanosensing via fluid shear and/or drag force on the cell membrane. Interestingly, loading at 2 or 4 Hz was found to overcome the mechanosensing deficits observed at 0.5 Hz and these counter effects became more pronounced at 4 Hz and with sparser PCM in the lactating bone. Synergistically, higher loading frequency (2, 4 Hz) and sparser PCM enhanced flow-mediated mechanosensing and diffusion/convection of nutrients and signaling molecules for osteocytes. In summary, lactation-induced structural changes alter the local environment of osteocytes in ways that favor metabolism, mechanosensing, and post-weaning recovery of maternal bone. Thus, osteocytes play a role in balancing the metabolic and mechanical functions of female skeleton during reproduction and lactation.
Collapse
Affiliation(s)
- Xiaohan Lai
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Rebecca Chung
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiaowei Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, United States.
| |
Collapse
|
47
|
Li Y, de Bakker CMJ, Lai X, Zhao H, Parajuli A, Tseng WJ, Pei S, Meng T, Chung R, Wang L, Liu XS. Maternal bone adaptation to mechanical loading during pregnancy, lactation, and post-weaning recovery. Bone 2021; 151:116031. [PMID: 34098162 PMCID: PMC8504362 DOI: 10.1016/j.bone.2021.116031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/25/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022]
Abstract
The maternal skeleton undergoes dramatic bone loss during pregnancy and lactation, and substantial bone recovery post-weaning. The structural adaptations of maternal bone during reproduction and lactation exert a better protection of the mechanical integrity at the critical load-bearing sites, suggesting the importance of physiological load-bearing in regulating reproduction-induced skeletal alterations. Although it is suggested that physical exercise during pregnancy and breastfeeding improves women's physical and psychological well-being, its effects on maternal bone health remain unclear. Therefore, the objective of this study was to investigate the maternal bone adaptations to external mechanical loading during pregnancy, lactation, and post-weaning recovery. By utilizing an in vivo dynamic tibial loading protocol in a rat model, we demonstrated improved maternal cortical bone structure in response to dynamic loading at tibial midshaft, regardless of reproductive status. Notably, despite the minimal loading responses detected in the trabecular bone in virgins, rat bone during lactation experienced enhanced mechano-responsiveness in both trabecular and cortical bone compartments when compared to rats at other reproductive stages or age-matched virgins. Furthermore, our study showed that the lactation-induced elevation in osteocyte peri-lacunar/canalicular remodeling (PLR) activities led to enlarged osteocyte lacunae. This may result in alterations in interstitial fluid flow-mediated mechanical stimulation on osteocytes and an elevation in solute transport through the lacunar-canalicular system (LCS) during high-frequency dynamic loading, thus enhancing mechano-responsiveness of maternal bone during lactation. Taken together, findings from this study provide important insights into the relationship between reproduction- and lactation-induced skeletal changes and external mechanical loading, emphasizing the importance of weight-bearing exercise on maternal bone health during reproduction and postpartum.
Collapse
Affiliation(s)
- Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Chantal M J de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Radiology, Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - Xiaohan Lai
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ashutosh Parajuli
- Center for Biomechanical Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Shaopeng Pei
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Biomechanical Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Tan Meng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rebecca Chung
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Liyun Wang
- Center for Biomechanical Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
48
|
Dole NS, Yoon J, Monteiro DA, Yang J, Mazur CM, Kaya S, Belair CD, Alliston T. Mechanosensitive miR-100 coordinates TGFβ and Wnt signaling in osteocytes during fluid shear stress. FASEB J 2021; 35:e21883. [PMID: 34569659 PMCID: PMC9153140 DOI: 10.1096/fj.202100930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/12/2021] [Indexed: 11/12/2022]
Abstract
Organism scale mechanical forces elicit cellular scale changes through coordinated regulation of multiple signaling pathways. The mechanisms by which cells integrate signaling to generate a unified biological response remains a major question in mechanobiology. For example, the mechanosensitive response of bone and other tissues requires coordinated signaling by the transforming growth factor beta (TGFβ) and Wnt pathways through mechanisms that are not well‐defined. Here we report a new microRNA‐dependent mechanism that mediates mechanosensitive crosstalk between TGFβ and Wnt signaling in osteocytes exposed to fluid shear stress (FSS). From 60 mechanosensitive microRNA (miRs) identified by small‐RNAseq, miR100 expression is suppressed by in vivo hindlimb loading in the murine tibia and by cellular scale FSS in OCY454 cells. Though FSS activates both TGFβ and Wnt signaling in osteocytes, only TGFβ represses miR‐100 expression. miR‐100, in turn, antagonizes Wnt signaling by targeting and inhibiting expression of Frizzled receptors (FZD5/FZD8). Accordingly, miR‐100 inhibition blunts FSS‐ and TGFβ‐inducible Wnt signaling. Therefore, our results identify FSS‐responsive miRNAs in osteocytes, including one that integrates the mechanosensitive function of two essential signaling pathways in the osteoanabolic response of bone to mechanical load.
Collapse
Affiliation(s)
- Neha S Dole
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Jihee Yoon
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - David A Monteiro
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Jason Yang
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Courtney M Mazur
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Cassandra D Belair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA.,Department of Urology, University of California, San Francisco, San Francisco, California, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
49
|
Kim D, Lee B, Marshall B, Thomopoulos S, Jun YS. Cyclic strain enhances the early stage mineral nucleation and the modulus of demineralized bone matrix. Biomater Sci 2021; 9:5907-5916. [PMID: 34286730 DOI: 10.1039/d1bm00884f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The adaptive response of bones to mechanical loading is essential for musculoskeletal development. Despite the importance of collagen in bone mineralization, little is known about how cyclic strain influences physicochemical responses of collagen, especially at the early stage of mineralization when the levels of strain are higher than those in mature bones. The findings in this study show that, without any cell-mediated activity, cyclic strain increases nucleation rates of calcium phosphate (CaP) nanocrystals in highly-organized collagen matrices. The cyclic strain enhances the transport of mineralization fluids with nucleation precursors into the matrix, thus forming more CaP nanocrystals and increasing the elastic modulus of the collagen matrix. The results also suggest that the multiscale spatial distribution of nanocrystals in the fibrous collagen network determines tissue-level mechanical properties more critically than the total mineral content. By linking nano- and micro-scale observations with tissue-level mechanical properties, we provide new insights into designing better biomaterials.
Collapse
Affiliation(s)
- Doyoon Kim
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA.
| | | | | | | | | |
Collapse
|
50
|
Wang J, Li J, Liu J, Lin M, Mao S, Wang Y, Luo Y. Adsorption Force of Fibronectin: A Balance Regulator to Transmission of Cell Traction Force and Fluid Shear Stress. Biomacromolecules 2021; 22:3264-3273. [PMID: 34225453 DOI: 10.1021/acs.biomac.1c00375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Osteoblasts actively generate cell traction force (CTF) to sense chemical and mechanical microenvironments. Fluid shear stress (FSS) is a principle mechanical stimulus for bone modeling/remodeling. FSS and CTF share common interconnected elements for force transmission, among which the role of the protein-material interfacial force (Fad) remains unclear. Here, we found that, on the low Fad surface (5.47 ± 1.31 pN/FN), CTF overwhelmed Fad to partially desorb FN, and FSS exacerbated the desorption, resulting in disassembly of the actin cytoskeleton and focal adhesions (FAs) to reduce CTF and establishment of a new mechanical balance at the FN-material interface. Contrarily, on the high Fad surface (27.68 ± 5.24 pN/FN), pure CTF or the combination of CTF and FSS induced no FN desorption, and FSS promoted assembly of actin cytoskeletons and disassembly of FAs, regaining new mechanical balance at the cell-FN interface. These results indicate that Fad is a mechanical regulator for transmission of CTF and FSS, which has never been reported before.
Collapse
Affiliation(s)
- Jinfeng Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Junyao Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Manping Lin
- Key Laboratory of Emergency and Trauma, Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Shilong Mao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Yuanliang Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Yanfeng Luo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| |
Collapse
|