1
|
Garber AI, Sano EB, Gallagher AL, Miller SR. Duplicate Gene Expression and Possible Mechanisms of Paralog Retention During Bacterial Genome Expansion. Genome Biol Evol 2024; 16:evae089. [PMID: 38670115 PMCID: PMC11086944 DOI: 10.1093/gbe/evae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
Gene duplication contributes to the evolution of expression and the origin of new genes, but the relative importance of different patterns of duplicate gene expression and mechanisms of retention remains debated and particularly poorly understood in bacteria. Here, we investigated gene expression patterns for two lab strains of the cyanobacterium Acaryochloris marina with expanding genomes that contain about 10-fold more gene duplicates compared with most bacteria. Strikingly, we observed a generally stoichiometric pattern of greater combined duplicate transcript dosage with increased gene copy number, in contrast to the prevalence of expression reduction reported for many eukaryotes. We conclude that increased transcript dosage is likely an important mechanism of initial duplicate retention in these bacteria and may persist over long periods of evolutionary time. However, we also observed that paralog expression can diverge rapidly, including possible functional partitioning, for which different copies were respectively more highly expressed in at least one condition. Divergence may be promoted by the physical separation of most Acaryochloris duplicates on different genetic elements. In addition, expression pattern for ancestrally shared duplicates could differ between strains, emphasizing that duplicate expression fate need not be deterministic. We further observed evidence for context-dependent transcript dosage, where the aggregate expression of duplicates was either greater or lower than their single-copy homolog depending on physiological state. Finally, we illustrate how these different expression patterns of duplicated genes impact Acaryochloris biology for the innovation of a novel light-harvesting apparatus and for the regulation of recA paralogs in response to environmental change.
Collapse
Affiliation(s)
- Arkadiy I Garber
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Emiko B Sano
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Amy L Gallagher
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Scott R Miller
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
2
|
Meng XN, Ma JF, Liu YH, Li SQ, Wang X, Zhu J, Cai MD, Zhang HS, Song T, Xing S, Hou LQ, Guo H, Cui XB, Han J, Liu P, Ji GH, Sun WJ, Yu JC, Fu SB. Dynamic genomic changes in methotrexate-resistant human cancer cell lines beyond DHFR amplification suggest potential new targets for preventing drug resistance. Br J Cancer 2024; 130:1819-1827. [PMID: 38594370 PMCID: PMC11130306 DOI: 10.1038/s41416-024-02664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Although DHFR gene amplification has long been known as a major mechanism for methotrexate (MTX) resistance in cancer, the early changes and detailed development of the resistance are not yet fully understood. METHODS We performed genomic, transcriptional and proteomic analyses of human colon cancer cells with sequentially increasing levels of MTX-resistance. RESULTS The genomic amplification evolved in three phases (pre-amplification, homogenously staining region (HSR) and extrachromosomal DNA (ecDNA)). We confirm that genomic amplification and increased expression of DHFR, with formation of HSRs and especially ecDNAs, is the major driver of resistance. However, DHFR did not play a detectable role in the early phase. In the late phase (ecDNA), increase in FAM151B protein level may also have an important role by decreasing sensitivity to MTX. In addition, although MSH3 and ZFYVE16 may be subject to different posttranscriptional regulations and therefore protein expressions are decreased in ecDNA stages compared to HSR stages, they still play important roles in MTX resistance. CONCLUSION The study provides a detailed evolutionary trajectory of MTX-resistance and identifies new targets, especially ecDNAs, which could help to prevent drug resistance. It also presents a proof-of-principal approach which could be applied to other cancer drug resistance studies.
Collapse
Affiliation(s)
- Xiang-Ning Meng
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jin-Fa Ma
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Yang-He Liu
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Si-Qing Li
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Xu Wang
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jing Zhu
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Meng-Di Cai
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Hui-Shu Zhang
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Tiantian Song
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Shukai Xing
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Li-Qing Hou
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Huan Guo
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Xiao-Bo Cui
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jiang Han
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Peng Liu
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Guo-Hua Ji
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Wen-Jing Sun
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jing-Cui Yu
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Song-Bin Fu
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China.
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
3
|
Moore LD, Ballinger MJ. The toxins of vertically transmitted Spiroplasma. Front Microbiol 2023; 14:1148263. [PMID: 37275155 PMCID: PMC10232968 DOI: 10.3389/fmicb.2023.1148263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/19/2023] [Indexed: 06/07/2023] Open
Abstract
Vertically transmitted (VT) microbial symbionts play a vital role in the evolution of their insect hosts. A longstanding question in symbiont research is what genes help promote long-term stability of vertically transmitted lifestyles. Symbiont success in insect hosts is due in part to expression of beneficial or manipulative phenotypes that favor symbiont persistence in host populations. In Spiroplasma, these phenotypes have been linked to toxin and virulence domains among a few related strains. However, these domains also appear frequently in phylogenetically distant Spiroplasma, and little is known about their distribution across the Spiroplasma genus. In this study, we present the complete genome sequence of the Spiroplasma symbiont of Drosophila atripex, a non-manipulating member of the Ixodetis clade of Spiroplasma, for which genomic data are still limited. We perform a genus-wide comparative analysis of toxin domains implicated in defensive and reproductive phenotypes. From 12 VT and 31 non-VT Spiroplasma genomes, ribosome-inactivating proteins (RIPs), OTU-like cysteine proteases (OTUs), ankyrins, and ETX/MTX2 domains show high propensity for VT Spiroplasma compared to non-VT Spiroplasma. Specifically, OTU and ankyrin domains can be found only in VT-Spiroplasma, and RIP domains are found in all VT Spiroplasma and three non-VT Spiroplasma. These domains are frequently associated with Spiroplasma plasmids, suggesting a possible mechanism for dispersal and maintenance among heritable strains. Searching insect genome assemblies available on public databases uncovered uncharacterized Spiroplasma genomes from which we identified several spaid-like genes encoding RIP, OTU, and ankyrin domains, suggesting functional interactions among those domain types. Our results suggest a conserved core of symbiont domains play an important role in the evolution and persistence of VT Spiroplasma in insects.
Collapse
Affiliation(s)
- Logan D. Moore
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| | | |
Collapse
|
4
|
Herrmann JA, Koprowska A, Winters TJ, Villanueva N, Nikityuk VD, Pek F, Reis EM, Dominguez CZ, Davis D, McPherson E, Rocco SR, Recendez C, Difuntorum SM, Faeth K, Lopez MD, Awwad HM, Ghobashy RA, Cappiello L, Neidle EL, Quiñones-Soto S, Reams AB. Gene amplification mutations originate prior to selective stress in Acinetobacter baylyi. G3 (BETHESDA, MD.) 2023; 13:jkac327. [PMID: 36504387 PMCID: PMC9997567 DOI: 10.1093/g3journal/jkac327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The controversial theory of adaptive amplification states gene amplification mutations are induced by selective environments where they are enriched due to the stress caused by growth restriction on unadapted cells. We tested this theory with three independent assays using an Acinetobacter baylyi model system that exclusively selects for cat gene amplification mutants. Our results demonstrate all cat gene amplification mutant colonies arise through a multistep process. While the late steps occur during selection exposure, these mutants derive from low-level amplification mutant cells that form before growth-inhibiting selection is imposed. During selection, these partial mutants undergo multiple secondary steps generating higher amplification over several days to multiple weeks to eventually form visible high-copy amplification colonies. Based on these findings, amplification in this Acinetobacter system can be explained by a natural selection process that does not require a stress response. These findings have fundamental implications to understanding the role of growth-limiting selective environments on cancer development. We suggest duplication mutations encompassing growth factor genes may serve as new genomic biomarkers to facilitate early cancer detection and treatment, before high-copy amplification is attained.
Collapse
Affiliation(s)
- Jennifer A Herrmann
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Agata Koprowska
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Tesa J Winters
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Nancy Villanueva
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Victoria D Nikityuk
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Feini Pek
- Department of Mathematics and Statistics, California State University, Sacramento, CA 95819-6051, USA
| | - Elizabeth M Reis
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Constancia Z Dominguez
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Daniel Davis
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Eric McPherson
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Staci R Rocco
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Cynthia Recendez
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Shyla M Difuntorum
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Kelly Faeth
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Mario D Lopez
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Habeeba M Awwad
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Rola A Ghobashy
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Lauren Cappiello
- Department of Mathematics and Statistics, California State University, Sacramento, CA 95819-6051, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA
| | - Semarhy Quiñones-Soto
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Andrew B Reams
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| |
Collapse
|
5
|
West PT, Chanin RB, Bhatt AS. From genome structure to function: insights into structural variation in microbiology. Curr Opin Microbiol 2022; 69:102192. [PMID: 36030622 PMCID: PMC9783807 DOI: 10.1016/j.mib.2022.102192] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 12/27/2022]
Abstract
Structural variation in bacterial genomes is an important evolutionary driver. Genomic rearrangements, such as inversions, duplications, and insertions, can regulate gene expression and promote niche adaptation. Importantly, many of these variations are reversible and preprogrammed to generate heterogeneity. While many tools have been developed to detect structural variation in eukaryotic genomes, variation in bacterial genomes and metagenomes remains understudied. However, recent advances in genome sequencing technology and the development of new bioinformatic pipelines hold promise in further understanding microbial genomics.
Collapse
Affiliation(s)
- Patrick T West
- Department of Genetics, Stanford University, 269 Campus Dr, CCSR 1155b, Stanford, 94305 CA, USA; Department of Medicine (Hematology, Blood and Marrow Transplantation), 269 Campus Dr, CCSR 1155b, Stanford, CA 94305, USA
| | - Rachael B Chanin
- Department of Genetics, Stanford University, 269 Campus Dr, CCSR 1155b, Stanford, 94305 CA, USA; Department of Medicine (Hematology, Blood and Marrow Transplantation), 269 Campus Dr, CCSR 1155b, Stanford, CA 94305, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, 269 Campus Dr, CCSR 1155b, Stanford, 94305 CA, USA; Department of Medicine (Hematology, Blood and Marrow Transplantation), 269 Campus Dr, CCSR 1155b, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Kim DH, Park JC, Lee JS. G protein-coupled receptors (GPCRs) in rotifers and cladocerans: Potential applications in ecotoxicology, ecophysiology, comparative endocrinology, and pharmacology. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109297. [PMID: 35183764 DOI: 10.1016/j.cbpc.2022.109297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 12/19/2022]
Abstract
The G protein-coupled receptor (GPCR) superfamily plays a fundamental role in both sensory functions and the regulation of homeostasis, and is highly conserved across the eukaryote taxa. Its functional diversity is related to a conserved seven-transmembrane core and invariant set of intracellular signaling mechanisms. The interplay between these properties is key to the evolutionary success of GPCR. As this superfamily originated from a common ancestor, GPCR genes have evolved via lineage-specific duplications through the process of adaptation. Here we summarized information on GPCR gene families in rotifers and cladocerans based on their evolutionary position in aquatic invertebrates and their potential application in ecotoxicology, ecophysiology, comparative endocrinology, and pharmacology. Phylogenetic analyses were conducted to examine the evolutionary significance of GPCR gene families and to provide structural insight on their role in aquatic invertebrates. In particular, most GPCR gene families have undergone sporadic evolutionary processes, but some GPCRs are highly conserved across species despite the dynamics of GPCR evolution. Overall, this review provides a better understanding of GPCR evolution in aquatic invertebrates and expand our knowledge of the potential application of these receptors in various fields.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
7
|
Lin Y, Xu X, Maróti G, Strube ML, Kovács ÁT. Adaptation and phenotypic diversification of Bacillus thuringiensis biofilm are accompanied by fuzzy spreader morphotypes. NPJ Biofilms Microbiomes 2022; 8:27. [PMID: 35418164 PMCID: PMC9007996 DOI: 10.1038/s41522-022-00292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/19/2022] [Indexed: 11/12/2022] Open
Abstract
Bacillus cereus group (Bacillus cereus sensu lato) has a diverse ecology, including various species that produce biofilms on abiotic and biotic surfaces. While genetic and morphological diversification enables the adaptation of multicellular communities, this area remains largely unknown in the Bacillus cereus group. In this work, we dissected the experimental evolution of Bacillus thuringiensis 407 Cry- during continuous recolonization of plastic beads. We observed the evolution of a distinct colony morphotype that we named fuzzy spreader (FS) variant. Most multicellular traits of the FS variant displayed higher competitive ability versus the ancestral strain, suggesting an important role for diversification in the adaptation of B. thuringiensis to the biofilm lifestyle. Further genetic characterization of FS variant revealed the disruption of a guanylyltransferase gene by an insertion sequence (IS) element, which could be similarly observed in the genome of a natural isolate. The evolved FS and the deletion mutant in the guanylyltransferase gene (Bt407ΔrfbM) displayed similarly altered aggregation and hydrophobicity compared to the ancestor strain, suggesting that the adaptation process highly depends on the physical adhesive forces.
Collapse
Affiliation(s)
- Yicen Lin
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Xinming Xu
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, ELKH, 6726, Szeged, Hungary
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
8
|
Kim DH, Byeon E, Kim MS, Lee YH, Park JC, Hagiwara A, Lee JS. The Genome of the Marine Rotifer Brachionus manjavacas: Genome-Wide Identification of 310 G Protein-Coupled Receptor (GPCR) Genes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:226-242. [PMID: 35262805 DOI: 10.1007/s10126-022-10102-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The marine rotifer Brachionus manjavacas is widely used in ecological, ecotoxicological, and ecophysiological studies. The reference genome of B. manjavacas is a good starting point to uncover the potential molecular mechanisms of responses to various environmental stressors. In this study, we assembled the whole-genome sequence (114.1 Mb total, N50 = 6.36 Mb) of B. manjavacas, consisting of 61 contigs with 18,527 annotated genes. To elucidate the potential ligand-receptor signaling pathways in marine Brachionus rotifers in response to environmental signals, we identified 310 G protein-coupled receptor (GPCR) genes in the B. manjavacas genome after comparing them with three other species, including the minute rotifer Proales similis, Drosophila melanogaster, and humans (Homo sapiens). The 310 full-length GPCR genes were categorized into five distinct classes: A (262), B (26), C (7), F (2), and other (13). Most GPCR gene families showed sporadic evolutionary processes, but some classes were highly conserved between species as shown in the minute rotifer P. similis. Overall, these results provide potential clues for in silico analysis of GPCR-based signaling pathways in the marine rotifer B. manjavacas and will expand our knowledge of ligand-receptor signaling pathways in response to various environmental signals in rotifers.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jun Chul Park
- Départment Des Sciences, Université Sainte-Anne, Church Point, NS, B0W 1M0, Canada
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
9
|
Adu-Yeboah P, Malone JM, Gill G, Preston C. Stability of EPSPS gene copy number in Hordeum glaucum Steud (barley grass) in the presence and absence of glyphosate selection. PEST MANAGEMENT SCIENCE 2021; 77:3080-3087. [PMID: 33729658 DOI: 10.1002/ps.6367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Gene amplification has been shown to provide resistance to glyphosate in several weed species, including Hordeum glaucum populations in South Australia. The stability of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene copies in resistant populations in the presence or absence of glyphosate selection has not been determined. RESULTS Applying glyphosate to a cloned plant resulted in an increase in resistance and EPSPS copy number in the progeny of that plant compared to the untreated clone. The LD50 (herbicide concentration required for 50% mortality) increased by 75% to 79% in the progeny of the treated clones compared to the untreated in both populations (YP-17 and YP-16). EPSPS copy number estimates were higher in treated individuals compared to untreated individuals with an average of seven copies compared to six in YP-16 and 11 compared to six in YP-17. There was a positive correlation (R2 = 0.78) between EPSPS copy number and LD50 of all populations. CONCLUSION EPSPS gene copy number and resistance to glyphosate increased in H. glaucum populations under glyphosate selection, suggesting the number of EPSPS gene copies present is dependent on glyphosate selection. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Patricia Adu-Yeboah
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, Australia
| | - Jenna M Malone
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, Australia
| | - Gurjeet Gill
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, Australia
| | - Christopher Preston
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, Australia
| |
Collapse
|
10
|
Kim DH, Kim MS, Hagiwara A, Lee JS. The genome of the minute marine rotifer Proales similis: Genome-wide identification of 401 G protein-coupled receptor (GPCR) genes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100861. [PMID: 34157608 DOI: 10.1016/j.cbd.2021.100861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
The minute marine rotifer Proales similis is a potential model species for ecotoxicological and ecophysiological studies. Therefore, the provision of whole-genome data for P. similis is an easy way to deepen understanding of the molecular mechanisms involved in response to various environmental stressors. In this research, we assembled the whole-genome sequence (32.7 Mb total, N50 = 2.42 Mb) of P. similis, consisting of 15 contigs with 10,785 annotated genes. To understand the ligand-receptor signaling pathway in rotifers in response to environmental cues, we identified 401 G protein-coupled receptor (GPCR) genes in the P. similis genome and compared them with those from other species. The 401 full-length GPCR genes were classified into five distinct classes: A (363), B (18), C (7), F (2), and other (11). Most GPCR gene families have undergone sporadic evolutionary processes. However, some classes were highly conserved between species. Overall, this result provides new information about GPCR-based signaling pathways and the evolution of GPCRs in the minute rotifer P. similis, and it expands our knowledge of ligand-receptor signaling pathways in response to various environmental cues.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
11
|
Zhu X, Yan S, Yuan F, Wan S. The Applications of Nanopore Sequencing Technology in Pathogenic Microorganism Detection. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2020; 2020:6675206. [PMID: 33488885 PMCID: PMC7790562 DOI: 10.1155/2020/6675206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/04/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022]
Abstract
Infectious diseases are major threats to human health and lead to a serious public health burden. The emergence of new pathogens and the mutation of known pathogens challenge our ability to diagnose and control infectious diseases. Nanopore sequencing technology exhibited versatile applications in pathogenic microorganism detection due to its flexible data throughput. This review article introduced the applications of nanopore sequencing in clinical microbiology and infectious diseases management, including the monitoring of emerging infectious diseases outbreak, identification of pathogen drug resistance, and disease-related microbial communities characterization.
Collapse
Affiliation(s)
- Xiaojian Zhu
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Shanshan Yan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Fenghua Yuan
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Shaogui Wan
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
12
|
Bunker JJ, Drees C, Watson AR, Plunkett CH, Nagler CR, Schneewind O, Eren AM, Bendelac A. B cell superantigens in the human intestinal microbiota. Sci Transl Med 2020; 11:11/507/eaau9356. [PMID: 31462512 DOI: 10.1126/scitranslmed.aau9356] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/19/2018] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
IgA is prominently secreted at mucosal surfaces and coats a fraction of the commensal microbiota, a process that is critical for intestinal homeostasis. However, the mechanisms of IgA induction and the molecular targets of these antibodies remain poorly understood, particularly in humans. Here, we demonstrate that microbiota from a subset of human individuals encode two protein "superantigens" expressed on the surface of commensal bacteria of the family Lachnospiraceae such as Ruminococcus gnavus that bind IgA variable regions and stimulate potent IgA responses in mice. These superantigens stimulate B cells expressing human VH3 or murine VH5/6/7 variable regions and subsequently bind their antibodies, allowing these microbial organisms to become highly coated with IgA in vivo. These findings demonstrate a previously unappreciated role for commensal superantigens in host-microbiota interactions. Furthermore, as superantigen-expressing strains show an uneven distribution across human populations, they should be systematically considered in studies evaluating human B cell responses and microbiota during homeostasis and disease.
Collapse
Affiliation(s)
- Jeffrey J Bunker
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Christoph Drees
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Andrea R Watson
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA.,Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Catherine H Plunkett
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Cathryn R Nagler
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Olaf Schneewind
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA.,Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - A Murat Eren
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA.,Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA. .,Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Sanchez-Herrero JF, Bernabeu M, Prieto A, Hüttener M, Juárez A. Gene Duplications in the Genomes of Staphylococci and Enterococci. Front Mol Biosci 2020; 7:160. [PMID: 32850954 PMCID: PMC7396535 DOI: 10.3389/fmolb.2020.00160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/24/2020] [Indexed: 12/28/2022] Open
Abstract
Gene duplications are a feature of bacterial genomes. In the present work we analyze the extent of gene duplications in the genomes of three microorganisms that belong to the Firmicutes phylum and that are etiologic agents of several nosocomial infections: Staphylococcus aureus, Enterococcus faecium, and Enterococcus faecalis. In all three groups, there is an irregular distribution of duplications in the genomes of the strains analyzed. Whereas in some of the strains duplications are scarce, hundreds of duplications are present in others. In all three species, mobile DNA accounts for a large percentage of the duplicated genes: phage DNA in S. aureus, and plasmid DNA in the enterococci. Duplicates also include core genes. In all three species, a reduced group of genes is duplicated in all strains analyzed. Duplication of the deoC and rpmG genes is a hallmark of S. aureus genomes. Duplication of the gene encoding the PTS IIB subunit is detected in all enterococci genomes. In E. faecalis it is remarkable that the genomes of some strains encode duplicates of the prgB and prgU genes. They belong to the prgABCU cluster, which responds to the presence of the peptide pheromone cCF10 by expressing the surface adhesins PrgA, PrgB, and PrgC.
Collapse
Affiliation(s)
- José Francisco Sanchez-Herrero
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.,Biodiversity Research Institute (IRBio), University of Barcelona, Barcelona, Spain.,High Content Genomics and Bioinformatics Unit, Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Badalona, Spain
| | - Manuel Bernabeu
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Alejandro Prieto
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Mário Hüttener
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Antonio Juárez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.,Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
14
|
Belikova D, Jochim A, Power J, Holden MTG, Heilbronner S. "Gene accordions" cause genotypic and phenotypic heterogeneity in clonal populations of Staphylococcus aureus. Nat Commun 2020; 11:3526. [PMID: 32665571 PMCID: PMC7360770 DOI: 10.1038/s41467-020-17277-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/15/2020] [Indexed: 12/18/2022] Open
Abstract
Gene tandem amplifications are thought to drive bacterial evolution, but they are transient in the absence of selection, making their investigation challenging. Here, we analyze genomic sequences of Staphylococcus aureus USA300 isolates from the same geographical area to identify variations in gene copy number, which we confirm by long-read sequencing. We find several hotspots of variation, including the csa1 cluster encoding lipoproteins known to be immunogenic. We also show that the csa1 locus expands and contracts during bacterial growth in vitro and during systemic infection of mice, and recombination creates rapid heterogeneity in initially clonal cultures. Furthermore, csa1 copy number variants differ in their immunostimulatory capacity, revealing a mechanism by which gene copy number variation can modulate the host immune response. Gene tandem amplifications can drive bacterial evolution. Here, Belikova et al. identify copy number variations of lipoprotein-encoding genes in Staphylococcus aureus clinical isolates, and show that the loci expand and contract during bacterial growth in vitro and in mice, leading to changes in immunostimulatory capacity.
Collapse
Affiliation(s)
- Darya Belikova
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany
| | - Angelika Jochim
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany
| | - Jeffrey Power
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany
| | | | - Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany. .,(DFG) Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.
| |
Collapse
|
15
|
Brandis G, Hughes D. The SNAP hypothesis: Chromosomal rearrangements could emerge from positive Selection during Niche Adaptation. PLoS Genet 2020; 16:e1008615. [PMID: 32130223 PMCID: PMC7055797 DOI: 10.1371/journal.pgen.1008615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
The relative linear order of most genes on bacterial chromosomes is not conserved over evolutionary timescales. One explanation is that selection is weak, allowing recombination to randomize gene order by genetic drift. However, most chromosomal rearrangements are deleterious to fitness. In contrast, we propose the hypothesis that rearrangements in gene order are more likely the result of selection during niche adaptation (SNAP). Partial chromosomal duplications occur very frequently by recombination between direct repeat sequences. Duplicated regions may contain tens to hundreds of genes and segregate quickly unless maintained by selection. Bacteria exposed to non-lethal selections (for example, a requirement to grow on a poor nutrient) can adapt by maintaining a duplication that includes a gene that improves relative fitness. Further improvements in fitness result from the loss or inactivation of non-selected genes within each copy of the duplication. When genes that are essential in single copy are lost from different copies of the duplication, segregation is prevented even if the original selection is lifted. Functional gene loss continues until a new genetic equilibrium is reached. The outcome is a rearranged gene order. Mathematical modelling shows that this process of positive selection to adapt to a new niche can rapidly drive rearrangements in gene order to fixation. Signature features (duplication formation and divergence) of the SNAP model were identified in natural isolates from multiple species showing that the initial two steps in the SNAP process can occur with a remarkably high frequency. Further bioinformatic and experimental analyses are required to test if and to which extend the SNAP process acts on bacterial genomes. All life on earth has evolved from a universal common ancestor with a specific order of genes on the chromosome. This order is not maintained in modern species and the standard hypothesis is that changes reflect a lack of strong selection on gene order. Here, we propose an alternative hypothesis, SNAP. The occupation of a novel environment by bacteria is generally a trade-off situation. For example, while the bacteria may not be adapted to grow well under the new conditions, they may benefit by not having to share available resources with other microorganisms. Bacterial populations frequently acquire duplications of chromosomal segments containing genes that can help them adapt to a new environment. Other genes that are also duplicated are not required in two copies so that over time a superfluous copy can be lost. Eventually, the process of duplication and gene loss can lead to the rearrangement of the gene order in the chromosomal segment. The major benefit of this model over the standard hypothesis is that the process is driven by positive selection and can reach fixation rapidly.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
16
|
Patterson EL, Saski CA, Sloan DB, Tranel PJ, Westra P, Gaines TA. The Draft Genome of Kochia scoparia and the Mechanism of Glyphosate Resistance via Transposon-Mediated EPSPS Tandem Gene Duplication. Genome Biol Evol 2019; 11:2927-2940. [PMID: 31518388 PMCID: PMC6808082 DOI: 10.1093/gbe/evz198] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2019] [Indexed: 12/14/2022] Open
Abstract
Increased copy number of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene confers resistance to glyphosate, the world's most-used herbicide. There are typically three to eight EPSPS copies arranged in tandem in glyphosate-resistant populations of the weed kochia (Kochia scoparia). Here, we report a draft genome assembly from a glyphosate-susceptible kochia individual. Additionally, we assembled the EPSPS locus from a glyphosate-resistant kochia plant by sequencing select bacterial artificial chromosomes from a kochia bacterial artificial chromosome library. Comparing the resistant and susceptible EPSPS locus allowed us to reconstruct the history of duplication in the structurally complex EPSPS locus and uncover the genes that are coduplicated with EPSPS, several of which have a corresponding change in transcription. The comparison between the susceptible and resistant assemblies revealed two dominant repeat types. Additionally, we discovered a mobile genetic element with a FHY3/FAR1-like gene predicted in its sequence that is associated with the duplicated EPSPS gene copies in the resistant line. We present a hypothetical model based on unequal crossing over that implicates this mobile element as responsible for the origin of the EPSPS gene duplication event and the evolution of herbicide resistance in this system. These findings add to our understanding of stress resistance evolution and provide an example of rapid resistance evolution to high levels of environmental stress.
Collapse
Affiliation(s)
- Eric L Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University
- Department of Genetics and Biochemistry, Clemson University
| | | | | | | | - Philip Westra
- Department of Bioagricultural Sciences and Pest Management, Colorado State University
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University
| |
Collapse
|
17
|
Tandon H, Sharma A, Wadhwa S, Varadarajan R, Singh R, Srinivasan N, Sandhya S. Bioinformatic and mutational studies of related toxin-antitoxin pairs in Mycobacterium tuberculosis predict and identify key functional residues. J Biol Chem 2019; 294:9048-9063. [PMID: 31018964 DOI: 10.1074/jbc.ra118.006814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium tuberculosis possesses an unusually large representation of type II toxin-antitoxin (TA) systems, whose functions and targets are mostly unknown. To better understand the basis of their unique expansion and to probe putative functional similarities among these systems, here we computationally and experimentally investigated their sequence relationships. Bioinformatic and phylogenetic investigations revealed that 51 sequences of the VapBC toxin family group into paralogous sub-clusters. On the basis of conserved sequence fingerprints within paralogues, we predicted functional residues and residues at the putative TA interface that are useful to evaluate TA interactions. Substitution of these likely functional residues abolished the toxin's growth-inhibitory activity. Furthermore, conducting similarity searches in 101 mycobacterial and ∼4500 other prokaryotic genomes, we assessed the relative conservation of the M. tuberculosis TA systems and found that most TA orthologues are well-conserved among the members of the M. tuberculosis complex, which cause tuberculosis in animal hosts. We found that soil-inhabiting, free-living Actinobacteria also harbor as many as 12 TA pairs. Finally, we identified five novel putative TA modules in M. tuberculosis. For one of them, we demonstrate that overexpression of the putative toxin, Rv2514c, induces bacteriostasis and that co-expression of the cognate antitoxin Rv2515c restores bacterial growth. Taken together, our findings reveal that toxin sequences are more closely related than antitoxin sequences in M. tuberculosis Furthermore, the identification of additional TA systems reported here expands the known repertoire of TA systems in M. tuberculosis.
Collapse
Affiliation(s)
- Himani Tandon
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012 and
| | - Arun Sharma
- the Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, P. O. Box 4, Faridabad, Haryana-121001, India
| | - Saruchi Wadhwa
- the Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, P. O. Box 4, Faridabad, Haryana-121001, India
| | - Raghavan Varadarajan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012 and
| | - Ramandeep Singh
- the Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, P. O. Box 4, Faridabad, Haryana-121001, India
| | | | - Sankaran Sandhya
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012 and
| |
Collapse
|
18
|
Park JC, Lee MC, Yoon DS, Han J, Park HG, Hwang UK, Lee JS. Genome-wide identification and expression of the entire 52 glutathione S-transferase (GST) subfamily genes in the Cu 2+-exposed marine copepods Tigriopus japonicus and Paracyclopina nana. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:56-69. [PMID: 30735907 DOI: 10.1016/j.aquatox.2019.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
In this study, the entire glutathione S-transferases (GSTs), the major phase II detoxification enzyme, were identified in two marine copepod species Tigriopus japonicus and Paracyclopina nana. The genome-wide identification of GSTs in T. japonicus and P. nana resulted in 32 and 20 GSTs in total, respectively. Among the identified GSTs, two specific classes of GSTs, specifically sigma and delta/epsilon GSTs were the dominant form of cytosolic GSTs in T. japonicus, while delta/epsilon and mu classes were dominant cytosolic GSTs in P. nana. In addition, Membrane-Associated Proteins in Eicosanoid and Glutathione metabolism (MAPEG) family were found in relatively higher proportion compared to other classes. Moreover, sigma, delta/epsilon, and microsomal GSTs have shown to expand through tandem duplication. To validate the detoxification function of the identified GSTs, both copepods were exposed to copper (Cu2+) and the reactive oxygen species (ROS) level and GST activity were measured. With integration of phylogenetic analysis and xenobiotic-mediated GST mRNA expression patterns along with previous enzymatic activities, the functional divergence among species-specific GST genes was clearly observed. This study covers full identification of GST classes in two marine copepod species and their important role in marine environmental ecotoxicology.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Deok-Seo Yoon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 46083, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
19
|
Dual-barcoded shotgun expression library sequencing for high-throughput characterization of functional traits in bacteria. Nat Commun 2019; 10:308. [PMID: 30659179 PMCID: PMC6338753 DOI: 10.1038/s41467-018-08177-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
A major challenge in genomics is the knowledge gap between sequence and its encoded function. Gain-of-function methods based on gene overexpression are attractive avenues for phenotype-based functional screens, but are not easily applied in high-throughput across many experimental conditions. Here, we present Dual Barcoded Shotgun Expression Library Sequencing (Dub-seq), a method that uses random DNA barcodes to greatly increase experimental throughput. As a demonstration of this approach, we construct a Dub-seq library with Escherichia coli genomic DNA, performed 155 genome-wide fitness assays in 52 experimental conditions, and identified overexpression phenotypes for 813 genes. We show that Dub-seq data is reproducible, accurately recapitulates known biology, and identifies hundreds of novel gain-of-function phenotypes for E. coli genes, a subset of which we verified with assays of individual strains. Dub-seq provides complementary information to loss-of-function approaches and will facilitate rapid and systematic functional characterization of microbial genomes. Gain of function methods based on gene overexpression are not easily applied to high-throughput screening across different experimental conditions. Here, the authors present Dub-seq, which separates overexpression library characterization from functional screening and uses random DNA barcodes to increase the experimental throughput.
Collapse
|
20
|
Heckmann D, Zielinski DC, Palsson BO. Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates. Nat Commun 2018; 9:5270. [PMID: 30532008 PMCID: PMC6288127 DOI: 10.1038/s41467-018-07649-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Systems biology describes cellular phenotypes as properties that emerge from the complex interactions of individual system components. Little is known about how these interactions have affected the evolution of metabolic enzymes. Here, we combine genome-scale metabolic modeling with population genetics models to simulate the evolution of enzyme turnover numbers (kcats) from a theoretical ancestor with inefficient enzymes. This systems view of biochemical evolution reveals strong epistatic interactions between metabolic genes that shape evolutionary trajectories and influence the magnitude of evolved kcats. Diminishing returns epistasis prevents enzymes from developing higher kcats in all reactions and keeps the organism far from the potential fitness optimum. Multifunctional enzymes cause synergistic epistasis that slows down adaptation. The resulting fitness landscape allows kcat evolution to be convergent. Predicted kcat parameters show a significant correlation with experimental data, validating our modeling approach. Our analysis reveals how evolutionary forces shape modern kcats and the whole of metabolism.
Collapse
Affiliation(s)
- David Heckmann
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA
| | - Daniel C Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA. .,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
21
|
Genome-wide identification of the entire 90 glutathione S-transferase (GST) subfamily genes in four rotifer Brachionus species and transcriptional modulation in response to endocrine disrupting chemicals. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:183-195. [PMID: 30290366 DOI: 10.1016/j.cbd.2018.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 02/08/2023]
Abstract
Genome-wide identification of glutathione S-transferase (GST), a major phase II detoxification enzyme, was investigated in four different aquatic model rotifer species Brachionus koreanus, B. plicatilis, B. rotundiformis, and B. calyciflorus. GSTs are ubiquitous antioxidant enzymes that play versatile function including cellular detoxification, stress alleviation, and production of the radical conjugates. Among the four rotifers, B. rotundiformis was found with the least number of GST genes (total 19 GST genes), whereas the other three species shared 23 to 24 GST genes. Among the identified GST genes, belonging to the cytosolic GST superfamily, the expansion of GST sigma classes mainly occurs through tandem duplication, resulting in tandem-arrayed gene clusters on the chromosomes. Overall, the number of genes discovered in this study was highest in the sigma class, zeta, alpha, and omega in descending order. With integration of phylogenetic analysis and xenobiotic-mediated GST mRNA expression patterns along with previous enzymatic activities, the functional divergence among species-specific GST genes was clearly observed. This study covers full identification of GST classes in three marine rotifer and one fresh-water rotifer species and their important role in marine environmental ecotoxicology.
Collapse
|
22
|
Whole-Genome Characterization of Bacillus cereus Associated with Specific Disease Manifestations. Infect Immun 2018; 86:IAI.00574-17. [PMID: 29158433 DOI: 10.1128/iai.00574-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
Bacillus cereus remains an important cause of infections, particularly in immunocompromised hosts. While typically associated with enteric infections, disease manifestations can be quite diverse and include skin infections, bacteremia, pneumonia, and meningitis. Whether there are any genetic correlates of bacterial strains with particular clinical manifestations remains unknown. To address this gap in understanding, we undertook whole-genome analysis of B. cereus strains isolated from patients with a range of disease manifestations, including noninvasive colonizing disease, superficial skin infections, and invasive bacteremia. Interestingly, strains involved in skin infection tended to form a distinct genetic cluster compared to isolates associated with invasive disease. Other disease manifestations, despite not being exclusively clustered, nonetheless had unique genetic features. The unique features associated with the specific types of infections ranged from traditional virulence determinants to metabolic pathways and gene regulators. These data represent the largest genetic analysis to date of pathogenic B. cereus isolates with associated clinical parameters.
Collapse
|
23
|
Chrostek E, Teixeira L. Within host selection for faster replicating bacterial symbionts. PLoS One 2018; 13:e0191530. [PMID: 29346449 PMCID: PMC5773213 DOI: 10.1371/journal.pone.0191530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/05/2018] [Indexed: 01/24/2023] Open
Abstract
Wolbachia is a widespread, intracellular symbiont of arthropods, able to induce reproductive distortions and antiviral protection in insects. Wolbachia can also be pathogenic, as is the case with wMelPop, a virulent variant of the endosymbiont of Drosophila melanogaster. An extensive genomic amplification of the 20kb region encompassing eight Wolbachia genes, called Octomom, is responsible for wMelPop virulence. The Octomom copy number in wMelPop can be highly variable between individual D. melanogaster flies, even when comparing siblings arising from a single female. Moreover, Octomom copy number can change rapidly between generations. These data suggest an intra-host variability in Octomom copy number between Wolbachia cells. Since wMelPop Wolbachia with different Octomom copy numbers grow at different rates, we hypothesized that selection could act on this intra-host variability. Here we tested if total Octomom copy number changes during the lifespan of individual Drosophila hosts, revealing selection for different Wolbachia populations. We performed a time course analysis of Octomom amplification in flies whose mothers were controlled for Octomom copy number. We show that despite the Octomom copy number being relatively stable it increases slightly throughout D. melanogaster adult life. This indicates that there is selection acting on the intra-host variation in the Octomom copy number over the lifespan of individual hosts. This within host selection for faster replicating bacterial symbionts may be in conflict with between host selection against highly pathogenic Wolbachia.
Collapse
Affiliation(s)
- Ewa Chrostek
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Luis Teixeira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
24
|
Nourdin-Galindo G, Sánchez P, Molina CF, Espinoza-Rojas DA, Oliver C, Ruiz P, Vargas-Chacoff L, Cárcamo JG, Figueroa JE, Mancilla M, Maracaja-Coutinho V, Yañez AJ. Comparative Pan-Genome Analysis of Piscirickettsia salmonis Reveals Genomic Divergences within Genogroups. Front Cell Infect Microbiol 2017; 7:459. [PMID: 29164068 PMCID: PMC5671498 DOI: 10.3389/fcimb.2017.00459] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/16/2017] [Indexed: 11/13/2022] Open
Abstract
Piscirickettsia salmonis is the etiological agent of salmonid rickettsial septicemia, a disease that seriously affects the salmonid industry. Despite efforts to genomically characterize P. salmonis, functional information on the life cycle, pathogenesis mechanisms, diagnosis, treatment, and control of this fish pathogen remain lacking. To address this knowledge gap, the present study conducted an in silico pan-genome analysis of 19 P. salmonis strains from distinct geographic locations and genogroups. Results revealed an expected open pan-genome of 3,463 genes and a core-genome of 1,732 genes. Two marked genogroups were identified, as confirmed by phylogenetic and phylogenomic relationships to the LF-89 and EM-90 reference strains, as well as by assessments of genomic structures. Different structural configurations were found for the six identified copies of the ribosomal operon in the P. salmonis genome, indicating translocation throughout the genetic material. Chromosomal divergences in genomic localization and quantity of genetic cassettes were also found for the Dot/Icm type IVB secretion system. To determine divergences between core-genomes, additional pan-genome descriptions were compiled for the so-termed LF and EM genogroups. Open pan-genomes composed of 2,924 and 2,778 genes and core-genomes composed of 2,170 and 2,228 genes were respectively found for the LF and EM genogroups. The core-genomes were functionally annotated using the Gene Ontology, KEGG, and Virulence Factor databases, revealing the presence of several shared groups of genes related to basic function of intracellular survival and bacterial pathogenesis. Additionally, the specific pan-genomes for the LF and EM genogroups were defined, resulting in the identification of 148 and 273 exclusive proteins, respectively. Notably, specific virulence factors linked to adherence, colonization, invasion factors, and endotoxins were established. The obtained data suggest that these genes could be directly associated with inter-genogroup differences in pathogenesis and host-pathogen interactions, information that could be useful in designing novel strategies for diagnosing and controlling P. salmonis infection.
Collapse
Affiliation(s)
- Guillermo Nourdin-Galindo
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Integrative Bioinformatics, Facultad de Ciencias, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | - Patricio Sánchez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Cristian F Molina
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,AUSTRAL-omics, Universidad Austral de Chile, Valdivia, Chile
| | - Daniela A Espinoza-Rojas
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Integrative Bioinformatics, Facultad de Ciencias, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | - Cristian Oliver
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research, Concepción, Chile.,Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Viña del Mar, Chile
| | - Pamela Ruiz
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Luis Vargas-Chacoff
- Facultad de Ciencias, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Juan G Cárcamo
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Jaime E Figueroa
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Marcos Mancilla
- Laboratorio de Diagnóstico y Biotecnología, ADL Diagnostic Chile SpA., Puerto Montt, Chile
| | - Vinicius Maracaja-Coutinho
- Laboratory of Integrative Bioinformatics, Facultad de Ciencias, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile.,Laboratory of Integrative Bioinformatics, Instituto Vandique, João Pessoa, Brazil.,Beagle Bioinformatics, Santiago, Chile
| | - Alejandro J Yañez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research, Concepción, Chile.,AUSTRAL-omics, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
25
|
Weissenbach J, Ilhan J, Bogumil D, Hülter N, Stucken K, Dagan T. Evolution of Chaperonin Gene Duplication in Stigonematalean Cyanobacteria (Subsection V). Genome Biol Evol 2017; 9:241-252. [PMID: 28082600 PMCID: PMC5381637 DOI: 10.1093/gbe/evw287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/15/2022] Open
Abstract
Chaperonins promote protein folding and are known to play a role in the maintenance of cellular stability under stress conditions. The group I bacterial chaperonin complex comprises GroEL, that forms a barrel-like oligomer, and GroES that forms the lid. In most eubacteria the GroES/GroEL chaperonin is encoded by a single-copy bicistronic operon, whereas in cyanobacteria up to three groES/groEL paralogs have been documented. Here we study the evolution and functional diversification of chaperonin paralogs in the heterocystous, multi-seriate filament forming cyanobacterium Chlorogloeopsis fritschii PCC 6912. The genome of C. fritschii encodes two groES/groEL operons (groESL1, groESL1.2) and a monocistronic groEL gene (groEL2). A phylogenetic reconstruction reveals that the groEL2 duplication is as ancient as cyanobacteria, whereas the groESL1.2 duplication occurred at the ancestor of heterocystous cyanobacteria. A comparison of the groEL paralogs transcription levels under different growth conditions shows that they have adapted distinct transcriptional regulation. Our results reveal that groEL1 and groEL1.2 are upregulated during diazotrophic conditions and the localization of their promoter activity points towards a role in heterocyst differentiation. Furthermore, protein–protein interaction assays suggest that paralogs encoded in the two operons assemble into hybrid complexes. The monocistronic encoded GroEL2 is not forming oligomers nor does it interact with the co-chaperonins. Interaction between GroES1.2 and GroEL1.2 could not be documented, suggesting that the groESL1.2 operon does not encode a functional chaperonin complex. Functional complementation experiments in Escherichia coli show that only GroES1/GroEL1 and GroES1/GroEL1.2 can substitute the native operon. In summary, the evolutionary consequences of chaperonin duplication in cyanobacteria include the retention of groESL1 as a housekeeping gene, subfunctionalization of groESL1.2 and neofunctionalization of the monocistronic groEL2 paralog.
Collapse
Affiliation(s)
- Julia Weissenbach
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, Germany
| | - Judith Ilhan
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, Germany
| | - David Bogumil
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, Germany
| | - Nils Hülter
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, Germany
| | - Karina Stucken
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, Germany
| |
Collapse
|
26
|
Gene Duplication in Pseudomonas aeruginosa Improves Growth on Adenosine. J Bacteriol 2017; 199:JB.00261-17. [PMID: 28808129 DOI: 10.1128/jb.00261-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/05/2017] [Indexed: 11/20/2022] Open
Abstract
The laboratory strain of Pseudomonas aeruginosa, PAO1, activates genes for catabolism of adenosine using quorum sensing (QS). However, this strain is not well-adapted for growth on adenosine, with doubling times greater than 40 h. We previously showed that when PAO1 is grown on adenosine and casein, variants emerge that grow rapidly on adenosine. To understand the mechanism by which this adaptation occurs, we performed whole-genome sequencing of five isolates evolved for rapid growth on adenosine. All five genomes had a gene duplication-amplification (GDA) event covering several genes, including the quorum-regulated nucleoside hydrolase gene, nuh, and PA0148, encoding an adenine deaminase. In addition, two of the growth variants also exhibited a nuh promoter mutation. We recapitulated the rapid growth phenotype with a plasmid containing six genes common to all the GDA events. We also showed that nuh and PA0148, the two genes at either end of the common GDA, were sufficient to confer rapid growth on adenosine. Additionally, we demonstrated that the variant nuh promoter increased basal expression of nuh but maintained its QS regulation. Therefore, GDA in P. aeruginosa confers the ability to grow efficiently on adenosine while maintaining QS regulation of nucleoside catabolism.IMPORTANCEPseudomonas aeruginosa thrives in many habitats and is an opportunistic pathogen of humans. In these diverse environments, P. aeruginosa must adapt to use myriad potential carbon sources. P. aeruginosa PAO1 cannot grow efficiently on nucleosides, including adenosine; however, it can acquire this ability through genetic adaptation. We show that the mechanism of adaptation is by amplification of a specific region of the genome and that the amplification preserves the regulation of the adenosine catabolic pathway by quorum sensing. These results demonstrate an underexplored mechanism of adaptation by P. aeruginosa, with implications for phenotypes such as development of antibiotic resistance.
Collapse
|
27
|
Steinrueck M, Guet CC. Complex chromosomal neighborhood effects determine the adaptive potential of a gene under selection. eLife 2017; 6. [PMID: 28738969 PMCID: PMC5526668 DOI: 10.7554/elife.25100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022] Open
Abstract
How the organization of genes on a chromosome shapes adaptation is essential for understanding evolutionary paths. Here, we investigate how adaptation to rapidly increasing levels of antibiotic depends on the chromosomal neighborhood of a drug-resistance gene inserted at different positions of the Escherichia coli chromosome. Using a dual-fluorescence reporter that allows us to distinguish gene amplifications from other up-mutations, we track in real-time adaptive changes in expression of the drug-resistance gene. We find that the relative contribution of several mutation types differs systematically between loci due to properties of neighboring genes: essentiality, expression, orientation, termination, and presence of duplicates. These properties determine rate and fitness effects of gene amplification, deletions, and mutations compromising transcriptional termination. Thus, the adaptive potential of a gene under selection is a system-property with a complex genetic basis that is specific for each chromosomal locus, and it can be inferred from detailed functional and genomic data. DOI:http://dx.doi.org/10.7554/eLife.25100.001
Collapse
Affiliation(s)
| | - Călin C Guet
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
28
|
Chromosomal Amplification of the blaOXA-58 Carbapenemase Gene in a Proteus mirabilis Clinical Isolate. Antimicrob Agents Chemother 2017; 61:AAC.01697-16. [PMID: 27855079 DOI: 10.1128/aac.01697-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/24/2016] [Indexed: 01/30/2023] Open
Abstract
Horizontal gene transfer may occur between distantly related bacteria, thus leading to genetic plasticity and in some cases to acquisition of novel resistance traits. Proteus mirabilis is an enterobacterial species responsible for human infections that may express various acquired β-lactam resistance genes, including different classes of carbapenemase genes. Here we report a Proteus mirabilis clinical isolate (strain 1091) displaying resistance to penicillin, including temocillin, together with reduced susceptibility to carbapenems and susceptibility to expanded-spectrum cephalosporins. Using biochemical tests, significant carbapenem hydrolysis was detected in P. mirabilis 1091. Since PCR failed to detect acquired carbapenemase genes commonly found in Enterobacteriaceae, we used a whole-genome sequencing approach that revealed the presence of blaOXA-58 class D carbapenemase gene, so far identified only in Acinetobacter species. This gene was located on a 3.1-kb element coharboring a blaAmpC-like gene. Remarkably, these two genes were bracketed by putative XerC-XerD binding sites and inserted at a XerC-XerD site located between the terminase-like small- and large-subunit genes of a bacteriophage. Increased expression of the two bla genes resulted from a 6-time tandem amplification of the element as revealed by Southern blotting. This is the first isolation of a clinical P. mirabilis strain producing OXA-58, a class D carbapenemase, and the first description of a XerC-XerD-dependent insertion of antibiotic resistance genes within a bacteriophage. This study revealed a new role for the XerC-XerD recombinase in bacteriophage biology.
Collapse
|
29
|
Wang Y, Huang JM, Wang SL, Gao ZM, Zhang AQ, Danchin A, He LS. Genomic characterization of symbiotic mycoplasmas from the stomach of deep-sea isopod bathynomus sp. Environ Microbiol 2016; 18:2646-59. [PMID: 27312602 DOI: 10.1111/1462-2920.13411] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/06/2016] [Indexed: 01/24/2023]
Abstract
Deep-sea isopod scavengers such as Bathynomus sp. are able to live in nutrient-poor environments, which is likely attributable to the presence of symbiotic microbes in their stomach. In this study we recovered two draft genomes of mycoplasmas, Bg1 and Bg2, from the metagenomes of the stomach contents and stomach sac of a Bathynomus sp. sample from the South China Sea (depth of 898 m). Phylogenetic trees revealed a considerable genetic distance to other mycoplasma species for Bg1 and Bg2. Compared with terrestrial symbiotic mycoplasmas, the Bg1 and Bg2 genomes were enriched with genes encoding phosphoenolpyruvate-dependent phosphotransferase systems (PTSs) and sodium-driven symporters responsible for the uptake of sugars, amino acids and other carbohydrates. The genome of mycoplasma Bg1 contained sialic acid lyase and transporter genes, potentially enabling the bacteria to attach to the stomach sac and obtain organic carbons from various cell walls. Both of the mycoplasma genomes contained multiple copies of genes related to proteolysis and oligosaccharide degradation, which may help the host survive in low-nutrient conditions. The discovery of the different types of mycoplasma bacteria in the stomach of this deep-sea isopod affords insights into symbiotic model of deep-sea animals and genomic plasticity of mycoplasma bacteria.
Collapse
Affiliation(s)
- Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Jiao-Mei Huang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Shao-Lu Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Zhao-Ming Gao
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Ai-Qun Zhang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Antoine Danchin
- Hôpital de la Pitié-Salpêtrière, Institute of Cardiometabolism and Nutrition, 47 boulevard de l'Hôpital, Paris, 75013, France
| | - Li-Sheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| |
Collapse
|
30
|
Lee H, Doak TG, Popodi E, Foster PL, Tang H. Insertion sequence-caused large-scale rearrangements in the genome of Escherichia coli. Nucleic Acids Res 2016; 44:7109-19. [PMID: 27431326 PMCID: PMC5009759 DOI: 10.1093/nar/gkw647] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/08/2016] [Indexed: 12/27/2022] Open
Abstract
A majority of large-scale bacterial genome rearrangements involve mobile genetic elements such as insertion sequence (IS) elements. Here we report novel insertions and excisions of IS elements and recombination between homologous IS elements identified in a large collection of Escherichia coli mutation accumulation lines by analysis of whole genome shotgun sequencing data. Based on 857 identified events (758 IS insertions, 98 recombinations and 1 excision), we estimate that the rate of IS insertion is 3.5 × 10(-4) insertions per genome per generation and the rate of IS homologous recombination is 4.5 × 10(-5) recombinations per genome per generation. These events are mostly contributed by the IS elements IS1, IS2, IS5 and IS186 Spatial analysis of new insertions suggest that transposition is biased to proximal insertions, and the length spectrum of IS-caused deletions is largely explained by local hopping. For any of the ISs studied there is no region of the circular genome that is favored or disfavored for new insertions but there are notable hotspots for deletions. Some elements have preferences for non-coding sequence or for the beginning and end of coding regions, largely explained by target site motifs. Interestingly, transposition and deletion rates remain constant across the wild-type and 12 mutant E. coli lines, each deficient in a distinct DNA repair pathway. Finally, we characterized the target sites of four IS families, confirming previous results and characterizing a highly specific pattern at IS186 target-sites, 5'-GGGG(N6/N7)CCCC-3'. We also detected 48 long deletions not involving IS elements.
Collapse
Affiliation(s)
- Heewook Lee
- School of Informatics and Computing, Indiana University, Bloomington, IN 47401, USA Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington, IN 47401, USA National Center for Genome Analysis Support, Indiana University, Bloomington, IN 47401, USA
| | - Ellen Popodi
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| | - Patricia L Foster
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| | - Haixu Tang
- School of Informatics and Computing, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
31
|
Yano K, Masuda K, Akanuma G, Wada T, Matsumoto T, Shiwa Y, Ishige T, Yoshikawa H, Niki H, Inaoka T, Kawamura F. Growth and sporulation defects in Bacillus subtilis mutants with a single rrn operon can be suppressed by amplification of the rrn operon. Microbiology (Reading) 2016; 162:35-45. [DOI: 10.1099/mic.0.000207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Koichi Yano
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Kenta Masuda
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Genki Akanuma
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Tetsuya Wada
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Takashi Matsumoto
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Yuh Shiwa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Taichiro Ishige
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Hironori Niki
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies, Sokendai, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Takashi Inaoka
- Microbial Function Laboratory, National Food Research Institute, National Agriculture Research Organization, Tsukuba-shi Kannondai 2-1-12, Ibaraki 305-8642, Japan
| | - Fujio Kawamura
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| |
Collapse
|
32
|
Šustar P, Brzović Z. Molecular Challenges to Adaptationism. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Kronenberg ZN, Osborne EJ, Cone KR, Kennedy BJ, Domyan ET, Shapiro MD, Elde NC, Yandell M. Wham: Identifying Structural Variants of Biological Consequence. PLoS Comput Biol 2015; 11:e1004572. [PMID: 26625158 PMCID: PMC4666669 DOI: 10.1371/journal.pcbi.1004572] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022] Open
Abstract
Existing methods for identifying structural variants (SVs) from short read datasets are inaccurate. This complicates disease-gene identification and efforts to understand the consequences of genetic variation. In response, we have created Wham (Whole-genome Alignment Metrics) to provide a single, integrated framework for both structural variant calling and association testing, thereby bypassing many of the difficulties that currently frustrate attempts to employ SVs in association testing. Here we describe Wham, benchmark it against three other widely used SV identification tools–Lumpy, Delly and SoftSearch–and demonstrate Wham’s ability to identify and associate SVs with phenotypes using data from humans, domestic pigeons, and vaccinia virus. Wham and all associated software are covered under the MIT License and can be freely downloaded from github (https://github.com/zeeev/wham), with documentation on a wiki (http://zeeev.github.io/wham/). For community support please post questions to https://www.biostars.org/.
Collapse
Affiliation(s)
- Zev N. Kronenberg
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Edward J. Osborne
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, Utah, United States of America
| | - Kelsey R. Cone
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Brett J. Kennedy
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, Utah, United States of America
| | - Eric T. Domyan
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael D. Shapiro
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Nels C. Elde
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark Yandell
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
34
|
Oliva RF, Cano LM, Raffaele S, Win J, Bozkurt TO, Belhaj K, Oh SK, Thines M, Kamoun S. A Recent Expansion of the RXLR Effector Gene Avrblb2 Is Maintained in Global Populations of Phytophthora infestans Indicating Different Contributions to Virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:901-12. [PMID: 25894205 DOI: 10.1094/mpmi-12-14-0393-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The introgression of disease resistance (R) genes encoding immunoreceptors with broad-spectrum recognition into cultivated potato appears to be the most promising approach to achieve sustainable management of late blight caused by the oomycete pathogen Phytophthora infestans. Rpi-blb2 from Solanum bulbocastanum shows great potential for use in agriculture based on preliminary potato disease trials. Rpi-blb2 confers immunity by recognizing the P. infestans avirulence effector protein AVRblb2 after it is translocated inside the plant cell. This effector belongs to the RXLR class of effectors and is under strong positive selection. Structure-function analyses revealed a key polymorphic amino acid (position 69) in AVRblb2 effector that is critical for activation of Rpi-blb2. In this study, we reconstructed the evolutionary history of the Avrblb2 gene family and further characterized its genetic structure in worldwide populations. Our data indicate that Avrblb2 evolved as a single-copy gene in a putative ancestral species of P. infestans and has recently expanded in the Phytophthora spp. that infect solanaceous hosts. As a consequence, at least four variants of AVRblb2 arose in P. infestans. One of these variants, with a Phe residue at position 69, evades recognition by the cognate resistance gene. Surprisingly, all Avrblb2 variants are maintained in pathogen populations. This suggests a potential benefit for the pathogen in preserving duplicated versions of AVRblb2, possibly because the variants may have different contributions to pathogen fitness in a diversified solanaceous host environment.
Collapse
Affiliation(s)
- Ricardo F Oliva
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Liliana M Cano
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sylvain Raffaele
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Joe Win
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Tolga O Bozkurt
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Khaoula Belhaj
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sang-Keun Oh
- 2 Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| | - Marco Thines
- 3 Biodiversity and Climate Research Centre BiK-F, Senckenberganlage 25, D-60325 Frankfurt (Main), Germany
- 4 Goethe University, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Siesmayer. 70, D-60323 Frankfurt (Main), Germany
- 5 Senckenberg Gesellschft für Naturforschung, Senckenbergallee 25, D-60325 Frankfurt (Main), Germany
| | - Sophien Kamoun
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
35
|
Andersson DI, Jerlström-Hultqvist J, Näsvall J. Evolution of new functions de novo and from preexisting genes. Cold Spring Harb Perspect Biol 2015; 7:7/6/a017996. [PMID: 26032716 DOI: 10.1101/cshperspect.a017996] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
How the enormous structural and functional diversity of new genes and proteins was generated (estimated to be 10(10)-10(12) different proteins in all organisms on earth [Choi I-G, Kim S-H. 2006. Evolution of protein structural classes and protein sequence families. Proc Natl Acad Sci 103: 14056-14061] is a central biological question that has a long and rich history. Extensive work during the last 80 years have shown that new genes that play important roles in lineage-specific phenotypes and adaptation can originate through a multitude of different mechanisms, including duplication, lateral gene transfer, gene fusion/fission, and de novo origination. In this review, we focus on two main processes as generators of new functions: evolution of new genes by duplication and divergence of pre-existing genes and de novo gene origination in which a whole protein-coding gene evolves from a noncoding sequence.
Collapse
Affiliation(s)
- Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Jon Jerlström-Hultqvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Joakim Näsvall
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
| |
Collapse
|
36
|
Abstract
Changes in gene copy number are among the most frequent mutational events in all genomes and were among the mutations for which a physical basis was first known. Yet mechanisms of gene duplication remain uncertain because formation rates are difficult to measure and mechanisms may vary with position in a genome. Duplications are compared here to deletions, which seem formally similar but can arise at very different rates by distinct mechanisms. Methods of assessing duplication rates and dependencies are described with several proposed formation mechanisms. Emphasis is placed on duplications formed in extensively studied experimental situations. Duplications studied in microbes are compared with those observed in metazoan cells, specifically those in genomes of cancer cells. Duplications, and especially their derived amplifications, are suggested to form by multistep processes often under positive selection for increased copy number.
Collapse
Affiliation(s)
- Andrew B Reams
- Department of Biological Sciences, California State University, Sacramento, California 95819-6077
| | - John R Roth
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| |
Collapse
|
37
|
|
38
|
Nadimi M, Stefani FOP, Hijri M. The mitochondrial genome of the glomeromycete Rhizophagus sp. DAOM 213198 reveals an unusual organization consisting of two circular chromosomes. Genome Biol Evol 2014; 7:96-105. [PMID: 25527840 PMCID: PMC4316621 DOI: 10.1093/gbe/evu268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial (mt) genomes are intensively studied in Ascomycota and Basidiomycota, but they are poorly documented in basal fungal lineages. In this study, we sequenced the complete mtDNA of Rhizophagus sp. DAOM 213198, a close relative to Rhizophagus irregularis, a widespread, ecologically and economical relevant species belonging to Glomeromycota. Unlike all other known taxonomically close relatives harboring a full-length circular chromosome, mtDNA of Rhizophagus sp. reveals an unusual organization with two circular chromosomes of 61,964 and 29,078 bp. The large chromosome contained nine protein-coding genes (atp9, nad5, cob, nad4, nad1, nad4L, cox1, cox2, and atp8), small subunit rRNA gene (rns), and harbored 20 tRNA-coding genes and 10 orfs, while the small chromosome contained five protein-coding genes (atp6, nad2, nad3, nad6, and cox3), large subunit rRNA gene (rnl) in addition to 5 tRNA-coding genes, and 8 plasmid-related DNA polymerases (dpo). Although structural variation of plant mt genomes is well documented, this study is the first report of the presence of two circular mt genomes in arbuscular mycorrhizal fungi. Interestingly, the presence of dpo at the breakage point in intergenes cox1-cox2 and rnl-atp6 for large and small mtDNAs, respectively, could be responsible for the conversion of Rhizophagus sp. mtDNA into two chromosomes. Using quantitative real-time polymerase chain reaction, we found that both mtDNAs have an equal abundance. This study reports a novel mtDNA organization in Glomeromycota and highlights the importance of studying early divergent fungal lineages to describe novel evolutionary pathways in the fungal kingdom.
Collapse
Affiliation(s)
- Maryam Nadimi
- Département de Sciences Biologiques, Université de Montréal, Institut de Recherche en Biologie Végétale (IRBV), Quebec, Canada
| | - Franck O P Stefani
- Département de Sciences Biologiques, Université de Montréal, Institut de Recherche en Biologie Végétale (IRBV), Quebec, Canada
| | - Mohamed Hijri
- Département de Sciences Biologiques, Université de Montréal, Institut de Recherche en Biologie Végétale (IRBV), Quebec, Canada
| |
Collapse
|
39
|
Abstract
Two of the central problems in biology are determining the molecular basis of adaptive evolution and understanding how cells regulate their growth. The chemostat is a device for culturing cells that provides great utility in tackling both of these problems: it enables precise control of the selective pressure under which organisms evolve and it facilitates experimental control of cell growth rate. The aim of this review is to synthesize results from studies of the functional basis of adaptive evolution in long-term chemostat selections using Escherichia coli and Saccharomyces cerevisiae. We describe the principle of the chemostat, provide a summary of studies of experimental evolution in chemostats, and use these studies to assess our current understanding of selection in the chemostat. Functional studies of adaptive evolution in chemostats provide a unique means of interrogating the genetic networks that control cell growth, which complements functional genomic approaches and quantitative trait loci (QTL) mapping in natural populations. An integrated approach to the study of adaptive evolution that accounts for both molecular function and evolutionary processes is critical to advancing our understanding of evolution. By renewing efforts to integrate these two research programs, experimental evolution in chemostats is ideally suited to extending the functional synthesis to the study of genetic networks.
Collapse
Affiliation(s)
- David Gresham
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Jungeui Hong
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| |
Collapse
|
40
|
Epstein B, Sadowsky MJ, Tiffin P. Selection on horizontally transferred and duplicated genes in sinorhizobium (ensifer), the root-nodule symbionts of medicago. Genome Biol Evol 2014; 6:1199-209. [PMID: 24803571 PMCID: PMC4040998 DOI: 10.1093/gbe/evu090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Structural variation, including variation in gene copy number and presence or absence of genes, is a widespread and important source of genomic variation. We used whole-genome DNA sequences from 48 strains of Sinorhizobium (recently renamed Ensifer), including 20 strains of Sinorhizobium meliloti and 12 strains of S. medicae that were the focus of the analyses, to study the fitness effects of new structural variants created by duplication and horizontal gene transfer. We find that derived duplicated and horizontally transferred (HT) genes segregate at lower frequency than synonymous and nonsynonymous nucleotide variants in S. meliloti and S. medicae. Furthermore, the relative frequencies of different types of variants are more similar in S. medicae than in S. meliloti, the species with the larger effective population size. These results are consistent with the hypothesis that most duplications and HT genes have deleterious effects. Diversity of duplications, as measured by segregating duplicated genes per gene, is greater than nucleotide diversity, consistent with a high rate of duplication. Our results suggest that the vast majority of structural variants found among closely related bacterial strains are short-lived and unlikely to be involved in species-wide adaptation.
Collapse
Affiliation(s)
- Brendan Epstein
- Department of Plant Biology, University of MinnesotaSchool of Biological Sciences, Washington State University
| | - Michael J Sadowsky
- Department of Soil, Water, and Climate, University of MinnesotaBioTechnology Institute, Saint Paul, MN
| | - Peter Tiffin
- Department of Plant Biology, University of Minnesota
| |
Collapse
|
41
|
Zhang Y, Sievert SM. Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria. Front Microbiol 2014; 5:110. [PMID: 24678308 PMCID: PMC3958643 DOI: 10.3389/fmicb.2014.00110] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/04/2014] [Indexed: 11/22/2022] Open
Abstract
The rapidly increasing availability of complete bacterial genomes has created new opportunities for reconstructing bacterial evolution, but it has also highlighted the difficulty to fully understand the genomic and functional variations occurring among different lineages. Using the class Epsilonproteobacteria as a case study, we investigated the composition, flexibility, and function of its pan-genomes. Models were constructed to extrapolate the expansion of pan-genomes at three different taxonomic levels. The results show that, for Epsilonproteobacteria the seemingly large genome variations among strains of the same species are less noticeable when compared with groups at higher taxonomic ranks, indicating that genome stability is imposed by the potential existence of taxonomic boundaries. The analyses of pan-genomes has also defined a set of universally conserved core genes, based on which a phylogenetic tree was constructed to confirm that thermophilic species from deep-sea hydrothermal vents represent the most ancient lineages of Epsilonproteobacteria. Moreover, by comparing the flexible genome of a chemoautotrophic deep-sea vent species to (1) genomes of species belonging to the same genus, but inhabiting different environments, and (2) genomes of other vent species, but belonging to different genera, we were able to delineate the relative importance of lineage-specific versus niche-specific genes. This result not only emphasizes the overall importance of phylogenetic proximity in shaping the variable part of the genome, but also highlights the adaptive functions of niche-specific genes. Overall, by modeling the expansion of pan-genomes and analyzing core and flexible genes, this study provides snapshots on how the complex processes of gene acquisition, conservation, and removal affect the evolution of different species, and contribute to the metabolic diversity and versatility of Epsilonproteobacteria.
Collapse
Affiliation(s)
- Ying Zhang
- Biology Department, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| |
Collapse
|
42
|
Bao Z, Stodghill PV, Myers CR, Lam H, Wei HL, Chakravarthy S, Kvitko BH, Collmer A, Cartinhour SW, Schweitzer P, Swingle B. Genomic plasticity enables phenotypic variation of Pseudomonas syringae pv. tomato DC3000. PLoS One 2014; 9:e86628. [PMID: 24516535 PMCID: PMC3916326 DOI: 10.1371/journal.pone.0086628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022] Open
Abstract
Whole genome sequencing revealed the presence of a genomic anomaly in the region of 4.7 to 4.9 Mb of the Pseudomonas syringae pv. tomato (Pst) DC3000 genome. The average read depth coverage of Pst DC3000 whole genome sequencing results suggested that a 165 kb segment of the chromosome had doubled in copy number. Further analysis confirmed the 165 kb duplication and that the two copies were arranged as a direct tandem repeat. Examination of the corresponding locus in Pst NCPPB1106, the parent strain of Pst DC3000, suggested that the 165 kb duplication most likely formed after the two strains diverged via transposition of an ISPsy5 insertion sequence (IS) followed by unequal crossing over between ISPsy5 elements at each end of the duplicated region. Deletion of one copy of the 165 kb region demonstrated that the duplication facilitated enhanced growth in some culture conditions, but did not affect pathogenic growth in host tomato plants. These types of chromosomal structures are predicted to be unstable and we have observed resolution of the 165 kb duplication to single copy and its subsequent re-duplication. These data demonstrate the role of IS elements in recombination events that facilitate genomic reorganization in P. syringae.
Collapse
Affiliation(s)
- Zhongmeng Bao
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Paul V. Stodghill
- United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
| | - Christopher R. Myers
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York, United States of America
| | - Hanh Lam
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Hai-Lei Wei
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Suma Chakravarthy
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Brian H. Kvitko
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Alan Collmer
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Samuel W. Cartinhour
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
| | - Peter Schweitzer
- Biotechnology Resource Center, Cornell University, Ithaca, New York, United States of America
| | - Bryan Swingle
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Elliott KT, Cuff LE, Neidle EL. Copy number change: evolving views on gene amplification. Future Microbiol 2014; 8:887-99. [PMID: 23841635 DOI: 10.2217/fmb.13.53] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The rapid pace of genomic sequence analysis is increasing the awareness of intrinsically dynamic genetic landscapes. Gene duplication and amplification (GDA) contribute to adaptation and evolution by allowing DNA regions to expand and contract in an accordion-like fashion. This process affects diverse aspects of bacterial infection, including antibiotic resistance and host-pathogen interactions. In this review, microbial GDA is discussed, primarily using recent bacterial examples that demonstrate medical and evolutionary consequences. Interplay between GDA and horizontal gene transfer further impact evolutionary trajectories. Complementing the discovery of gene duplication in clinical and environmental settings, experimental evolution provides a powerful method to document genetic change over time. New methods for GDA detection highlight both its importance and its potential application for genetic engineering, synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Kathryn T Elliott
- Biology Department, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628, USA.
| | | | | |
Collapse
|
44
|
Recombination and annealing pathways compete for substrates in making rrn duplications in Salmonella enterica. Genetics 2013; 196:119-35. [PMID: 24214339 DOI: 10.1534/genetics.113.158519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Tandem genetic duplications arise frequently between the seven directly repeated 5.5-kb rrn loci that encode ribosomal RNAs in Salmonella enterica. The closest rrn genes, rrnB and rrnE, flank a 40-kb region that includes the purHD operon. Duplications of purHD arise by exchanges between rrn loci and form at a high rate (10(-3)/cell/division) that remains high in strains blocked for early steps in recombination (recA, recB, and/or recF), but drops 30-fold in mutants blocked for later Holliday junction resolution (ruvC recG). The duplication defect of a ruvC recG mutant was fully corrected by an added mutation in any one of the recA, recB, or recF genes. To explain these results, we propose that early recombination defects activate an alternative single-strand annealing pathway for duplication formation. In wild-type cells, rrn duplications form primarily by the action of RecFORA on single-strand gaps. Double-strand breaks cannot initiate rrn duplications because rrn loci lack Chi sites, which are essential for recombination between two separated rrn sequences. A recA or recF mutation allows unrepaired gaps to accumulate such that different rrn loci can provide single-strand rrn sequences that lack the RecA coating that normally inhibits annealing. A recB mutation activates annealing by allowing double-strand ends within rrn to avoid digestion by RecBCD and provide a new source of rrn ends for use in annealing. The equivalent high rates of rrn duplication by recombination and annealing pathways may reflect a limiting economy of gaps and breaks arising in heavily transcribed, palindrome-rich rrn sequences.
Collapse
|
45
|
Guo H, Lee TH, Wang X, Paterson AH. Function relaxation followed by diversifying selection after whole-genome duplication in flowering plants. PLANT PHYSIOLOGY 2013; 162:769-78. [PMID: 23580595 PMCID: PMC3668069 DOI: 10.1104/pp.112.213447] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 04/09/2013] [Indexed: 05/20/2023]
Abstract
Episodes of whole-genome duplication (WGD) followed by gene loss dominate the evolutionary history of flowering plants. Despite the importance of understanding gene evolution following WGD, little is known about the evolutionary dynamics of this process. In this study, we analyzed duplicated genes from three WGD events in the Arabidopsis (Arabidopsis thaliana) lineage using multiple data types. Most duplicated genes that have survived from the most recent WGD (α) are under purifying selection in modern Arabidopsis populations. Using the number of identified protein-protein interactions as a proxy for functional divergence, approximately 92.7% of α-duplicated genes were diverged in function from one another in modern Arabidopsis populations, indicating that their preservation is no longer explicable by dosage balance. Dosage-balanced retention declines with antiquity of duplication: 24.1% of α-duplicated gene pairs in Arabidopsis remain in dosage balance with interacting partners, versus 12.9% and 9.4% for the earlier β-duplication and γ-triplication. GO-slim (a cut-down version of gene ontologies) terms reinforce evidence from protein-protein interactions, showing that the putatively diverged gene pairs are adapted to different cellular components. We identified a group of α-duplicated genes that show higher than average single-nucleotide polymorphism density, indicating that a period of positive selection, potentially driving functional divergence, may have preceded the current phase of purifying selection. We propose three possible paths for the evolution of duplicated genes following WGD.
Collapse
|
46
|
Norris V, Merieau A. Plasmids as scribbling pads for operon formation and propagation. Res Microbiol 2013; 164:779-87. [PMID: 23587635 DOI: 10.1016/j.resmic.2013.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/01/2013] [Indexed: 12/31/2022]
Abstract
Many bacterial genes are in operons and the process whereby operons are formed is therefore fundamental. To help elucidate this process, we propose in the Scribbling Pad hypothesis that bacteria have been constantly using plasmids for genetic experimentation and, in particular, for the construction of operons. This hypothesis simultaneously solves the problems of the creation of operons and the way operons are propagated. We cite results in the literature to support the hypothesis and make experimental predictions to test it.
Collapse
Affiliation(s)
- Vic Norris
- Theoretical Biology Unit, Department of Biology, University of Rouen, 76821 Mont Saint Aignan cedex, France.
| | | |
Collapse
|
47
|
Putty K, Marcus SA, Mittl PRE, Bogadi LE, Hunter AM, Arur S, Berg DE, Sethu P, Kalia A. Robustness of Helicobacter pylori infection conferred by context-variable redundancy among cysteine-rich paralogs. PLoS One 2013; 8:e59560. [PMID: 23555707 PMCID: PMC3608669 DOI: 10.1371/journal.pone.0059560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/15/2013] [Indexed: 01/01/2023] Open
Abstract
Deletion of single genes from expanded gene families in bacterial genomes often does not elicit a phenotype thus implying redundancy or functional non-essentiality of paralogous genes. The molecular mechanisms that facilitate evolutionary maintenance of such paralogs despite selective pressures against redundancy remain mostly unexplored. Here, we investigate the evolutionary, genetic, and functional interaction between the Helicobacter pylori cysteine-rich paralogs hcpG and hcpC in the context of H. pylori infection of cultured mammalian cells. We find that in natural H. pylori populations both hcpG and hcpC are maintained by positive selection in a dual genetic relationship that switches from complete redundancy during early infection, whereby ΔhcpC or ΔhcpG mutants themselves show no growth defect but a significant growth defect is seen in the ΔhcpC,ΔhcpG double mutant, to quantitative redundancy during late infection wherein the growth defect of the ΔhcpC mutant is exacerbated in the ΔhcpC,ΔhcpG double mutant although the ΔhcpG mutant itself shows no defect. Moreover, during early infection both hcpG and hcpC are essential for optimal translocation of the H. pylori HspB/GroEL chaperone, but during middle-to-late infection hcpC alone is necessary and sufficient for HspB/GroEL translocation thereby revealing the lack of functional compensation among paralogs. We propose that evolution of context-dependent differences in the nature of genetic redundancy, and function, between hcpG and hcpC may facilitate their maintenance in H. pylori genomes, and confer robustness to H. pylori growth during infection of cultured mammalian cells.
Collapse
Affiliation(s)
- Kalyani Putty
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Sarah A. Marcus
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Peer R. E. Mittl
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Lindsey E. Bogadi
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Allison M. Hunter
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Swathi Arur
- Department of Genetics, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Douglas E. Berg
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Palaniappan Sethu
- Department of Biomedical Engineering, University of Louisville, Louisville, Kentucky, United States of America
| | - Awdhesh Kalia
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
- Molecular Genetic Technology Program, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
48
|
Bondici VF, Lawrence JR, Khan NH, Hill JE, Yergeau E, Wolfaardt GM, Warner J, Korber DR. Microbial communities in low permeability, high pH uranium mine tailings: characterization and potential effects. J Appl Microbiol 2013; 114:1671-86. [PMID: 23448257 DOI: 10.1111/jam.12180] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/18/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
Abstract
AIMS To describe the diversity and metabolic potential of microbial communities in uranium mine tailings characterized by high pH, high metal concentration and low permeability. METHODS AND RESULTS To assess microbial diversity and their potential to influence the geochemistry of uranium mine tailings using aerobic and anaerobic culture-based methods, in conjunction with next generation sequencing and clone library sequencing targeting two universal bacterial markers (the 16S rRNA and cpn60 genes). Growth assays revealed that 69% of the 59 distinct culturable isolates evaluated were multiple-metal resistant, with 15% exhibiting dual-metal hypertolerance. There was a moderately positive correlation coefficient (R = 0·43, P < 0·05) between multiple-metal resistance of the isolates and their enzyme expression profile. Of the isolates tested, 17 reduced amorphous iron, 22 reduced molybdate and seven oxidized arsenite. Based on next generation sequencing, tailings depth was shown to influence bacterial community composition, with the difference in the microbial diversity of the upper (0-20 m) and middle (20-40 m) tailings zones being highly significant (P < 0·01) from the lower zone (40-60 m) and the difference in diversity of the upper and middle tailings zone being significant (P < 0·05). Phylotypes closely related to well-known sulfate-reducing and iron-reducing bacteria were identified with low abundance, yet relatively high diversity. CONCLUSIONS The presence of a population of metabolically-diverse, metal-resistant micro-organisms within the tailings environment, along with their demonstrated capacity for transforming metal elements, suggests that these organisms have the potential to influence the long-term geochemistry of the tailings. SIGNIFICANCE AND IMPACT OF THE STUDY This study is the first investigation of the diversity and functional potential of micro-organisms present in low permeability, high pH uranium mine tailings.
Collapse
Affiliation(s)
- V F Bondici
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zienkiewicz M, Kern-Zdanowicz I, Carattoli A, Gniadkowski M, Cegłowski P. Tandem multiplication of the IS26-flanked amplicon with the bla(SHV-5) gene within plasmid p1658/97. FEMS Microbiol Lett 2013; 341:27-36. [PMID: 23330672 DOI: 10.1111/1574-6968.12084] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/04/2013] [Accepted: 01/11/2013] [Indexed: 11/28/2022] Open
Abstract
The IncF plasmid p1658/97 (c. 125 kb) from Escherichia coli isolates recovered during a clonal outbreak in a hospital in Warsaw, Poland, in 1997 contains the extended-spectrum β-lactamase (ESBL) gene bla(SHV-5), originated from the Klebsiella pneumoniae chromosome. A region containing the bla(SHV-5) gene is flanked by two IS26 copies and its copy number multiplies spontaneously within p1658/97 and RecA-deficient E. coli strains. Here, we demonstrate that the amplified IS26-bla(SHV-5) units were arranged in tandems, containing up to more than 10 units, which could raise ceftazidime MICs for host strains from 4 μg mL(-1) to more than 128 μg mL(-1). Successive deletions within p1658/97, located outside the amplifiable module and encompassing even as little as c. 15% of the plasmid, blocked the amplification. Moreover, the complementing re-introduction of the deleted fragments in trans did not restore the process. Similarly, insertions of a 1-kb DNA fragment into the amplicon inhibited its self-multiplication ability. The module was able to transmit into another IS26-containing plasmid by recombination. The results prompted us to speculate that local DNA structure, especially favorable in p1658/97, might have been responsible for the IS26-bla(SHV-5) multiplication ability.
Collapse
Affiliation(s)
- Maksymilian Zienkiewicz
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics of Polish Academy of Sciences, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
50
|
Single-stranded annealing induced by re-initiation of replication origins provides a novel and efficient mechanism for generating copy number expansion via non-allelic homologous recombination. PLoS Genet 2013; 9:e1003192. [PMID: 23300490 PMCID: PMC3536649 DOI: 10.1371/journal.pgen.1003192] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/08/2012] [Indexed: 11/24/2022] Open
Abstract
Copy number expansions such as amplifications and duplications contribute to human phenotypic variation, promote molecular diversification during evolution, and drive the initiation and/or progression of various cancers. The mechanisms underlying these copy number changes are still incompletely understood, however. We recently demonstrated that transient, limited re-replication from a single origin in Saccharomyces cerevisiae efficiently induces segmental amplification of the re-replicated region. Structural analyses of such re-replication induced gene amplifications (RRIGA) suggested that RRIGA could provide a new mechanism for generating copy number variation by non-allelic homologous recombination (NAHR). Here we elucidate this new mechanism and provide insight into why it is so efficient. We establish that sequence homology is both necessary and sufficient for repetitive elements to participate in RRIGA and show that their recombination occurs by a single-strand annealing (SSA) mechanism. We also find that re-replication forks are prone to breakage, accounting for the widespread DNA damage associated with deregulation of replication proteins. These breaks appear to stimulate NAHR between re-replicated repeat sequences flanking a re-initiating replication origin. Our results support a RRIGA model where the expansion of a re-replication bubble beyond flanking homologous sequences followed by breakage at both forks in trans provides an ideal structural context for SSA–mediated NAHR to form a head-to-tail duplication. Given the remarkable efficiency of RRIGA, we suggest it may be an unappreciated contributor to copy number expansions in both disease and evolution. Duplications and amplifications of chromosomal segments are frequently observed in eukaryotic genomes, including both normal and cancerous human genomes. These copy number variations contribute to the phenotypic variation upon which natural selection acts. For example, the amplification of genes whose excessive copy number facilitates uncontrolled cell division is often selected for during tumor development. Copy number variations can often arise when repetitive sequence elements, which are dispersed throughout eukaryotic genomes, undergo a rearrangement called non-allelic homologous recombination. Exactly how these rearrangements occur is poorly understood. Here, using budding yeast to model this class of copy number variation, we uncover a new and highly efficient mechanism by which these variations can be generated. The precipitating event is the aberrant re-initiation of DNA replication at a replication origin. Normally the hundreds to thousands of origins scattered throughout a eukaryotic genome are tightly controlled such that each is permitted to initiate only once per cell cycle. However, disruptions in these controls can allow origins to re-initiate, and we show how the resulting DNA re-replication structure can be readily converted into a tandem duplication via non-allelic homologous recombination. Hence, the re-initiation of DNA replication is a potential source of copy number variation both in disease and during evolution.
Collapse
|