1
|
Caycho E, La Torre R, Orjeda G. Assembly, annotation and analysis of the chloroplast genome of the Algarrobo tree Neltuma pallida (subfamily: Caesalpinioideae). BMC PLANT BIOLOGY 2023; 23:570. [PMID: 37974117 PMCID: PMC10652460 DOI: 10.1186/s12870-023-04581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Neltuma pallida is a tree that grows in arid soils in northwestern Peru. As a predominant species of the Equatorial Dry Forest ecoregion, it holds significant economic and ecological value for both people and environment. Despite this, the species is severely threatened and there is a lack of genetic and genomic research, hindering the proposal of evidence-based conservation strategies. RESULTS In this work, we conducted the assembly, annotation, analysis and comparison of the chloroplast genome of a N. pallida specimen with those of related species. The assembled chloroplast genome has a length of 162,381 bp with a typical quadripartite structure (LSC-IRA-SSC-IRB). The calculated GC content was 35.97%. However, this is variable between regions, with a higher GC content observed in the IRs. A total of 132 genes were annotated, of which 19 were duplicates and 22 contained at least one intron in their sequence. A substantial number of repetitive sequences of different types were identified in the assembled genome, predominantly tandem repeats (> 300). In particular, 142 microsatellites (SSR) markers were identified. The phylogenetic reconstruction showed that N. pallida grouped with the other Neltuma species and with Prosopis cineraria. The analysis of sequence divergence between the chloroplast genome sequences of N. pallida, N. juliflora, P. farcta and Strombocarpa tamarugo revealed a high degree of similarity. CONCLUSIONS The N. pallida chloroplast genome was found to be similar to those of closely related species. With a size of 162,831 bp, it had the classical chloroplast quadripartite structure and GC content of 35.97%. Most of the 132 identified genes were protein-coding genes. Additionally, over 800 repetitive sequences were identified, including 142 SSR markers. In the phylogenetic analysis, N. pallida grouped with other Neltuma spp. and P. cineraria. Furthermore, N. pallida chloroplast was highly conserved when compared with genomes of closely related species. These findings can be of great potential for further diversity studies and genetic improvement of N. pallida.
Collapse
Affiliation(s)
- Esteban Caycho
- Laboratory of Genomics and Bioinformatics for Biodiversity, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, 15081, Lima, Peru
| | - Renato La Torre
- Laboratory of Genomics and Bioinformatics for Biodiversity, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, 15081, Lima, Peru
| | - Gisella Orjeda
- Laboratory of Genomics and Bioinformatics for Biodiversity, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, 15081, Lima, Peru.
| |
Collapse
|
2
|
Niu T, Tian C, Yang Y, Liu Q, Liu L, Tao Q, Li Z, Wu Z. Complete Chloroplast Genome of Corethrodendron fruticosum (Papilionoideae: Fabaceae): Comparative and Phylogenetic Analysis. Genes (Basel) 2023; 14:1289. [PMID: 37372469 DOI: 10.3390/genes14061289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Corethrodendron fruticosum is an endemic forage grasses in China with high ecological value. In this study, the complete chloroplast genome of C. fruticosum was sequenced using Illumina paired-end sequencing. The C. fruticosum chloroplast genome was 123,100 bp and comprised 105 genes, including 74 protein-coding genes, 4 rRNA-coding genes, and 27 tRNA-coding genes. The genome had a GC content of 34.53%, with 50 repetitive sequences and 63 simple repeat repetitive sequences that did not contain reverse repeats. The simple repeats included 45 single-nucleotide repeats, which accounted for the highest proportion and primarily comprised A/T repeats. A comparative analysis of C. fruticosum, C. multijugum, and four Hedysarum species revealed that the six genomes were highly conserved, with differentials primarily located in the conserved non-coding regions. Moreover, the accD and clpP genes in the coding regions exhibited high nucleotide variability. Accordingly, these genes may serve as molecular markers for the classification and phylogenetic analysis of Corethrodendron species. Phylogenetic analysis further revealed that C. fruticosum and C. multijugum appeared in different clades than the four Hedysarum species. The newly sequenced chloroplast genome provides further insights into the phylogenetic position of C. fruticosum, which is useful for the classification and identification of Corethrodendron.
Collapse
Affiliation(s)
- Tianxiu Niu
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Chunyu Tian
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Yanting Yang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Qian Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Lemeng Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Qibo Tao
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| |
Collapse
|
3
|
Zhai Y, Zhang T, Guo Y, Gao C, Zhou L, Feng L, Zhou T, Xumei W. Phylogenomics, phylogeography and germplasms authentication of the Rheum palmatum complex based on complete chloroplast genomes. JOURNAL OF PLANT RESEARCH 2023; 136:291-304. [PMID: 36808315 DOI: 10.1007/s10265-023-01440-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
As a traditional Chinese medicine, rhubarb is used to treat several diseases such as severe acute pancreatitis, sepsis and chronic renal failure. However, few studies focused on the authentication of germplasm for the Rheum palmatum complex, and no studies have been conducted to elucidate the evolutionary history of the R. palmatum complex using plastome datasets. Hence, we aim to develop the potential molecular markers to identify the elite germplasms of rhubarb and explore the divergence and biogeographic history of the R. palmatum complex based on the newly sequenced chloroplast genome datasets. Chloroplast genomes of thirty-five the R. palmatum complex germplasms were sequenced, and the length ranged from 160,858 to 161,204 bp. The structure, gene content and gene order were highly conserved across all genomes. Eight InDels and sixty-one SNPs loci could be used to authenticate the high-quality germplasms of rhubarb in specific areas. Phylogenetic analysis revealed that all rhubarb germplasms were clustered in the same clade with high bootstrap support values and Bayesian posterior probabilities. According to the molecular dating result, the intraspecific divergence of the complex occurred in the Quaternary, which might be affected by climatic fluctuation. The biogeography reconstruction indicated that the ancestor of the R. palmatum complex might originate from the Himalaya-Hengduan Mountains or/and Bashan-Qinling Mountains, and then spread to surrounding areas. Several useful molecular markers were developed to identify rhubarb germplasms, and our study will provide further understanding on speciation, divergence and biogeography of the R. palmatum complex.
Collapse
Affiliation(s)
- Yunyan Zhai
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianyi Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanbing Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chenxi Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lipan Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Wang Xumei
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
4
|
Wei Y, Li K, Chong Z, Aamir Khan M, Liang C, Meng Z, Wang Y, Guo S, Chen Q, Zhang R. Genetic and transcriptome analysis of a cotton leaf variegation mutant. Gene 2023; 866:147257. [PMID: 36754177 DOI: 10.1016/j.gene.2023.147257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
In eukaryotic photosynthetic organisms, chloroplast is not only a site for photosynthesis, but it also have a vital role in signal transduction mechanisms. Plants exhibit various colors in nature with various mutants induced by EMS, whose traits are regulated by developmental and environmental factors, making them ideal for studying the regulation of chloroplast development. In this study, the cotton leaf variegated mutant (VAR) induced by EMS was used for this experiment. Genetic analysis revealed that VAR phenotype was a dominant mutation and by performing freehand section inspection, it was noticed that the vascular bundles of VAR were smaller. Chloroplast ultrastructure showed that the stacking of grana thylakoid was thinner and the starch granules were increased significantly in VAR comparedto wild type (WT). Transcriptome analysis found that the KEGG was enriched in photosynthesis pathway, and GO was abundant in zinc ion transmembrane transport, electron transporter and cation binding terms. In addition, GhFTSH5 expression in VAR was significantly higher than WT and the promoter sequence of GhFTSH5 had differences. The results showed that the VAR plant had altered GhFTSH5 expression and disrupted chloroplast structure, which in turn affects plant photosynthesis. More importantly, this study lays a foundation for further analyzing molecular mechanism of cotton variegated phenotypes.
Collapse
Affiliation(s)
- Yunxiao Wei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China
| | - Kaili Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China; Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi 830052, China
| | - Zhili Chong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China; College of Plant Science, Tarim University, 1487 East Tarim Avenue, Aral City 843300, China
| | - Muhammad Aamir Khan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China
| | - Quanjia Chen
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi 830052, China.
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China.
| |
Collapse
|
5
|
Carmel Ezra S, Tuller T. Modeling the effect of rRNA-mRNA interactions and mRNA folding on mRNA translation in chloroplasts. Comput Struct Biotechnol J 2022; 20:2521-2538. [PMID: 35685358 PMCID: PMC9157439 DOI: 10.1016/j.csbj.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 11/15/2022] Open
Abstract
The process of translation initiation in prokaryotes is mediated by the hybridization of the 16S rRNA of the small ribosomal subunit with the mRNA in a short region called the ribosomal binding site. However, translation initiation in chloroplasts, which have evolved from an ancestral bacterium, is not well understood. Some studies suggest that in many cases it differs from translation initiation in bacteria and involves various novel interactions of the mRNA structures with intracellular factors; however currently, there is no generic quantitative model related to these aspects in chloroplasts. We developed a novel computational pipeline and models that can be used for understanding and modeling translation regulation in chloroplasts. We demonstrate that local folding and co-folding energy of the rRNA and the mRNA correlates with codon usage estimators of expression levels (r = -0.63) and infer predictive models that connect these energies and codon usage to protein levels (with correlation up to 0.71). In addition, we demonstrate that the ends of the transcripts in chloroplasts are populated with various structural elements that may be functional. Furthermore, we report a database of 166 novel structures in the chloroplast transcripts that are predicted to be functional. We believe that the models reported here improve existing understandings of genomic evolution and the biophysics of translation in chloroplasts; as such, they can aid gene expression engineering in chloroplasts for various biotechnological objectives.
Collapse
Affiliation(s)
- Stav Carmel Ezra
- Department of Biomedical Engineering, Tel Aviv University, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Israel
| |
Collapse
|
6
|
Tyagi S, Jung JA, Kim JS, Won SY. Comparative Analysis of the Complete Chloroplast Genome of Mainland Aster spathulifolius and Other Aster Species. PLANTS (BASEL, SWITZERLAND) 2020; 9:E568. [PMID: 32365609 PMCID: PMC7285121 DOI: 10.3390/plants9050568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022]
Abstract
Aster spathulifolius, a common ornamental and medicinal plant, is widely distributed in Korea and Japan, and is genetically classified into mainland and island types. Here, we sequenced the whole chloroplast genome of mainland A. spathulifolius and compared it with those of the island type and other Aster species. The chloroplast genome of mainland A. spathulifolius is 152,732 bp with a conserved quadripartite structure, has 37.28% guanine-cytosine (GC) content, and contains 114 non-redundant genes. Comparison of the chloroplast genomes between the two A. spathulifolius lines and the other Aster species revealed that their sequences, GC contents, gene contents and orders, and exon-intron structure were well conserved; however, differences were observed in their lengths, repeat sequences, and the contraction and expansion of the inverted repeats. The variations were mostly in the single-copy regions and non-coding regions, which, together with the detected simple sequence repeats, could be used for the development of molecular markers to distinguish between these plants. All Aster species clustered into a monophyletic group, but the chloroplast genome of mainland A. spathulifolius was more similar to the other Aster species than to that of the island A. spathulifolius. The accD and ndhF genes were detected to be under positive selection within the Aster lineage compared to other related taxa. The complete chloroplast genome of mainland A. spathulifolius presented in this study will be helpful for species identification and the analysis of the genetic diversity, evolution, and phylogenetic relationships in the Aster genus and the Asteraceae.
Collapse
Affiliation(s)
- Swati Tyagi
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (S.T.); (J.S.K.)
| | - Jae-A Jung
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Korea;
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (S.T.); (J.S.K.)
| | - So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (S.T.); (J.S.K.)
| |
Collapse
|
7
|
Wei Y, Xia X. Unique Shine-Dalgarno Sequences in Cyanobacteria and Chloroplasts Reveal Evolutionary Differences in Their Translation Initiation. Genome Biol Evol 2020; 11:3194-3206. [PMID: 31621842 PMCID: PMC6847405 DOI: 10.1093/gbe/evz227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Microorganisms require efficient translation to grow and replicate rapidly, and translation is often rate-limited by initiation. A prominent feature that facilitates translation initiation in bacteria is the Shine-Dalgarno (SD) sequence. However, there is much debate over its conservation in Cyanobacteria and in chloroplasts which presumably originated from endosymbiosis of ancient Cyanobacteria. Elucidating the utilization of SD sequences in Cyanobacteria and in chloroplasts is therefore important to understand whether 1) SD role in Cyanobacterial translation has been reduced prior to chloroplast endosymbiosis or 2) translation in Cyanobacteria and in plastid has been subjected to different evolutionary pressures. To test these alternatives, we employed genomic, proteomic, and transcriptomic data to trace differences in SD usage among Synechocystis species, Microcystis aeruginosa, cyanophages, Nicotiana tabacum chloroplast, and Arabidopsis thaliana chloroplast. We corrected their mis-annotated 16S rRNA 3' terminus using an RNA-Seq-based approach to determine their SD/anti-SD locational constraints using an improved measurement DtoStart. We found that cyanophages well-mimic Cyanobacteria in SD usage because both have been under the same selection pressure for SD-mediated initiation. Whereas chloroplasts lost this similarity because the need for SD-facilitated initiation has been reduced in plastids having much reduced genome size and different ribosomal proteins as a result of host-symbiont coevolution. Consequently, SD sequence significantly increases protein expression in Cyanobacteria but not in chloroplasts, and only Cyanobacterial genes compensate for a lack of SD sequence by having weaker secondary structures at the 5' UTR. Our results suggest different evolutionary pressures operate on translation initiation in Cyanobacteria and in chloroplast.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Biology, University of Ottawa, Ontario, Canada
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Singh BP, Kumar A, Kaur H, Singh H, Nagpal AK. CpGDB : A Comprehensive Database of Chloroplast Genomes. Bioinformation 2020; 16:171-175. [PMID: 32405169 PMCID: PMC7196173 DOI: 10.6026/97320630016171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/20/2020] [Indexed: 01/11/2023] Open
Abstract
Chloroplast Genome Database (CpGDB) is user friendly, web-based, freely available and dynamic relational database which provides a platform for researchers to search and download complete chloroplast genome sequences, individual gene sequences and feature records of plant species belonging to same or different families of spermatophytes. Presently, the database consists of genome sequences, individual gene sequences and feature records of chloroplast genomes of 3823 plant species belonging to 1527 genera from 256 families, which will be updated regularly with the availability of new sequences at NCBI. Extensive data mining of feature records from GenBank files, uniform nomenclature for majority of genes, enriched intron/exon feature records makes CpGDB a valuable resource for studies in chloroplast genomics while complementing existing chloroplast databases.
Collapse
Affiliation(s)
- Bhupinder Pal Singh
- I.K. Gujral Punjab Technical University, Kapurthala, 144 603, India
- Centre for I.T. Solutions, Guru Nanak Dev University, Amritsar, 143005, India
| | - Ajay Kumar
- Electronics and Communication Engineering Department, Beant College of Engineering and Technology, Gurdaspur, 143521, India
| | - Harpreet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, 144008, India
| | - Avinash Kaur Nagpal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
9
|
Henriquez CL, Ahmed I, Carlsen MM, Zuluaga A, Croat TB, McKain MR. Molecular evolution of chloroplast genomes in Monsteroideae (Araceae). PLANTA 2020; 251:72. [PMID: 32112137 DOI: 10.1007/s00425-020-03365-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/14/2020] [Indexed: 05/02/2023]
Abstract
This study provides broad insight into the chloroplast genomes of the subfamily Monsteroideae. The identified polymorphic regions may be suitable for designing unique and robust molecular markers for phylogenetic inference. Monsteroideae is the third largest subfamily (comprises 369 species) and one of the early diverging lineages of the monocot plant family Araceae. The phylogeny of this important subfamily is not well resolved at the species level due to scarcity of genomic resources and suitable molecular markers. Here, we report annotated chloroplast genome sequences of four Monsteroideae species: Spathiphyllum patulinervum, Stenospermation multiovulatum, Monstera adansonii, and Rhaphidophora amplissima. The quadripartite chloroplast genomes (size range 163,335-164,751 bp) consist of a pair of inverted repeats (25,270-25,931 bp), separating a small single copy region (21,448-22,346 bp) from a large single copy region (89,714-91,841 bp). The genomes contain 114 unique genes, including four rRNA genes, 80 protein-coding genes, and 30 tRNA genes. Gene features, amino acid frequencies, codon usage, GC contents, oligonucleotide repeats, and inverted repeats dynamics exhibit similarities among the four genomes. Higher rate of synonymous substitutions was observed as compared to non-synonymous substitutions in 76 protein-coding genes. Positive selection was observed in seven protein-coding genes, including psbK, ndhK, ndhD, rbcL, accD, rps8, and ycf2. Our included species of Araceae showed the monophyly in Monsteroideae and other subfamilies. We report 30 suitable polymorphic regions. The polymorphic regions identified here might be suitable for designing unique and robust markers for inferring the phylogeny and phylogeography among closely related species within the genus Spathiphyllum and among distantly related species within the subfamily Monsteroideae. The chloroplast genomes presented here are a valuable contribution towards understanding the molecular evolutionary dynamics in the family Araceae.
Collapse
Affiliation(s)
- Claudia L Henriquez
- University of California, Department of Ecology and Evolutionary Biology, Los Angeles, USA.
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, 45710, Pakistan
| | | | - Alejandro Zuluaga
- Departamento de Biología, Universidad del Valle, Calle 13, 100-00, Cali, Colombia
| | | | - Michael R McKain
- The University of Alabama, Department of Biological Sciences, Tuscaloosa, AL, USA
| |
Collapse
|
10
|
Henriquez CL, Abdullah, Ahmed I, Carlsen MM, Zuluaga A, Croat TB, McKain MR. Evolutionary dynamics of chloroplast genomes in subfamily Aroideae (Araceae). Genomics 2020; 112:2349-2360. [PMID: 31945463 DOI: 10.1016/j.ygeno.2020.01.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/31/2019] [Accepted: 01/11/2020] [Indexed: 12/21/2022]
Abstract
Aroideae is the largest and most diverse subfamily of the plant family Araceae. Despite its agricultural and horticultural importance, the genomic resources are sparse for this subfamily. Here, we report de novo assembled and fully annotated chloroplast genomes of 13 Aroideae species. The quadripartite chloroplast genomes (size range of 158,177-170,037 bp) are comprised of a large single copy (LSC; 75,594-94,702 bp), a small single copy (SSC; 12,903-23,981 bp) and a pair of inverted repeats (IRs; 25,266-34,840 bp). Notable gene rearrangements and IRs contraction / expansions were found for Anchomanes hookeri and Zantedeschia aethiopica. Codon usage, amino acid frequencies, oligonucleotide repeats, GC contents, and gene features revealed similarities among the 13 species. The number of oligonucleotide repeats was uncorrelated with genome size or phylogenetic position of the species. Phylogenetic analyses corroborated the monophyly of Aroideae but were unable to resolve the positions of Calla and Schismatoglottis.
Collapse
Affiliation(s)
- Claudia L Henriquez
- University of California, Los Angeles, Department of Ecology and Evolutionary Biology, United States of America.
| | - Abdullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan.
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad 45710, Pakistan
| | - Monica M Carlsen
- Missouri Botanical Garden, St. Louis, MO, United States of America
| | - Alejandro Zuluaga
- Universidad del Valle, Departamento de Biología, Calle 13, #100-00 Cali, Colombia
| | - Thomas B Croat
- Missouri Botanical Garden, St. Louis, MO, United States of America
| | - Michael R McKain
- The University of Alabama, Department of Biological Sciences, Tuscaloosa, AL, United States of America
| |
Collapse
|
11
|
Sakulsathaporn A, Wonnapinij P, Suttangkakul A, Apisitwanich S, Vuttipongchaikij S. RNA editing in the chloroplast of Asian Palmyra palm (Borassus flabellifer). Genet Mol Biol 2020; 42:e20180371. [PMID: 31968044 PMCID: PMC7206934 DOI: 10.1590/1678-4685-gmb-2018-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 10/02/2019] [Indexed: 11/22/2022] Open
Abstract
We have identified 46 RNA editing sites located in 20 chloroplast (cp) genes of Borassus flabellifer (Asian Palmyra palm), family Arecaceae, and tested these genes for supporting phylogenetic study among the commelinids. Among the 46 sites, 43 sites were found to cause amino acid alterations, which were predicted to increase the hydrophobicity and transmembrane regions of the proteins, and one site was to cause a premature stop codon. Analysis of these editing sites with data obtained from seed plants showed that a number of shared-editing sites depend on the evolutionary relationship between plants. We reconstructed a deep phylogenetic relationship among the commelinids using seven RNA edited genes that are orthologous among monocots. This tree could represent the relationship among subfamilies of Arecaceae family, but was insufficient to represent the relationship among the orders of the commelinid. After adding eight gene sequences with high parsimony-informative characters (PICs), the tree topology was improved and could support the topology for the commelinid orders ((Arecales,Dasypogenaceae) (Zingiberales+Commelinales,Poales)). The result provides support for inherent RNA editing along the evolution of seed plants, and we provide an alternative set of loci for the phylogenetic tree reconstruction of Arecaceae's subfamilies.
Collapse
Affiliation(s)
- Arpakorn Sakulsathaporn
- Center for Agricultural Biotechnology, Kasetsart University,
Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Center of Excellence on Agricultural Biotechnology:
(AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- School of Natural Resource and Environmental Management,
Faculty of Applied Science and Engineering, Khon Kaen University, Nong Khai
Campus, Nong Khai 43000, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan road, Chatuchak, Bangkok 10900, Thailand
- Center of Advanced studies for Tropical Natural Resources,
Kasetsart University, Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health,
Kasetsart University (OmiKU), 50 Ngarm Wong Wan road, Chatuchak, Bangkok 10900,
Thailand
| | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan road, Chatuchak, Bangkok 10900, Thailand
- Center of Advanced studies for Tropical Natural Resources,
Kasetsart University, Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| | - Somsak Apisitwanich
- Center for Agricultural Biotechnology, Kasetsart University,
Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Center of Excellence on Agricultural Biotechnology:
(AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Department of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan road, Chatuchak, Bangkok 10900, Thailand
- Center of Advanced studies for Tropical Natural Resources,
Kasetsart University, Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan road, Chatuchak, Bangkok 10900, Thailand
- Center of Advanced studies for Tropical Natural Resources,
Kasetsart University, Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health,
Kasetsart University (OmiKU), 50 Ngarm Wong Wan road, Chatuchak, Bangkok 10900,
Thailand
| |
Collapse
|
12
|
Wang X, Zhao L, Man Y, Li X, Wang L, Xiao J. PDM4, a Pentatricopeptide Repeat Protein, Affects Chloroplast Gene Expression and Chloroplast Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:1198. [PMID: 32849743 PMCID: PMC7432182 DOI: 10.3389/fpls.2020.01198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/23/2020] [Indexed: 05/10/2023]
Abstract
Extensive studies have been carried out on chloroplast gene expression and chloroplast development; however, the regulatory mechanism is still largely unknown. Here, we characterized Pigment-Defective Mutant4 (PDM4), a P-type PPR protein localized in chloroplast. The pdm4 mutant showed seedling-lethal and albino phenotype under heterotrophic growth conditions. Transmission electron microscopic analysis revealed that thylakoid structure was totally disrupted in pdm4 mutant and eventually led to the breakdown of chloroplasts. The levels of several chloroplast- and nuclear-encoded proteins are strongly reduced in pdm4 mutant. Besides, transcript profile analysis detected that, in pdm4 mutant, the expression of plastid-encoded RNA polymerase-dependent genes was markedly affected, and deviant chloroplast rRNA processing was also observed. In addition, we found that PDM4 functions in the splicing of group II introns and may also be involved in the assembly of the 50S ribosomal particle. Our results demonstrate that PDM4 plays an important role in chloroplast gene expression and chloroplast development in Arabidopsis.
Collapse
Affiliation(s)
- Xinwei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Lirong Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yi Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianwei Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- *Correspondence: Jianwei Xiao,
| |
Collapse
|
13
|
A Systematic View Exploring the Role of Chloroplasts in Plant Abiotic Stress Responses. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6534745. [PMID: 31396532 PMCID: PMC6668530 DOI: 10.1155/2019/6534745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 11/18/2022]
Abstract
Chloroplasts are intracellular semiautonomous organelles central to photosynthesis and are essential for plant growth and yield. The significance of the function of chloroplast-related genes in response to climate change has not been well studied in crops. In the present study, the initial focus was on genes that were predicted to be located in the chloroplast genome in rice, a model crop plant, with genes either preferentially expressed in the leaf or ubiquitously expressed in all organs. The characteristics were analyzed by Gene Ontology (GO) enrichment and MapMan functional classification tools. It was then identified that 110 GO terms (45 for leaf expression and 65 for ubiquitous expression) and 1,695 genes mapped to MapMan overviews were strongly associated with chloroplasts. In particular, the MapMan cellular response overview revealed a close association between heat stress response and chloroplast-related genes in rice. Moreover, features of these genes in response to abiotic stress were analyzed using a large-scale publicly available transcript dataset. Consequently, the expression of 215 genes was found to be upregulated in response to high temperature stress. Conversely, genes that responded to other stresses were extremely limited. In other words, chloroplast-related genes were found to affect abiotic stress response mainly through high temperature response, with little effect on response to drought and salinity stress. These results suggest that genes involved in diurnal rhythm in the leaves participate in the reaction to recognize temperature changes in the environment. Furthermore, the predicted protein–protein interaction network analysis associated with high temperature stress is expected to provide a very important basis for the study of molecular mechanisms by which chloroplasts will respond to future climate changes.
Collapse
|
14
|
Raime K, Remm M. Method for the Identification of Taxon-Specific k-mers from Chloroplast Genome: A Case Study on Tomato Plant ( Solanum lycopersicum). FRONTIERS IN PLANT SCIENCE 2018; 9:6. [PMID: 29387080 PMCID: PMC5776150 DOI: 10.3389/fpls.2018.00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Polymerase chain reaction and different barcoding methods commonly used for plant identification from metagenomics samples are based on the amplification of a limited number of pre-selected barcoding regions. These methods are often inapplicable due to DNA degradation, low amplification success or low species discriminative power of selected genomic regions. Here we introduce a method for the rapid identification of plant taxon-specific k-mers, that is applicable for the fast detection of plant taxa directly from raw sequencing reads without aligning, mapping or assembling the reads. We identified more than 800 Solanum lycopersicum specific k-mers (32 nucleotides in length) from 42 different chloroplast genome regions using the developed method. We demonstrated that identified k-mers are also detectable in whole genome sequencing raw reads from S. lycopersicum. Also, we demonstrated the usability of taxon-specific k-mers in artificial mixtures of sequences from closely related species. Developed method offers a novel strategy for fast identification of taxon-specific genome regions and offers new perspectives for detection of plant taxa directly from sequencing raw reads.
Collapse
|
15
|
Ahmed T, Shi J, Bhushan S. Unique localization of the plastid-specific ribosomal proteins in the chloroplast ribosome small subunit provides mechanistic insights into the chloroplastic translation. Nucleic Acids Res 2017; 45:8581-8595. [PMID: 28582576 PMCID: PMC5737520 DOI: 10.1093/nar/gkx499] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/26/2017] [Indexed: 12/30/2022] Open
Abstract
Chloroplastic translation is mediated by a bacterial-type 70S chloroplast ribosome. During the evolution, chloroplast ribosomes have acquired five plastid-specific ribosomal proteins or PSRPs (cS22, cS23, bTHXc, cL37 and cL38) which have been suggested to play important regulatory roles in translation. However, their exact locations on the chloroplast ribosome remain elusive due to lack of a high-resolution structure, hindering our progress to understand their possible roles. Here we present a cryo-EM structure of the 70S chloroplast ribosome from spinach resolved to 3.4 Å and focus our discussion mainly on the architecture of the 30S small subunit (SSU) which is resolved to 3.7 Å. cS22 localizes at the SSU foot where it seems to compensate for the deletions in 16S rRNA. The mRNA exit site is highly remodeled due to the presence of cS23 suggesting an alternative mode of translation initiation. bTHXc is positioned at the SSU head and appears to stabilize the intersubunit bridge B1b during thermal fluctuations. The translation factor plastid pY binds to the SSU on the intersubunit side and interacts with the conserved nucleotide bases involved in decoding. Most of the intersubunit bridges are conserved compared to the bacteria, except for a new bridge involving uL2c and bS6c.
Collapse
Affiliation(s)
- Tofayel Ahmed
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Jian Shi
- Center for BioImaging Sciences, National University of Singapore, 117546, Singapore
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
16
|
Moreno JC, Tiller N, Diez M, Karcher D, Tillich M, Schöttler MA, Bock R. Generation and characterization of a collection of knock-down lines for the chloroplast Clp protease complex in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2199-2218. [PMID: 28369470 PMCID: PMC5447895 DOI: 10.1093/jxb/erx066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Protein degradation in chloroplasts is carried out by a set of proteases that eliminate misfolded, damaged, or superfluous proteins. The ATP-dependent caseinolytic protease (Clp) is the most complex protease in plastids and has been implicated mainly in stromal protein degradation. In contrast, FtsH, a thylakoid membrane-associated metalloprotease, is believed to participate mainly in the degradation of thylakoidal proteins. To determine the role of specific Clp and FtsH subunits in plant growth and development, RNAi lines targeting at least one subunit of each Clp ring and FtsH were generated in tobacco. In addition, mutation of the translation initiation codon was employed to down-regulate expression of the plastid-encoded ClpP1 subunit. These protease lines cover a broad range of reductions at the transcript and protein levels of the targeted genes. A wide spectrum of phenotypes was obtained, including pigment deficiency, alterations in leaf development, leaf variegations, and impaired photosynthesis. When knock-down lines for the different protease subunits were compared, both common and specific phenotypes were observed, suggesting distinct functions of at least some subunits. Our work provides a well-characterized collection of knock-down lines for plastid proteases in tobacco and reveals the importance of the Clp protease in physiology and plant development.
Collapse
Affiliation(s)
- Juan C Moreno
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Nadine Tiller
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mercedes Diez
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Michael Tillich
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
17
|
Fonseca LHM, Lohmann LG. Plastome Rearrangements in the " Adenocalymma-Neojobertia" Clade (Bignonieae, Bignoniaceae) and Its Phylogenetic Implications. FRONTIERS IN PLANT SCIENCE 2017; 8:1875. [PMID: 29163600 PMCID: PMC5672021 DOI: 10.3389/fpls.2017.01875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/16/2017] [Indexed: 05/02/2023]
Abstract
The chloroplast is one of the most important organelles of plants. This organelle has a circular DNA with approximately 130 genes. The use of plastid genomic data in phylogenetic and evolutionary studies became possible with high-throughput sequencing methods, which allowed us to rapidly obtain complete genomes at a reasonable cost. Here, we use high-throughput sequencing to study the "Adenocalymma-Neojobertia" clade (Bignonieae, Bignoniaceae). More specifically, we use Hi-Seq Illumina technology to sequence 10 complete plastid genomes. Plastomes were assembled using selected plastid reads and de novo approach with SPAdes. The 10 assembled genomes were analyzed in a phylogenetic context using five different partition schemes: (1) 91 protein-coding genes ("coding"); (2) 76 introns and spacers with alignment manually edited ("non-coding edited"); (3) 76 non-coding regions with poorly aligned regions removed using T-Coffee ("non-coding filtered"); (4) 91 coding regions plus 76 non-coding regions edited ("coding + non-coding edited"); and, (5) 91 protein-coding regions plus the 76 filtered non-coding regions ("coding + non-coding filtered"). Fragmented regions were aligned using Mafft. Phylogenetic analyses were conducted using Maximum Likelihood (ML) and Bayesian Criteria (BC). The analyses of the individual plastomes consistently recovered an expansion of the Inverted Repeated (IRs) regions and a compression of the Small Single Copy (SSC) region. Major genomic translocations were observed at the Large Single Copy (LSC) and IRs. ML phylogenetic analyses of the individual datasets led to the same topology, with the exception of the analysis of the "non-coding filtered" dataset. Overall, relationships were strongly supported, with the highest support values obtained through the analysis of the "coding + non-coding edited" dataset. Four regions at the LSC, SSC, and IR were selected for primer development. The "Adenocalymma-Neojobertia" clade shows an unusual pattern of plastid structure variation, including four major genomic translocations. These rearrangements challenge the current view of conserved plastid genome architecture in terms of gene order. It also complicates both genomic assemblies using reference genomes and sequence alignments using whole plastomes. Therefore, strategies that employ de novo assemblies and manual evaluation of sequence alignments are required to prevent assembly and alignment errors.
Collapse
|
18
|
Isolation of Plastid Ribosomes. Methods Mol Biol 2016. [PMID: 27730617 DOI: 10.1007/978-1-4939-6533-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Plastid ribosomes are responsible for a large part of the protein synthesis in plant leaves, green algal cells, and the vast majority in the thalli of red algae. Plastid translation is necessary not only for photosynthesis but also for development/differentiation of plants and algae. While some isolated plastid ribosomes from a few green lineages have been characterized by biochemical and proteomic approaches, in-depth proteomics including analyses of posttranslational modifications and processing, comparative proteomics of plastid ribosomes isolated from the cells grown under different conditions, and those from different taxa are still to be carried out. Establishment of isolation methods for pure plastid ribosomes from a wider range of species would be beneficial to study the relationship between structure, function, and evolution of plastid ribosomes. Here I describe methodologies and provide example protocols for extraction and isolation of plastid ribosomes from a unicellular green alga (Chlamydomonas reinhardtii), a land plant (Arabidopsis thaliana), and a marine red macroalga (Pyropia yezoensis).
Collapse
|
19
|
Olejniczak SA, Łojewska E, Kowalczyk T, Sakowicz T. Chloroplasts: state of research and practical applications of plastome sequencing. PLANTA 2016; 244:517-27. [PMID: 27259501 PMCID: PMC4983300 DOI: 10.1007/s00425-016-2551-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/29/2016] [Indexed: 05/07/2023]
Abstract
This review presents origins, structure and expression of chloroplast genomes. It also describes their sequencing, analysis and modification, focusing on potential practical uses and biggest challenges of chloroplast genome modification. During the evolution of eukaryotes, cyanobacteria are believed to have merged with host heterotrophic cell. Afterward, most of cyanobacterial genes from cyanobacteria were transferred to cell nucleus or lost in the process of endosymbiosis. As a result of these changes, a primary plastid was established. Nowadays, plastid genome (plastome) is almost always circular, has a size of 100-200 kbp (120-160 in land plants), and harbors 100-120 highly conserved unique genes. Plastids have their own gene expression system, which is similar to one of their cyanobacterial ancestors. Two different polymerases, plastid-derived PEP and nucleus-derived NEP, participate in transcription. Translation is similar to the one observed in cyanobacteria, but it also utilizes protein translation factors and positive regulatory mRNA elements absent from bacteria. Plastoms play an important role in genetic transformation. Transgenes are introduced into them either via gene gun (in undamaged tissues) or polyethylene glycol treatment (when protoplasts are targeted). Antibiotic resistance markers are the most common tool used for selection of transformed plants. In recent years, plastome transformation emerged as a promising alternative to nuclear transformation because of (1) high yield of target protein, (2) removing the risk of outcrossing with weeds, (3) lack of silencing mechanisms, and (4) ability to engineer the entire metabolic pathways rather than single gene traits. Currently, the main directions of such research regard: developing efficient enzyme, vaccine antigen, and biopharmaceutical protein production methods in plant cells and improving crops by increasing their resistance to a wide array of biotic and abiotic stresses. Because of that, the detailed knowledge of plastome structure and mechanism of functioning started to play a major role.
Collapse
Affiliation(s)
- Szymon Adam Olejniczak
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland.
| | - Ewelina Łojewska
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Tomasz Sakowicz
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| |
Collapse
|
20
|
Siniauskaya MG, Danilenko NG, Lukhanina NV, Shymkevich AM, Davydenko OG. Expression of the chloroplast genome: Modern concepts and experimental approaches. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s2079059716050117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Shim D, Raveendar S, Lee JR, Lee GA, Ro NY, Jeon YA, Cho GT, Lee HS, Ma KH, Chung JW. The complete chloroplast genome of Capsicum frutescens (Solanaceae). APPLICATIONS IN PLANT SCIENCES 2016; 4:apps1600002. [PMID: 27213127 PMCID: PMC4873274 DOI: 10.3732/apps.1600002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/05/2016] [Indexed: 05/29/2023]
Abstract
PREMISE OF THE STUDY We report the complete sequence of the chloroplast genome of Capsicum frutescens (Solanaceae), a species of chili pepper. METHODS AND RESULTS Using an Illumina platform, we sequenced the chloroplast genome of C. frutescens. The total length of the genome is 156,817 bp, and the overall GC content is 37.7%. A pair of 25,792-bp inverted repeats is separated by small (17,853 bp) and large (87,380 bp) single-copy regions. The C. frutescens chloroplast genome encodes 132 unique genes, including 87 protein-coding genes, 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. Of these, seven genes are duplicated in the inverted repeats and 12 genes contain one or two introns. Comparative analysis with the reference chloroplast genome revealed 125 simple sequence repeat motifs and 34 variants, mostly located in the noncoding regions. CONCLUSIONS The complete chloroplast genome sequence of C. frutescens reported here is a valuable genetic resource for Capsicum species.
Collapse
Affiliation(s)
- Donghwan Shim
- Department of Forest Genetic Resources, Korea Forest Research Institute, Suwon 441-350, Republic of Korea
| | - Sebastin Raveendar
- National Agrobiodiversity Center, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jung-Ro Lee
- National Agrobiodiversity Center, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Gi-An Lee
- National Agrobiodiversity Center, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Na-Young Ro
- National Agrobiodiversity Center, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Young-Ah Jeon
- National Agrobiodiversity Center, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Gyu-Taek Cho
- National Agrobiodiversity Center, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Ho-Sun Lee
- National Agrobiodiversity Center, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Kyung-Ho Ma
- National Agrobiodiversity Center, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jong-Wook Chung
- National Agrobiodiversity Center, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
22
|
Sun AZ, Guo FQ. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:398. [PMID: 27066042 PMCID: PMC4814484 DOI: 10.3389/fpls.2016.00398] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/14/2016] [Indexed: 05/19/2023]
Abstract
It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants.
Collapse
Affiliation(s)
| | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics, National Center of Plant Gene Research (Shanghai) and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| |
Collapse
|
23
|
Sun AZ, Guo FQ. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:398. [PMID: 27066042 DOI: 10.3389/fpls.2016.00398/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/14/2016] [Indexed: 05/28/2023]
Abstract
It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants.
Collapse
Affiliation(s)
- Ai-Zhen Sun
- The National Key Laboratory of Plant Molecular Genetics, National Center of Plant Gene Research (Shanghai) and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics, National Center of Plant Gene Research (Shanghai) and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| |
Collapse
|
24
|
Nakamura M, Hibi Y, Okamoto T, Sugiura M. Cooperation between the chloroplast psbA 5'-untranslated region and coding region is important for translational initiation: the chloroplast translation machinery cannot read a human viral gene coding region. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:772-80. [PMID: 26931095 DOI: 10.1111/tpj.13150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
Chloroplast mRNA translation is regulated by the 5'-untranslated region (5'-UTR). Chloroplast 5'-UTRs also support translation of the coding regions of heterologous genes. Using an in vitro translation system from tobacco chloroplasts, we detected no translation from a human immunodeficiency virus tat coding region fused directly to the tobacco chloroplast psbA 5'-UTR. This lack of apparent translation could have been due to rapid degradation of mRNA templates or synthesized protein products. Replacing the psbA 5'-UTR with the E. coli phage T7 gene 10 5'-UTR, a highly active 5'-UTR, and substituting synonymous codons led to some translation of the tat coding region. The Tat protein thus synthesized was stable during translation reactions. No significant degradation of the added tat mRNAs was observed after translation reactions. These results excluded the above two possibilities and confirmed that the tat coding region prevented its own translation. The tat coding region was then fused to the psbA 5'-UTR with a cognate 5'-coding segment. Significant translation was detected from the tat coding region when fused after 10 or more codons. That is, translation could be initiated from the tat coding region once translation had started, indicating that the tat coding region inhibits translational initiation but not elongation. Hence, cooperation/compatibility between the 5'-UTR and its coding region is important for translational initiation.
Collapse
Affiliation(s)
- Masayuki Nakamura
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho-ku, Nagoya, 467-8501, Japan
| | - Yurina Hibi
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Masahiro Sugiura
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho-ku, Nagoya, 467-8501, Japan
| |
Collapse
|
25
|
Wang Y, Zhan DF, Jia X, Mei WL, Dai HF, Chen XT, Peng SQ. Complete Chloroplast Genome Sequence of Aquilaria sinensis (Lour.) Gilg and Evolution Analysis within the Malvales Order. FRONTIERS IN PLANT SCIENCE 2016; 7:280. [PMID: 27014304 PMCID: PMC4781844 DOI: 10.3389/fpls.2016.00280] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/21/2016] [Indexed: 05/11/2023]
Abstract
Aquilaria sinensis (Lour.) Gilg is an important medicinal woody plant producing agarwood, which is widely used in traditional Chinese medicine. High-throughput sequencing of chloroplast (cp) genomes enhanced the understanding about evolutionary relationships within plant families. In this study, we determined the complete cp genome sequences for A. sinensis. The size of the A. sinensis cp genome was 159,565 bp. This genome included a large single-copy region of 87,482 bp, a small single-copy region of 19,857 bp, and a pair of inverted repeats (IRa and IRb) of 26,113 bp each. The GC content of the genome was 37.11%. The A. sinensis cp genome encoded 113 functional genes, including 82 protein-coding genes, 27 tRNA genes, and 4 rRNA genes. Seven genes were duplicated in the protein-coding genes, whereas 11 genes were duplicated in the RNA genes. A total of 45 polymorphic simple-sequence repeat loci and 60 pairs of large repeats were identified. Most simple-sequence repeats were located in the noncoding sections of the large single-copy/small single-copy region and exhibited high A/T content. Moreover, 33 pairs of large repeat sequences were located in the protein-coding genes, whereas 27 pairs were located in the intergenic regions. Aquilaria sinensis cp genome bias ended with A/T on the basis of codon usage. The distribution of codon usage in A. sinensis cp genome was most similar to that in the Gonystylus bancanus cp genome. Comparative results of 82 protein-coding genes from 29 species of cp genomes demonstrated that A. sinensis was a sister species to G. bancanus within the Malvales order. Aquilaria sinensis cp genome presented the highest sequence similarity of >90% with the G. bancanus cp genome by using CGView Comparison Tool. This finding strongly supports the placement of A. sinensis as a sister to G. bancanus within the Malvales order. The complete A. sinensis cp genome information will be highly beneficial for further studies on this traditional medicinal plant. Moreover, the results will enhance our understanding about the evolution of cp genomes of the Malvales order, particularly with regard to the role of A. sinensis in plant systematics and evolution.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Di-Feng Zhan
- College of Agronomy, Hainan UniversityHaikou, China
| | - Xian Jia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen UniversityXiamen, China
| | - Wen-Li Mei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Hao-Fu Dai
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xiong-Ting Chen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- *Correspondence: Xiong-Ting Chen
| | - Shi-Qing Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Shi-Qing Peng
| |
Collapse
|
26
|
Nesbit AD, Whippo C, Hangarter RP, Kehoe DM. Translation initiation factor 3 families: what are their roles in regulating cyanobacterial and chloroplast gene expression? PHOTOSYNTHESIS RESEARCH 2015; 126:147-59. [PMID: 25630975 DOI: 10.1007/s11120-015-0074-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 01/02/2015] [Indexed: 05/09/2023]
Abstract
Initiation is a key control point for the regulation of translation in prokaryotes and prokaryotic-like translation systems such as those in plant chloroplasts. Genome sequencing and biochemical studies are increasingly demonstrating differences in many aspects of translation between well-studied microbes such as Escherichia coli and lesser studied groups such as cyanobacteria. Analyses of chloroplast translation have revealed its prokaryotic origin but also uncovered many unique aspects that do not exist in E. coli. Recently, a novel form of posttranscriptional regulation by light color was discovered in the filamentous cyanobacterium Fremyella diplosiphon that requires a putative stem-loop and involves the use of two different prokaryotic translation initiation factor 3s (IF3s). Multiple (up to five) putative IF3s have now been found to be encoded in 22 % of sequenced cyanobacterial genomes and 26 % of plant nuclear genomes. The lack of similar light-color regulation of gene expression in most of these species suggests that IF3s play roles in regulating gene expression in response to other environmental and developmental cues. In the plant Arabidopsis, two nuclear-encoded IF3s have been shown to localize to the chloroplasts, and the mRNA levels encoding these vary significantly in certain organ and tissue types and during several phases of development. Collectively, the accumulated data suggest that in about one quarter of photosynthetic prokaryotes and eukaryotes, IF3 gene families are used to regulate gene expression in addition to their traditional roles in translation initiation. Models for how this might be accomplished in prokaryotes versus eukaryotic plastids are presented.
Collapse
Affiliation(s)
- April D Nesbit
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Department of Biology/Chemistry, Purdue University North Central, 1401 S. US 421, Westville, IN, 46391, USA
| | - Craig Whippo
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Department of Natural Science, Dickinson State University, Dickinson, ND, 58601, USA
| | - Roger P Hangarter
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
- Indiana Molecular Biology Institute, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
27
|
Burgess AL, David R, Searle IR. Conservation of tRNA and rRNA 5-methylcytosine in the kingdom Plantae. BMC PLANT BIOLOGY 2015; 15:199. [PMID: 26268215 PMCID: PMC4535395 DOI: 10.1186/s12870-015-0580-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/24/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Post-transcriptional methylation of RNA cytosine residues to 5-methylcytosine (m(5)C) is an important modification that regulates RNA metabolism and occurs in both eukaryotes and prokaryotes. Yet, to date, no transcriptome-wide identification of m(5)C sites has been undertaken in plants. Plants provide a unique comparative system for investigating the origin and evolution of m(5)C as they contain three different genomes, the nucleus, mitochondria and chloroplast. Here we use bisulfite conversion of RNA combined with high-throughput IIlumina sequencing (RBS-seq) to identify single-nucleotide resolution of m(5)C sites in non-coding ribosomal RNAs and transfer RNAs of all three sub-cellular transcriptomes across six diverse species that included, the single-celled algae Nannochloropsis oculata, the macro algae Caulerpa taxifolia and multi-cellular higher plants Arabidopsis thaliana, Brassica rapa, Triticum durum and Ginkgo biloba. RESULTS Using the plant model Arabidopsis thaliana, we identified a total of 39 highly methylated m(5)C sites in predicted structural positions of nuclear tRNAs and 7 m(5)C sites in rRNAs from nuclear, chloroplast and mitochondrial transcriptomes. Both the nucleotide position and percent methylation of tRNAs and rRNAs m(5)C sites were conserved across all species analysed, from single celled algae N. oculata to multicellular plants. Interestingly the mitochondrial and chloroplast encoded tRNAs were devoid of m(5)C in A. thaliana and this is generally conserved across Plantae. This suggests independent evolution of organelle methylation in animals and plants, as animal mitochondrial tRNAs have m(5)C sites. Here we characterize 5 members of the RNA 5-methylcytosine family in Arabidopsis and extend the functional characterization of TRDMT1 and NOP2A/OLI2. We demonstrate that nuclear tRNA methylation requires two evolutionarily conserved methyltransferases, TRDMT1 and TRM4B. trdmt1 trm4b double mutants are hypersensitive to the antibiotic hygromycin B, demonstrating the function of tRNA methylation in regulating translation. Additionally we demonstrate that nuclear large subunit 25S rRNA methylation requires the conserved RNA methyltransferase NSUN5. Our results also suggest functional redundancy of at least two of the NOP2 paralogs in Arabidopsis. CONCLUSIONS Our data demonstrates widespread occurrence and conservation of non-coding RNA methylation in the kingdom Plantae, suggesting important and highly conserved roles of this post-transcriptional modification.
Collapse
Affiliation(s)
- Alice Louise Burgess
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Rakesh David
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Iain Robert Searle
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
- The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, Adelaide, Australia.
| |
Collapse
|
28
|
Raveendar S, Na YW, Lee JR, Shim D, Ma KH, Lee SY, Chung JW. The complete chloroplast genome of Capsicum annuum var. glabriusculum using Illumina sequencing. Molecules 2015; 20:13080-8. [PMID: 26205052 PMCID: PMC6332240 DOI: 10.3390/molecules200713080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/06/2015] [Accepted: 07/16/2015] [Indexed: 11/17/2022] Open
Abstract
Chloroplast (cp) genome sequences provide a valuable source for DNA barcoding. Molecular phylogenetic studies have concentrated on DNA sequencing of conserved gene loci. However, this approach is time consuming and more difficult to implement when gene organization differs among species. Here we report the complete re-sequencing of the cp genome of Capsicum pepper (Capsicum annuum var. glabriusculum) using the Illumina platform. The total length of the cp genome is 156,817 bp with a 37.7% overall GC content. A pair of inverted repeats (IRs) of 50,284 bp were separated by a small single copy (SSC; 18,948 bp) and a large single copy (LSC; 87,446 bp). The number of cp genes in C. annuum var. glabriusculum is the same as that in other Capsicum species. Variations in the lengths of LSC; SSC and IR regions were the main contributors to the size variation in the cp genome of this species. A total of 125 simple sequence repeat (SSR) and 48 insertions or deletions variants were found by sequence alignment of Capsicum cp genome. These findings provide a foundation for further investigation of cp genome evolution in Capsicum and other higher plants.
Collapse
Affiliation(s)
- Sebastin Raveendar
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea.
| | - Young-Wang Na
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea.
| | - Jung-Ro Lee
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea.
| | - Donghwan Shim
- Department of Forest Genetic Resources, Korea Forest Research Institute, Suwon 441-350, Korea.
| | - Kyung-Ho Ma
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea.
| | - Sok-Young Lee
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea.
| | - Jong-Wook Chung
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea.
| |
Collapse
|
29
|
Pervaiz T, Sun X, Zhang Y, Tao R, Zhang J, Fang J. Association between Chloroplast and Mitochondrial DNA sequences in Chinese Prunus genotypes (Prunus persica, Prunus domestica, and Prunus avium). BMC PLANT BIOLOGY 2015; 15:4. [PMID: 0 PMCID: PMC4310034 DOI: 10.1186/s12870-014-0402-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/22/2014] [Indexed: 05/13/2023]
Abstract
BACKGROUND The nuclear DNA is conventionally used to assess the diversity and relatedness among different species, but variations at the DNA genome level has also been used to study the relationship among different organisms. In most species, mitochondrial and chloroplast genomes are inherited maternally; therefore it is anticipated that organelle DNA remains completely associated. Many research studies were conducted simultaneously on organelle genome. The objectives of this study was to analyze the genetic relationship between chloroplast and mitochondrial DNA in three Chinese Prunus genotypes viz., Prunus persica, Prunus domestica, and Prunus avium. RESULTS We investigated the genetic diversity of Prunus genotypes using simple sequence repeat (SSR) markers relevant to the chloroplast and mitochondria. Most of the genotypes were genetically similar as revealed by phylogenetic analysis. The Y2 Wu Xing (Cherry) and L2 Hong Xin Li (Plum) genotypes have a high similarity index (0.89), followed by Zi Ye Li (0.85), whereas; L1 Tai Yang Li (plum) has the lowest genetic similarity (0.35). In case of cpSSR, Hong Tao (Peach) and L1 Tai Yang Li (Plum) genotypes demonstrated similarity index of 0.85 and Huang Tao has the lowest similarity index of 0.50. The mtSSR nucleotide sequence analysis revealed that each genotype has similar amplicon length (509 bp) except M5Y1 i.e., 505 bp with CCB256 primer; while in case of NAD6 primer, all genotypes showed different sizes. The MEHO (Peach), MEY1 (Cherry), MEL2 (Plum) and MEL1 (Plum) have 586 bps; while MEY2 (Cherry), MEZI (Plum) and MEHU (Peach) have 585, 584 and 566 bp, respectively. The CCB256 primer showed highly conserved sequences and minute single polymorphic nucleotides with no deletion or mutation. The cpSSR (ARCP511) microsatellites showed the harmonious amplicon length. The CZI (Plum), CHO (Peach) and CL1 (Plum) showed 182 bp; whileCHU (Peach), CY2 (Cherry), CL2 (Plum) and CY1 (Cherry) showed 181 bp amplicon lengths. CONCLUSIONS These results demonstrated high conservation in chloroplast and mitochondrial genome among Prunus species during the evolutionary process. These findings are valuable to study the organelle DNA diversity in different species and genotypes of Prunus to provide in depth insight in to the mitochondrial and chloroplast genomes.
Collapse
Affiliation(s)
- Tariq Pervaiz
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P R China.
| | - Xin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P R China.
| | - Yanyi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P R China.
| | - Ran Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P R China.
| | - Junhuan Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Science, Beijing, 100093, P R China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P R China.
| |
Collapse
|
30
|
Kuroda H, Sugiura M. Processing of the 5'-UTR and existence of protein factors that regulate translation of tobacco chloroplast psbN mRNA. PLANT MOLECULAR BIOLOGY 2014; 86:585-93. [PMID: 25201100 DOI: 10.1007/s11103-014-0248-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/31/2014] [Indexed: 05/28/2023]
Abstract
The chloroplast psbB operon includes five genes encoding photosystem II and cytochrome b 6 /f complex components. The psbN gene is located on the opposite strand. PsbN is localized in the thylakoid and is present even in the dark, although its level increases upon illumination and then decreases. However, the translation mechanism of the psbN mRNA remains unclear. Using an in vitro translation system from tobacco chloroplasts and a green fluorescent protein as a reporter protein, we show that translation occurs from a tobacco primary psbN 5'-UTR of 47 nucleotides (nt). Unlike many other chloroplast 5'-UTRs, the psbN 5'-UTR has two processing sites, at -39 and -24 upstream from the initiation site. Processing at -39 enhanced the translation rate fivefold. In contrast, processing at -24 did not affect the translation rate. These observations suggest that the two distinct processing events regulate, at least in part, the level of PsbN during development. The psbN 5'-UTR has no Shine-Dalgarno (SD)-like sequence. In vitro translation assays with excess amounts of the psbN 5'-UTR or with deleted psbN 5'-UTR sequences demonstrated that protein factors are required for translation and that their binding site is an 18 nt sequence in the 5'-UTR. Mobility shift assays using 10 other chloroplast 5'-UTRs suggested that common or similar proteins are involved in translation of a set of mRNAs lacking SD-like sequences.
Collapse
Affiliation(s)
- Hiroshi Kuroda
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho-ku, Nagoya, 467-8501, Japan,
| | | |
Collapse
|
31
|
Ahmad T, Venkataraman S, Hefferon K, AbouHaidar MG. Viral and chloroplastic signals essential for initiation and efficiency of translation in Agrobacterium tumefaciens. Biochem Biophys Res Commun 2014; 452:14-20. [PMID: 25117444 DOI: 10.1016/j.bbrc.2014.07.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
Abstract
The construction of high-level protein expression vectors using the CaMV 35S promoter in concert with highly efficient translation initiation signals for Agrobacterium tumefaciens is a relatively less explored field compared to that of Escherichia coli. In the current study, we experimentally investigated the capacity of the CaMV 35S promoter to direct GFP gene expression in A. tumefaciens in the context of different viral and chloroplastic translation initiation signals. GFP expression and concomitant translational efficiency was monitored by confocal microscopy and Western blot analysis. Among all of the constructs, the highest level of translation was observed for the construct containing the phage T7 translation initiation region followed by the chloroplastic Rubisco Large Subunit (rbcL) 58-nucleotide 5' leader region including its SD-like sequence (GGGAGGG). Replacing the SD-like (GGGAGGG) with non SD-like (TTTATTT) or replacing the remaining 52 nucleotides of rbcL with nonspecific sequence completely abolished translation. In addition, this 58 nucleotide region of rbcL serves as a translational enhancer in plants when located within the 5' UTR of mRNA corresponding to GFP. Other constructs, including those containing sequences upstream of the coat proteins of Alfalfa Mosaic Virus, or the GAGG sequence of T4 phage or the chloroplastic atpI and/or PsbA 5' UTR sequence, supported low levels of GFP expression or none at all. From these studies, we propose that we have created high expression vectors in A. tumefaciens and/or plants which contain the CaMV 35S promoter, followed by the translationally strong T7 SD plus RBS translation initiation region or the rbcL 58-nucleotide 5' leader region upstream of the gene of interest.
Collapse
Affiliation(s)
- Tauqeer Ahmad
- Department of Cell and Systems Biology, University of Toronto, St. George Campus, 25 Willcocks Street, Toronto, ON M5S3B2, Canada
| | - Srividhya Venkataraman
- Department of Cell and Systems Biology, University of Toronto, St. George Campus, 25 Willcocks Street, Toronto, ON M5S3B2, Canada
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, St. George Campus, 25 Willcocks Street, Toronto, ON M5S3B2, Canada
| | - Mounir G AbouHaidar
- Department of Cell and Systems Biology, University of Toronto, St. George Campus, 25 Willcocks Street, Toronto, ON M5S3B2, Canada.
| |
Collapse
|
32
|
Tiller N, Bock R. The translational apparatus of plastids and its role in plant development. MOLECULAR PLANT 2014; 7:1105-20. [PMID: 24589494 PMCID: PMC4086613 DOI: 10.1093/mp/ssu022] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/26/2014] [Indexed: 05/18/2023]
Abstract
Chloroplasts (plastids) possess a genome and their own machinery to express it. Translation in plastids occurs on bacterial-type 70S ribosomes utilizing a set of tRNAs that is entirely encoded in the plastid genome. In recent years, the components of the chloroplast translational apparatus have been intensely studied by proteomic approaches and by reverse genetics in the model systems tobacco (plastid-encoded components) and Arabidopsis (nucleus-encoded components). This work has provided important new insights into the structure, function, and biogenesis of chloroplast ribosomes, and also has shed fresh light on the molecular mechanisms of the translation process in plastids. In addition, mutants affected in plastid translation have yielded strong genetic evidence for chloroplast genes and gene products influencing plant development at various levels, presumably via retrograde signaling pathway(s). In this review, we describe recent progress with the functional analysis of components of the chloroplast translational machinery and discuss the currently available evidence that supports a significant impact of plastid translational activity on plant anatomy and morphology.
Collapse
Affiliation(s)
- Nadine Tiller
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
33
|
Abstract
Overall translational machinery in plastids is similar to that of E. coli. Initiation is the crucial step for translation and this step in plastids is somewhat different from that of E. coli. Unlike the Shine-Dalgarno sequence in E. coli, cis-elements for translation initiation are not well conserved in plastid mRNAs. Specific trans-acting factors are generally required for translation initiation and its regulation in plastids. During translation elongation, ribosomes pause sometimes on photosynthesis-related mRNAs due probably to proper insertion of nascent polypeptides into membrane complexes. Codon usage of plastid mRNAs is different from that of E. coli and mammalian cells. Plastid mRNAs do not have the so-called rare codons. Translation efficiencies of several synonymous codons are not always correlated with codon usage in plastid mRNAs.
Collapse
|
34
|
Yukawa M, Sugiura M. Additional pathway to translate the downstream ndhK cistron in partially overlapping ndhC-ndhK mRNAs in chloroplasts. Proc Natl Acad Sci U S A 2013; 110:5701-6. [PMID: 23509265 PMCID: PMC3619338 DOI: 10.1073/pnas.1219914110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chloroplast NAD(P)H dehydrogenase (NDH) C (ndhC) and ndhK genes partially overlap and are cotranscribed in many plants. We previously reported that the tobacco ndhC/K genes are translationally coupled but produce NdhC and NdhK, subunits of the NDH complex, in similar amounts. Generally, translation of the downstream cistron in overlapping mRNAs is very low. Hence, these findings suggested that the ndhK cistron is translated not only from the ndhC 5'UTR but also by an additional pathway. Using an in vitro translation system from tobacco chloroplasts, we report here that free ribosomes enter, with formylmethionyl-tRNA(fMet), at an internal AUG start codon that is located in frame in the middle of the upstream ndhC cistron, translate the 3' half of the ndhC cistron, reach the ndhK start codon, and that, at that point, some ribosomes resume ndhK translation. We detected a peptide corresponding to a 57-amino-acid product encoded by the sequence from the internal AUG to the ndhC stop codon. We propose a model in which the internal initiation site AUG is not designed for synthesizing a functional isoform but for delivering additional ribosomes to the ndhK cistron to produce NdhK in the amount required for the assembly of the NDH complex. This pathway is a unique type of translation to produce protein in the needed amount with the cost of peptide synthesis.
Collapse
Affiliation(s)
- Maki Yukawa
- Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501, Japan; and
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Masahiro Sugiura
- Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501, Japan; and
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
35
|
Lyska D, Meierhoff K, Westhoff P. How to build functional thylakoid membranes: from plastid transcription to protein complex assembly. PLANTA 2013; 237:413-28. [PMID: 22976450 PMCID: PMC3555230 DOI: 10.1007/s00425-012-1752-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/10/2012] [Indexed: 05/06/2023]
Abstract
Chloroplasts are the endosymbiotic descendants of cyanobacterium-like prokaryotes. Present genomes of plant and green algae chloroplasts (plastomes) contain ~100 genes mainly encoding for their transcription-/translation-machinery, subunits of the thylakoid membrane complexes (photosystems II and I, cytochrome b (6) f, ATP synthase), and the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Nevertheless, proteomic studies have identified several thousand proteins in chloroplasts indicating that the majority of the plastid proteome is not encoded by the plastome. Indeed, plastid and host cell genomes have been massively rearranged in the course of their co-evolution, mainly through gene loss, horizontal gene transfer from the cyanobacterium/chloroplast to the nucleus of the host cell, and the emergence of new nuclear genes. Besides structural components of thylakoid membrane complexes and other (enzymatic) complexes, the nucleus provides essential factors that are involved in a variety of processes inside the chloroplast, like gene expression (transcription, RNA-maturation and translation), complex assembly, and protein import. Here, we provide an overview on regulatory factors that have been described and characterized in the past years, putting emphasis on mechanisms regulating the expression and assembly of the photosynthetic thylakoid membrane complexes.
Collapse
Affiliation(s)
- Dagmar Lyska
- Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany.
| | | | | |
Collapse
|
36
|
Extreme conservation of the psaA/psaB intercistronic spacer reveals a translational motif coincident with the evolution of land plants. J Mol Evol 2012. [PMID: 23192453 DOI: 10.1007/s00239-012-9526-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although chloroplast transcriptional and translational mechanisms were derived originally from prokaryote endosymbionts, chloroplasts retain comparatively few genes as a consequence of the overall transfer to the nucleus of functions associated formerly with prokaryotic genomes. Various modifications reflect other evolutionary shifts toward eukaryotic regulation such as posttranscriptional transcript cleavage with individually processed cistrons in operons and gene expression regulated by nuclear-encoded sigma factors. We report a notable exception for the psaA-psaB-rps14 operon of land plant (embryophyte) chloroplasts, where the first two cistrons are separated by a spacer region to which no significant role had been attributed. We infer an important function of this region, as indicated by the conservation of identical, structurally significant sequences across embryophytes and their ancestral protist lineages, which diverged some 0.5 billion years ago. The psaA/psaB spacers of embryophytes and their progenitors exhibit few sequence and length variants, with most modeled transcripts resolving the same secondary structure: a loop with projecting Shine-Dalgarno site and well-defined stem that interacts with adjacent coding regions to sequester the psaB start codon. Although many functions of the original endosymbiont have been usurped by nuclear genes or interactions, conserved functional elements of embryophyte psaA/psaB spacers provide compelling evidence that translation of psaB is regulated here by a cis-acting mechanism comparable to those common in prokaryotes. Modeled transcripts also indicate that spacer variants in some plants (e.g., aquatic genus Najas) potentially reflect ecological adaptations to facilitate temperature-regulated translation of psaB.
Collapse
|
37
|
Zhang J, Ruf S, Hasse C, Childs L, Scharff LB, Bock R. Identification of cis-elements conferring high levels of gene expression in non-green plastids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:115-28. [PMID: 22639905 DOI: 10.1111/j.1365-313x.2012.05065.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Although our knowledge about the mechanisms of gene expression in chloroplasts has increased substantially over the past decades, next to nothing is known about the signals and factors that govern expression of the plastid genome in non-green tissues. Here we report the development of a quantitative method suitable for determining the activity of cis-acting elements for gene expression in non-green plastids. The in vivo assay is based on stable transformation of the plastid genome and the discovery that root length upon seedling growth in the presence of the plastid translational inhibitor kanamycin is directly proportional to the expression strength of the resistance gene nptII in transgenic tobacco plastids. By testing various combinations of promoters and translation initiation signals, we have used this experimental system to identify cis-elements that are highly active in non-green plastids. Surprisingly, heterologous expression elements from maize plastids were significantly more efficient in conferring high expression levels in root plastids than homologous expression elements from tobacco. Our work has established a quantitative method for characterization of gene expression in non-green plastid types, and has led to identification of cis-elements for efficient plastid transgene expression in non-green tissues, which are valuable tools for future transplastomic studies in basic and applied research.
Collapse
Affiliation(s)
- Jiang Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Lyu ZX, Shao Q, Gao YQ, Zhao XS. Direct observation of the uptake of outer membrane proteins by the periplasmic chaperone Skp. PLoS One 2012; 7:e46068. [PMID: 23049938 PMCID: PMC3458824 DOI: 10.1371/journal.pone.0046068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/28/2012] [Indexed: 11/18/2022] Open
Abstract
The transportation of membrane proteins through the aqueous subcellular space is an important and challenging process. Its molecular mechanism and the associated structural change are poorly understood. Periplasmic chaperones, such as Skp in Escherichia coli, play key roles in the transportation and protection of outer membrane proteins (OMPs) in Gram-negative bacteria. The molecular mechanism through which Skp interacts with and protects OMPs remains mysterious. Here, a combined experimental and molecular dynamics simulation study was performed to gain the structural and dynamical information in the process of OMPs and Skp binding. Stopped-flow experiments on site specific mutated and labeled Skp and several OMPs, namely OmpC, the transmembrane domain of OmpA, and OmpF, allowed us to obtain the mechanism of OMP entering the Skp cavity, and molecular dynamics simulations yielded detailed molecular interactions responsible for this process. Both experiment and simulation show that the entrance of OMP into Skp is a highly directional process, which is initiated by the interaction between the N-terminus of OMP and the bottom “tentacle” domain of Skp. The opening of the more flexible tentacle of Skp, the non-specific electrostatic interactions between OMP and Skp, and the constant formation and breaking of salt bridges between Skp and its substrate together allow OMP to enter Skp and gradually “climb” into the Skp cavity in the absence of an external energy supply.
Collapse
Affiliation(s)
- Zhi-Xin Lyu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, Biodynamic Optical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Qiang Shao
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- * E-mail: (YQG); (XSZ)
| | - Xin Sheng Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, Biodynamic Optical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
- * E-mail: (YQG); (XSZ)
| |
Collapse
|
39
|
Yu HD, Yang XF, Chen ST, Wang YT, Li JK, Shen Q, Liu XL, Guo FQ. Downregulation of chloroplast RPS1 negatively modulates nuclear heat-responsive expression of HsfA2 and its target genes in Arabidopsis. PLoS Genet 2012; 8:e1002669. [PMID: 22570631 PMCID: PMC3342936 DOI: 10.1371/journal.pgen.1002669] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/08/2012] [Indexed: 12/11/2022] Open
Abstract
Heat stress commonly leads to inhibition of photosynthesis in higher plants. The transcriptional induction of heat stress-responsive genes represents the first line of inducible defense against imbalances in cellular homeostasis. Although heat stress transcription factor HsfA2 and its downstream target genes are well studied, the regulatory mechanisms by which HsfA2 is activated in response to heat stress remain elusive. Here, we show that chloroplast ribosomal protein S1 (RPS1) is a heat-responsive protein and functions in protein biosynthesis in chloroplast. Knockdown of RPS1 expression in the rps1 mutant nearly eliminates the heat stress-activated expression of HsfA2 and its target genes, leading to a considerable loss of heat tolerance. We further confirm the relationship existed between the downregulation of RPS1 expression and the loss of heat tolerance by generating RNA interference-transgenic lines of RPS1. Consistent with the notion that the inhibited activation of HsfA2 in response to heat stress in the rps1 mutant causes heat-susceptibility, we further demonstrate that overexpression of HsfA2 with a viral promoter leads to constitutive expressions of its target genes in the rps1 mutant, which is sufficient to reestablish lost heat tolerance and recovers heat-susceptible thylakoid stability to wild-type levels. Our findings reveal a heat-responsive retrograde pathway in which chloroplast translation capacity is a critical factor in heat-responsive activation of HsfA2 and its target genes required for cellular homeostasis under heat stress. Thus, RPS1 is an essential yet previously unknown determinant involved in retrograde activation of heat stress responses in higher plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
40
|
Adachi Y, Kuroda H, Yukawa Y, Sugiura M. Translation of partially overlapping psbD-psbC mRNAs in chloroplasts: the role of 5'-processing and translational coupling. Nucleic Acids Res 2012; 40:3152-8. [PMID: 22156163 PMCID: PMC3326318 DOI: 10.1093/nar/gkr1185] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/14/2011] [Accepted: 11/14/2011] [Indexed: 11/24/2022] Open
Abstract
The chloroplast psbD and psbC genes encode the D2 and CP43 proteins of the photosystem II complex, and they are generally cotranscribed. We report studies on the basic translation process of tobacco psbD-psbC mRNAs using an in vitro translation system from tobacco chloroplasts. The primary transcript has an unusually long 5'-UTR (905 nt). We show that it is translatable. Processing of the 5'-UTR greatly enhances the translation efficiency of the psbD cistron. A striking feature is that psbD and psbC cistrons overlap by 14 nt. Removal of the psbD 5'-UTR plus the start codon and introduction of a premature termination codon in the psbD cistron considerably reduce the translation efficiency of the downstream psbC cistron. These results indicate that translation of the psbC cistron depends largely on that of the upstream psbD cistron and thus shows translational coupling; however, a portion is independently translated. These observations, together with the presence of monocistronic psbC mRNAs, suggest that the psbD and psbC cistrons are translated via multiple processes to produce necessary amounts of D2 and CP43 proteins.
Collapse
Affiliation(s)
- Yuka Adachi
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho, Nagoya 467-8501 and Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Hiroshi Kuroda
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho, Nagoya 467-8501 and Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Yasushi Yukawa
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho, Nagoya 467-8501 and Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Masahiro Sugiura
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho, Nagoya 467-8501 and Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
41
|
Production of foreign proteins using plastid transformation. Biotechnol Adv 2012; 30:387-97. [DOI: 10.1016/j.biotechadv.2011.07.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/10/2011] [Accepted: 07/25/2011] [Indexed: 12/19/2022]
|
42
|
Cardi T, Giegé P, Kahlau S, Scotti N. Expression Profiling of Organellar Genes. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Nomura Y, Takabayashi T, Kuroda H, Yukawa Y, Sattasuk K, Akita M, Nozawa A, Tozawa Y. ppGpp inhibits peptide elongation cycle of chloroplast translation system in vitro. PLANT MOLECULAR BIOLOGY 2012; 78:185-96. [PMID: 22108865 DOI: 10.1007/s11103-011-9858-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/08/2011] [Indexed: 05/08/2023]
Abstract
Chloroplasts possess common biosynthetic pathways for generating guanosine 3',5'-(bis)pyrophosphate (ppGpp) from GDP and ATP by RelA-SpoT homolog enzymes. To date, several hypothetical targets of ppGpp in chloroplasts have been suggested, but they remain largely unverified. In this study, we have investigated effects of ppGpp on translation apparatus in chloroplasts by developing in vitro protein synthesis system based on an extract of chloroplasts isolated from pea (Pisum sativum). The chloroplast extracts showed stable protein synthesis activity in vitro, and the activity was sensitive to various types of antibiotics. We have demonstrated that ppGpp inhibits the activity of chloroplast translation in dose-effective manner, as does the toxic nonhydrolyzable GTP analog guanosine 5'-(β,γ-imido)triphosphate (GDPNP). We further examined polyuridylic acid-directed polyphenylalanine synthesis as a measure of peptide elongation activity in the pea chloroplast extract. Both ppGpp and GDPNP as well as antibiotics, fusidic acid and thiostrepton, inhibited the peptide elongation cycle of the translation system, but GDP in the similar range of the tested ppGpp concentration did not affect the activity. Our results thus show that ppGpp directly affect the translation system of chloroplasts, as they do that of bacteria. We suggest that the role of the ppGpp signaling system in translation in bacteria is conserved in the translation system of chloroplasts.
Collapse
Affiliation(s)
- Yuhta Nomura
- Division of Biomolecular Engineering, Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Suzuki H, Kuroda H, Yukawa Y, Sugiura M. The downstream atpE cistron is efficiently translated via its own cis-element in partially overlapping atpB-atpE dicistronic mRNAs in chloroplasts. Nucleic Acids Res 2011; 39:9405-12. [PMID: 21846772 PMCID: PMC3241655 DOI: 10.1093/nar/gkr644] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/22/2011] [Accepted: 07/22/2011] [Indexed: 11/12/2022] Open
Abstract
The chloroplast atpB and atpE genes encode subunits β and ε of the ATP synthase, respectively. They are co-transcribed as dicistronic mRNAs in flowering plants. An unusual feature is an overlap (AUGA) of the atpB stop codon (UGA) with the atpE start codon (AUG). Hence, atpE translation has been believed to depend on atpB translation (i.e. translational coupling). Using an in vitro translation system from tobacco chloroplasts, we showed that both atpB and atpE cistrons are translated from the tobacco dicistronic mRNA, and that the efficiency of atpB translation is higher than that of atpE translation. When the atpB 5'-UTR was replaced with lower efficiency 5'-UTRs, atpE translation was higher than atpB translation. Removal of the entire atpB 5'-UTR arrested atpB translation but atpE translation still proceeded. Introduction of a premature stop codon in the atpB cistron did not abolish atpE translation. These results indicate that atpE translation is independent of atpB translation. Mutation analysis showed that the atpE cistron possesses its own cis-element(s) for translation, located ~25 nt upstream from the start codon.
Collapse
Affiliation(s)
- Haruka Suzuki
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho, Nagoya 467-8501 and Sugiyama Human Research Center, Sugiyama Jogakuen University, Nagoya 464-8662, Japan
| | - Hiroshi Kuroda
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho, Nagoya 467-8501 and Sugiyama Human Research Center, Sugiyama Jogakuen University, Nagoya 464-8662, Japan
| | - Yasushi Yukawa
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho, Nagoya 467-8501 and Sugiyama Human Research Center, Sugiyama Jogakuen University, Nagoya 464-8662, Japan
| | - Masahiro Sugiura
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho, Nagoya 467-8501 and Sugiyama Human Research Center, Sugiyama Jogakuen University, Nagoya 464-8662, Japan
| |
Collapse
|
45
|
Rubio MAT, Hopper AK. Transfer RNA travels from the cytoplasm to organelles. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:802-17. [PMID: 21976284 DOI: 10.1002/wrna.93] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transfer RNAs (tRNAs) encoded by the nuclear genome are surprisingly dynamic. Although tRNAs function in protein synthesis occurring on cytoplasmic ribosomes, tRNAs can transit from the cytoplasm to the nucleus and then again return to the cytoplasm by a process known as the tRNA retrograde process. Subsets of the cytoplasmic tRNAs are also imported into mitochondria and function in mitochondrial protein synthesis. The numbers of tRNA species that are imported into mitochondria differ among organisms, ranging from just a few to the entire set needed to decode mitochondrially encoded mRNAs. For some tRNAs, import is dependent on the mitochondrial protein import machinery, whereas the majority of tRNA mitochondrial import is independent of this machinery. Although cytoplasmic proteins and proteins located on the mitochondrial surface participating in the tRNA import process have been described for several organisms, the identity of these proteins differ among organisms. Likewise, the tRNA determinants required for mitochondrial import differ among tRNA species and organisms. Here, we present an overview and discuss the current state of knowledge regarding the mechanisms involved in the tRNA retrograde process and continue with an overview of tRNA import into mitochondria. Finally, we highlight areas of future research to understand the function and regulation of movement of tRNAs between the cytoplasm and organelles.
Collapse
Affiliation(s)
- Mary Anne T Rubio
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
46
|
Rivarola M, Foster JT, Chan AP, Williams AL, Rice DW, Liu X, Melake-Berhan A, Huot Creasy H, Puiu D, Rosovitz MJ, Khouri HM, Beckstrom-Sternberg SM, Allan GJ, Keim P, Ravel J, Rabinowicz PD. Castor bean organelle genome sequencing and worldwide genetic diversity analysis. PLoS One 2011; 6:e21743. [PMID: 21750729 PMCID: PMC3131294 DOI: 10.1371/journal.pone.0021743] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 06/10/2011] [Indexed: 11/26/2022] Open
Abstract
Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.
Collapse
MESH Headings
- Base Sequence
- Ricinus communis/classification
- Ricinus communis/genetics
- Ricinus communis/growth & development
- DNA, Chloroplast/chemistry
- DNA, Chloroplast/genetics
- DNA, Circular/chemistry
- DNA, Circular/genetics
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Genetic Variation
- Genome, Chloroplast/genetics
- Genome, Mitochondrial/genetics
- Genome, Plant/genetics
- Molecular Sequence Data
- Phylogeny
- Polymorphism, Single Nucleotide
- Sequence Analysis, DNA
- Species Specificity
Collapse
Affiliation(s)
- Maximo Rivarola
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jeffrey T. Foster
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Agnes P. Chan
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Amber L. Williams
- Department of Biological Sciences, Environmental Genetics and Genomics Laboratory, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Danny W. Rice
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Xinyue Liu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | | | - Heather Huot Creasy
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Daniela Puiu
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - M. J. Rosovitz
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Hoda M. Khouri
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Stephen M. Beckstrom-Sternberg
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
- Pathogen Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Gerard J. Allan
- Department of Biological Sciences, Environmental Genetics and Genomics Laboratory, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Paul Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Pablo D. Rabinowicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
47
|
Drechsel O, Bock R. Selection of Shine-Dalgarno sequences in plastids. Nucleic Acids Res 2011; 39:1427-38. [PMID: 20965967 PMCID: PMC3045613 DOI: 10.1093/nar/gkq978] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/16/2010] [Accepted: 10/04/2010] [Indexed: 11/29/2022] Open
Abstract
Like bacterial genes, most plastid (chloroplast) genes are arranged in operons and transcribed as polycistronic mRNAs. Plastid protein biosynthesis occurs on bacterial-type 70S ribosomes and translation initiation of many (but not all) mRNAs is mediated by Shine-Dalgarno (SD) sequences. To study the mechanisms of SD sequence recognition, we have analyzed translation initiation from mRNAs containing multiple SD sequences. Comparing translational efficiencies of identical transgenic mRNAs in Escherichia coli and plastids, we find surprising differences between the two systems. Most importantly, while internal SD sequences are efficiently recognized in E. coli, plastids exhibit a bias toward utilizing predominantly the 5'-most SD sequence. We propose that inefficient recognition of internal SD sequences provides the raison d'être for most plastid polycistronic transcripts undergoing post-transcriptional cleavage into monocistronic mRNAs.
Collapse
Affiliation(s)
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
48
|
Jo YD, Park J, Kim J, Song W, Hur CG, Lee YH, Kang BC. Complete sequencing and comparative analyses of the pepper (Capsicum annuum L.) plastome revealed high frequency of tandem repeats and large insertion/deletions on pepper plastome. PLANT CELL REPORTS 2011; 30:217-29. [PMID: 20978766 DOI: 10.1007/s00299-010-0929-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/18/2010] [Accepted: 10/01/2010] [Indexed: 05/06/2023]
Abstract
Plants in the family Solanaceae are used as model systems in comparative and evolutionary genomics. The complete chloroplast genomes of seven solanaceous species have been sequenced, including tobacco, potato and tomato, but not peppers. We analyzed the complete chloroplast genome sequence of the hot pepper, Capsicum annuum. The pepper chloroplast genome was 156,781 bp in length, including a pair of inverted repeats (IR) of 25,783 bp. The content and the order of 133 genes in the pepper chloroplast genome were identical to those of other solanaceous plastomes. To characterize pepper plastome sequence, we performed comparative analysis using complete plastome sequences of pepper and seven solanaceous plastomes. Frequency and contents of large indels and tandem repeat sequences and distribution pattern of genome-wide sequence variations were investigated. In addition, a phylogenetic analysis using concatenated alignments of coding sequences was performed to determine evolutionary position of pepper in Solanaceae. Our results revealed two distinct features of pepper plastome compared to other solanaceous plastomes. Firstly, large indels, including insertions on accD and rpl20 gene sequences, were predominantly detected in the pepper plastome compared to other solanaceous plastomes. Secondly, tandem repeat sequences were particularly frequent in the pepper plastome. Taken together, our study represents unique features of evolution of pepper plastome among solanaceous plastomes.
Collapse
Affiliation(s)
- Yeong Deuk Jo
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, 599 Gwanak-ro Gwanak-gu, Seoul 151-921, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Hotto AM, Huston ZE, Stern DB. Overexpression of a natural chloroplast-encoded antisense RNA in tobacco destabilizes 5S rRNA and retards plant growth. BMC PLANT BIOLOGY 2010; 10:213. [PMID: 20920268 PMCID: PMC3017836 DOI: 10.1186/1471-2229-10-213] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/29/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND The roles of non-coding RNAs in regulating gene expression have been extensively studied in both prokaryotes and eukaryotes, however few reports exist as to their roles in organellar gene regulation. Evidence for accumulation of natural antisense RNAs (asRNAs) in chloroplasts comes from the expressed sequence tag database and cDNA libraries, while functional data have been largely obtained from artificial asRNAs. In this study, we used Nicotiana tabacum to investigate the effect on sense strand transcripts of overexpressing a natural chloroplast asRNA, AS5, which is complementary to the region which encodes the 5S rRNA and tRNAArg. RESULTS AS5-overexpressing (AS5ox) plants obtained by chloroplast transformation exhibited slower growth and slightly pale green leaves. Analysis of AS5 transcripts revealed four distinct species in wild-type (WT) and AS5ox plants, and additional AS5ox-specific products. Of the corresponding sense strand transcripts, tRNAArg overaccumulated several-fold in transgenic plants whereas 5S rRNA was unaffected. However, run-on transcription showed that the 5S-trnR region was transcribed four-fold more in the AS5ox plants compared to WT, indicating that overexpression of AS5 was associated with decreased stability of 5S rRNA. In addition, polysome analysis of the transformants showed less 5S rRNA and rbcL mRNA associated with ribosomes. CONCLUSIONS Our results suggest that AS5 can modulate 5S rRNA levels, giving it the potential to affect Chloroplast translation and plant growth. More globally, overexpression of asRNAs via chloroplast transformation may be a useful strategy for defining their functions.
Collapse
MESH Headings
- Gene Expression Regulation, Plant
- Phenotype
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Chloroplast/genetics
- RNA, Chloroplast/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA, Transfer, Arg/genetics
- RNA, Transfer, Arg/metabolism
- Nicotiana/genetics
- Nicotiana/growth & development
- Nicotiana/metabolism
- Transformation, Genetic
Collapse
Affiliation(s)
- Amber M Hotto
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Rd., Ithaca, NY 14853, USA
| | - Zoe E Huston
- Riverdale High School, 9727 SW Terwilliger Blvd., Portland, OR 97219, USA
| | - David B Stern
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Rd., Ithaca, NY 14853, USA
| |
Collapse
|
50
|
Tseng CC, Sung TY, Li YC, Hsu SJ, Lin CL, Hsieh MH. Editing of accD and ndhF chloroplast transcripts is partially affected in the Arabidopsis vanilla cream1 mutant. PLANT MOLECULAR BIOLOGY 2010; 73:309-23. [PMID: 20143129 DOI: 10.1007/s11103-010-9616-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 01/30/2010] [Indexed: 05/04/2023]
Abstract
The vanilla cream1 (vac1) albino mutant is defective in a gene encoding a chloroplast-localized pentatricopeptide repeat protein of the DYW subgroup. However, the carboxyl-terminal DYW motif is truncated in VAC1. To identify vac1-specific phenotypes, we compared 34 chloroplast RNA editing sites and approximately 90 chloroplast gene expression patterns among wild type, vac1 and another albino mutant ispH, which is defective in the plastid isoprenoid biosynthesis pathway. We found that the editing of accD and ndhF transcripts is partially affected in vac1. In addition, steady-state levels of chloroplast rRNAs are significantly decreased in vac1. The expression of plastid-encoded RNA polymerase transcribed genes is down-regulated, whereas the expression of nucleus-encoded RNA polymerase transcribed genes is up-regulated in vac1. Although the development and function of mutant chloroplasts are severely impaired, steady-state mRNA levels of nucleus-encoded photosynthetic genes are not affected or are only slightly decreased in vac1. The ZAT10 gene encodes a transcription factor and its expression is down-regulated by norflurazon treatment in wild type. This norflurazon effect was not observed in vac1. These results suggest that the VAC1 protein may be involved in plastid-to-nucleus retrograde signaling in addition to its role in chloroplast RNA editing and gene expression. A defect in a key biosynthetic pathway can have many indirect effects on chloroplast gene expression as is seen in the ispH mutant. Similarly, the vac1 mutant has pleiotropic molecular phenotypes and most of which may be indirect effects.
Collapse
Affiliation(s)
- Ching-Chih Tseng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|