1
|
Rache L, Blondin L, Diaz Tatis P, Flores C, Camargo A, Kante M, Wonni I, López C, Szurek B, Dupas S, Pruvost O, Koebnik R, Restrepo S, Bernal A, Vernière C. A minisatellite-based MLVA for deciphering the global epidemiology of the bacterial cassava pathogen Xanthomonas phaseoli pv. manihotis. PLoS One 2023; 18:e0285491. [PMID: 37167330 PMCID: PMC10174486 DOI: 10.1371/journal.pone.0285491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
Cassava Bacterial Blight (CBB) is a destructive disease widely distributed in the different areas where this crop is grown. Populations studies have been performed at local and national scales revealing a geographical genetic structure with temporal variations. A global epidemiology analysis of its causal agent Xanthomonas phaseoli pv. manihotis (Xpm) is needed to better understand the expansion of the disease for improving the monitoring of CBB. We targeted new tandem repeat (TR) loci with large repeat units, i.e. minisatellites, that we multiplexed in a scheme of Multi-Locus Variable number of TR Analysis (MLVA-8). This genotyping scheme separated 31 multilocus haplotypes in three clusters of single-locus variants and a singleton within a worldwide collection of 93 Xpm strains isolated over a period of fifty years. The major MLVA-8 cluster 1 grouped strains originating from all countries, except the unique Chinese strain. On the contrary, all the Xpm strains genotyped using the previously developed MLVA-14 microsatellite scheme were separated as unique haplotypes. We further propose an MLVA-12 scheme which takes advantage of combining TR loci with different mutation rates: the eight minisatellites and four faster evolving microsatellite markers, for global epidemiological surveillance. This MLVA-12 scheme identified 78 haplotypes and separated most of the strains in groups of double-locus variants (DLV) supporting some phylogenetic relationships. DLV groups were subdivided into closely related clusters of strains most often sharing the same geographical origin and isolated over a short period, supporting epidemiological relationships. The main MLVA-12 DLV group#1 was composed by strains from South America and all the African strains. The MLVA-12 scheme combining both minisatellite and microsatellite loci with different discriminatory power is expected to increase the accuracy of the phylogenetic signal and to minimize the homoplasy effects. Further investigation of the global epidemiology of Xpm will be helpful for a better control of CBB worldwide.
Collapse
Affiliation(s)
- Leidy Rache
- Department of Biological Sciences, Universidad de los Andes, Bogotá D.C., Colombia
| | - Laurence Blondin
- CIRAD, UMR PHIM, Montpellier, France
- Plant Health Institute of Montpellier (PHIM), Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Paula Diaz Tatis
- Facultad de Ciencias, Universidad Antonio Nariño, Bogotá, Colombia
| | - Carolina Flores
- Plant Health Institute of Montpellier (PHIM), Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Andrea Camargo
- Facultad de Ciencias, Universidad Antonio Nariño, Bogotá, Colombia
| | - Moussa Kante
- Plant Health Institute of Montpellier (PHIM), Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Issa Wonni
- INERA, LMI Pathobios, Bobo Dioulasso, Burkina Faso
| | - Camilo López
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Boris Szurek
- Plant Health Institute of Montpellier (PHIM), Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Stephane Dupas
- Department of Biological Sciences, Universidad de los Andes, Bogotá D.C., Colombia
| | | | - Ralf Koebnik
- Plant Health Institute of Montpellier (PHIM), Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Silvia Restrepo
- Department of Biological Sciences, Universidad de los Andes, Bogotá D.C., Colombia
| | - Adriana Bernal
- Department of Biological Sciences, Universidad de los Andes, Bogotá D.C., Colombia
| | - Christian Vernière
- Plant Health Institute of Montpellier (PHIM), Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR PVBMT, Saint-Pierre, La Réunion, France
| |
Collapse
|
2
|
Magalhães LMD, Viana A, de Jesus AC, Chiari E, Galvão L, Gomes JA, Gollob KJ, Dutra WO. Distinct Trypanosoma cruzi isolates induce activation and apoptosis of human neutrophils. PLoS One 2017; 12:e0188083. [PMID: 29176759 PMCID: PMC5703490 DOI: 10.1371/journal.pone.0188083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022] Open
Abstract
Neutrophils are critical players in the first line of defense against pathogens and in the activation of subsequent cellular responses. We aimed to determine the effects of the interaction of Trypanosoma cruzi with human neutrophils, using isolates of the two major discrete type units (DTUs) associated with Chagas’ disease in Latin America (clone Col1.7G2 and Y strain, DTU I and II, respectively). Thus, we used CFSE-stained trypomastigotes to measure neutrophil-T. cruzi interaction, neutrophil activation, cytokine expression and death, after infection with Col1.7G2 and Y strain. Our results show that the frequency of CFSE+ neutrophils, indicative of interaction, and CFSE intensity on a cell-per-cell basis were similar when comparing Col1.7G2 and Y strains. Interaction with T. cruzi increased neutrophil activation, as measured by CD282, CD284, TNF and IL-12 expression, although at different levels between the two strains. No change in IL-10 expression was observed after interaction of neutrophils with either strain. We observed that exposure to Y and Col1.7G2 caused marked neutrophil death. This was specific to neutrophils, since interaction of either strain with monocytes did not cause death. Our further analysis showed that neutrophil death was a result of apoptosis, which was associated with an upregulation of TNF-receptor, TNF and FasLigand, but not of Fas. Induction of TNF-associated neutrophil apoptosis by the different T. cruzi isolates may act as an effective common mechanism to decrease the host’s immune response and favor parasite survival.
Collapse
Affiliation(s)
- Luísa M. D. Magalhães
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Agostinho Viana
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Augusto C. de Jesus
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Egler Chiari
- Laboratório de Biologia do Trypanosoma cruzi e doença de Chagas, Departamento de Parasitologia, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - Lúcia Galvão
- Laboratório de Biologia do Trypanosoma cruzi e doença de Chagas, Departamento de Parasitologia, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana A. Gomes
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kenneth J. Gollob
- Núcleo de Ensino e Pesquisa, Instituto Mario Pena, Belo Horizonte, Minas Gerais, Brazil
- BRISA Diagnósticos, Belo Horizonte, Minas Gerais, Brazil
- AC Camargo Cancer Center, International Center for Research, São Paulo, São Paulo, Brazil
- INCT-DT, Belo Horizonte, Minas Gerais, Brazil
| | - Walderez O. Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INCT-DT, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
3
|
Venter SN, Palmer M, Beukes CW, Chan WY, Shin G, van Zyl E, Seale T, Coutinho TA, Steenkamp ET. Practically delineating bacterial species with genealogical concordance. Antonie van Leeuwenhoek 2017; 110:1311-1325. [DOI: 10.1007/s10482-017-0869-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
|
4
|
Baltrus DA, McCann HC, Guttman DS. Evolution, genomics and epidemiology of Pseudomonas syringae: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2017; 18:152-168. [PMID: 27798954 PMCID: PMC6638251 DOI: 10.1111/mpp.12506] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 05/12/2023]
Abstract
A remarkable shift in our understanding of plant-pathogenic bacteria is underway. Until recently, nearly all research on phytopathogenic bacteria was focused on a small number of model strains, which provided a deep, but narrow, perspective on plant-microbe interactions. Advances in genome sequencing technologies have changed this by enabling the incorporation of much greater diversity into comparative and functional research. We are now moving beyond a typological understanding of a select collection of strains to a more generalized appreciation of the breadth and scope of plant-microbe interactions. The study of natural populations and evolution has particularly benefited from the expansion of genomic data. We are beginning to have a much deeper understanding of the natural genetic diversity, niche breadth, ecological constraints and defining characteristics of phytopathogenic species. Given this expanding genomic and ecological knowledge, we believe the time is ripe to evaluate what we know about the evolutionary dynamics of plant pathogens.
Collapse
Affiliation(s)
| | - Honour C. McCann
- New Zealand Institute for Advanced StudyMassey UniversityAuckland 0632New Zealand
| | - David S. Guttman
- Department of Cell and Systems BiologyUniversity of TorontoTorontoON M5S 3B2Canada
- Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoON M5S 3B2Canada
| |
Collapse
|
5
|
Khan NH, Messenger LA, Wahid S, Sutherland CJ. Phylogenetic position of Leishmania isolates from Khyber Pakhtunkhwa province of Pakistan. Exp Parasitol 2016; 167:61-6. [PMID: 27233810 DOI: 10.1016/j.exppara.2016.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 11/25/2022]
Abstract
Several species of the genus Leishmania are causative agents of cutaneous leishmaniasis in Pakistan. This study aimed to determine phylogenetic placement of Leishmania species causing cutaneous leishmaniasis in Khyber Pakhtunkhwa province, Pakistan (34 Leishmania tropica, 3 Leishmania infantum), in-relation to species from other geographical areas using gene sequences encoding cytochrome b (cytb) and internal transcribed spacer 2 (its2). Based on cytochrome b sequence analysis, L. tropica strains from Pakistan and other geographical regions were differentiated into two genotype groups, A and B. Within the province, five distinct L. tropica genotypes were recognized; two in group A, three in group B. Two L. infantum isolates from the province were closely associated with both Afro-Eurasian and American species of the Leishmania donovani complex, including Leishmania chagasi, L. infantum and L. donovani from Sudan and Ethiopia; while a third L. infantum isolate could not be differentiated from visceralizing Kenyan and Indian L. donovani. We observed apposite phylogenetic placement of CL-causing L. tropica and L. infantum from Khyber Pakhtunkhwa. Affinities ascribed to Leishmania spp. From the region are valuable in tracing potential importation of leishmaniasis.
Collapse
Affiliation(s)
- Nazma Habib Khan
- Department of Immunology & Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, UK; Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Louisa A Messenger
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, UK.
| | - Sobia Wahid
- Department of Immunology & Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, UK; Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Colin J Sutherland
- Department of Immunology & Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, UK.
| |
Collapse
|
6
|
Microbial genome-enabled insights into plant–microorganism interactions. Nat Rev Genet 2014; 15:797-813. [DOI: 10.1038/nrg3748] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Machin A, Telleria J, Brizard JP, Demettre E, Séveno M, Ayala FJ, Tibayrenc M. Trypanosoma cruzi: gene expression surveyed by proteomic analysis reveals interaction between different genotypes in mixed in vitro cultures. PLoS One 2014; 9:e95442. [PMID: 24748035 PMCID: PMC3991653 DOI: 10.1371/journal.pone.0095442] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/26/2014] [Indexed: 11/30/2022] Open
Abstract
We have analyzed the comportment in in vitro culture of 2 different genotypes of Trypanosoma cruzi, the agent of Chagas disease, pertaining to 2 major genetic subdivisions (near-clades) of this parasite. One of the stocks was a fast-growing one, highly virulent in mice, while the other one was slow- growing, mildly virulent in mice. The working hypothesis was that mixtures of genotypes interact, a pattern that has been observed by us in empirical experimental studies. Genotype mixtures were followed every 7 days and characterized by the DIGE technology of proteomic analysis. Proteic spots of interest were characterized by the SAMESPOT software. Patterns were compared to those of pure genotypes that were also evaluated every 7 days. One hundred and three spots exhibited changes in time by comparison with T = 0. The major part of these spots (58%) exhibited an under-expression pattern by comparison with the pure genotypes. 32% of the spots wereover-expressed; 10% of spots were not different from those of pure genotypes. Interestingly, interaction started a few minutes after the mixtures were performed. We have retained 43 different proteins that clearly exhibited either under- or over-expression. Proteins showing interaction were characterized by mass spectrometry (MALDI-TOF). Close to 50% of them were either tubulins or heat shock proteins. This study confirms that mixed genotypes of T. cruzi interact at the molecular level. This is of great interest because mixtures of genotypes are very frequent in Chagas natural cycles, both in insect vectors and in mammalian hosts, and may play an important role in the transmission and severity of Chagas disease. The methodology proposed here is potentially applicable to any micropathogen, including fungi, bacteria and viruses. It should be of great interest in the case of bacteria, for which the epidemiological and clinical consequences of mixed infections could be underestimated.
Collapse
Affiliation(s)
- Alexandre Machin
- Unité Mixte de Recherche, Institut de Recherche pour le Développement/Centre National de la Recherche Scientifique/Universités Montpellier 1 and 2, Génétique et Evolution des Maladies Infectieuses, n° 5290, Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle (MIVEGEC) Institut de Recherche pour le Développement, Montpellier, France
| | - Jenny Telleria
- Unité Mixte de Recherche, Institut de Recherche pour le Développement/Centre National de la Recherche Scientifique/Universités Montpellier 1 and 2, Génétique et Evolution des Maladies Infectieuses, n° 5290, Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle (MIVEGEC) Institut de Recherche pour le Développement, Montpellier, France
| | - Jean-Paul Brizard
- Unité Mixte de Recherche, Institut de Recherche pour le Développement/Centre National de la Recherche Scientifique, n° 5096, Centre Institut de Recherche pour le Développement, Montpellier, France
| | - Edith Demettre
- Plate-forme de Proteomique Fonctionnelle, c/o Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5203, Institut National de la Santé et de la Recherche Médicales, Unité 661, Université Montpellier I et II, Montpellier, France
| | - Martial Séveno
- Plate-forme de Proteomique Fonctionnelle, c/o Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5203, Institut National de la Santé et de la Recherche Médicales, Unité 661, Université Montpellier I et II, Montpellier, France
| | - Francisco José Ayala
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Michel Tibayrenc
- Unité Mixte de Recherche, Institut de Recherche pour le Développement/Centre National de la Recherche Scientifique/Universités Montpellier 1 and 2, Génétique et Evolution des Maladies Infectieuses, n° 5290, Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle (MIVEGEC) Institut de Recherche pour le Développement, Montpellier, France
- * E-mail:
| |
Collapse
|
8
|
Bañuls AL, Thomas F, Renaud F. Of parasites and men. INFECTION GENETICS AND EVOLUTION 2013; 20:61-70. [PMID: 23954419 DOI: 10.1016/j.meegid.2013.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 01/14/2023]
Abstract
The living world has evolved and is evolving through interspecific relationships between organisms. The diversity of these interactions is enormous going from mutualism to parasitism. Humans live with a multitude of microorganisms, essential for their biology. However, interactions are not always advantageous. Indeed, many organisms might become pathogens, such as the Plasmodium species, the causative agents of malaria. Like many other microorganisms, they are «Machiavellian» in their capacity to elaborate a range of reproduction strategies, giving them a huge advantage in terms of adaptation. Here, we discuss the role played by parasites in the ecology and evolution of living organisms and particularly of humans. In the study of infectious diseases, humans are legitimately the focal point, although they represent only one ecosystem among many others and not taking this into account certainly biases our global view of the system. Indeed, we know only a minimal fraction of the microorganisms we live with. However, parasites have shaped and are still shaping the human genome. Several genetic signatures are the proofs of the selection pressures by parasites that humankind has endured during its evolution. But, ultimately, what are the solutionsfor living with pathogens? Should we eradicate them or should we learn how to control and manage them?
Collapse
Affiliation(s)
- Anne-Laure Bañuls
- Laboratoire MIVEGEC (UMR CNRS 5290-IRD 224 - Universités Montpellier 1 et 2), Institut de Recherche pour le Développement (IRD), PO Box 64501, 34394 Montpellier, France.
| | | | | |
Collapse
|
9
|
Monteiro RM, Keid LB, Richtzenhain LJ, Valadas SY, Muller G, Soares RM. Extensively variable surface antigens of Sarcocystis spp. infecting Brazilian marsupials in the genus Didelphis occur in myriad allelic combinations, suggesting sexual recombination has aided their diversification. Vet Parasitol 2013; 196:64-70. [PMID: 23433642 DOI: 10.1016/j.vetpar.2013.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 11/26/2022]
Abstract
Sarcocystis neurona and Sarcocystis falcatula are very similar species of Apicomplexan protozoa that use marsupials of the genus Didelphis as definitive hosts. These mammals can serve as definitive hosts not only for these two parasites, but for other Sarcocystis such as Sarcocystis speeri and Sarcocystis lindsayi. Sarcocystis shed by opossums (with the exception of S. neurona) can cause disease in a great variety of birds, being commonly associated with acute pulmonary sarcocystosis in zoos. S. neurona is the most commonly associated parasite with the equine protozoal myeloencephalitis in horses. Herein we assessed the variability of Sarcocystis spp. isolated from opossums of the state of Rio Grande do Sul, Brazil, by sequencing fragments of genes coding for glycosylphosphatidylinositol-anchored surface antigens (termed surface antigen or SAG), SAG2, SAG3 and SAG4. Two genetic groups were identified, one of them related to S. falcatula and the other related to S. neurona. Various allelic combinations of SAG2, SAG3 and SAG4 occur among S. falcatula related isolates and strong evidences suggest that such isolates may exchange high divergent alleles in possible sexual recombination processes. Regarding the group S. neurona-like (isolates G37 and G38), none of the individuals in this group share alleles with individuals of the other group. Comparing G37 and G38 strains and North American strains of S. neurona, four polymorphisms were identified at SAG-3, five at SAG-2 and three at SAG-4. Gene sequences of locus SAG-3 from isolates G37 and G38 differed from the other sequences by an insertion 81bp long. This insertion contains several dinucleotide repeats of AT, resembling a microsatellite locus and has already been detected in SAG3 sequences of S. neurona from North America. When aligned against North American strains of S. neurona, G37 and G38 isolates have a deletion of 8 nucleotides within this intron which indicate that S. neurona strains of South America are divergent from that of North America. From the results obtained so far, we have shown extensive variability in surface antigens coding sequences among Sarcocystis eliminated by mammals of the genus Didelphis spp. In addition, such divergent alleles may be exchanged in possible sexual recombination processes between different isolates of S. falcatula related isolate. The evolutionary relationships within S. falcatula related isolates will be best clarified after markers less subjected to selection pressures are analyzed in conjunction with surface antigen genes. These results may have a striking impact on the knowledge of the Sarcocystis species that infect opossums in Brazil and also in the epidemiology of the infections caused by these protozoans.
Collapse
Affiliation(s)
- R M Monteiro
- Department of Preventive Veterinary Medicine and Animal Health, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Tibayrenc M, Ayala FJ. Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc Natl Acad Sci U S A 2012; 109:E3305-13. [PMID: 22949662 PMCID: PMC3511763 DOI: 10.1073/pnas.1212452109] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We propose that clonal evolution in micropathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure, a definition already widely used for all kinds of pathogens, although not clearly formulated by many scientists and rejected by others. The two main manifestations of clonal evolution are strong linkage disequilibrium (LD) and widespread genetic clustering ("near-clading"). We hypothesize that this pattern is not mainly due to natural selection, but originates chiefly from in-built genetic properties of pathogens, which could be ancestral and could function as alternative allelic systems to recombination genes ("clonality/sexuality machinery") to escape recombinational load. The clonal framework of species of pathogens should be ascertained before any analysis of biomedical phenotypes (phylogenetic character mapping). In our opinion, this model provides a conceptual framework for the population genetics of any micropathogen.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, Institut de Rercherche pour le Développement 224, Centre National de la Recherche Scientifique 5290, Universités Montpellier 1 and 2, 34394 Montpellier Cedex 5, France; and
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| |
Collapse
|
11
|
Williams-Blangero S, VandeBerg JL, Blangero J, Corrêa-Oliveira R. Genetic epidemiology of Chagas disease. ADVANCES IN PARASITOLOGY 2011; 75:147-67. [PMID: 21820555 DOI: 10.1016/b978-0-12-385863-4.00007-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genetic epidemiological approaches hold great promise for improving the understanding of the determinants of susceptibility to infection with Trypanosoma cruzi and the causes of differential disease outcome in T. cruzi-infected individuals. To date, a variety of approaches have been used to understand the role of genetic factors in Chagas disease. Quantitative genetic techniques have been used to estimate the heritabilities for seropositivity for T. cruzi infection and traits that are associated with disease progression in chronic T. cruzi infection. These studies have demonstrated that a significant proportion of the variation in seropositivity and a number of traits related to Chagas disease progression is attributable to genetic factors. Candidate gene studies have provided intriguing evidence for the roles of numerous individual genes in determining cardiac outcomes in chronically infected individuals. Recent results from a long-term study of Chagas disease in a rural area of Brazil have documented that over 60% of the variation in seropositivity status is attributable to genetic factors in that population. Additionally, there are significant genetic effects on a number of electrocardiographic measures and other Chagas disease-related traits. The application of genome-wide approaches will yield new evidence for the roles of specific genes in Chagas disease.
Collapse
|
12
|
Salathé RM, Schmid-Hempel P. The genotypic structure of a multi-host bumblebee parasite suggests a role for ecological niche overlap. PLoS One 2011; 6:e22054. [PMID: 21853023 PMCID: PMC3154203 DOI: 10.1371/journal.pone.0022054] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/16/2011] [Indexed: 01/09/2023] Open
Abstract
The genotypic structure of parasite populations is an important determinant of ecological and evolutionary dynamics of host-parasite interactions with consequences for pest management and disease control. Genotypic structure is especially interesting where multiple hosts co-exist and share parasites. We here analyze the natural genotypic distribution of Crithidia bombi, a trypanosomatid parasite of bumblebees (Bombus spp.), in two ecologically different habitats over a time period of three years. Using an algorithm to reconstruct genotypes in cases of multiple infections, and combining these with directly identified genotypes from single infections, we find a striking diversity of infection for both data sets, with almost all multi-locus genotypes being unique, and are inferring that around half of the total infections are resulting from multiple strains. Our analyses further suggest a mixture of clonality and sexuality in natural populations of this parasite species. Finally, we ask whether parasite genotypes are associated with host species (the phylogenetic hypothesis) or whether ecological factors (niche overlap in flower choice) shape the distribution of parasite genotypes (the ecological hypothesis). Redundancy analysis demonstrates that in the region with relatively high parasite prevalence, both host species identity and niche overlap are equally important factors shaping the distribution of parasite strains, whereas in the region with lower parasite prevalence, niche overlap more strongly contributes to the distribution observed. Overall, our study underlines the importance of ecological factors in shaping the natural dynamics of host-parasite systems.
Collapse
Affiliation(s)
- Rahel M Salathé
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland.
| | | |
Collapse
|
13
|
Schmid-Hempel R, Salathé R, Tognazzo M, Schmid-Hempel P. Genetic exchange and emergence of novel strains in directly transmitted trypanosomatids. INFECTION GENETICS AND EVOLUTION 2011; 11:564-71. [PMID: 21252000 DOI: 10.1016/j.meegid.2011.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 12/24/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
The breeding structure of protozoan infections, i.e. whether and how frequently parasites exchange genes ("sexual reproduction"), is a crucially important parameter for many important questions; it also matters for how new virulent strains might emerge. Whether protozoan parasites are clonal or sexual is therefore a hotly debated issue. For trypanosomatids, few experimental tests of breeding structure exist to date and are limited to the vector-borne human diseases Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. We infected the natural host (Bombus terrestris) of the monoxenous parasite Crithidia bombi (Trypanosomatida) either with a single strain of the parasite or in mixed infections and tested for genetic exchange among co-infecting strains using microsatellite markers. We show that strains regularly exchange genetic material, with occasional self-crossing during mixed infections. Most offspring clones fit the expected allelic pattern from a standard Mendelian segregation. In some cases, alleles are lost or gained, leading to an entirely new genotype different from either parent. Genetic exchange in C. bombi therefore does occur and the process also leads to allelic loss or gain that could result from slippage during recombination. The majority of novel offspring types correspond to a recombination of parental alleles. The case of C. bombi demonstrates that directly transmitted, monoxenic trypanosomatids can also exchange genes. Sex therefore seems to be found in very different lineages of the trypanosomatids. Furthermore, the data allowed estimating a frequency at which C. bombi shows genetic exchange in populations.
Collapse
Affiliation(s)
- Regula Schmid-Hempel
- ETH Zürich, Institute of Integrative Biology (IBZ), ETH-Zentrum CHN, Universitätsstrasse 16, Zürich, Switzerland.
| | | | | | | |
Collapse
|
14
|
VILLATE LAURE, ESMENJAUD DANIEL, VAN HELDEN MAARTEN, STOECKEL SOLENN, PLANTARD OLIVIER. Genetic signature of amphimixis allows for the detection and fine scale localization of sexual reproduction events in a mainly parthenogenetic nematode. Mol Ecol 2010; 19:856-73. [DOI: 10.1111/j.1365-294x.2009.04511.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Modelling the Transmission of Trypanosoma cruzi: The Need for an Integrated Genetic Epidemiological and Population Genomics Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 673:200-11. [DOI: 10.1007/978-1-4419-6064-1_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
|
16
|
Oluwole AS, Ekpo UF, Mafiana CF, Adeofun CO, Idowu OA. Preliminary study on temporal variations in biting activity of Simulium damnosum s.l. in Abeokuta North LGA, Ogun State Nigeria. Parasit Vectors 2009; 2:55. [PMID: 19917134 PMCID: PMC2783020 DOI: 10.1186/1756-3305-2-55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 11/16/2009] [Indexed: 12/03/2022] Open
Abstract
Background Simulum damnosum Theobald sensu lato (s.l.) is the vector of the parasitic filarial worm Onchocerca volvulus Leuckart which causes onchocerciasis. In order to understand the vector population dynamics, a preliminary 12 months entomological evaluation was carried out at Abeokuta, the Southwest Zone of Nigeria, an onchocerciasis endemic area, where vector control has not been previously initiated. S.damnosum s.l. flies were caught on human attractants between 700 to1800 hours each day, for 4 days each month, from August 2007 to July 2008. The flies caught were classified as either forest-dwelling or savanna-dwelling groups based on the colour of certain morphological characters. Climatic data such as rainfall, humidity and temperature were also collected monthly during the period of survey. Results A total of 1,139 flies were caught, 596 (52.33%) were forest-dwelling group while 543 (47.67%) were savanna-dwelling group of S. damnosum s.l. The highest percentage of forest-dwelling group was caught in the month of August 2007 (78.06%) and the least percentage of forest-dwelling groups was caught in November 2007 (8.14%). The highest percentage of savannah-dwelling group was caught in the month of November 2007 (91.86%) and the least percentage of savannah-dwelling group was caught in August 2007 (21.94%). There was no significant difference between the population of forest and savannah-dwelling groups of the fly when the means of the fly population were compared (P = 0.830). Spearman correlation analysis showed a significant relationship between monthly fly population with monthly average rainfall (r = 0.550, n = 12, P = 0.033), but no significant relationship with monthly average temperature (r = 0.291, n = 12, P = 0.179). There was also a significant relationship between monthly fly population and monthly average relative humidity (r = 0.783, n = 12 P = 0.001). There was no significant correlation between the population of forest-dwelling group of S. damnosum s.l. and monthly average rainfall (r = 0.466, n = 12, P = 0.064) and monthly average temperature (r = 0.375, n = 12, P = 0.115) but there was significant correlation with monthly average relative humidity (r = 0.69, n = 12, P = 0.006). There was significant correlation between savannah-dwelling group and monthly average rainfall (r = 0.547, n = 12, P = 0.033), and monthly average relative humidity (r = 0.504, n = 12, P = 0.047) but there was no significant correlation with monthly average temperature (r = 0.142, n = 12, P = 0.329) Conclusion The results from this study showed that both the forest and the savannah dwelling groups of S. damnosum s.l. were caught biting in the study area. This could have implications on the transmission and epidemiology of human onchocerciasis if not monitored.
Collapse
Affiliation(s)
- Akinola S Oluwole
- Department of Biological Sciences, University of Agriculture, Abeokuta, Nigeria.
| | | | | | | | | |
Collapse
|
17
|
Lewis MD, Llewellyn MS, Gaunt MW, Yeo M, Carrasco HJ, Miles MA. Flow cytometric analysis and microsatellite genotyping reveal extensive DNA content variation in Trypanosoma cruzi populations and expose contrasts between natural and experimental hybrids. Int J Parasitol 2009; 39:1305-17. [PMID: 19393242 PMCID: PMC2731025 DOI: 10.1016/j.ijpara.2009.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 12/05/2022]
Abstract
Trypanosoma cruzi exhibits remarkable genetic heterogeneity. This is evident at the nucleotide level but also structurally, in the form of karyotypic variation and DNA content differences between strains. Although natural populations of T. cruzi are predominantly clonal, hybrid lineages (TcIId and TcIIe) have been identified and hybridisation has been demonstrated in vitro, raising the possibility that genetic exchange may continue to shape the evolution of this pathogen. The mechanism of genetic exchange identified in the laboratory is unusual, apparently involving fusion of diploid parents followed by genome erosion. We investigated DNA content diversity in natural populations of T. cruzi in the context of its genetic subdivisions by using flow cytometric analysis and multilocus microsatellite genotyping to determine the relative DNA content and estimate the ploidy of 54 cloned isolates. The maximum difference observed was 47.5% between strain Tu18 cl2 (TcIIb) and strain C8 cl1 (TcI), which we estimated to be equivalent to ∼73 Mb of DNA. Large DNA content differences were identified within and between discrete typing units (DTUs). In particular, the mean DNA content of TcI strains was significantly less than that for TcII strains (P < 0.001). Comparisons of hybrid DTUs TcIId/IIe with corresponding parental DTUs TcIIb/IIc indicated that natural hybrids are predominantly diploid. We also measured the relative DNA content of six in vitro-generated TcI hybrid clones and their parents. In contrast to TcIId/IIe hybrid strains these experimental hybrids comprised populations of sub-tetraploid organisms with mean DNA contents 1.65–1.72 times higher than the parental organisms. The DNA contents of both parents and hybrids were shown to be relatively stable after passage through a mammalian host, heat shock or nutritional stress. The results are discussed in the context of hybridisation mechanisms in both natural and in vitro settings.
Collapse
|
18
|
Steinauer ML, Hanelt B, Agola LE, Mkoji GM, Loker ES. Genetic structure of Schistosoma mansoni in western Kenya: The effects of geography and host sharing. Int J Parasitol 2009; 39:1353-62. [PMID: 19464296 DOI: 10.1016/j.ijpara.2009.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
We examined the spatial structure of Schistosoma mansoni, a parasite of humans, from natural infections at two levels: across the Lake Victoria basin of Kenya and among snail hosts. Using 20 microsatellite markers we examined geographic patterns of relatedness and population structure of cercariae and found weak, but significant structure detected by some, but not all analyses. We hypothesise structure created by aggregations of clonal individuals or adherence of hosts to local transmission sites is eroded by high amounts of gene flow in the region. This finding also supports previous hypotheses concerning the evolution of drug resistance in the region. Intrasnail dynamics were investigated in the context of aggregation and kin selection theory to determine how relatedness and also sex influence host sharing and host exploitation. Cercarial production did not differ significantly between snails with one or two genotypes suggesting that mixed infections resulted in decreased individual fitness and provides a framework for reproductive competition. Coinfection patterns in snails were independent of parasite relatedness indicating that schistosomes were not aggregated according to their relatedness and that kin selection was not influencing host sharing. Additionally, host exploitation in coinfections (measured by cercarial production) was not negatively correlated with relatedness, as predicted by classical models due to increased competition and thus exploitation when parasites are unrelated. Because of the low levels of relatedness within the population, schistosomes may rarely encounter close relatives and kin selection mechanisms that influence the distribution of individuals within snails or the virulence mode of the parasites may simply have not evolved.
Collapse
Affiliation(s)
- M L Steinauer
- Department of Biological Sciences, University of New Mexico, MSC03 2020, Albuquerque, NM87131, USA.
| | | | | | | | | |
Collapse
|
19
|
Solano P, Ravel S, Bouyer J, Camara M, Kagbadouno MS, Dyer N, Gardes L, Herault D, Donnelly MJ, De Meeûs T. The population structure of Glossina palpalis gambiensis from island and continental locations in Coastal Guinea. PLoS Negl Trop Dis 2009; 3:e392. [PMID: 19290038 PMCID: PMC2652410 DOI: 10.1371/journal.pntd.0000392] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 02/09/2009] [Indexed: 12/02/2022] Open
Abstract
Background We undertook a population genetics analysis of the tsetse fly Glossina palpalis gambiensis, a major vector of sleeping sickness in West Africa, using microsatellite and mitochondrial DNA markers. Our aims were to estimate effective population size and the degree of isolation between coastal sites on the mainland of Guinea and Loos Islands. The sampling locations encompassed Dubréka, the area with the highest Human African Trypanosomosis (HAT) prevalence in West Africa, mangrove and savannah sites on the mainland, and two islands, Fotoba and Kassa, within the Loos archipelago. These data are discussed with respect to the feasibility and sustainability of control strategies in those sites currently experiencing, or at risk of, sleeping sickness. Principal Findings We found very low migration rates between sites except between those sampled around the Dubréka area that seems to contain a widely dispersed and panmictic population. In the Kassa island samples, various effective population size estimates all converged on surprisingly small values (10<Ne<30) that suggest either a recent bottleneck, and/or other biological or ecological factors such as strong variance in the reproductive success of individuals. Conclusion/Significance Whatever their origin, the small effective population sizes suggest high levels of inbreeding in tsetse flies within the island samples in marked contrast to the large diffuse deme in Dubréka zones. We discuss how these genetic results suggest that different tsetse control strategies should be applied on the mainland and islands. Guinea is the country with the highest prevalence of sleeping sickness in West Africa, and we undertook a population genetics analysis there of the most dangerous tsetse fly species of West Africa, Glossina palpalis gambiensis. Our aims were to estimate effective population size and the degree of isolation between coastal sites on the mainland of Guinea (including Dubréka, a highly prevalent sleeping sickness focus) and Loos Islands in order to get the most possible accurate vision of feasibility and sustainability of anti-tsetse strategies of these sites. We found very low migration rates of tsetse between sites except between those situated in the Dubréka area, which seems to contain a widely distributed panmictic tsetse population (i.e. a population where mating occurs at random). Effective population sizes on Loos islands estimated with various techniques all converged to surprisingly small values. These values might be explained by a recent decrease in tsetse numbers on Kassa Island due to bauxite mining activities. But on the other sites, other explanations have to be found, including possible variance in reproductive success. Our genetic results suggest that different control strategies should be advised on the mainland (reduction in tsetse densities, no elimination) compared to the islands (total elimination feasible). This approach could be extended to many areas where vector control of Human and Animal Trypanosomoses is contemplated.
Collapse
|
20
|
Abstract
In this introductory chapter, I stress one more time the urgency to better connect molecular epidemiology and evolutionary biology. I show how much population genetics and phylogenetic analyses can confer a considerable added value to all attempts to characterize strains and species of pathogens. The problems dealing with the mere definition of basic concepts, such as species, subspecies, or strains, are briefly summarized. Last, I show the important contribution of molecular epidemiology to our knowledge of the basic biology of pathogens and insist on the necessity not to separate the studies dealing with pathogens from those that concern the hosts and the vectors, in the case of vector-borne diseases.
Collapse
|
21
|
Farkas Z, Kocsubé S, Tóth M, Vágvölgyi C, Kucsera J, Varga J, Pfeiffer I. Genetic variability of Candida albicans isolates in a university hospital in Hungary. Mycoses 2008; 52:318-25. [PMID: 18983433 DOI: 10.1111/j.1439-0507.2008.01627.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The occurrence and genetic variability of Candida albicans isolates in a Hungarian hospital were examined. Among the 103 Candida isolates, 44 (42.7%) proved to be C. albicans species. Comparing with a previous study carried out in 2002, the percentage of infections caused by C. albicans decreased in Hungary in this period with an increasing incidence of non-albicans species, in accordance with the world-wide trend. The genetic variability of the isolates was examined using mitochondrial DNA (mtDNA), restriction fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD) analysis and electrophoretic karyotyping. The examined C. albicans isolates could be clustered into four groups based on their mtDNA profiles. The electrophoretic karyotypes of the isolates were mostly identical to that of the reference strain 1006, with the exception of mtDNA type II isolates. RAPD analysis could be used to cluster the isolates into different groups, but this clustering was not in complete agreement with their assignment to mtDNA types. Population genetic analyses of the data indicated low amounts of recombination among these C. albicans strains. None of the isolates exhibited decreased susceptibilities to 5-fluorocytosine.
Collapse
Affiliation(s)
- Zoltán Farkas
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary CBS Fungal Biodiversity Centre, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
Garcia A, Courtin D, Solano P, Koffi M, Jamonneau V. Human African trypanosomiasis: connecting parasite and host genetics. Trends Parasitol 2006; 22:405-9. [PMID: 16837245 DOI: 10.1016/j.pt.2006.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 06/07/2006] [Accepted: 06/28/2006] [Indexed: 11/17/2022]
Abstract
In West and Central Africa, the protozoan parasite Trypanosoma brucei (T. b.) gambiense causes a chronic form of Human African trypanosomiasis (HAT) that might last several years, whereas T. b. rhodesiense refers to an acute form in East Africa that lasts weeks to months. Without treatment, both forms can cause death. Diagnosis relies on detecting parasites in blood, lymph or cerebrospinal fluid. HAT was no longer considered a public health problem in the 1960s, but it returned to alarming levels in the 1990s. After intensifying case detection and treatment, WHO recently declared the situation is under control. However, research based on host and trypanosome interactions should be encouraged to help develop innovative tools for HAT diagnosis and treatment to prevent re-emergence.
Collapse
Affiliation(s)
- André Garcia
- Institut de Recherche pour le Développement, Unité de Recherche 010, Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75270 Paris, France.
| | | | | | | | | |
Collapse
|
23
|
Nébavi F, Ayala FJ, Renaud F, Bertout S, Eholié S, Moussa K, Mallié M, de Meeûs T. Clonal population structure and genetic diversity of Candida albicans in AIDS patients from Abidjan (Côte d'Ivoire). Proc Natl Acad Sci U S A 2006; 103:3663-8. [PMID: 16501044 PMCID: PMC1450139 DOI: 10.1073/pnas.0511328103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have investigated the genotype at 14 enzyme-encoding loci in 275 isolates of the pathogenic yeast Candida albicans sampled from 42 HIV-positive patients (all but one with AIDS) from Abidjan (Côte d'Ivoire). We separately analyzed the following variables: patient, residence, age, gender, T cell count, hospitalization (yes or no), drug treatment, date of sampling, multilocus genotype, and serotype. The most important factors contributing to the genetic variability of C. albicans are individual patient and gender. Our data manifest that the population size of the parasite is relatively small within each patient, although larger in women than in men, and that, at least for the patients involved in the study, the transmission rate of C. albicans between human adults is very low. Most important is the inference that the prevailing mode of reproduction of C. albicans in natural populations is clonal, so that sexual reproduction is extremely rare, if it occurs at all.
Collapse
Affiliation(s)
- François Nébavi
- *Laboratoire de Parasitologie et Mycologie Médicale, EA 2413, Faculté de Pharmacie, 34060 Montpellier Cedex 1, France
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - François Renaud
- Génétique et Evolution des Maladies Infectieuses, Equipe Evolution des Systèmes Symbiotiques, Unité Mixte de Recherche 2724, Institute de Recherche pour le Développement, Centre National de la Recherche Scientifique, BP 64501, 34394 Montpellier Cedex 5, France
| | - Sébastien Bertout
- *Laboratoire de Parasitologie et Mycologie Médicale, EA 2413, Faculté de Pharmacie, 34060 Montpellier Cedex 1, France
| | - Serge Eholié
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire de Treichville, 01 BP V 3 Abidjan, Côte d’Ivoire
| | - Koné Moussa
- Laboratoire de Parasitologie Mycologie, Institut Pasteur de Côte d’Ivoire, BP V 116 Abidjan, Côte d’Ivoire; and
| | - Michèle Mallié
- *Laboratoire de Parasitologie et Mycologie Médicale, EA 2413, Faculté de Pharmacie, 34060 Montpellier Cedex 1, France
| | - Thierry de Meeûs
- Génétique et Evolution des Maladies Infectieuses, Equipe Evolution des Systèmes Symbiotiques, Unité Mixte de Recherche 2724, Institute de Recherche pour le Développement, Centre National de la Recherche Scientifique, BP 64501, 34394 Montpellier Cedex 5, France
| |
Collapse
|
24
|
De Meeûs T, Lehmann L, Balloux F. Molecular epidemiology of clonal diploids: A quick overview and a short DIY (do it yourself) notice. INFECTION GENETICS AND EVOLUTION 2006; 6:163-70. [PMID: 16290062 DOI: 10.1016/j.meegid.2005.02.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 02/15/2005] [Accepted: 02/20/2005] [Indexed: 11/24/2022]
Abstract
In this short review we report the basic notions needed for understanding the population genetics of clonal diploids. We focus on the consequences of clonality on the distribution of genetic diversity within individuals, between individuals and between populations. We then summarise how to detect clonality in mainly sexual populations, conversely, how to detect sexuality in mainly clonal populations and also how genetic differentiation between populations is affected by clonality in diploids. This information is then used for building recipes on how to analyse and interpret genetic polymorphism data in molecular epidemiology studies of clonal diploids.
Collapse
Affiliation(s)
- Thierry De Meeûs
- Génétique et Evolution des Maladies Infectieuses, Equipe Evolution des Systèmes Symbiotiques, UMR2724 CNRS-IRD, BP 64501, 911 Av. Agropolis, 34394 Montpellier Cedex 5, France.
| | | | | |
Collapse
|
25
|
Abstract
Aspergillus spp. have been the subject of numerous epidemiological studies. The most useful typing techniques are DNA based methods including the random amplified polymorphic DNA technique, microsatellite length polymorphisms, restriction fragment length polymorphism (RFLP) analysis using retrotransposon-like sequences as probes, and multilocus sequence typing. The results of typing clinical isolates indicate that most of the invasive aspergillosis (IA) patients were infected by a single strain. Genetic analysis could not discriminate between clinical and environmental isolates of Aspergillus. fumigatus, indicating that every strain present in the environment is a potential pathogen if it encounters the appropriate host. The source of infection can also be monitored by typing. Typing studies led to the discovery of a new pathogenic species, A. lentulus, and to the identification of several species not known previously to be pathogenic. Typing studies revealed the existence of two genetically isolated groups within a global A. fumigatus population. Aspergillus fumigatus was found to be the first example of a true cosmopolitan fungus. Additionally, the results obtained in several studies support the premise that recombination played an important role in A. fumigatus populations. The discovery of functional mating type genes in A. fumigatus indicates that past or recent sexual processes could be responsible for the observed recombining population structure.
Collapse
Affiliation(s)
- János Varga
- Department of Microbiology, Faculty of Sciences, University of Szeged, Szeged, Hungary
| |
Collapse
|
26
|
Sawires YS, Songer JG. Multiple-locus variable-number tandem repeat analysis for strain typing of Clostridium perfringens. Anaerobe 2005; 11:262-72. [PMID: 16701582 DOI: 10.1016/j.anaerobe.2005.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 02/23/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022]
Abstract
Clostridium perfringens is ubiquitous in the environment and causes diseases in man and animals, with syndromes ranging from enteritis, enterotoxemia, and sudden death to food poisoning and gas gangrene. Understanding the epidemiology of these infections and of the evolution of virulence in C. perfringens necessitate an efficient, time and cost effective strain typing method. Multiple-locus variable-number tandem repeat analysis (MLVA) has been applied to typing of other pathogens and we describe here the development of a MLVA scheme for C. perfringens. We characterized five variable tandem repeat (VNTR) loci, four of which are contained within protein encoding genes and screened 112 C. perfringens isolates to evaluate typability, reproducibility, and discriminatory power of the scheme. All the isolates were assigned a MLVA genotype and the technique has excellent reproducibility, with a numerical index of discrimination for the five VNTR loci of 0.995. Thus MLVA is an efficient tool for C. perfringens strain typing, and being PCR based makes it rapid, easy, and cost effective. In addition, it can be employed in epidemiological, ecological, and evolutionary investigations of the organism.
Collapse
Affiliation(s)
- Youhanna S Sawires
- Department of Veterinary Science and Microbiology, University of Arizona, Room 201, 1117 East Lowelll Street, Tucson, AZ 85721, USA
| | | |
Collapse
|
27
|
Abstract
The population structure of Plasmodial parasites, especially Plasmodium falciparum, has received much attention in the recent years. Like many other micropathogens, the debate has focused on the clonality/sexuality question. Considered a panmictic species for very long, P. falciparum actually exhibits strong departures from panmictic expectations in many of its populations, which corroborates the proposal that it is able to undergo uniparental propagation.(1) The currently accepted idea to account for this surprising result is kind of "mechanical" self-fertilization due to the lack of availability of gametes with different genetic make-ups in low transmission areas. However, it could be misleading to make this simple working hypothesis a dogma, for many other explanations are possible (unknown cycles, sibling species, mating types) that deserve to be explored as well. The consequences of this combination of uniparental(1) and sexual propagation on the circulation of genes of interest (drug resistance, antigenic variability, pathogenicity) are discussed, together with the need to use more sophisticated technologies, analysing much broader samples and considering better the host and vector factors in P. falciparum population dynamics.
Collapse
Affiliation(s)
- C Gauthier
- Unit of Research 165 "Genetics and Evolution of Infectious Diseases", UMR CNRS/IRD 2724, IRD, BP 64501, 34394 Montpellier Cedex 5, France
| | | |
Collapse
|
28
|
de Meeûs T, Balloux F. Clonal reproduction and linkage disequilibrium in diploids: a simulation study. INFECTION GENETICS AND EVOLUTION 2004; 4:345-51. [PMID: 15374532 DOI: 10.1016/j.meegid.2004.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 04/30/2004] [Accepted: 05/03/2004] [Indexed: 11/17/2022]
Abstract
Estimating the rate of clonal reproduction in natural population of diploid organisms is recognised as being problematic and even the detection of strictly clonal populations is often controversial. One well-acknowledged signature of clonal reproduction is the generation of non-random associations between loci. Linkage disequilibrium (LD) is thus often used for estimating the amount of clonal reproduction. Here we explore with computer simulations the effect of the rate of clonal reproduction on LD estimates obtained from different estimators within a comprehensive parameter range. None of the LD estimators studied is able to accurately measure the proportion of clonal (or sexual) reproduction on its own, due to strong bias, incoherent behaviour, or huge variances. The joint use of several statistics is thus recommended for the estimation rates of clonal reproduction in natural populations. We hope that our work will provide useful tools for the study of clonal diploids, many of which can only be studied with molecular markers, as it is the case for medically important parasites.
Collapse
Affiliation(s)
- Thierry de Meeûs
- Génétique et Evolution des Maladies Infectieuses, Equipe Evolution des Systèmes Symbiotiques, UMR 2724 CNRS-IRD, BP 64501, 911 Av. Agropolis, 34394 Montpellier Cedex 5, France.
| | | |
Collapse
|
29
|
Njiokou F, Nkinin SW, Grébaut P, Penchenier L, Barnabé C, Tibayrenc M, Herder S. An isoenzyme survey ofTrypanosoma bruceis.l. from the Central African subregion: population structure, taxonomic and epidemiological considerations. Parasitology 2004; 128:645-53. [PMID: 15206467 DOI: 10.1017/s0031182004004974] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In order to improve our knowledge about the taxonomic status and the population structure of the causative agent of Human African Trypanosomiasis in the Central African subregion, 169 newly isolated stocks, of which 16 came from pigs, and 5 reference stocks, were characterized by multilocus enzyme electrophoresis, for 17 genetic loci. We identified 22 different isoenzyme profiles or zymodemes, many of which showed limited differences between them. These zymodemes were equated to multilocus genotypes. UPGMA dendrograms revealed one main group:Trypanosoma brucei gambiensegroup I and 3T. brucei‘non-gambiense’ stocks.T. b. gambiensegroup I zymodemes were very homogenous, grouping all the human stocks and 31% of the pig stocks. Two main zymodemes (Z1 and Z3) grouping 74% of the stocks were found in different remote countries. The genetic distances were relatively high inT. brucei‘non-gambiense’ zymodemes, regrouping 69% of pig stocks. The analysis of linkage disequilibrium was in favour of a predominantly clonal population structure. This was supported by the ubiquitous occurrence of the main zymodemes, suggesting genetic stability in time and space of this parasite's natural clones. However, in some cases an epidemic population structure could not be ruled out. Our study also suggested that the domestic pig was a probable reservoir host forT. b. gambiensegroup I in Cameroon.
Collapse
Affiliation(s)
- F Njiokou
- OCEAC, Laboratoire de Recherche sur les Trypanosomoses, BP 288, Yaoundé, Cameroun.
| | | | | | | | | | | | | |
Collapse
|
30
|
Sánchez MS, Hastings A. Uniform vertical transmission and selection in a host–symbiont system. Non-random symbiont distribution generates apparent differential selection. J Theor Biol 2003; 225:517-30. [PMID: 14615211 DOI: 10.1016/s0022-5193(03)00303-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigate the survival, prevalence, and distribution of a symbiont in its host population when the forces of vertical transmission (beta) and symbiont-induced selection (s) are uniform (invariant across host genotypes). We use host-symbiont disequilibria to quantify the role played by non-random associations between host genotypes and the symbiont in altering host genetic structure. Results show a larger part of the parameter space permits symbiont survival under mutualism (beta>/=0.25) than parasitism (beta>0.5). The nonlinear interaction between beta and s determines symbiont survival and prevalence at equilibrium; initial symbiont prevalence is a factor only in a small number of parameter combinations. The symbiont's non-random distribution generates apparent differential selection, when selective differences across host genotypes and alleles exist under uniform selection. The direction of change in host allele frequencies is determined exclusively by the signs of s and the allelic disequilibrium. Disequilibria cannot be created or maintained, and heterozygote disequilibrium changes sign in a greater number of runs and at higher magnitudes than homozygote disequilibria. This investigation increases our understanding of the interactions between vertical transmission and selection, and their effect on the coevolutionary dynamics and final states of interacting species under different selection regimes.
Collapse
Affiliation(s)
- María S Sánchez
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
31
|
Tibayrenc M. Genetic subdivisions within Trypanosoma cruzi (Discrete Typing Units) and their relevance for molecular epidemiology and experimental evolution. KINETOPLASTID BIOLOGY AND DISEASE 2003; 2:12. [PMID: 14613498 PMCID: PMC270070 DOI: 10.1186/1475-9292-2-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 10/28/2003] [Indexed: 11/10/2022]
Abstract
Background This paper summarizes the main results obtained on Trypanosoma cruzi genetic diversity and population structure since this parasite became the theme of many genetic and molecular studies in the early seventies. Results T. cruzi exibits a paradigmatic pattern of long-term, clonal evolution, which has structured its natural populations into several discrete genetic subdivisions or "Discrete Typing Units" (DTU). Rare hybridization events are nevertheless detectable in natural populations and have been recently obtained in the laboratory. Conclusions The DTUs and natural clones of T. cruzi constitute relevant units for molecular epidemiology and experimental evolution. Experimental mating opens the way to an in-depth knowledge of this parasite's formal genetics.
Collapse
Affiliation(s)
- Michel Tibayrenc
- UR62 "Genetics of Infectious Diseases", UMR CNRS/IRD 9926, IRD Centre, BP 64501, 34394 Montpellier Cedex 5, France.
| |
Collapse
|
32
|
|
33
|
Bousalem M, Dallot S, Fuji S, Natsuaki KT. Origin, world-wide dispersion, bio-geographical diversification, radiation and recombination: an evolutionary history of Yam mild mosaic virus (YMMV). INFECTION GENETICS AND EVOLUTION 2003; 3:189-206. [PMID: 14522183 DOI: 10.1016/s1567-1348(03)00085-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We developed an evolutionary epidemiological approach to understand the regional and world-wide dispersion of Yam mild mosaic virus (YMMV) by retracing its evolutionary history. Analyses of the distribution and the prevalence of YMMV in the Caribbean islands of Guadeloupe and Martinique, and in French Guyana revealed that YMMV has a wide repartition and different prevalence on Dioscorea alata L. (Asian and Oceanic origin), on D. cayenensis Lam.-D. rotundata Poir. (African origin) and on D. trifida L. (Amazon and the Caribbean origin) in this region. Considering the data on the current dispersion of the virus and the evolution and the history of the yams, the phylogenetic analysis of the 3' terminal part of the YMMV genome gave a consistent support of the Asian-Pacific origin of YMMV from D. alata species. The YMMV phylogenetic tree is star-like, suggesting an early split of the genetic lineages. An important part of the clades is constituted by a single lineage arisen by recombination. The largest emerging monophyletic group illustrates well YMMV geographical dispersion. This evolutionary pattern contrasts with the one revealed by the African distinct lineages and by the second significant monophyletic group, for which a host adaptation to D. trifida is suggested. The analysis of the pattern of nucleotide substitutions in the CP gene revealed that purifying selection dominates the evolution of the CP of potyviruses and strongly operates on the YMMV. Switching events, radiation, host and geographical adaptation and recombination events are proposed as major traits of YMMV evolutionary history.
Collapse
|
34
|
Breniere SF, Barnabe C, Bosseno MF, Tibayrenc M. Impact of number of isoenzyme loci on the robustness of intraspecific phylogenies using multilocus enzyme electrophoresis: consequences for typing of Trypanosoma cruzi. Parasitology 2003; 127:273-81. [PMID: 12964830 DOI: 10.1017/s0031182003003573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Thirty-one stocks of Trypanosoma cruzi, the agent of Chagas disease, representative of the genetic variability of the 2 principal lineages, that subdivide T. cruzi, were selected on the basis of previous multilocus enzyme electrophoresis analysis using 21 loci. Analyses were performed with lower numbers of loci to explore the impact of the number of loci on the robustness of the phylogenies obtained, and to identify the loci that have more impact on the phylogeny. Analyses were performed with numerical (UPGMA) and cladistical (Wagner parsimony analysis) methods for all sets of loci. Robustness of the phylogenies obtained was estimated by bootstrap analysis. Low numbers of randomly selected loci (6) were sufficient to demonstrate genetic heterogeneity among the stocks studied. However, they were unable to give reliable phylogenetic information. A higher number of randomly selected loci (15 and more) were required to reach this goal. All loci did not convey equivalent information. The more variable loci detected a greater genetic heterogeneity among the stocks, whereas the least variable loci were better for robust clustering. Finally, analysis was performed with only 5 and 9 loci bearing synapomorphic allozyme characters previously identified among larger samples of stocks. A set of 9 such loci was able to uncover both genetic heterogeneity among the stocks and to build robust phylogenies. It can therefore be recommended as a minimum set of isoenzyme loci that bring maximal information for all studies aiming to explore the phylogenetic diversity of a new set of T. cruzi stocks and for any preliminary genetic typing. Moreover, our results show that bootstrap analysis, like any statistics, is highly dependent upon the information available and that absolute bootstrap figures should be cautiously interpreted.
Collapse
Affiliation(s)
- S F Breniere
- UR 008: Pathogénie des Trypanosomatidés and Institut de Recherche pour le Développement, 911 Av. Agropolis, BP 64501, 34394 Montpellier Cedex 1, France.
| | | | | | | |
Collapse
|
35
|
Abstract
The consequences of variable rates of clonal reproduction on the population genetics of neutral markers are explored in diploid organisms within a subdivided population (island model). We use both analytical and stochastic simulation approaches. High rates of clonal reproduction will positively affect heterozygosity. As a consequence, nearly twice as many alleles per locus can be maintained and population differentiation estimated as F(ST) value is strongly decreased in purely clonal populations as compared to purely sexual ones. With increasing clonal reproduction, effective population size first slowly increases and then points toward extreme values when the reproductive system tends toward strict clonality. This reflects the fact that polymorphism is protected within individuals due to fixed heterozygosity. Contrarily, genotypic diversity smoothly decreases with increasing rates of clonal reproduction. Asexual populations thus maintain higher genetic diversity at each single locus but a lower number of different genotypes. Mixed clonal/sexual reproduction is nearly indistinguishable from strict sexual reproduction as long as the proportion of clonal reproduction is not strongly predominant for all quantities investigated, except for genotypic diversities (both at individual loci and over multiple loci).
Collapse
Affiliation(s)
- François Balloux
- I.C.A.P.B., University of Edinburgh, Edinburgh EH9 3JT, Scotland, United Kingdom.
| | | | | |
Collapse
|
36
|
Jamonneau V, Barnabé C, Koffi M, Sané B, Cuny G, Solano P. Identification of Trypanosoma brucei circulating in a sleeping sickness focus in Côte d'Ivoire: assessment of genotype selection by the isolation method. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2003; 3:143-9. [PMID: 12809809 DOI: 10.1016/s1567-1348(03)00069-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genetic studies of Trypanosoma brucei have been mainly based on rodent inoculation (RI) for isolation of trypanosome strains. However, Trypanosoma brucei gambiense is difficult to grow in rodents. The development and use of the Kit for In Vitro Isolation (KIVI) of trypanosomes has led to a better isolation success. However, some authors report a genetic monomorphism in T. b. gambiense, and the extensive use of the KIVI was suspected as being responsible for this low genetic diversity. In the present work, trypanosome stocks were isolated from both humans and pigs in an active sleeping sickness focus in Côte d'Ivoire. Two methods were simultaneously used for this purpose: KIVI and rodent inoculation. None of the human stocks grew in rodents. Some of the stocks originating from pigs could be isolated with both methods. Each of these stocks (from the same pig) showed a different isoenzymatic pattern according to the isolation method used. All the human stocks identified belonged to the major zymodeme 3 of T. b. gambiense group 1, whereas the stocks isolated from pigs belonged to a new group of zymodemes even if they were genetically closely related. These observations may have significant implications when analysing the population structure of T. brucei, and also raise again the question of the importance of the animal reservoir in Human African Trypanosomiasis (HAT).
Collapse
Affiliation(s)
- Vincent Jamonneau
- Institut de Recherche pour le Développement (IRD), UR 035, Laboratoire de Recherche et de Coordination sur les Trypanosomoses, TA 207/G, Campus Internationnal de Baillarguet, 34398 Montpellier Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
37
|
Bastrenta B, Mita N, Buitrago R, Vargas F, Flores M, Machane M, Yacsik N, Torrez M, Le Pont F, Brenière F. Human mixed infections of Leishmania spp. and Leishmania-Trypanosoma cruzi in a sub Andean Bolivian area: identification by polymerase chain reaction/hybridization and isoenzyme. Mem Inst Oswaldo Cruz 2003; 98:255-64. [PMID: 12764443 DOI: 10.1590/s0074-02762003000200015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Parasites belonging to Leishmania braziliensis, Leishmania donovani, Leishmania mexicana complexes and Trypanosoma cruzi (clones 20 and 39) were searched in blood, lesions and strains collected from 28 patients with active cutaneous leishmaniasis and one patient with visceral leishmaniasis. PCR-hybridization with specific probes of Leishmania complexes (L. braziliensis, L. donovani and L. mexicana) and T. cruzi clones was applied to the different DNA samples. Over 29 patients, 8 (27.6%) presented a mixed infection Leishmania complex species, 17 (58.6%) a mixed infection Leishmania-T. cruzi, and 4 (13.8%) a multi Leishmania-T. cruzi infection. Several patients were infected by the two Bolivian major clones 20 and 39 of T. cruzi (44.8%). The L. braziliensis complex was more frequently detected in lesions than in blood and a reverse result was observed for L. mexicana complex. The polymerase chain reaction-hybridization design offers new arguments supporting the idea of an underestimated rate of visceral leishmanisis in Bolivia. Parasites were isolated by culture from the blood of two patients and lesions of 10 patients. The UPGMA (unweighted pair-group method with arithmetic averages) dendrogram computed from Jaccard's distances obtained from 11 isoenzyme loci data confirmed the presence of the three Leishmania complexes and undoubtedly identified human infections by L. (V.) braziliensis, L. (L.) chagasi and L. (L.) mexicana species. Additional evidence of parasite mixtures was visualized through mixed isoenzyme profiles, L. (V.) braziliensis-L. (L.) mexicana and Leishmania spp.-T. cruzi. The epidemiological profile in the studied area appeared more complex than currently known. This is the first report of parasitological evidence of Bolivian patients with trypanosomatidae multi infections and consequences on the diseases' control and patient treatments are discussed.
Collapse
Affiliation(s)
- B Bastrenta
- Universidad Mayor San Andrès, Instituto Boliviano de Biología de Altura, La Paz, Bolivia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Summerell BA, Salleh B, Leslie JF. A Utilitarian Approach to Fusarium Identification. PLANT DISEASE 2003; 87:117-128. [PMID: 30812915 DOI: 10.1094/pdis.2003.87.2.117] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
| | - Baharuddin Salleh
- School of Biological Sciences, Science University of Malaysia, Penang, Malaysia
| | - John F. Leslie
- Throckmorton Plant Sciences Center, Kansas State University, Manhattan
| |
Collapse
|
39
|
Supply P, Warren RM, Bañuls AL, Lesjean S, Van Der Spuy GD, Lewis LA, Tibayrenc M, Van Helden PD, Locht C. Linkage disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area. Mol Microbiol 2003; 47:529-38. [PMID: 12519202 DOI: 10.1046/j.1365-2958.2003.03315.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deciphering the structure of pathogen populations is instrumental for the understanding of the epidemiology and history of infectious diseases and for their control. Although Mycobacterium tuberculosis is the most widespread infectious agent in humans, its actual population structure has remained hypothetical until now because: (i) its structural genes are poorly polymorphic; (ii) adequate samples and appropriate statistics for population genetic analysis have not been considered. To investigate this structure, we analysed the statistical associations (linkage disequilibrium) between 12 independent M. tuberculosis minisatellite-like loci by high-throughput genotyping within a model population of 209 isolates representative of the genetic diversity in an area with a very high incidence of tuberculosis. These loci contain variable number tandem repeats (VNTRs) of genetic elements named mycobacterial interspersed repetitive units (MIRUs). Highly significant linkage disequilibrium was detected among the MIRU-VNTR loci in this model. This linkage disequilibrium was also evident when the MIRU-VNTR types were compared with the IS6110 restriction fragment length polymorphism types. These results support a predominant clonal evolution of M. tuberculosis.
Collapse
Affiliation(s)
- Philip Supply
- Laboratoire des Mécanismes Moléculaires de la Pathogenèse Bactérienne, INSERM U447, Institut Pasteur de Lille, Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The question of population structure in parasitic protozoa has recently gained a renewed topicality with significant contributions on medically important pathogens, such as Plasmodium falciparum, Toxoplasma gondii and Cryptosporidium parvum. The proposals that initiated this debate are reviewed here and the subsequent developments of the clonal theory, in light of recent contributions, are examined.
Collapse
Affiliation(s)
- Michel Tibayrenc
- UR Génétique des Maladies Infectieuses, UMR Centre National de la Recherche Scientifique/Institut de Recherche pour le Développement 9926, IRD, BP 64501, 34393 Montpellier Cedex 5, France.
| | | |
Collapse
|
41
|
Bañuls AL, Hide M, Tibayrenc M. Evolutionary genetics and molecular diagnosis of Leishmania species. Trans R Soc Trop Med Hyg 2002; 96 Suppl 1:S9-13. [PMID: 12055858 DOI: 10.1016/s0035-9203(02)90045-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An extensive study has been performed on various natural populations of Leishmania from the 'Old' and 'New Worlds' using multilocus enzyme electrophoresis and random amplification of polymorphic deoxyribonucleic acid. The data are interpreted in evolutionary genetic terms in order to give a firm basis to studies dealing with the relevant medical properties of pathogens. We confirm that Leishmania undergoes clonal evolution with occasional phenomena of hybridization. This suggests that the microorganism genotypes are stable in space and time and consequently have epidemiological and medical relevance. It is crucial to have a clear definition of the taxa to be identified. In the case of Leishmania, there is at present no firm consensus on the species concept. We propose that any new species of Leishmania should correspond to a 'discrete typing unit' that exhibits specific medical and/or epidemiological characters. Based on this approach, the species status of L. peruviana can be supported. On the contrary, L. panamensis cannot be clearly distinguished from L. guyanensis. Our studies on the genetic diversity of Leishmania show that a given stock is not representative of the genus, the subgenera, or any species. We suggest that the genetic polymorphism of Leishmania has a strong impact on the parasite's biomedical properties.
Collapse
Affiliation(s)
- Anne-Laure Bañuls
- Centre d'Etudes sur le Polymorphisme des Microorganismes, UMR CNRS-IRD 9926, Centre IRD, 911 Avenue Agropolis, B.P. 5045, 34032 Montpellier, France.
| | | | | |
Collapse
|
42
|
Murray M. Determinants of cluster distribution in the molecular epidemiology of tuberculosis. Proc Natl Acad Sci U S A 2002; 99:1538-43. [PMID: 11818527 PMCID: PMC122226 DOI: 10.1073/pnas.022618299] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2001] [Accepted: 11/20/2001] [Indexed: 11/18/2022] Open
Abstract
Recently developed molecular techniques have revolutionized the epidemiology of tuberculosis. Multiple studies have used these tools to examine the population structure of Mycobacterium tuberculosis isolates in different communities. The distributions of clusters of M. tuberculosis isolates in these settings may variously reflect social mixing patterns or the differential fitness of specific clones of the organism. We developed an individual-based microsimulation of tuberculosis transmission to explore social and demographic determinants of cluster distribution and to observe the effect of transmission dynamics on the empiric data from molecular epidemiologic studies. Our results demonstrate that multiple host-related factors contribute to wide variation in cluster distributions even when all strains of the organism are assumed to be equally transmissible. These host characteristics include interventions such as chemotherapy, vaccination and chemoprophylaxis, HIV prevalence, the age structure of the population, and the prevalence of latent tuberculosis infection. We consider the implications of these results for the interpretation of cluster studies of M. tuberculosis as well as the more general application of microsimulation models to infectious disease epidemiology.
Collapse
Affiliation(s)
- Megan Murray
- Department of Epidemiology, Harvard School of Public Health and Infectious Disease Unit, Massachusetts General Hospital, 677 Huntington Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
43
|
Thomaz Soccol V, Barnabe C, Castro E, Luz E, Tibayrenc M. Trypanosoma cruzi: isoenzyme analysis suggests the presence of an active Chagas sylvatic cycle of recent origin in Paraná State, Brazil. Exp Parasitol 2002; 100:81-6. [PMID: 12054697 DOI: 10.1016/s0014-4894(02)00009-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Thirty-one trypanosomatid stocks were isolated from various sylvatic hosts and vectors in two different regions from the Paraná State of Brazil. The stocks were analyzed by multilocus enzyme electrophoresis (MLEE) on cellulose acetate plates (22 genetic loci). All stocks were unambiguously attributed to Trypanosoma cruzi, and were found to be closely related to the formerly described zymodeme I (TC1 subgroup of T. cruzi). By comparison with other sylvatic cycles with similar sample sizes (Southern USA, Colombia, French Guiana), genetic variability among these stocks was very limited, with only two variable loci out of 22, and only three different multilocus genotypes. Population structure of T. cruzi in these cycles appears to correspond to a set of very closely related clonal genotypes. This very limited genetic variability could be due to a recent foundation of these populations (founder effect). The implications of an active Chagas sylvatic cycle in this area are discussed.
Collapse
Affiliation(s)
- V Thomaz Soccol
- Laboratório de Parasitologia Molecular, Departamento de Patologia Básica, Universidade Federal do Paraná, Centro Politécnico Jardim das Américas, CEP 81531-990, Brazil.
| | | | | | | | | |
Collapse
|
44
|
Barnabé C, Yaeger R, Pung O, Tibayrenc M. Trypanosoma cruzi: a considerable phylogenetic divergence indicates that the agent of Chagas disease is indigenous to the native fauna of the United States. Exp Parasitol 2001; 99:73-9. [PMID: 11748960 DOI: 10.1006/expr.2001.4651] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thirty U.S. Trypanosoma cruzi stocks isolated mainly from wild mammals were characterized by multilocus enzyme electrophoresis at 22 genetic loci and random amplification of polymorphic DNA for 10 primers. Two main phylogenetic clusters, separated by large genetic distances, were discriminated by both methods, corresponding, respectively, to the formerly described zymodemes I and III. Two stocks isolated from indigenous human cases were identified as zymodeme I. Genetic diversity of the U.S. T. cruzi isolates was considerable, comparable to that scored in similarly sized samples from South America. These results favor the hypothesis that T. cruzi U.S. stocks were not imported at a historical time and are indigenous to the native fauna of the United States. The population structure of these stocks appeared to be basically clonal, as previously reported in South America, and no evidence of hybrid genotypes was found in the United States.
Collapse
Affiliation(s)
- C Barnabé
- Unité de Recherche: "Génétique des Maladies Infectieuses", Montpellier Cedex 01, 34032, France
| | | | | | | |
Collapse
|
45
|
Supply P, Lesjean S, Savine E, Kremer K, van Soolingen D, Locht C. Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol 2001; 39:3563-71. [PMID: 11574573 PMCID: PMC88389 DOI: 10.1128/jcm.39.10.3563-3571.2001] [Citation(s) in RCA: 474] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Large-scale genotyping of Mycobacterium tuberculosis is especially challenging, as the current typing methods are labor-intensive and the results are difficult to compare among laboratories. Here, automated typing based on variable-number tandem repeats (VNTRs) of genetic elements named mycobacterial interspersed repetitive units (MIRUs) in 12 mammalian minisatellite-like loci of M. tuberculosis is presented. This system combines analysis of multiplex PCRs on a fluorescence-based DNA analyzer with computerized automation of the genotyping. Analysis of a blinded reference set of 90 strains from 38 countries (K. Kremer et al., J. Clin. Microbiol. 37:2607-2618, 1999) demonstrated that it is 100% reproducible, sensitive, and specific for M. tuberculosis complex isolates, a performance that has not been achieved by any other typing method tested in the same conditions. MIRU-VNTRs can be used for analysis of the global genetic diversity of M. tuberculosis complex strains at different levels of evolutionary divergence. To fully exploit the portability of this typing system, a website was set up for the analysis of M. tuberculosis MIRU-VNTR genotypes via the Internet. This opens the way for global epidemiological surveillance of tuberculosis and should lead to novel insights into the evolutionary and population genetics of this major pathogen.
Collapse
Affiliation(s)
- P Supply
- Laboratoire des Mécanismes Moléculaires de la Pathogenèse Bactérienne, INSERM U447, Institut Pasteur de Lille, F-59019 Lille Cedex, France.
| | | | | | | | | | | |
Collapse
|
46
|
van Belkum A, Struelens M, de Visser A, Verbrugh H, Tibayrenc M. Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. Clin Microbiol Rev 2001; 14:547-60. [PMID: 11432813 PMCID: PMC88989 DOI: 10.1128/cmr.14.3.547-560.2001] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Currently, genetic typing of microorganisms is widely used in several major fields of microbiological research. Taxonomy, research aimed at elucidation of evolutionary dynamics or phylogenetic relationships, population genetics of microorganisms, and microbial epidemiology all rely on genetic typing data for discrimination between genotypes. Apart from being an essential component of these fundamental sciences, microbial typing clearly affects several areas of applied microbiological research. The epidemiological investigation of outbreaks of infectious diseases and the measurement of genetic diversity in relation to relevant biological properties such as pathogenicity, drug resistance, and biodegradation capacities are obvious examples. The diversity among nucleic acid molecules provides the basic information for all fields described above. However, researchers in various disciplines tend to use different vocabularies, a wide variety of different experimental methods to monitor genetic variation, and sometimes widely differing modes of data processing and interpretation. The aim of the present review is to summarize the technological and fundamental concepts used in microbial taxonomy, evolutionary genetics, and epidemiology. Information on the nomenclature used in the different fields of research is provided, descriptions of the diverse genetic typing procedures are presented, and examples of both conceptual and technological research developments for Escherichia coli are included. Recommendations for unification of the different fields through standardization of laboratory techniques are made.
Collapse
Affiliation(s)
- A van Belkum
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
47
|
Urdaneta L, Lal A, Barnabe C, Oury B, Goldman I, Ayala FJ, Tibayrenc M. Evidence for clonal propagation in natural isolates of Plasmodium falciparum from Venezuela. Proc Natl Acad Sci U S A 2001; 98:6725-9. [PMID: 11371616 PMCID: PMC34420 DOI: 10.1073/pnas.111144998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2001] [Indexed: 11/18/2022] Open
Abstract
We have analyzed 75 isolates of Plasmodium falciparum, collected in Venezuela during both the dry (November) and rainy (May-July) seasons, with a range of genetic markers including antigen genes and 14 random amplified polymorphic DNA (RAPD) primers. Thirteen P. falciparum stocks from Kenya and four other Plasmodium species are included in the analysis for comparison. Cross-hybridization shows that the 14 RAPD primers reveal 14 separate regions of the parasite's genome. The P. falciparum isolates are a monophyletic clade, significantly different from the other Plasmodium species. We identify three RAPD characters that could be useful as "tags" for rapid species identification. The Venezuelan genotypes fall into two discrete genetic subdivisions associated with either the dry or the rainy season; the isolates collected in the rainy season exhibit greater genetic diversity. There is significant linkage disequilibrium in each seasonal subsample and in the full sample. In contrast, no linkage disequilibrium is detected in the African sample. These results support the hypothesis that the population structure of P. falciparum in Venezuela, but not in Africa, is predominantly clonal. However, the impact of genetic recombination on Venezuelan P. falciparum seems higher than in parasitic species with long-term clonal evolution like Trypanosoma cruzi, the agent of Chagas' disease. The genetic structure of the Venezuelan samples is similar to that of Escherichia coli, a bacterium that propagates clonally, with occasional genetic recombination.
Collapse
Affiliation(s)
- L Urdaneta
- Centro de Investigaciones Biomedicas, Universidad de Carabobo, Núcleo Aragua, AP 2351, Maracay, Estado Aragua, Venezuela
| | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Barnabé C, Neubauer K, Solari A, Tibayrenc M. Trypanosoma cruzi: presence of the two major phylogenetic lineages and of several lesser discrete typing units (DTUs) in Chile and Paraguay. Acta Trop 2001; 78:127-37. [PMID: 11230822 DOI: 10.1016/s0001-706x(00)00183-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Multilocus enzyme electrophoresis (MLEE) of 99 Chilean and 11 Paraguayan stocks of Trypanosoma cruzi, the agent of Chagas disease, was performed for 22 variable genetic loci. As previously shown for this parasite in other geographic areas, a pattern of long-term clonal evolution of T. cruzi genotypes was inferred, both by strong departures of Hardy-Weinberg expectations and high linkage disequilibrium. The presence of the two major phylogenetic lineages that subdivide the species T. cruzi [Tibayrenc, M., 1995. Population genetics of parasitic protozoa and other microorganisms. In: Baker, J.R., Muller, R., Rollinson, D. (Eds.), Advances in Parasitology, vol. 36, Academic Press, New York, pp. 47-115; Souto, R.P., Fernandes, O., Macedo, A.M., Campbell, D.A., Zingales, B., 1996. DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol. Biochem. Parasitol. 83, 141-152], and of several lesser genetic subdivisions ('discrete typing units' or DTUs; Tibayrenc, M., 1998a. Genetic epidemiology of parasitic protozoa and other infectious agents: the need for an integrated approach. Int. J. Parasitol. 28 (1), 85-104; Tibayrenc, M., 1998b. Beyond strain typing and molecular epidemiology: integrated genetic epidemiology of infectious diseases. Parasitol. Today 14, 323-329; Tibayrenc, M., 1998c. Integrated genetic epidemiology of infectious diseases: the Chagas model. Mem. Inst. Oswaldo Cruz 93 (5), 577-580), was recorded in this region. Comparison between clonal populations in sylvatic and domestic transmission cycles of the disease in Chile strongly suggests that these two cycles are at least partially separated from one another.
Collapse
Affiliation(s)
- C Barnabé
- Centre d'Etudes sur le Polymorphisme des Microorganismes (CEPM), Unité Mixte de Recherche Centre, National de la Recherche Scientifique/Institut de Recherche pour le Développement, IRD, Montpellier, France.
| | | | | | | |
Collapse
|
50
|
Mazars E, Lesjean S, Banuls AL, Gilbert M, Vincent V, Gicquel B, Tibayrenc M, Locht C, Supply P. High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci U S A 2001; 98:1901-6. [PMID: 11172048 PMCID: PMC29354 DOI: 10.1073/pnas.98.4.1901] [Citation(s) in RCA: 340] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The worldwide threat of tuberculosis to human health emphasizes the need to develop novel approaches to a global epidemiological surveillance. The current standard for Mycobacterium tuberculosis typing based on IS6110 restriction fragment length polymorphism (RFLP) suffers from the difficulty of comparing data between independent laboratories. Here, we propose a high-resolution typing method based on variable number tandem repeats (VNTRs) of genetic elements named mycobacterial interspersed repetitive units (MIRUs) in 12 human minisatellite-like regions of the M. tuberculosis genome. MIRU-VNTR profiles of 72 different M. tuberculosis isolates were established by PCR analysis of all 12 loci. From 2 to 8 MIRU-VNTR alleles were identified in the 12 regions in these strains, which corresponds to a potential of over 16 million different combinations, yielding a resolution power close to that of IS6110-RFLP. All epidemiologically related isolates tested were perfectly clustered by MIRU-VNTR typing, indicating that the stability of these MIRU-VNTRs is adequate to track outbreak episodes. The correlation between genetic relationships inferred from MIRU-VNTR and IS6110-RFLP typing was highly significant. Compared with IS6110-RFLP, high-resolution MIRU-VNTR typing has the considerable advantages of being fast, appropriate for all M. tuberculosis isolates, including strains that have a few IS6110 copies, and permitting easy and rapid comparison of results from independent laboratories. This typing method opens the way to the construction of digital global databases for molecular epidemiology studies of M. tuberculosis.
Collapse
Affiliation(s)
- E Mazars
- Laboratoire de Recherche et Développement, Institut National de la Santé et de la Recherche Médicale, U447, Institut Pasteur de Lille, 1, Rue du Prof. Calmette, F-59019 Lille Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|