1
|
Garcia-Marquez MA, Thelen M, Bauer E, Maas L, Wennhold K, Lehmann J, Keller D, Nikolić M, George J, Zander T, Schröder W, Müller P, Yazbeck AM, Bruns C, Thomas R, Gathof B, Quaas A, Peifer M, Hillmer AM, von Bergwelt-Baildon M, Schlößer HA. Germline homozygosity and allelic imbalance of HLA-I are common in esophagogastric adenocarcinoma and impair the repertoire of immunogenic peptides. J Immunother Cancer 2024; 12:e007268. [PMID: 38631707 PMCID: PMC11029431 DOI: 10.1136/jitc-2023-007268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The individual HLA-I genotype is associated with cancer, autoimmune diseases and infections. This study elucidates the role of germline homozygosity or allelic imbalance of HLA-I loci in esophago-gastric adenocarcinoma (EGA) and determines the resulting repertoires of potentially immunogenic peptides. METHODS HLA genotypes and sequences of either (1) 10 relevant tumor-associated antigens (TAAs) or (2) patient-specific mutation-associated neoantigens (MANAs) were used to predict good-affinity binders using an in silico approach for MHC-binding (www.iedb.org). Imbalanced or lost expression of HLA-I-A/B/C alleles was analyzed by transcriptome sequencing. FluoroSpot assays and TCR sequencing were used to determine peptide-specific T-cell responses. RESULTS We show that germline homozygosity of HLA-I genes is significantly enriched in EGA patients (n=80) compared with an HLA-matched reference cohort (n=7605). Whereas the overall mutational burden is similar, the repertoire of potentially immunogenic peptides derived from TAAs and MANAs was lower in homozygous patients. Promiscuity of peptides binding to different HLA-I molecules was low for most TAAs and MANAs and in silico modeling of the homozygous to a heterozygous HLA genotype revealed normalized peptide repertoires. Transcriptome sequencing showed imbalanced expression of HLA-I alleles in 75% of heterozygous patients. Out of these, 33% showed complete loss of heterozygosity, whereas 66% had altered expression of only one or two HLA-I molecules. In a FluoroSpot assay, we determined that peptide-specific T-cell responses against NY-ESO-1 are derived from multiple peptides, which often exclusively bind only one HLA-I allele. CONCLUSION The high frequency of germline homozygosity in EGA patients suggests reduced cancer immunosurveillance leading to an increased cancer risk. Therapeutic targeting of allelic imbalance of HLA-I molecules should be considered in EGA.
Collapse
Affiliation(s)
- Maria Alejandra Garcia-Marquez
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Cologne, Germany
| | - Martin Thelen
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Cologne, Germany
| | - Eugen Bauer
- Institute of Transfusion Medicine, University of Cologne, Cologne, Germany
| | - Lukas Maas
- Department of Translational Genomics, University of Cologne, Cologne, Germany
| | - Kerstin Wennhold
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Cologne, Germany
| | - Jonas Lehmann
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Cologne, Germany
| | - Diandra Keller
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Cologne, Germany
| | - Miloš Nikolić
- Department of Translational Genomics, University of Cologne, Cologne, Germany
| | - Julie George
- Department of Translational Genomics, University of Cologne, Cologne, Germany
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Cologne, Cologne, Germany
| | - Thomas Zander
- Department I of Internal Medicine and Center for Integrated Oncology (CIO) Aachen Bonn Cologne Duesseldorf, University Hospital Cologne, Cologne, Germany
| | - Wolfgang Schröder
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Cologne, Germany
| | - Philipp Müller
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Ali M Yazbeck
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Cologne, Germany
| | - Roman Thomas
- Department of Translational Genomics, University of Cologne, Cologne, Germany
- Institute of Pathology, University of Cologne, Cologne, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Birgit Gathof
- Institute of Transfusion Medicine, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Martin Peifer
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of Translational Genomics, University of Cologne, Cologne, Germany
| | - Axel M Hillmer
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Michael von Bergwelt-Baildon
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Gene Centre, Ludwig Maximilians University Munich, Munchen, Germany
- Department of Medicine III, Ludwig Maximilians University Munich, Munchen, Germany
| | - Hans Anton Schlößer
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
OBrien SJ. Legacy of a magic gene- CCR5-∆32: From discovery to clinical benefit in a generation. Proc Natl Acad Sci U S A 2024; 121:e2321907121. [PMID: 38457490 PMCID: PMC10962972 DOI: 10.1073/pnas.2321907121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 03/10/2024] Open
Abstract
The discovery of the 32-bp deletion allele of the chemokine receptor gene CCR5 showed that homozygous carriers display near-complete resistance to HIV infection, irrespective of exposure. Algorithms of molecular evolutionary theory suggested that the CCR5-∆32 mutation occurred but once in the last millennium and rose by strong selective pressure relatively recently to a ~10% allele frequency in Europeans. Several lines of evidence support the hypothesis that CCR5-∆32 was selected due to its protective influence to resist Yersinia pestis, the agent of the Black Death/bubonic plague of the 14th century. Powerful anti-AIDS entry inhibitors targeting CCR5 were developed as a treatment for HIV patients, particularly those whose systems had developed resistance to powerful anti-retroviral therapies. Homozygous CCR5-∆32/∆32 stem cell transplant donors were used to produce HIV-cleared AIDS patients in at least five "cures" of HIV infection. CCR5 has also been implicated in regulating infection with Staphylococcus aureus, in recovery from stroke, and in ablation of the fatal graft versus host disease (GVHD) in cancer transplant patients. While homozygous CCR5-∆32/32 carriers block HIV infection, alternatively they display an increased risk for encephalomyelitis and death when infected with the West Nile virus.
Collapse
Affiliation(s)
- Stephen J. OBrien
- Guy Harvey Oceanographic Center, Halmos College of Arts and Sciences, Nova Southeastern University, Ft Lauderdale, FL33004
- Indiana University School of Public Health, Bloomington, IN47405
| |
Collapse
|
3
|
Stephen B, Hajjar J, Sarda S, Duose DY, Conroy JM, Morrison C, Alshawa A, Xu M, Zarifa A, Patel SP, Yuan Y, Kwiatkowski E, Wang L, Rodon Ahnert J, Fu S, Meric-Bernstam F, Lowman GM, Looney T, Naing A. T-cell receptor beta variable gene polymorphism predicts immune-related adverse events during checkpoint blockade immunotherapy. J Immunother Cancer 2023; 11:e007236. [PMID: 37604642 PMCID: PMC10445351 DOI: 10.1136/jitc-2023-007236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors have revolutionized cancer treatment. However, they are associated with a unique spectrum of side effects, called immune-related adverse events (irAEs), which can cause significant morbidity and quickly progress to severe or life-threatening events if not treated promptly. Identifying predictive biomarkers for irAEs before immunotherapy initiation is therefore a critical area of research. Polymorphisms within the T-cell receptor beta (TCRB) variable (TRBV) gene have been implicated in autoimmune disease and may be mechanistically linked to irAEs. However, the repetitive nature of the TCRB locus and incomplete genome assembly has hampered the evaluation of TRBV polymorphisms in the past. PATIENTS AND METHODS We used a novel method for long-amplicon next generation sequencing of rearranged TCRB chains from peripheral blood total RNA to evaluate the link between TRBV polymorphisms and irAEs in patients treated with immunotherapy for cancer. We employed multiplex PCR to create amplicons spanning the three beta chain complementarity-determining regions (CDR) regions to enable detection of polymorphism within the germline-encoded framework and CDR1 and CDR2 regions in addition to CDR3 profiling. Resultant amplicons were sequenced via the Ion Torrent and TRBV allele profiles constructed for each individual was correlated with irAE annotations to identify haplotypes associated with severe irAEs (≥ grade 3). RESULTS Our study included 81 patients who had irAEs when treated with immunotherapy for cancer. By using principal component analysis of the 81 TRBV allele profiles followed by k-means clustering, we identified six major TRBV haplotypes. Strikingly, we found that one-third of this cohort possessed a TRBV allele haplotype that appeared to be protective against severe irAEs. CONCLUSION The data suggest that long-amplicon TCRB repertoire sequencing can potentially identify TRBV haplotype groups that correlate with the risk of severe irAEs. Germline-encoded TRBV polymorphisms may serve as a predictive biomarker of severe irAEs.
Collapse
Affiliation(s)
- Bettzy Stephen
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joud Hajjar
- Adult Allergy and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | | | - Dzifa Yawa Duose
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Carl Morrison
- Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Anas Alshawa
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mingxuan Xu
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abdulrazzak Zarifa
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sapna P Patel
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Evan Kwiatkowski
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Linghua Wang
- Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jordi Rodon Ahnert
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Siqing Fu
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Funda Meric-Bernstam
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Timothy Looney
- Thermo Fisher Scientific, Clinical Next-Generation Sequencing, Austin, Texas, USA
| | - Aung Naing
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
4
|
Ghabeshi S, Ghasemi S, Mousavizadeh L. The effective factors in human-specific tropism and viral pathogenicity in orthopoxviruses. Cell Biol Int 2023; 47:341-351. [PMID: 36317465 DOI: 10.1002/cbin.11941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022]
Abstract
The orthopoxvirus (OPV) genus includes several species that infect humans, including variola, monkeypox, vaccinia, and cowpox. Variola and monkeypox are often life-threatening diseases, while vaccinia and cowpox are usually associated with local lesions. The epidemic potential for OPVs may be lower than respiratory-borne viruses or RNA viruses. However, OPVs are notable for their spread and distribution in different environments and among different hosts. The emergence or re-emergence of OPVs in the human population can also occur in wild or domestic animals as intermediate hosts. More effective and safer vaccines for poxvirus can be developed by understanding how immunity is regulated in poxvirus and vaccines for DNA viruses. Downstream events in cells affected by the virus are regulated functionally by a series of characteristics that are affected by host cell interactions and responses of cells against viral infections, including the interferon pathway and apoptosis. Furthermore, infection outcome is greatly influenced by the distinct selection of host-range and immune-modulatory genes that confer the potential for pathogenesis and host-to-host transmission and the distinct host-range properties of each immune-modulatory gene. The present study reviewed the effective factors in human-restricted tropism and virus pathogenicity in OPVs.
Collapse
Affiliation(s)
- Soad Ghabeshi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Health Policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Leila Mousavizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Carbonnier V, Le Naour J, Bachelot T, Vacchelli E, André F, Delaloge S, Kroemer G. Rs867228 in FPR1 accelerates the manifestation of luminal B breast cancer. Oncoimmunology 2023; 12:2189823. [PMID: 36970071 PMCID: PMC10038022 DOI: 10.1080/2162402x.2023.2189823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Formyl peptide receptor-1 (FPR1) is a pathogen recognition receptor involved in the detection of bacteria, in the control of inflammation, as well as in cancer immunosurveillance. A single nucleotide polymorphism in FPR1, rs867228, provokes a loss-of-function phenotype. In a bioinformatic study performed on The Cancer Genome Atlas (TCGA), we observed that homo-or heterozygosity for rs867228 in FPR1 (which affects approximately one-third of the population across continents) accelerates age at diagnosis of specific carcinomas including luminal B breast cancer by 4.9 years. To validate this finding, we genotyped 215 patients with metastatic luminal B mammary carcinomas from the SNPs To Risk of Metastasis (SToRM) cohort. The first diagnosis of luminal B breast cancer occurred at an age of 49.2 years for individuals bearing the dysfunctional TT or TG alleles (n = 73) and 55.5 years for patients the functional GG alleles (n = 141), meaning that rs867228 accelerated the age of diagnosis by 6.3 years (p=0.0077, Mann & Whitney). These results confirm our original observation in an independent validation cohort. We speculate that it may be useful to include the detection of rs867228 in breast cancer screening campaigns for selectively increasing the frequency and stringency of examinations starting at a relatively young age.
Collapse
Affiliation(s)
- Vincent Carbonnier
- Equipe labellisée par la Ligue contrele cancer, Université de Paris, Sorbonne Université, Paris, France
| | - Julie Le Naour
- Equipe labellisée par la Ligue contrele cancer, Université de Paris, Sorbonne Université, Paris, France
| | - Thomas Bachelot
- Centre Léon Bérard, Département de Cancérologie Médicale, Lyon, France
| | - Erika Vacchelli
- Equipe labellisée par la Ligue contrele cancer, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Fabrice André
- Université Paris Saclay, Faculty of Medicine Kremlin Bicêtre, Le Kremlin Bicêtre, France
- Department of Medical Oncology, INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
| | - Suzette Delaloge
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contrele cancer, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- CONTACT Guido Kroemer Equipe labellisée par la Ligue contrele cancer, Université de Paris, Sorbonne Université, Centre de Recherche des Cordeliers, 15 rue de l’Ecole de Médecine, Paris75006, France
| |
Collapse
|
6
|
A previously unappreciated polymorphism in the beta chain of I-A s expressed in autoimmunity-prone SJL mice: Combined impact on antibody, CD4 T cell recognition and MHC class II dimer structural stability. Mol Immunol 2022; 143:17-26. [PMID: 34995990 PMCID: PMC9261112 DOI: 10.1016/j.molimm.2021.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/13/2021] [Accepted: 12/26/2021] [Indexed: 01/14/2023]
Abstract
In the process of structure-function studies on the MHC class II molecule expressed in autoimmunity prone SJL mice, I-As, we discovered a disparity from the reported sequence of the MHC class II beta chain. The variant is localized at a highly conserved site of the beta chain, at residue 58. Our studies revealed that this single amino acid substitution of Pro for Ala at this residue, found in I-As, changes the structure of the MHC class II molecule, as evidenced by a loss of recognition by two monoclonal antibodies, and elements of MHC class II conformational stability identified through molecular dynamics simulation. Two other rare polymorphisms in I-As involved in hydrogen bonding potential between the alpha chain and the peptide main chain are located at the same end of the MHC class II binding pocket, studied in parallel may impact the consequences of the β chain variant. Despite striking changes in MHC class II structure, CD4 T cell recognition of influenza-derived peptides was preserved. These disparate findings were reconciled by discovering, through monoclonal antibody blocking approaches, that CD4 T cell recognition by I-As restricted CD4 T cells focused more on the region of MHC class II at the peptide's amino terminus. These studies argue that the conformational variability or flexibility of the MHC class II molecule in that region of I-As select a CD4 T cell repertoire that deviates from the prototypical docking mode onto MHC class II peptide complexes. Overall, our results are consistent with the view that naturally occurring MHC class II molecules can possess polymorphisms that destabilize prototypical features of the MHC class II molecule but that can maintain T cell recognition of the MHC class II:peptide ligand via alternate docking modes.
Collapse
|
7
|
Pierini F, Nutsua M, Böhme L, Özer O, Bonczarowska J, Susat J, Franke A, Nebel A, Krause-Kyora B, Lenz TL. Targeted analysis of polymorphic loci from low-coverage shotgun sequence data allows accurate genotyping of HLA genes in historical human populations. Sci Rep 2020; 10:7339. [PMID: 32355290 PMCID: PMC7193575 DOI: 10.1038/s41598-020-64312-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/14/2020] [Indexed: 01/15/2023] Open
Abstract
The highly polymorphic human leukocyte antigen (HLA) plays a crucial role in adaptive immunity and is associated with various complex diseases. Accurate analysis of HLA genes using ancient DNA (aDNA) data is crucial for understanding their role in human adaptation to pathogens. Here, we describe the TARGT pipeline for targeted analysis of polymorphic loci from low-coverage shotgun sequence data. The pipeline was successfully applied to medieval aDNA samples and validated using both simulated aDNA and modern empirical sequence data from the 1000 Genomes Project. Thus the TARGT pipeline enables accurate analysis of HLA polymorphisms in historical (and modern) human populations.
Collapse
Affiliation(s)
- Federica Pierini
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, 24306, Ploen, Germany.,Université Paris-Saclay, CNRS, Inria, Laboratoire de recherche en informatique, 91405, Orsay, France
| | - Marcel Nutsua
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Lisa Böhme
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Onur Özer
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, 24306, Ploen, Germany
| | - Joanna Bonczarowska
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, 24306, Ploen, Germany.
| |
Collapse
|
8
|
Abstract
This narrative is a personal view of adventures in genetic science and society that have blessed my life and career across five decades. The advances I enjoyed and the lessons I learned derive from educational training, substantial collaboration, and growing up in the genomics age. I parse the stories into six research disciplines my students, fellows, and colleagues have entered and, in some cases, made an important difference. The first is comparative genetics, where evolutionary inference is applied to genome organization, from building gene maps in the 1970s to building whole genome sequences today. The second area tracks the progression of molecular evolutionary advances and applications to resolve the hierarchical relationship among living species in the silence of prehistory. The third endeavor outlines the birth and maturation of genetic studies and application to species conservation. The fourth theme discusses how emerging viruses studied in a genomic sense opened our eyes to host-pathogen interaction and interdependence. The fifth research emphasis outlines the population genetic-based search and discovery of human restriction genes that influence the epidemiological outcome of abrupt outbreaks, notably HIV-AIDS and several cancers. Finally, the last arena explored illustrates how genetic individualization in human and animals has improved forensic evidence in capital crimes. Each discipline has intuitive and technological overlaps, and each has benefitted from the contribution of genetic and genomic principles I learned so long ago from Drosophila. The journey continues.
Collapse
Affiliation(s)
- Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004; .,Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida 33004, USA
| |
Collapse
|
9
|
Donyavi T, Bokharaei-Salim F, Nahand JS, Garshasbi S, Esghaei M, Sadeghi M, Jamshidi S, Khanaliha K. Evaluation of CCR5-Δ32 mutation among individuals with high risk behaviors, neonates born to HIV-1 infected mothers, HIV-1 infected individuals, and healthy people in an Iranian population. J Med Virol 2020; 92:1158-1164. [PMID: 31854469 DOI: 10.1002/jmv.25658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/16/2019] [Indexed: 11/07/2022]
Abstract
One of the important genetic factors related to resistance to HIV-1 infection is the presence of the C-C chemokine receptor type 5 delta 32 (CCR5-Δ32) homozygous genotype (Δ32/Δ32). The aim of this study was to evaluate the CCR5-Δ32 mutation among individuals with high-risk behaviors, neonates born to HIV-1-infected mothers in the prevention of mother-to-child transmission (PMTCT) project, HIV-1-infected individuals, and healthy people. The frequency of the CCR5-Δ32 genotype was assessed in a cross-sectional survey carried out from March 2014 to March 2019 among four different groups of the Iranian population. Genomic DNA was extracted from peripheral blood mononuclear cells of 140 Iranian healthy people, 84 neonates born to HIV-1-infected mothers in the PMTCT project, 71 people with high-risk behaviors, and 76 HIV-1-infected individuals. The polymerase chain reaction method was used for the amplification of the CCR5 gene. The CCR5-Δ32 heterozygous deletion was detected in five (6.6%) HIV-1-infected individuals, four (4.7%) neonates born to HIV-1 positive mothers, two (1.4%) healthy people, and also three (4.2%) people with high-risk behaviors whereas the CCR5-Δ32 homozygous deletion was absent in all the groups (Fisher's exact test, P = .0242). The allele of CCR5-Δ32 homozygous was not detected in the four study groups, and no significant difference was seen in the frequency of the CCR5Δ32 heterozygous allele between HIV seropositive and seronegative individuals. Therefore, it seems that this allele alone cannot explain the natural resistance to HIV-1 infection and probably several mechanisms are responsible for these processes and it should be further investigated.
Collapse
Affiliation(s)
- Tahereh Donyavi
- Vice Chancellor for Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Garshasbi
- Vice Chancellor for Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Sadeghi
- Vice Chancellor for Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sogol Jamshidi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Rizvi S, Raza ST, Mahdi F, Singh SP, Rajput M, Rahman Q. Genetic polymorphisms inKCNJ11 (E23K, rs5219)andSDF-1β (G801A, rs1801157)genes are associated with the risk of type 2 diabetes mellitus. Br J Biomed Sci 2018; 75:139-144. [DOI: 10.1080/09674845.2018.1473939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- S Rizvi
- Molecular Biology Lab, Department of Biochemistry, Era’s Lucknow Medical College and Hospital , Lucknow, India
- Science and Technology, Amity Institute of Biotechnology, Amity University Uttar Pradesh , Lucknow, India
| | - ST Raza
- Molecular Biology Lab, Department of Biochemistry, Era’s Lucknow Medical College and Hospital , Lucknow, India
| | - F Mahdi
- Molecular Biology Lab, Department of Biochemistry, Era’s Lucknow Medical College and Hospital , Lucknow, India
| | - SP Singh
- Molecular Biology Lab, Department of Biochemistry, Era’s Lucknow Medical College and Hospital , Lucknow, India
| | - M Rajput
- Molecular Biology Lab, Department of Biochemistry, Era’s Lucknow Medical College and Hospital , Lucknow, India
| | - Q Rahman
- Science and Technology, Amity Institute of Biotechnology, Amity University Uttar Pradesh , Lucknow, India
| |
Collapse
|
11
|
Arama C, Diarra I, Kouriba B, Sirois F, Fedoryak O, Thera MA, Coulibaly D, Lyke KE, Plowe CV, Chrétien M, Doumbo OK, Mbikay M. Malaria severity: Possible influence of the E670G PCSK9 polymorphism: A preliminary case-control study in Malian children. PLoS One 2018; 13:e0192850. [PMID: 29447211 PMCID: PMC5813955 DOI: 10.1371/journal.pone.0192850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/31/2018] [Indexed: 11/19/2022] Open
Abstract
Aim Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) is a hepatic secretory protein which promotes the degradation of low-density lipoprotein receptors leading to reduced hepatic uptake of plasma cholesterol. Non-synonymous single-nucleotide polymorphisms in its gene have been linked to hypo- or hyper- cholesterolemia, depending on whether they decrease or increase PCSK9 activity, respectively. Since the proliferation and the infectivity of Plasmodium spp. partially depend on cholesterol from the host, we hypothesize that these PCSK9 genetic polymorphisms could influence the course of malaria infection in individuals who carry them. Here we examined the frequency distribution of one dominant (C679X) and two recessive (A443T, I474V) hypocholesterolemic polymorphisms as well as that of one recessive hypercholesterolemic polymorphism (E670G) among healthy and malaria-infected Malian children. Methods Dried blood spots were collected in Bandiagara, Mali, from 752 age, residence and ethnicity-matched children: 253 healthy controls, 246 uncomplicated malaria patients and 253 severe malaria patients. Their genomic DNA was extracted and genotyped for the above PCSK9 polymorphisms using Taqman assays. Associations of genotype distributions and allele frequencies with malaria were evaluated. Results The minor allele frequency of the A443T, I474V, E670G, and C679X polymorphisms in the study population sample was 0.12, 0.20, 0.26, and 0.02, respectively. For each polymorphism, the genotype distribution among the three health conditions was statistically insignificant, but for the hypercholesterolemic E670G polymorphism, a trend towards association of the minor allele with malaria severity was observed (P = 0.035). The association proved to be stronger when allele frequencies between healthy controls and severe malaria cases were compared (Odd Ratio: 1.34; 95% Confidence Intervals: 1.04–1.83); P = 0.031). Conclusions Carriers of the minor allele of the E670G PCSK9 polymorphism might be more susceptible to severe malaria. Further investigation of the cholesterol regulating function of PCSK9 in the pathophysiology of malaria is needed.
Collapse
Affiliation(s)
- Charles Arama
- Malaria Research and Training Center, International Centers for Excellence in Research, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Issa Diarra
- Malaria Research and Training Center, International Centers for Excellence in Research, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Bourèma Kouriba
- Malaria Research and Training Center, International Centers for Excellence in Research, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Francine Sirois
- Laboratoire de protéolyse fonctionnelle, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Olesya Fedoryak
- Laboratoire de protéolyse fonctionnelle, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Mahamadou A. Thera
- Malaria Research and Training Center, International Centers for Excellence in Research, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, International Centers for Excellence in Research, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Kirsten E. Lyke
- Center for Vaccine Development and Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Christopher V. Plowe
- Center for Vaccine Development and Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Michel Chrétien
- Laboratoire de protéolyse fonctionnelle, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Chronic Disease Program, Ottawa Hospital Research Hospital, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, International Centers for Excellence in Research, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
- * E-mail: (MM); (OKD)
| | - Majambu Mbikay
- Laboratoire de protéolyse fonctionnelle, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Chronic Disease Program, Ottawa Hospital Research Hospital, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail: (MM); (OKD)
| |
Collapse
|
12
|
Moudi B, Heidari Z, Mahmoudzadeh-Sagheb H. Impact of host gene polymorphisms on susceptibility to chronic hepatitis B virus infection. INFECTION GENETICS AND EVOLUTION 2016; 44:94-105. [DOI: 10.1016/j.meegid.2016.06.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 12/15/2022]
|
13
|
Racial and Socioeconomic Variation in Genetic Markers of Telomere Length: A Cross-Sectional Study of U.S. Older Adults. EBioMedicine 2016; 11:296-301. [PMID: 27566956 PMCID: PMC5049995 DOI: 10.1016/j.ebiom.2016.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/02/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
Background Shorter telomere length (TL) has been associated with stress and adverse socioeconomic conditions, yet U.S. blacks have longer TL than whites. The role of genetic versus environmental factors in explaining TL by race and socioeconomic position (SEP) remains unclear. Methods We used data from the U.S. Health and Retirement Study (N = 11,934) to test the hypothesis that there are differences in TL-associated SNPs by race and SEP. We constructed a TL polygenic risk score (PRS) and examined its association with race/ethnicity, educational attainment, assets, gender, and age. Results U.S. blacks were more likely to have a lower PRS for TL, as were older individuals and men. Racial differences in TL were statistically accounted for when controlling for population structure using genetic principal components. The GWAS-derived SNPs for TL, however, may not have consistent associations with TL across different racial/ethnic groups. Conclusions This study showed that associations of race/ethnicity with TL differed when accounting for population stratification. The role of race/ethnicity for TL remains uncertain, however, as the genetic determinants of TL may differ by race/ethnicity. Future GWAS samples should include racially diverse participants to allow for better characterization of the determinants of TL in human populations. Blacks, older individuals, and men are more likely to have a polygenic risk score predisposing them to longer telomeres. There is no association between telomere length and race/ethnicity after controlling for population structure. GWAS studies have not included diverse samples, and genetic associations with telomere length may differ by race/ethnicity.
Telomeres are structures that protect the ends of chromosomes from damage. Shorter telomeres may be a marker of human aging. Shorter telomeres have been associated with higher stress and lower levels of education, but U.S. blacks have longer telomeres than whites. We show that blacks, older individuals, and men have genetic markers that may predispose them to longer telomeres. After accounting for genetic population structure, there is no longer an association between telomere length and self-reported race/ethnicity. Because genetic determinants of telomere length may differ by race/ethnicity, it is critical that future genetic studies include racially/ethnically diverse populations.
Collapse
|
14
|
Laville V, Clerc SL, Ezzedine K, Jdid R, Taing L, Labib T, Coulonges C, Ulveling D, Carpentier W, Galan P, Hercberg S, Morizot F, Latreille J, Malvy D, Tschachler E, Zagury JF. A genome-wide association study in Caucasian women suggests the involvement ofHLAgenes in the severity of facial solar lentigines. Pigment Cell Melanoma Res 2016; 29:550-8. [DOI: 10.1111/pcmr.12502] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 06/17/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Vincent Laville
- Équipe Génomique, Bioinformatique et Applications; Chaire de Bioinformatique; Conservatoire National des Arts et Métiers; Paris France
| | - Sigrid Le Clerc
- Équipe Génomique, Bioinformatique et Applications; Chaire de Bioinformatique; Conservatoire National des Arts et Métiers; Paris France
| | - Khaled Ezzedine
- UMR U557, INSERM/U1125 INRA/CNAM; University Paris 13/Centre de Recherche en Nutrition Humaine Ile-de-France; Bobigny France
- Department of Dermatology; Hôpital Saint-André; Bordeaux France
| | - Randa Jdid
- Department of Skin Knowledge and Women Beauty; Chanel R&T; Pantin France
| | - Lieng Taing
- Équipe Génomique, Bioinformatique et Applications; Chaire de Bioinformatique; Conservatoire National des Arts et Métiers; Paris France
| | - Taoufik Labib
- Équipe Génomique, Bioinformatique et Applications; Chaire de Bioinformatique; Conservatoire National des Arts et Métiers; Paris France
| | - Cedric Coulonges
- Équipe Génomique, Bioinformatique et Applications; Chaire de Bioinformatique; Conservatoire National des Arts et Métiers; Paris France
| | - Damien Ulveling
- Équipe Génomique, Bioinformatique et Applications; Chaire de Bioinformatique; Conservatoire National des Arts et Métiers; Paris France
| | | | - Pilar Galan
- UMR U557, INSERM/U1125 INRA/CNAM; University Paris 13/Centre de Recherche en Nutrition Humaine Ile-de-France; Bobigny France
| | - Serge Hercberg
- UMR U557, INSERM/U1125 INRA/CNAM; University Paris 13/Centre de Recherche en Nutrition Humaine Ile-de-France; Bobigny France
- Department of Public Health; Hôpital Avicenne; Bobigny France
| | - Frederique Morizot
- Department of Skin Knowledge and Women Beauty; Chanel R&T; Pantin France
| | - Julie Latreille
- Department of Skin Knowledge and Women Beauty; Chanel R&T; Pantin France
| | - Denis Malvy
- UMR U557, INSERM/U1125 INRA/CNAM; University Paris 13/Centre de Recherche en Nutrition Humaine Ile-de-France; Bobigny France
- Department of Internal Medicine and Tropical Diseases; Hôpital Saint-André; Bordeaux France
| | - Erwin Tschachler
- Department of Dermatology; University of Vienna Medical School; Vienna Austria
| | - Jean-François Zagury
- Équipe Génomique, Bioinformatique et Applications; Chaire de Bioinformatique; Conservatoire National des Arts et Métiers; Paris France
| |
Collapse
|
15
|
Lenz TL, Spirin V, Jordan DM, Sunyaev SR. Excess of Deleterious Mutations around HLA Genes Reveals Evolutionary Cost of Balancing Selection. Mol Biol Evol 2016; 33:2555-64. [PMID: 27436009 PMCID: PMC5026253 DOI: 10.1093/molbev/msw127] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deleterious mutations are expected to evolve under negative selection and are usually purged from the population. However, deleterious alleles segregate in the human population and some disease-associated variants are maintained at considerable frequencies. Here, we test the hypothesis that balancing selection may counteract purifying selection in neighboring regions and thus maintain deleterious variants at higher frequency than expected from their detrimental fitness effect. We first show in realistic simulations that balancing selection reduces the density of polymorphic sites surrounding a locus under balancing selection, but at the same time markedly increases the population frequency of the remaining variants, including even substantially deleterious alleles. To test the predictions of our simulations empirically, we then use whole-exome sequencing data from 6,500 human individuals and focus on the most established example for balancing selection in the human genome, the major histocompatibility complex (MHC). Our analysis shows an elevated frequency of putatively deleterious coding variants in nonhuman leukocyte antigen (non-HLA) genes localized in the MHC region. The mean frequency of these variants declined with physical distance from the classical HLA genes, indicating dependency on genetic linkage. These results reveal an indirect cost of the genetic diversity maintained by balancing selection, which has hitherto been perceived as mostly advantageous, and have implications both for the evolution of recombination and also for the epidemiology of various MHC-associated diseases.
Collapse
Affiliation(s)
- Tobias L Lenz
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School Evolutionary Immunogenomics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Victor Spirin
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School
| | - Daniel M Jordan
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School
| | - Shamil R Sunyaev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School Program in Medical and Population Genetics, The Broad Institute, Cambridge, MA
| |
Collapse
|
16
|
The SDF-1 rs1801157 Polymorphism is Associated with Cancer Risk: An Update Pooled Analysis and FPRP Test of 17,876 Participants. Sci Rep 2016; 6:27466. [PMID: 27265091 PMCID: PMC4893747 DOI: 10.1038/srep27466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/17/2016] [Indexed: 02/05/2023] Open
Abstract
The stromal cell derived factor-1 (SDF-1) rs1801157 gene polymorphism has been implicated in susceptibility to cancer, but the results were inconclusive. The current study was to precisely investigate the association between SDF-1 rs1801157 polymorphism and cancer risk using meta-analysis and the false positive report probability (FPRP) test. All 17,876 participants were included in the study. The meta-analysis results indicated a significant association between the SDF-1 rs1801157 polymorphism and cancer risk. By subgroup analyses, the results detected that the SDF-1 rs1801157 polymorphism was associated with cancer susceptibility among Asians and Caucasians. Additionally, we also found significant associations between the SDF-1 rs1801157 polymorphism and susceptibility to different types of cancer. However, to avoid a "false positive report", we further investigated the significant associations observed in the present meta-analysis using the FPRP test. Interestingly, the results of the FPRP test indicated that only 4 gene models were truly associated with cancer risk, especially in Asians. Moreover, we confirmed that the SDF-1 rs1801157 gene polymorphism was only associated with lung and urologic cancer risk. In summary, this study suggested that the SDF-1 rs1801157 polymorphism may serve as a risk factor for cancer development among Asians, especially an increased risk of urologic and lung cancers.
Collapse
|
17
|
Heterogeneity of dN/dS Ratios at the Classical HLA Class I Genes over Divergence Time and Across the Allelic Phylogeny. J Mol Evol 2015; 82:38-50. [PMID: 26573803 DOI: 10.1007/s00239-015-9713-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
The classical class I HLA loci of humans show an excess of nonsynonymous with respect to synonymous substitutions at codons of the antigen recognition site (ARS), a hallmark of adaptive evolution. Additionally, high polymporphism, linkage disequilibrium, and disease associations suggest that one or more balancing selection regimes have acted upon these genes. However, several questions about these selective regimes remain open. First, it is unclear if stronger evidence for selection on deep timescales is due to changes in the intensity of selection over time or to a lack of power of most methods to detect selection on recent timescales. Another question concerns the functional entities which define the selected phenotype. While most analyses focus on selection acting on individual alleles, it is also plausible that phylogenetically defined groups of alleles ("lineages") are targets of selection. To address these questions, we analyzed how dN/dS (ω) varies with respect to divergence times between alleles and phylogenetic placement (position of branches). We find that ω for ARS codons of class I HLA genes increases with divergence time and is higher for inter-lineage branches. Throughout our analyses, we used non-selected codons to control for possible effects of inflation of ω associated to intra-specific analysis, and showed that our results are not artifactual. Our findings indicate the importance of considering the timescale effect when analysing ω over a wide spectrum of divergences. Finally, our results support the divergent allele advantage model, whereby heterozygotes with more divergent alleles have higher fitness than those carrying similar alleles.
Collapse
|
18
|
Chen R, Liu S, Ye H, Li J, Du Y, Chen L, Liu X, Ding Y, Li Q, Mao Y, Ai S, Zhang P, Ma W, Yang H. Association of p53 rs1042522, MDM2 rs2279744, and p21 rs1801270 polymorphisms with retinoblastoma risk and invasion in a Chinese population. Sci Rep 2015; 5:13300. [PMID: 26289323 PMCID: PMC4642541 DOI: 10.1038/srep13300] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/20/2015] [Indexed: 12/11/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) of p53 rs1042522, MDM2 rs2279744 and p21 rs1801270, all in the p53 pathway, which plays a crucial role in DNA damage and genomic instability, were reported to be associated with cancer risk and pathologic characteristics. This case-control study was designed to analyse the association between these SNPs and retinoblastoma (RB) in a Chinese Han population. These SNPs in 168 RB patients and 185 adult controls were genotyped using genomic DNA from venous blood. No significant difference was observed in allele or genotypic frequencies of these SNPs between Chinese RB patients and controls (all P > 0.05). However, the rs1042522 GC genotype showed a protective effect against RB invasion, as demonstrated by event-free survival (HR = 0.53, P = 0.007 for GC versus GG/CC). This effect was significant for patients with a lag time >1 month and no pre-enucleation treatment (P = 0.007 and P = 0.010, respectively), indicating an interaction between p53 rs1042522 and clinical characteristics, including lag time and pre-enucleation treatment status. Thus, the rs1042522 SNP may be associated with RB invasion in the Han Chinese population; however, further large and functional studies are needed to assess the validity of this association.
Collapse
Affiliation(s)
- Rongxin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shu Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiali Li
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Yi Du
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lingyan Chen
- Divisions of Genetics and Molecular Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Xiaoman Liu
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Yungang Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qian Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuxiang Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Siming Ai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ping Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wenfang Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
19
|
Lenz TL, Deutsch AJ, Han B, Hu X, Okada Y, Eyre S, Knapp M, Zhernakova A, Huizinga TWJ, Abecasis G, Becker J, Boeckxstaens GE, Chen WM, Franke A, Gladman DD, Gockel I, Gutierrez-Achury J, Martin J, Nair RP, Nöthen MM, Onengut-Gumuscu S, Rahman P, Rantapää-Dahlqvist S, Stuart PE, Tsoi LC, van Heel DA, Worthington J, Wouters MM, Klareskog L, Elder JT, Gregersen PK, Schumacher J, Rich SS, Wijmenga C, Sunyaev SR, de Bakker PIW, Raychaudhuri S. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat Genet 2015; 47:1085-90. [PMID: 26258845 PMCID: PMC4552599 DOI: 10.1038/ng.3379] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/16/2015] [Indexed: 12/14/2022]
Abstract
Human leukocyte antigen (HLA) genes confer strong risk for autoimmune diseases on a log-additive scale. Here we speculated that differences in autoantigen binding repertoires between a heterozygote’s two expressed HLA variants may result in additional non-additive risk effects. We tested non-additive disease contributions of classical HLA alleles in patients and matched controls for five common autoimmune diseases: rheumatoid arthritis (RA, Ncases=5,337), type 1 diabetes (T1D, Ncases=5,567), psoriasis vulgaris (Ncases=3,089), idiopathic achalasia (Ncases=727), and celiac disease (Ncases=11,115). In four out of five diseases, we observed highly significant non-additive dominance effects (RA: P=2.5×1012; T1D: P=2.4×10−10; psoriasis: P=5.9×10−6; celiac disease: P=1.2×10−87). In three of these diseases, the dominance effects were explained by interactions between specific classical HLA alleles (RA: P=1.8×10−3; T1D: P=8.6×1027; celiac disease: P=6.0×10−100). These interactions generally increased disease risk and explained moderate but significant fractions of phenotypic variance (RA: 1.4%, T1D: 4.0%, and celiac disease: 4.1%, beyond a simple additive model).
Collapse
Affiliation(s)
- Tobias L Lenz
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Evolutionary Immunogenomics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Aaron J Deutsch
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Partners Center for Personalized Genetic Medicine, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA.,Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Boston, Massachusetts, USA
| | - Buhm Han
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Partners Center for Personalized Genetic Medicine, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA.,Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Xinli Hu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Partners Center for Personalized Genetic Medicine, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA.,Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Boston, Massachusetts, USA
| | - Yukinori Okada
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Partners Center for Personalized Genetic Medicine, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA.,Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Stephen Eyre
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK.,National Institute for Health Research (NIHR) Manchester Musculoskeletal Biomedical Research Unit, Central Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Michael Knapp
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Alexandra Zhernakova
- Genetics Department, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gonçalo Abecasis
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.,Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jessica Becker
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Guy E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Dafna D Gladman
- Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Centre for Prognosis Studies in the Rheumatic Diseases, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada.,Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Javier Gutierrez-Achury
- Genetics Department, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Rajan P Nair
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Proton Rahman
- Department of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Solbritt Rantapää-Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.,Department of Rheumatology, Umeå University, Umeå, Sweden
| | - Philip E Stuart
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lam C Tsoi
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.,Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - David A van Heel
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane Worthington
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK.,National Institute for Health Research (NIHR) Manchester Musculoskeletal Biomedical Research Unit, Central Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Mira M Wouters
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Lars Klareskog
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - James T Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA
| | - Peter K Gregersen
- Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, USA
| | - Johannes Schumacher
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Cisca Wijmenga
- Genetics Department, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Shamil R Sunyaev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Paul I W de Bakker
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Epidemiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Soumya Raychaudhuri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Partners Center for Personalized Genetic Medicine, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA.,Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK.,Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
20
|
Lin YL, Pavlidis P, Karakoc E, Ajay J, Gokcumen O. The evolution and functional impact of human deletion variants shared with archaic hominin genomes. Mol Biol Evol 2015; 32:1008-19. [PMID: 25556237 PMCID: PMC4379406 DOI: 10.1093/molbev/msu405] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Allele sharing between modern and archaic hominin genomes has been variously interpreted to have originated from ancestral genetic structure or through non-African introgression from archaic hominins. However, evolution of polymorphic human deletions that are shared with archaic hominin genomes has yet to be studied. We identified 427 polymorphic human deletions that are shared with archaic hominin genomes, approximately 87% of which originated before the Human–Neandertal divergence (ancient) and only approximately 9% of which have been introgressed from Neandertals (introgressed). Recurrence, incomplete lineage sorting between human and chimp lineages, and hominid-specific insertions constitute the remaining approximately 4% of allele sharing between humans and archaic hominins. We observed that ancient deletions correspond to more than 13% of all common (>5% allele frequency) deletion variation among modern humans. Our analyses indicate that the genomic landscapes of both ancient and introgressed deletion variants were primarily shaped by purifying selection, eliminating large and exonic variants. We found 17 exonic deletions that are shared with archaic hominin genomes, including those leading to three fusion transcripts. The affected genes are involved in metabolism of external and internal compounds, growth and sperm formation, as well as susceptibility to psoriasis and Crohn’s disease. Our analyses suggest that these “exonic” deletion variants have evolved through different adaptive forces, including balancing and population-specific positive selection. Our findings reveal that genomic structural variants that are shared between humans and archaic hominin genomes are common among modern humans and can influence biomedically and evolutionarily important phenotypes.
Collapse
Affiliation(s)
- Yen-Lung Lin
- Department of Biological Sciences, State University of New York at Buffalo, NY, US
| | - Pavlos Pavlidis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation of Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Emre Karakoc
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jerry Ajay
- Department of Computer Science and Engineering, State University of New York at Buffalo, NY, US
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, NY, US
| |
Collapse
|
21
|
The course of gastric cancer following surgery is associated with genetic variations of the interleukin-1 receptor antagonist and interleukin-1β. Gastric Cancer 2015; 18:77-83. [PMID: 24557417 DOI: 10.1007/s10120-014-0349-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 02/01/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammation, especially the cytokine response of the IL-1 family, has been shown to influence susceptibility to gastric cancer. In addition, several other pro-inflammatory cytokines have been demonstrated to influence metastasis and resistance to chemotherapy. Therefore, genetic variations within these genes may not only affect susceptibility but also influence the outcome of gastric cancer patients. A limited number of studies showed indeed an association of IL-1β and IL-1RN variations with survival of gastric cancer patients. However, results are inconsistent, possibly because of different patient cohorts and different therapies. METHODS In this retrospective cohort study we genotyped 154 patients with gastric cancer for IL-1β and IL-1RN variations. Patients had undergone pathologically proven R0 resection and had received no additional adjuvant treatment. RESULTS We show here a protective association with disease-free survival for both heterozygous genotypes, IL-1β SNP C-511T (rs16944) and IL-1RN VNTR. The combination of both heterozygous genotypes is the strongest predictor independent of UICC stage. CONCLUSION Genetic variations in the IL-1β and IL-1RN genes influence disease progression in gastric cancer. Screening for these genetic variations might help to stratify therapies for gastric cancer patients in the future.
Collapse
|
22
|
Adler G, Valjevac A, Skonieczna-Żydecka K, Mackic-Djurovic M, Parczewski M, Urbańska A, Salkic NN. Frequency of CCR5Δ32 allele in healthy Bosniak population. Bosn J Basic Med Sci 2014; 14:150-4. [PMID: 25172974 PMCID: PMC4334000 DOI: 10.17305/bjbms.2014.3.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022] Open
Abstract
Recent evidence has demonstrated the role of CCR5Δ32 in a variety of human diseases: from infectious and inflammatory diseases to cancer. Several studies have confirmed that genetic variants in chemokine receptor CCR5 gene are correlated with susceptibility and resistance to HIV infection. A 32-nucleotide deletion within the CCR5 reading frame is associated with decreased susceptibility to HIV acquisition and a slower progression to AIDS. Mean frequency of CCR5Δ32 allele in Europe is approximately 10%. The highest allele frequency is observed among Nordic populations (about 12%) and lower in the regions of Southeast Mediterranean (about 5%). Although the frequency of CCR5Δ32 was determined in numerous European populations, there is a lack of studies on this variant in the Bosnia and Hercegovina population. Therefore, the aim of our study was to assess the frequency of CCR5Δ32 allele in the cohort of Bosniaks and compare the results with European reports. CCR5Δ32 was detected by sequence-specific PCR in a sample of 100 healthy subjects from Bosnia and Herzegovina (DNA collected 2011-2013). Mean age of the cohort being 58.8 (± 10.7) years, with 82% of women. We identified 17 heterozygotes and one mutant homozygote in study group, with mean ∆32 allele frequency of 9.5%. CCR5∆32 allele frequency among Bosniaks is comparable to that found in Caucasian populations and follows the pattern of the north-southern gradient observed for Europe. Further studies on larger cohorts with adequate female-to-male ratio are necessary.
Collapse
Affiliation(s)
- Grażyna Adler
- The Department of Gerontobiology, Pomeranian Medical University, ul. Żołnierska 48, 71-210 Szczecin, Poland.
| | | | | | | | | | | | | |
Collapse
|
23
|
Erickson RP, Mitchison NA. The low frequency of recessive disease: insights from ENU mutagenesis, severity of disease phenotype, GWAS associations, and demography: an analytical review. J Appl Genet 2014; 55:319-27. [PMID: 24652618 DOI: 10.1007/s13353-014-0203-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 11/26/2022]
Abstract
A survey of a select panel of 14 genetic diseases with mixed inheritance confirms that, while autosomal recessive (AR) disease genes are more numerous than autosomal dominant (AD) or X-linked (XL) ones, they make a smaller average contribution to disease. Data collected from N-ethyl-N-nitrosourea (ENU) mutagenesis studies show a similar excess of AR mutations. The smaller AR contribution may partially reflect disease severity, but only in the comparison of AR with AD mutations. On the contrary, XL mutations for the 14 diseases are generally more severe. Genome-wide associations studies (GWAS) data provide fresh insight into the shortage, with a limited negative selection effect mediated by the pleiotropic expression of recessive disease genes in other deleterious phenotypes. Genomic data provide further evidence of purging selection in a past European population bottleneck followed by a dramatic population explosion, now more clearly associated with past climate change. We consider these likely to be the main factors responsible for the low AR to AD/XL inheritance ratio.
Collapse
Affiliation(s)
- Robert P Erickson
- Department of Pediatrics, University of Arizona, Tucson, AZ, 85724, USA,
| | | |
Collapse
|
24
|
Bissonnette L, Bergeron MG. Next revolution in the molecular theranostics of infectious diseases: microfabricated systems for personalized medicine. Expert Rev Mol Diagn 2014; 6:433-50. [PMID: 16706745 DOI: 10.1586/14737159.6.3.433] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The molecular diagnosis of infectious diseases is currently going through a revolution sustained by the regulatory approval of amplification tests that have been shown to be equivalent or superior to existing gold standard methods. The recent approval of a microarray system for the pharmacogenomic profiling of cytochrome P450-mediated drug metabolism is paving the way to novel, rapid, sensitive, robust and economical microfabricated systems for point-of-care diagnostics, which are utilized closer and closer to the patient's bedside. These systems will enable the multiparametric genetic evaluation of several medical conditions, including infectious diseases. This forecoming revolution will position molecular theranostics in a broader integrated view of personalized medicine, which exploits genetic information from microbes and human hosts to optimize patient management and disease treatment.
Collapse
Affiliation(s)
- Luc Bissonnette
- Département de Biologie Médicale (Microbiologie), Faculté de Médecine, Université Laval, Québec City, Canada.
| | | |
Collapse
|
25
|
Transforming Growth Factor- β 1 Gene Polymorphism (T29C) in Egyptian Patients with Hepatitis B Virus Infection: A Preliminary Study. HEPATITIS RESEARCH AND TREATMENT 2013; 2013:293274. [PMID: 24455227 PMCID: PMC3878635 DOI: 10.1155/2013/293274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 10/15/2013] [Accepted: 10/29/2013] [Indexed: 12/16/2022]
Abstract
The interindividual variations in the capacity of transforming growth factor-β1 (TGF-β1) production have been ascribed to genetic polymorphisms in TGF-β1 gene. As pathogenesis of HBV has a genetic background, this preliminary study was designed to assess the impact of TGF-β1 (T29C) on the susceptibility of Egyptians to HBV infection. Genotyping was performed using single stranded polymorphism-polymerase chain reaction (SSP-PCR) in 65 Egyptian hepatitis B patients and 50 healthy controls. TGF-β1 plasma levels were measured using Enzyme-linked immunosorbent assay (ELISA). The frequency of CC genotype was significantly higher (P < 0.05) in HBV patients compared to controls. On the contrary, TC genotype did not show significant difference in both groups. TT genotype was significantly higher (P < 0.01) in controls than HBV patients. Our current preliminary data revealed that the frequency of the genotypes in the controls were within Hardy-Weinberg equilibrium (HWE) while the patients group was out of HWE (P < 0.01). TGF-β1 was significantly (r = −0.684; P < 0.001) deceased in the sera of patients as compared to normal subjects. Depending on our preliminary work, CC genotype may act as a host genetic factor in the susceptibility to HBV infection in Egyptians. Taken together, the current data pointed to the importance of polymorphism of TGF-β1 gene (T29C) in HBV infection.
Collapse
|
26
|
Coelho A, Dias A, Morais A, Nunes B, Ferreira E, Picanço I, Faustino P, Lavinha J. Genetic variation in CD36, HBA, NOS3 and VCAM1 is associated with chronic haemolysis level in sickle cell anaemia: a longitudinal study. Eur J Haematol 2013; 92:237-43. [PMID: 24168396 DOI: 10.1111/ejh.12226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2013] [Indexed: 11/28/2022]
Abstract
Chronic haemolysis stands out as one of the hallmarks of sickle cell anaemia, a clinically heterogeneous autosomal recessive monogenic anaemia. However, the genetic architecture of this sub-phenotype is still poorly understood. Here, we report the results of an association study between haemolysis biomarkers (serum LDH, total bilirubin and reticulocyte count) and the inheritance of 41 genetic variants of ten candidate genes in a series of 99 paediatric SS patients (median current age of 9.9 yr) followed up in two general hospitals in Greater Lisboa area (median follow-up per patient of 5.0 yr). Although in a large number of tests a seemingly significant (i.e. P < 0.05) association was observed, the following ones were confirmed upon correction for multiple comparisons: (i) an increased serum LDH level was associated with haplotype 7 within VCAM1 gene; (ii) a lower total bilirubin was associated with the 3.7-kb deletion at HBA gene, rs2070744_T allele at NOS3 gene, and haplotype 9 within VCAM1 promoter; and (iii) a diminished reticulocyte count was associated with the 3.7-kb deletion at HBA, whereas an increased count was associated with rs1984112_G allele at CD36 gene. On the whole, our findings suggest a complex genetic architecture for the sickle cell anaemia haemolysis process involving multiple pathways, namely control of vascular cell adhesion, NO synthesis and erythrocyte volume and haemoglobinisation.
Collapse
Affiliation(s)
- Andreia Coelho
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wiens KE, Swaminathan H, Copin R, Lun DS, Ernst JD. Equivalent T cell epitope promiscuity in ecologically diverse human pathogens. PLoS One 2013; 8:e73124. [PMID: 23951341 PMCID: PMC3739752 DOI: 10.1371/journal.pone.0073124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022] Open
Abstract
Background The HLA (human leukocyte antigen) molecules that present pathogen-derived epitopes to T cells are highly diverse. Correspondingly, many pathogens such as HIV evolve epitope variants in order to evade immune recognition. In contrast, another persistent human pathogen, Mycobacterium tuberculosis, has highly conserved epitope sequences. This raises the question whether there is also a difference in the ability of these pathogens’ epitopes to bind diverse HLA alleles, referred to as an epitope’s binding promiscuity. To address this question, we compared the in silico HLA binding promiscuity of T cell epitopes from pathogens with distinct infection strategies and outcomes of human exposure. Methods We used computer algorithms to predict the binding affinity of experimentally-verified microbial epitope peptides to diverse HLA-DR, HLA-A and HLA-B alleles. We then analyzed binding promiscuity of epitopes derived from HIV and M. tuberculosis. We also analyzed promiscuity of epitopes from Streptococcus pyogenes, which is known to exhibit epitope diversity, and epitopes of Bacillus anthracis and Clostridium tetani toxins, as these bacteria do not depend on human hosts for their survival or replication, and their toxin antigens are highly immunogenic human vaccines. Results We found that B. anthracis and C. tetani epitopes were the most promiscuous of the group that we analyzed. However, there was no consistent difference or trend in promiscuity in epitopes contained in HIV, M. tuberculosis, and S. pyogenes. Conclusions Our results show that human pathogens with distinct immune evasion strategies and epitope diversities exhibit equivalent levels of T cell epitope promiscuity. These results indicate that differences in epitope promiscuity do not account for the observed differences in epitope variation and conservation.
Collapse
Affiliation(s)
- Kirsten E. Wiens
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Harish Swaminathan
- Department of Computer Science and Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, United States of America
| | - Richard Copin
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Desmond S. Lun
- Department of Computer Science and Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, United States of America
| | - Joel D. Ernst
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- Department of Medicine, Division of Infectious Disease, New York University School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Savas S, Liu G, Xu W. Special considerations in prognostic research in cancer involving genetic polymorphisms. BMC Med 2013; 11:149. [PMID: 23773794 PMCID: PMC3729672 DOI: 10.1186/1741-7015-11-149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 05/01/2013] [Indexed: 01/08/2023] Open
Abstract
Analysis of genetic polymorphisms may help identify putative prognostic markers and determine the biological basis of variable prognosis in patients. However, in contrast to other variables commonly used in the prognostic studies, there are special considerations when studying genetic polymorphisms. For example, variable inheritance patterns (recessive, dominant, codominant, and additive genetic models) need to be explored to identify the specific genotypes associated with the outcome. In addition, several characteristics of genetic polymorphisms, such as their minor allele frequency and linkage disequilibrium among multiple polymorphisms, and the population substructure of the cohort investigated need to be accounted for in the analyses. In addition, in cancer research due to the genomic differences between the tumor and non-tumor DNA, differences in the genetic information obtained using these tissues need to be carefully assessed in prognostic studies. In this article, we review these and other considerations specific to genetic polymorphism by focusing on genetic prognostic studies in cancer.
Collapse
Affiliation(s)
- Sevtap Savas
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St, John's, Newfoundland, Canada.
| | | | | |
Collapse
|
29
|
Gomez JA, Wapinski OL, Yang YW, Bureau JF, Gopinath S, Monack DM, Chang HY, Brahic M, Kirkegaard K. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 2013; 152:743-54. [PMID: 23415224 DOI: 10.1016/j.cell.2013.01.015] [Citation(s) in RCA: 543] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/28/2012] [Accepted: 01/07/2013] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are increasingly appreciated as regulators of cell-specific gene expression. Here, an enhancer-like lncRNA termed NeST (nettoie Salmonella pas Theiler's [cleanup Salmonella not Theiler's]) is shown to be causal for all phenotypes conferred by murine viral susceptibility locus Tmevp3. This locus was defined by crosses between SJL/J and B10.S mice and contains several candidate genes, including NeST. The SJL/J-derived locus confers higher lncRNA expression, increased interferon-γ (IFN-γ) abundance in activated CD8(+) T cells, increased Theiler's virus persistence, and decreased Salmonella enterica pathogenesis. Transgenic expression of NeST lncRNA alone was sufficient to confer all phenotypes of the SJL/J locus. NeST RNA was found to bind WDR5, a component of the histone H3 lysine 4 methyltransferase complex, and to alter histone 3 methylation at the IFN-γ locus. Thus, this lncRNA regulates epigenetic marking of IFN-γ-encoding chromatin, expression of IFN-γ, and susceptibility to a viral and a bacterial pathogen.
Collapse
Affiliation(s)
- J Antonio Gomez
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Association between the PTPN22 1858C/T gene polymorphism and tuberculosis resistance. INFECTION GENETICS AND EVOLUTION 2013; 16:310-3. [PMID: 23499775 DOI: 10.1016/j.meegid.2013.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 12/11/2022]
Abstract
Previous studies identified the functional polymorphism 1858C/T in the gene PTPN22 in association with several autoimmune diseases and with resistance to tuberculosis (TB). This study is the first to investigate the association between pulmonary TB and the PTPN22 1858C/T polymorphism in the Brazilian Amazon. We conducted a case-control study involving a group of 413 individuals, comprised of 208TB carriers and 205 controls. No significant association between the PTPN22 1858T allele frequency in controls (2.4%) and TB carriers (2.7%, p=0.982, odds ratio (OR)=0.89, 95% confidence interval=0.37-2.13) was identified in the Brazilian Amazon population. An additional evaluation by meta-analysis, however, suggested a protective role of the T allele in relation to TB (pooled OR=0.44, p=0.011). These results suggest that the PTPN22 1858T allele serves as a protective genetic factor for TB in those individuals who carry this minor allele.
Collapse
|
31
|
Pathogen-driven selection in the human genome. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2013; 2013:204240. [PMID: 23533945 PMCID: PMC3603197 DOI: 10.1155/2013/204240] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/31/2013] [Indexed: 01/19/2023]
Abstract
Infectious diseases and epidemics have always accompanied and characterized human history, representing one of the main causes of death. Even today, despite progress in sanitation and medical research, infections are estimated to account for about 15% of deaths. The hypothesis whereby infectious diseases have been acting as a powerful selective pressure was formulated long ago, but it was not until the availability of large-scale genetic data and the development of novel methods to study molecular evolution that we could assess how pervasively infectious agents have shaped human genetic diversity. Indeed, recent evidences indicated that among the diverse environmental factors that acted as selective pressures during the evolution of our species, pathogen load had the strongest influence. Beside the textbook example of the major histocompatibility complex, selection signatures left by pathogen-exerted pressure can be identified at several human loci, including genes not directly involved in immune response. In the future, high-throughput technologies and the availability of genetic data from different populations are likely to provide novel insights into the evolutionary relationships between the human host and its pathogens. Hopefully, this will help identify the genetic determinants modulating the susceptibility to infectious diseases and will translate into new treatment strategies.
Collapse
|
32
|
Ammaranond P, Sanguansitthianan S, Phaengchomduan P, Sae-Lee C, Mardkhumchan S. Impact of CCR2 and SDF1 polymorphisms on disease progression in HIV-infected subjects in Thailand. J Clin Lab Anal 2013; 27:38-44. [PMID: 23325742 DOI: 10.1002/jcla.21559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/04/2012] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The genotypic polymorphisms of CCR5, CCR2, and SDF1 were analyzed to determine their impact as potential confounders with regard to disease progression because of the role that host genetic factors appear to be involved in determining rates of disease progression. METHODS Genomic DNA was extracted from Ethylenediaminetetraacetate whole blood using Qiagen DNA extraction kit. The amplification of CCR5, CCR2, and SDF1 genes was performed by PCR. RESULTS Two hundred and twenty-one samples were genotyped for the CCR5, CCR2, and SDF1 mutation. Among these, all (100%) were identified as wild type for CCR5. All were then investigated considering the impact on CD4+ T-cell counts. Samples were divided into two groups based on the CD4+ T-cell numbers. It revealed that in the group of CD4+ T-cell counts ≥200 cells/μl, 15 were found for the homozygous for SDF1 gene (3'A/3'A) whereas one was found in the group of CD4+ T-cell counts <200 cells/μl. Homozygosity for the CCR2 polymorphisms (64I/64I) were five in the group of CD4+ T-cell counts ≥200 cells/μl and none were found in the group of CD4+ T-cell counts <200 cells/μl. These results demonstrated that there was a significant association between CD4+ T-cell numbers and CCR2 and SDF1 polymorphisms (P < 0.001). CONCLUSIONS The mutation of CCR2 and SDF1 genes showed a significant difference in the distribution of CD4+ T-cell numbers (P < 0.001) whereas mutation of chemokine coreceptor CCR5 was not appeared to be associated with the impact of CD4+ T-cell counts.
Collapse
Affiliation(s)
- Palanee Ammaranond
- Department of Transfusion Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| | | | | | | | | |
Collapse
|
33
|
Razmkhah M, Ghaderi A. SDF-1alpha G801A polymorphism in Southern Iranian patients with colorectal and gastric cancers. Indian J Gastroenterol 2013; 32:28-31. [PMID: 23242967 DOI: 10.1007/s12664-012-0283-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 11/13/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND A single nucleotide polymorphism (SNP) in the stromal cell-derived factor-1 (SDF-1) gene at position 801 (G>A) is associated with susceptibility to certain tumors. This study aimed to investigate an association between this SNP and colorectal and gastric cancers in an Iranian population. METHOD Genotype and allele frequencies of SDF-1 801 G>A were assessed using polymerase chain reaction-restriction fragment length polymorphism in 109 patients with colorectal cancer, 124 with gastric cancer, and 262 normal control volunteers. RESULTS No statistically significant difference was observed in the frequencies of genotypes and alleles between patients and controls (p > 0.05). CONCLUSION SDF-1 gene polymorphism at position 801 (G>A) was not associated with colorectal and gastric cancers in Southern Iranian patients.
Collapse
Affiliation(s)
- Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
34
|
Liarmakopoulos E, Theodoropoulos G, Vaiopoulou A, Rizos S, Aravantinos G, Kouraklis G, Nikiteas N, Gazouli M. Effects of stromal cell-derived factor-1 and survivin gene polymorphisms on gastric cancer risk. Mol Med Rep 2012; 7:887-92. [PMID: 23258739 DOI: 10.3892/mmr.2012.1247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/07/2012] [Indexed: 11/06/2022] Open
Abstract
Stromal-cell derived factor-1 (SDF-1), a CXC chemokine, is important for growth, angiogenesis and metastasis of tumor cells. The SDF1-3'A polymorphism has been investigated in various types of cancer; however, no information is currently available on its role in gastric cancer. Survivin is a member of the inhibitor of apoptosis family of proteins and has a genetic polymorphism (-31G/C) located in the CDE/CHR repressor element of its promoter. In this study, 88 gastric cancer patients and 480 normal healthy control subjects were investigated for the genotype and allelic SDF1-3'A and survivin -31G/C frequencies using polymerase chain reaction‑restriction fragment length polymorphism. The SDF1-3'A genotype frequencies for GG, GA and AA were 44.32, 48.86 and 6.92% in patients and 42.71, 47.71 and 9.58% in healthy subjects, respectively. GA+AA genotype frequency and A allele distribution were not identified as significantly different between gastric cancer cases and controls. The survivin frequencies for GG, GC and CC were 20.45, 50 and 29.54% in patients and 33.96, 45 and 21.04% in healthy subjects, respectively. The C carriers (GC+CC genotype) and the C allele were over-represented among the gastric cancer cases (P=0.013 and P=0.0083, respectively). Overall, no statistically significant association was identified for SDF-1 and survivin gene examined alleles and genotypes and any parameter investigated, (e.g., stage, differentiation status and survival). The survivin promoter -31G/C polymorphism may confer an increased susceptibility to gastric cancer, while the SDF1-3'A polymorphism may not be a candidate genetic variant to select individuals at higher risk of developing gastric cancer.
Collapse
|
35
|
Gianchecchi E, Palombi M, Fierabracci A. The putative role of the C1858T polymorphism of protein tyrosine phosphatase PTPN22 gene in autoimmunity. Autoimmun Rev 2012; 12:717-25. [PMID: 23261816 DOI: 10.1016/j.autrev.2012.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases represent a heterogeneous group of conditions whose incidence is increasing worldwide. This has stimulated studies on their etiopathogenesis, derived from a complex interaction between genetic and environmental factors, in order to improve prevention and treatment of these diseases. An increasing amount of epidemiologic investigations has associated the presence of the C1858T polymorphism in the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene to the onset of several autoimmune diseases including insulin-dependent diabetes mellitus (Type 1 diabetes). PTPN22 encodes for the lymphoid tyrosine phosphatase Lyp. This belongs to non-receptor-type protein tyrosine phosphatases involved in lymphocyte activation and differentiation. In humans, Lyp may have a role in the negative regulation of T cell receptor signaling. The single nucleotide polymorphism C1858T encodes for a more active phosphatase Lyp R620W. This has the ability to induce a higher negative regulation of T cell receptor signaling. Thus, C1858T could play an important role at the level of thymocyte polarization and escape of autoreactive T lymphocytes, through the positive selection of otherwise negatively selected autoimmune T cells. In this review we discuss the physiological role exerted by the PTPN22 gene and its encoded Lyp product in lymphocyte processes. We highlight the pathogenic significance of the C1858T PTPN22 polymorphism in human autoimmunity with special reference to Type 1 diabetes. Recently the genetic variation in PTPN22 was shown to induce altered function of T and B-lymphocytes. In particular BCR signaling defects and alterations in the B cell compartment were reported in T1D patients. We finally speculate on the possible development of novel therapeutic treatments in human autoimmunity aiming to selectively target the variant Lyp protein in autoreactive T and B lymphocytes.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Autoimmunity Laboratory, Immunology Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | | |
Collapse
|
36
|
Glass EJ. The molecular pathways underlying host resistance and tolerance to pathogens. Front Genet 2012; 3:263. [PMID: 23403960 PMCID: PMC3566117 DOI: 10.3389/fgene.2012.00263] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/05/2012] [Indexed: 01/31/2023] Open
Abstract
Breeding livestock that are better able to withstand the onslaught of endemic- and exotic pathogens is high on the wish list of breeders and farmers world-wide. However, the defense systems in both pathogens and their hosts are complex and the degree of genetic variation in resistance and tolerance will depend on the trade-offs that they impose on host fitness as well as their life-histories. The genes and pathways underpinning resistance and tolerance traits may be distinct or intertwined as the outcome of any infection is a result of a balance between collateral damage of host tissues and control of the invading pathogen. Genes and molecular pathways associated with resistance are mainly expressed in the mucosal tract and the innate immune system and control the very early events following pathogen invasion. Resistance genes encode receptors involved in uptake of pathogens, as well as pattern recognition receptors (PRR) such as the toll-like receptor family as well as molecules involved in strong and rapid inflammatory responses which lead to rapid pathogen clearance, yet do not lead to immunopathology. In contrast tolerance genes and pathways play a role in reducing immunopathology or enhancing the host's ability to protect against pathogen associated toxins. Candidate tolerance genes may include cytosolic PRRs and unidentified sensors of pathogen growth, perturbation of host metabolism and intrinsic danger or damage associated molecules. In addition, genes controlling regulatory pathways, tissue repair and resolution are also tolerance candidates. The identities of distinct genetic loci for resistance and tolerance to infectious pathogens in livestock species remain to be determined. A better understanding of the mechanisms involved and phenotypes associated with resistance and tolerance should ultimately help to improve livestock health and welfare.
Collapse
Affiliation(s)
- Elizabeth J. Glass
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghEdinburgh, UK
| |
Collapse
|
37
|
Lu J, Sheng A, Wang Y, Zhang L, Wu J, Song M, He Y, Yu X, Zhao F, Liu Y, Shao S, Lan J, Wu H, Wang W. The genetic associations and epistatic effects of the CCR5 promoter and CCR2-V64I polymorphisms on susceptibility to HIV-1 infection in a Northern Han Chinese population. Genet Test Mol Biomarkers 2012; 16:1369-75. [PMID: 23057571 DOI: 10.1089/gtmb.2012.0235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The outcome of human immunodeficiency virus (HIV)-1 infection and course to AIDS are variable among individuals. Both chemokine receptor 5 (CCR5) and CCR2 gene polymorphisms play essential roles in the susceptibility of HIV-1 infection. To investigate the main and epistatic effects of the CCR5 promoter and CCR2-V64I polymorphisms on HIV-1 infection in the Northern Han Chinese, subjects of 91 HIV-1-infected patients and 91 health controls were recruited. Single-nucleotide polymorphisms (SNPs) in the CCR5 promoter region and CCR2-V64I variants were genotyped. In the single-locus analysis, CCR5 58755-G and CCR5 59653-T alleles were significantly associated with HIV-1 infection (odds ratio [OR]=0.529, 95% confidence interval [CI]: 0.295-0.948; OR=1.710, 95% CI: 1.039-2.814). After adjustment with age and gender, subjects with the CCR5 59653-CT genotype showed the increased risk of HIV-1 infection compared with those with the wild-type CC genotype (adjusted OR=2.502; 95% CI: 1.332-4.698). No positive association was observed in other SNPs. Haplotype-based association analysis revealed that the haplotype TATGC was associated with the susceptibility to HIV-1 infection (p=0.003). Besides, we found the significant epistatic effects between the CCR5 58755-A/G and CCR5 59029-A/G polymorphisms associated with the lower risk of HIV-1 infection. In addition, we also identified the best three-factor interaction model, including the CCR5 58755-A/G, 59029-A/G, and CCR2-V64I polymorphisms, indicating that there were also strong gene-gene interactions between the CCR5 promoter and CCR2 polymorphisms on the susceptibility of HIV-1 infection. These findings contribute to understanding the genetic mechanism for the susceptibility of HIV-1 infection in Northern Han Chinese.
Collapse
Affiliation(s)
- Jiapeng Lu
- School of Public Health and Family Medicine, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
HLA-B may be more protective against HIV-1 than HLA-A because it resists negative regulatory factor (Nef) mediated down-regulation. Proc Natl Acad Sci U S A 2012; 109:13353-8. [PMID: 22826228 DOI: 10.1073/pnas.1204199109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human leukocyte antigen HLA-B alleles have better protective activity against HIV-1 than HLA-A alleles, possibly due to differences in HLA-restricted HIV-1-specific CD8+ cytotoxic T lymphocyte (CTL) function, but the mechanism is unknown. HIV-1 negative regulatory factor (Nef) mediates down-regulation of surface expression of class I HLA (HLA-I) and may therefore impair immune recognition by CTL. Because of sequence differences in the cytoplasmic domains, HLA-A and -B are down-regulated by Nef but HLA-C and -E are not affected. However, the latter are expressed at low levels and are not of major importance in the CTL responses to HIV-1. Here, we compared the role of the cytoplasmic domains of HLA-A and -B in Nef-mediated escape from CTL. We found HLA-B cytoplasmic domains were more resistant to Nef-mediated down-regulation than HLA-A cytoplasmic domains and demonstrated that these differences affect CTL recognition of virus-infected cells in vitro. We propose that the relative resistance to Nef-mediated down-regulation by the cytoplasmic domains of HLA-B compared with HLA-A contributes to the better control of HIV-1 infection associated with HLA-B-restricted CTLs.
Collapse
|
39
|
Ramezani A, Banifazl M, Mamishi S, Sofian M, Eslamifar A, Aghakhani A. The influence of human leukocyte antigen and IL-10 gene polymorphisms on hepatitis B virus outcome. HEPATITIS MONTHLY 2012; 12:320-5. [PMID: 22783343 PMCID: PMC3389357 DOI: 10.5812/hepatmon.6094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/18/2012] [Accepted: 04/29/2012] [Indexed: 12/11/2022]
Abstract
CONTEXT The clinical outcome of hepatitis B virus (HBV) infection is variable, ranging from spontaneous recovery to an inactive carrier state, chronic hepatitis, occult HBV infection, liver cirrhosis, or hepatocellular carcinoma. EVIDENCE ACQUISITION This variable pattern and clinical outcomes of the infection were mainly determined by virological and host genetic factors. Since the most of host genetic factors associated with HBV infection have currently focused on human leukocyte antigen (HLA) associations and interleukin (IL)-10 gene polymorphisms, this review focuses on the recent progresses in these issues to provide prognostic markers for the outcome of HBV infection. RESULTS A study on serum levels of IL-10 in occult HBV infected patients reported that the higher level of IL-10 production may suppress function of the immune system against HBV in patients with occult HBV infection. IL-10 promoter polymorphism at position -592 is associated with susceptibility to occult HBV infection. CONCLUSIONS Findings of this study suggest that the host HLA polymorphism is an important factor in determining outcome of HBV infection but regarding IL-10 gene promoter polymorphisms, we are still have a long way to achieve a definite conclusion.
Collapse
Affiliation(s)
- Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, Tehran, IR Iran
- Pediatric Infectious Disease Research Center, Tehran University of Medical sciences, Tehran, IR Iran
| | - Mohammad Banifazl
- Iranian Society for Support of Patients with Infectious Disease, Tehran, IR Iran
| | - Setareh Mamishi
- Pediatric Infectious Disease Research Center, Tehran University of Medical sciences, Tehran, IR Iran
| | - Masoomeh Sofian
- TPIRC (Tuberculosis and Pediatric Infectious Research Center), Arak University of Medical Sciences, Arak, IR Iran
| | - Ali Eslamifar
- Clinical Research Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Arezoo Aghakhani
- Clinical Research Department, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding author: Arezoo Aghakhani, Clinical Research Department., Pasteur Institute of Iran, Tehran, IR Iran. Tel.: +98-2166968852, Fax: +98-2166465147, E-mail:
| |
Collapse
|
40
|
Poland GA, Kennedy RB, Ovsyannikova IG. Vaccinomics and personalized vaccinology: is science leading us toward a new path of directed vaccine development and discovery? PLoS Pathog 2011; 7:e1002344. [PMID: 22241978 PMCID: PMC3248557 DOI: 10.1371/journal.ppat.1002344] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As is apparent in many fields of science and medicine, the new biology, and particularly new high-throughput genetic sequencing and transcriptomic and epigenetic technologies, are radically altering our understanding and views of science. In this article, we make the case that while mostly ignored thus far in the vaccine field, these changes will revolutionize vaccinology from development to manufacture to administration. Such advances will address a current major barrier in vaccinology-that of empiric vaccine discovery and development, and the subsequent low yield of viable vaccine candidates, particularly for hyper-variable viruses. While our laboratory's data and thinking (and hence also for this paper) has been directed toward viruses and viral vaccines, generalization to other pathogens and disease entities (i.e., anti-cancer vaccines) may be appropriate.
Collapse
Affiliation(s)
- Gregory A Poland
- Mayo Vaccine Research Group, Department of Medicine, Mayo Clinic College of Medicine, Mayo Foundation, Rochester, Minnesota, United States of America.
| | | | | |
Collapse
|
41
|
Diaz-Gallo LM, Espino-Paisán L, Fransen K, Gómez-García M, van Sommeren S, Cardeña C, Rodrigo L, Mendoza JL, Taxonera C, Nieto A, Alcain G, Cueto I, López-Nevot MA, Bottini N, Barclay ML, Crusius JB, van Bodegraven AA, Wijmenga C, Ponsioen CY, Gearry RB, Roberts RL, Weersma RK, Urcelay E, Merriman TR, Alizadeh BZ, Martin J. Differential association of two PTPN22 coding variants with Crohn's disease and ulcerative colitis. Inflamm Bowel Dis 2011; 17:2287-94. [PMID: 21287672 DOI: 10.1002/ibd.21630] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/08/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND The PTPN22 gene is an important risk factor for human autoimmunity. The aim of this study was to evaluate for the first time the role of the R263Q PTPN22 polymorphism in ulcerative colitis (UC) and Crohn's disease (CD), and to reevaluate the association of the R620W PTPN22 polymorphism with both diseases. METHODS A total of 1677 UC patients, 1903 CD patients, and 3111 healthy controls from an initial case-control set of Spanish Caucasian ancestry and two independent sample sets of European ancestry (Dutch and New Zealand) were included in the study. Genotyping was performed using TaqMan SNP assays for the R263Q (rs33996649) and R620W (rs2476601) PTPN22 polymorphisms. Meta-analysis was performed on 6977 CD patients, 5695 UC patients, and 9254 controls to test the overall effect of the minor allele of R620W and R263Q polymorphisms. RESULTS The PTPN22 263Q loss-of-function variant showed initial evidence of association with UC in the Spanish cohort (P = 0.026, odds ratio [OR] = 0.61, 95% confidence interval [CI]: 0.39-0.95), which was confirmed in the meta-analysis (P = 0.013 pooled, OR = 0.69, 95% CI: 0.51-0.93). In contrast, the 263Q allele showed no association with CD (P = 0.22 pooled, OR = 1.16, 95% CI: 0.91-1.47). We found in the pooled analysis that the PTPN22 620W gain-of-function variant was associated with reduced risk of CD (P = 7.4E-06 pooled OR = 0.81, 95% CI: 0.75-0.89) but not of UC (P = 0.88 pooled, OR = 0.98, 95% CI: 0.85-1.15). CONCLUSIONS Our data suggest that two autoimmunity-associated polymorphisms of the PTPN22 gene are differentially associated with CD and UC. The R263Q polymorphism only associated with UC, whereas the R620W was significantly associated with only CD.
Collapse
|
42
|
Turner AK, Begon M, Jackson JA, Bradley JE, Paterson S. Genetic diversity in cytokines associated with immune variation and resistance to multiple pathogens in a natural rodent population. PLoS Genet 2011; 7:e1002343. [PMID: 22039363 PMCID: PMC3197692 DOI: 10.1371/journal.pgen.1002343] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 08/26/2011] [Indexed: 12/31/2022] Open
Abstract
Pathogens are believed to drive genetic diversity at host loci involved in immunity to infectious disease. To date, studies exploring the genetic basis of pathogen resistance in the wild have focussed almost exclusively on genes of the Major Histocompatibility Complex (MHC); the role of genetic variation elsewhere in the genome as a basis for variation in pathogen resistance has rarely been explored in natural populations. Cytokines are signalling molecules with a role in many immunological and physiological processes. Here we use a natural population of field voles (Microtus agrestis) to examine how genetic diversity at a suite of cytokine and other immune loci impacts the immune response phenotype and resistance to several endemic pathogen species. By using linear models to first control for a range of non-genetic factors, we demonstrate strong effects of genetic variation at cytokine loci both on host immunological parameters and on resistance to multiple pathogens. These effects were primarily localized to three cytokine genes (Interleukin 1 beta (Il1b), Il2, and Il12b), rather than to other cytokines tested, or to membrane-bound, non-cytokine immune loci. The observed genetic effects were as great as for other intrinsic factors such as sex and body weight. Our results demonstrate that genetic diversity at cytokine loci is a novel and important source of individual variation in immune function and pathogen resistance in natural populations. The products of these loci are therefore likely to affect interactions between pathogens and help determine survival and reproductive success in natural populations. Our study also highlights the utility of wild rodents as a model of ecological immunology, to better understand the causes and consequences of variation in immune function in natural populations including humans.
Collapse
Affiliation(s)
- Andrew K Turner
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | |
Collapse
|
43
|
Mitchison NA, Bhattacharya S, Tuddenham EGD. Human congenital diseases with mixed modes of inheritance have a shortage of recessive disease. A demographic scenario? Ann Hum Genet 2011; 75:688-93. [PMID: 21951014 DOI: 10.1111/j.1469-1809.2011.00679.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An archive of congenital human diseases is presented, aiming to contain all those where recessive (biallelic) can be compared with X-linked and/or dominant (monoallelic) inheritance. A significant deficit of recessive inheritance is evident, both in disease inheritance and in contribution to inheritance per known disease gene. The deficit contrasts with expectation derived from the cell biology of mutation, and from the importance of recessive mutation in evolution and its preponderance in N-ethyl-N-nitrosourea (ENU) mutagenesis. The deficit fits well with the standard model of demographic change since the neolithic era, and may also reflect natural selection acting on heterozygotes.
Collapse
Affiliation(s)
- N Avrion Mitchison
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK.
| | | | | |
Collapse
|
44
|
Hagiwara K, Morino H, Shiihara J, Tanaka T, Miyazawa H, Suzuki T, Kohda M, Okazaki Y, Seyama K, Kawakami H. Homozygosity mapping on homozygosity haplotype analysis to detect recessive disease-causing genes from a small number of unrelated, outbred patients. PLoS One 2011; 6:e25059. [PMID: 21949849 PMCID: PMC3176806 DOI: 10.1371/journal.pone.0025059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 08/26/2011] [Indexed: 01/23/2023] Open
Abstract
Genes involved in disease that are not common are often difficult to identify; a method that pinpoints them from a small number of unrelated patients will be of great help. In order to establish such a method that detects recessive genes identical-by-descent, we modified homozygosity mapping (HM) so that it is constructed on the basis of homozygosity haplotype (HM on HH) analysis. An analysis using 6 unrelated patients with Siiyama-type α1-antitrypsin deficiency, a disease caused by a founder gene, the correct gene locus was pinpointed from data of any 2 patients (length: 1.2–21.8 centimorgans, median: 1.6 centimorgans). For a test population in which these 6 patients and 54 healthy subjects were scrambled, the approach accurately identified these 6 patients and pinpointed the locus to a 1.4-centimorgan fragment. Analyses using synthetic data revealed that the analysis works well for IBD fragment derived from a most recent common ancestor (MRCA) who existed less than 60 generations ago. The analysis is unsuitable for the genes with a frequency in general population more than 0.1. Thus, HM on HH analysis is a powerful technique, applicable to a small number of patients not known to be related, and will accelerate the identification of disease-causing genes for recessive conditions.
Collapse
Affiliation(s)
- Koichi Hagiwara
- Department of Respiratory Medicine, Saitama Medical University, Moroyama, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
HLA alleles are associated with altered risk for disease progression and central nervous system impairment of HIV-infected children. J Acquir Immune Defic Syndr 2011; 57:32-9. [PMID: 21283014 DOI: 10.1097/qai.0b013e3182119244] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To examine the effects of human leukocyte antigen (HLA) alleles on HIV-1-related disease progression and central nervous system (CNS) impairment in children. DESIGN Five hundred seventy-two HIV-1-infected children, identified as disease progressors or nonprogressors, were selected from PACTG P152 and P300 through a case-cohort sampling scheme. Study endpoints were HIV-1-related disease progression-free survival and time to CNS impairment. METHODS DNA was genotyped for HLA alleles using a Luminex 100 platform. Weighted Kaplan-Meier methods, and Cox proportional hazards models were used to assess the effects of HLA alleles on study endpoints. RESULTS Presence of the B-27 allele (n = 20) was associated with complete protection against disease progression and CNS impairment over the median follow-up of 26 months (P < 0.0001 for both). These findings held in multivariate analyses controlling for baseline covariates including race, gender, age, log HIV-1 RNA, CD4 lymphocyte count and percent, weight for age z score and treatment, and for other genotypes shown to affect HIV-1-related disease progression. Also, although the Cw-2 allele protected against disease progression [Hazard ratio (HR), 0.48; 95% confidence interval (CI): 0.28 to 0.81; P = 0.006], the A-24 allele was associated with more rapid CNS impairment (HR: 2.01; 95% CI: 1.04 to 3.88; P = 0.04). The HLA class II DQB1-2 allele was associated with a delayed disease progression (HR: 0.66; 95% CI: 0.47-0.92; P = 0.01) and CNS impairment (HR: 0.58; 95% CI: 0.36 to 0.93; P = 0.02). CONCLUSIONS Presence of B-27, Cw-2, or DQB1-2 alleles was associated with delayed HIV-1 disease progression, while B-27, A-24, and DQB1-2 alleles were associated with altered progression to CNS impairment in children.
Collapse
|
46
|
Rao X, Hoof I, Fontaine Costa AICA, van Baarle D, Keşmir C. HLA class I allele promiscuity revisited. Immunogenetics 2011; 63:691-701. [PMID: 21695550 PMCID: PMC3190086 DOI: 10.1007/s00251-011-0552-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/10/2011] [Indexed: 12/02/2022]
Abstract
The peptide repertoire presented on human leukocyte antigen (HLA) class I molecules is largely determined by the structure of the peptide binding groove. It is expected that the molecules having similar grooves (i.e., belonging to the same supertype) might present similar/overlapping peptides. However, the extent of promiscuity among HLA class I ligands remains controversial: while in many studies T cell responses are detected against epitopes presented by alternative molecules across HLA class I supertypes and loci, peptide elution studies report minute overlaps between the peptide repertoires of even related HLA molecules. To get more insight into the promiscuous peptide binding by HLA molecules, we analyzed the HLA peptide binding data from the large epitope repository, Immune Epitope Database (IEDB), and further performed in silico analysis to estimate the promiscuity at the population level. Both analyses suggest that an unexpectedly large fraction of HLA ligands (>50%) bind two or more HLA molecules, often across supertype or even loci. These results suggest that different HLA class I molecules can nevertheless present largely overlapping peptide sets, and that “functional” HLA polymorphism on individual and population level is probably much lower than previously anticipated.
Collapse
Affiliation(s)
- Xiangyu Rao
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Ilka Hoof
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | | | - Debbie van Baarle
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Can Keşmir
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| |
Collapse
|
47
|
Casanova JL, Abel L, Quintana-Murci L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol 2011; 29:447-91. [PMID: 21219179 DOI: 10.1146/annurev-immunol-030409-101335] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs) have TIR intracellular domains that engage two main signaling pathways, via the TIR-containing adaptors MyD88 (which is not used by TLR3) and TRIF (which is used only by TLR3 and TLR4). Extensive studies in inbred mice in various experimental settings have attributed key roles in immunity to TLR- and IL-1R-mediated responses, but what contribution do human TLRs and IL-1Rs actually make to host defense in the natural setting? Evolutionary genetic studies have shown that human intracellular TLRs have evolved under stronger purifying selection than surface-expressed TLRs, for which the frequency of missense and nonsense alleles is high in the general population. Epidemiological genetic studies have yet to provide convincing evidence of a major contribution of common variants of human TLRs, IL-1Rs, or their adaptors to host defense. Clinical genetic studies have revealed that rare mutations affecting the TLR3-TRIF pathway underlie herpes simplex virus encephalitis, whereas mutations in the TIR-MyD88 pathway underlie pyogenic bacterial diseases in childhood. A careful reconsideration of the contributions of TLRs and IL-1Rs to host defense in natura is required.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
48
|
Cacina C, Bulgurcuoglu-Kuran S, Iyibozkurt AC, Yaylim-Eraltan I, Cakmakoglu B. Genetic variants of SDF-1 and CXCR4 genes in endometrial carcinoma. Mol Biol Rep 2011; 39:1225-9. [PMID: 21607621 DOI: 10.1007/s11033-011-0852-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/12/2011] [Indexed: 11/29/2022]
Abstract
In this study, we aimed to investigate a possible association between the Stromal cell-derived factor-1 (SDF-1) and CXCR4 polymorphisms and the risk of developing endometrial carcinoma. SDF-1 3'A and CXCR4 gene polymorphisms was performed by polymerase chain reaction (PCR) and restriction fragment length polymorphism in 139 healthy individuals and 113 patients with endometrial carcinoma. In our study groups SDF-1 3'A AA genotype frequency was higher in patients that of controls and individuals who had AA genotype showed a 2.6-fold increased risk for endometrial cancer. The carriers of CXCR4 T allele were higher in patients compared with controls and individuals who had TT genotype had a 2.5-fold high risk for endometrial carcinoma. Our finding suggest that there was no significant association between the (SDF-1) and CXCR4 polymorphisms and endometrium cancer risk. Further studies in a larger population are needed to better elucidate the role of (SDF-1) and CXCR4 gene polymorphisms in the risk of endometrial carcinogenesis. To the best of our knowledge, this is the first study to show such an association.
Collapse
Affiliation(s)
- Canan Cacina
- Department of Molecular Medicine, Institute of Experimental Medicine Research, Istanbul University, Vakif Gureba Cad. Capa, 34093 Istanbul, Turkey
| | | | | | | | | |
Collapse
|
49
|
Abstract
In this review, I describe how evolutionary genomics is uniquely suited to spearhead advances in understanding human disease risk, owing to the privileged position of genes as fundamental causes of phenotypic variation, and the ability of population genetic and phylogenetic methods to robustly infer processes of natural selection, drift, and mutation from genetic variation at the levels of family, population, species, and clade. I first provide an overview of models for the origins and maintenance of genetically based disease risk in humans. I then discuss how analyses of genetic disease risk can be dovetailed with studies of positive and balancing selection, to evaluate the degree to which the 'genes that make us human' also represent the genes that mediate risk of polygenic disease. Finally, I present four basic principles for the nascent field of human evolutionary medical genomics, each of which represents a process that is nonintuitive from a proximate perspective. Joint consideration of these principles compels novel forms of interdisciplinary analyses, most notably studies that (i) analyze tradeoffs at the level of molecular genetics, and (ii) identify genetic variants that are derived in the human lineage or in specific populations, and then compare individuals with derived versus ancestral alleles.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biosciences, Simon Fraser University Burnaby, BC, Canada
| |
Collapse
|
50
|
Necşulea A, Popa A, Cooper DN, Stenson PD, Mouchiroud D, Gautier C, Duret L. Meiotic recombination favors the spreading of deleterious mutations in human populations. Hum Mutat 2011; 32:198-206. [PMID: 21120948 DOI: 10.1002/humu.21407] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 10/28/2010] [Indexed: 11/09/2022]
Abstract
Although mutations that are detrimental to the fitness of organisms are expected to be rapidly purged from populations by natural selection, some disease-causing mutations are present at high frequencies in human populations. Several nonexclusive hypotheses have been proposed to account for this apparent paradox (high new mutation rate, genetic drift, overdominance, or recent changes in selective pressure). However, the factors ultimately responsible for the presence at high frequency of disease-causing mutations are still contentious. Here we establish the existence of an additional process that contributes to the spreading of deleterious mutations: GC-biased gene conversion (gBGC), a process associated with recombination that tends to favor the transmission of GC-alleles over AT-alleles. We show that the spectrum of amino acid-altering polymorphisms in human populations exhibits the footprints of gBGC. This pattern cannot be explained in terms of selection and is evident with all nonsynonymous mutations, including those predicted to be detrimental to protein structure and function, and those implicated in human genetic disease. We present simulations to illustrate the conditions under which gBGC can extend the persistence time of deleterious mutations in a finite population. These results indicate that gBGC meiotic drive contributes to the spreading of deleterious mutations in human populations.
Collapse
Affiliation(s)
- Anamaria Necşulea
- Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|