1
|
Drexel VEM, Göbel TW, Früh SP. Characterization of a novel chicken γδ TCR-specific marker. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105250. [PMID: 39159844 DOI: 10.1016/j.dci.2024.105250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Chickens are a species with a high number of γδ T cells in various tissues. Despite their abundance, γδ T cells are poorly characterized in chickens, partially due to a lack of specific reagents to characterize these cells. Up until now, the TCR1 clone has been the only γδ T cell-specific monoclonal antibody (mAb) in chickens and additional reagents for γδ T cell subsets are needed. In order to address this issue, new mAb were generated in our laboratory by immunizing mice with in vitro cultured γδ T cells. In an initial flow cytometric screen a new mAb, clone "8D2", displayed an interesting staining pattern that mirrored γδ TCR up- and downregulation in the γδ T cell line D4 over time, prompting us to characterize this antibody further. We compared the expression of the unknown 8D2 epitope in combination with TCR1 staining across various primary cells. In splenocytes, peripheral blood lymphocytes and intestinal epithelial cells, 8D2 consistently labeled a subset of TCR1+ cells. To determine, whether specific γδ T cell receptors were recognized by 8D2, we sorted γδ T cells according to their 8D2 and TCR1 expression and analyzed their TCR V(D)J gene usage by TCR profiling. Strikingly, sorted 8D2+ cells preferentially expressed Vγ3 genes, whereas the TCR Vγ genes used by TCR1+ 8D2- cells were more variable. γδ TCR in 8D2+ cells were most frequently comprised of gamma chain VJ genes TRGV3-8 and TRGJ3, and delta chain VDJ genes TRDV1-2, TRDD2, TRDJ1. To confirm binding of 8D2 to specific γδ TCR, the preferentially utilized combination of TRG and TRD was expressed in HEK293 cells in combination with CD3, demonstrating surface binding of the 8D2 mAb to this Vγ3 γδ TCR-expressing cell line. Conversely, HEK293 cells expressing either Vγ1 or Vγ2 TCR did not react with 8D2. In conclusion, 8D2 is a novel tool for identifying specific Vγ3 bearing γδ T cells.
Collapse
Affiliation(s)
- Veronika E M Drexel
- Department of Veterinary Immunology, LMU Munich, Lena-Christ-Straße 48, 82152 Planegg-Martinsried, Germany
| | - Thomas W Göbel
- Department of Veterinary Immunology, LMU Munich, Lena-Christ-Straße 48, 82152 Planegg-Martinsried, Germany.
| | - Simon P Früh
- Department of Veterinary Immunology, LMU Munich, Lena-Christ-Straße 48, 82152 Planegg-Martinsried, Germany; Department of Veterinary Medicine, Institute of Virology, FU Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany
| |
Collapse
|
2
|
Wiseman J, Cassidy JP, Gormley E. The problem that residual Mycobacterium bovis infection poses for the eradication of bovine tuberculosis. Vet J 2024; 308:106266. [PMID: 39528077 DOI: 10.1016/j.tvjl.2024.106266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The dynamics of Mycobacterium bovis infection in cattle can influence the proportion of infected animals that are diagnosed by ante-mortem tests in routine bovine tuberculosis (bTB) surveillance and monitoring programmes. Although the current diagnostic tests based on cell-mediated or serological responses are imperfect, they are effective in diagnosing the majority of infected animals. However, the lack of perfect sensitivity and specificity also leads to failure to diagnose all infected animals leading to persistence of infection in herds. The terms residual, subclinical, latent and anergy have been used interchangeably to denote the presence of continued undiagnosed M. bovis infection within cattle herds, which ultimately hinders the eradication of bTB and imposes substantial financial burdens on farming communities and national economies. Epidemiological data suggests the existence of M. bovis-infected, but often undetected, cattle within herds that contribute to eradication failure. This has similarities with human tuberculosis, caused by Mycobacterium tuberculosis, where latent infection is defined as the persistence of viable but quiescent bacilli for extended periods in patients without clinical symptoms but with a detectable immune response to M. tuberculosis antigens. If a similar infection state exists in cattle infected with M. bovis, the persistence of such animals in disease-managed herds is unlikely to be common given that those found to have positive immune responses to M. bovis antigens are routinely culled to minimise future risk of transmission. Apart from contributing to the burden of herd infection, such residual infection without detection may also 'seed' recipient herds following animal movements, and potentially play an important role in the overall epidemiology of bTB as the prevalence of disease decreases and the attendant altered predictive value of the diagnostic tests result in a greater proportion of infected animals remaining undetected. This review examines how the different stages of M. bovis infection in cattle may contribute to the failure to diagnose infected animals using conventional testing methodologies and the attendant risk this poses in creating prolonged or recurrent herd breakdowns.
Collapse
Affiliation(s)
- J Wiseman
- Veterinary Sciences Centre, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Department of Agriculture, Food and the Marine, Central Veterinary Research Laboratory - Backweston Campus, Young's Cross, Celbridge, Co. Kildare, Ireland.
| | - J P Cassidy
- Veterinary Sciences Centre, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - E Gormley
- Veterinary Sciences Centre, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Liu Y, Huang Y, Wei H, Liang X, Luo J. The role of post-translational modifications of cGAS in γδ T cells. Mol Immunol 2024; 175:146-154. [PMID: 39437619 DOI: 10.1016/j.molimm.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS) senses DNA in a sequence-independent manner, triggering cGAMP synthesis, which activates stimulator of interferon genes (STING) and the subsequent expression of type I interferons, tumour necrosis factor alpha (TNF-α) and other proinflammatory factors in two downstream pathways. However, the function of the cGASSTING pathway in γδ T cells remains unclear. The γδ T-cell population differs from the innate-like lymphocyte population, particularly with respect to tissue distribution, indicating the unique potential of γδ T cells in treating infections and cancers. On the basis of accumulating evidence, cGAS activity is modulated by protein posttranslational modifications (PTMs), including phosphorylation, O-GlcNAcylation, acetylation, ubiquitylation and methylation, which affect multiple cGAS functions. Thus, here, we summarize recent research on PTMs of the cGAS protein that modulate γδ T-cell function. An understanding of cGAS features and modulation mechanisms may facilitate the design of therapies for γδ T-cell-related immune diseases and cancer.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yue Huang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Geriatrics, Institute of Gerontology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haotian Wei
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinjun Liang
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Rackl E, Hartz A, Aslan Rejeski H, Li L, Klauer LK, Ugur S, Pepeldjiyska E, Amend C, Weinmann M, Doraneh-Gard F, Stein J, Reiter N, Seidel CL, Plett C, Amberger DC, Bojko P, Kraemer D, Schmohl J, Rank A, Schmid C, Schmetzer HM. Dendritic/antigen presenting cell mediated provision of T-cell receptor gamma delta (TCRγδ) expressing cells contributes to improving antileukemic reactions ex vivo. Mol Immunol 2024; 175:40-54. [PMID: 39305847 DOI: 10.1016/j.molimm.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 11/11/2024]
Abstract
T-cell receptor gamma delta (TCRγδ) expressing T-cells are known to mediate an MHC-independent immune response and could therefore qualify for immune therapies. We examined the influence of dendritic cells(DC)/antigen presenting cell (APC) generated from blast-containing whole blood (WB) samples from AML and MDS patients on the provision of (leukemia-specific) TCRγδ expressing T-cells after mixed lymphocyte culture (MLC). Kit-M (granulocyte-macrophage colony-stimulating factor (GM-CSF) + prostaglandin E1 (PGE1)) or Kit-I (GM-CSF + Picibanil) were used to generate leukemia derived APC/DC (DCleu)from WB, which were subsequently used to stimulate T-cell enriched MLC. Immune cell composition and functionality were analysed using degranulation- (DEG), intracellular cytokine- (INTCYT) and cytotoxicity fluorolysis- (CTX) assays. Flow cytometry was used for cell quantification. We found increased frequencies of APCs/DCs and their subtypes after Kit-treatment of healthy and patients´ WB compared to control, as well as an increased stimulation and activation of several types of immune reactive cells after MLC. Higher frequencies of TCRγδ expressing leukemia-specific degranulation and intracellularly cytokine producing T-cells were found. The effect of Kit-M-treatment on frequencies of TCRγδ expressing cells and their degranulation could be correlated with the Kit-M-mediated blast lysis compared to control. We also found higher frequencies of TCRγδ expressing T-cells in AML patients´ samples with an achieved remission (compared to blast persistence) after induction chemotherapy. This might point to APC/DC-mediated effects resulting in the provision of leukemia-specific TCRγδ expressing T-cells: Moreover a quantification of TCRγδ expressing T-cells might contribute to predict prognosis of AML/MDS patients.
Collapse
Affiliation(s)
- Elias Rackl
- Department of Medicine III, University Hospital of Munich, Munich 81377, Germany.
| | - Anne Hartz
- Department of Medicine III, University Hospital of Munich, Munich 81377, Germany.
| | - Hazal Aslan Rejeski
- Department of Medicine III, University Hospital of Munich, Munich 81377, Germany.
| | - Lin Li
- Department of Medicine III, University Hospital of Munich, Munich 81377, Germany.
| | - Lara Kristina Klauer
- Department of Medicine III, University Hospital of Munich, Munich 81377, Germany.
| | - Selda Ugur
- Department of Medicine III, University Hospital of Munich, Munich 81377, Germany.
| | - Elena Pepeldjiyska
- Department of Medicine III, University Hospital of Munich, Munich 81377, Germany.
| | - Carina Amend
- Department of Medicine III, University Hospital of Munich, Munich 81377, Germany.
| | - Melanie Weinmann
- Department of Medicine III, University Hospital of Munich, Munich 81377, Germany.
| | - Fatemeh Doraneh-Gard
- Department of Medicine III, University Hospital of Munich, Munich 81377, Germany.
| | - Julian Stein
- Department of Medicine III, University Hospital of Munich, Munich 81377, Germany.
| | - Nina Reiter
- Department of Medicine III, University Hospital of Munich, Munich 81377, Germany.
| | - Corinna L Seidel
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich 80336, Germany.
| | - Caroline Plett
- Department of Medicine III, University Hospital of Munich, Munich 81377, Germany.
| | | | - Peter Bojko
- Department of Hematology and Oncology, Rotkreuzklinikum Munich, Munich 80634, Germany.
| | - Doris Kraemer
- Department of Hematology and Oncology, St.-Josefs-Hospital, Hagen 58097, Germany.
| | - Jörg Schmohl
- Department of Hematology and Oncology, Diakonieklinikum Stuttgart, Stuttgart 70176, Germany.
| | - Andreas Rank
- Department of Hematology and Oncology, University Hospital of Augsburg, Augsburg 86156, Germany; Bavarian Cancer Research Center (BZKF) Comprehensive Cancer Center, Germany.
| | - Christoph Schmid
- Department of Hematology and Oncology, University Hospital of Augsburg, Augsburg 86156, Germany; Bavarian Cancer Research Center (BZKF) Comprehensive Cancer Center, Germany.
| | - Helga Maria Schmetzer
- Department of Medicine III, University Hospital of Munich, Munich 81377, Germany; Bavarian Cancer Research Center (BZKF) Comprehensive Cancer Center, Germany.
| |
Collapse
|
5
|
Bridge J, Johnson MJ, Kim J, Wenthe S, Krueger J, Wick B, Kluesner M, Crane AT, Bell J, Skeate JG, Moriarity BS, Webber BR. Efficient multiplex non-viral engineering and expansion of polyclonal γδ CAR-T cells for immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611042. [PMID: 39464114 PMCID: PMC11507710 DOI: 10.1101/2024.09.03.611042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Gamma delta (γδ) T cells are defined by their unique ability to recognize a limited repertoire of non-peptide, non-MHC-associated antigens on transformed and pathogen-infected cells. In addition to their lack of alloreactivity, γδ T cells exhibit properties distinct from other lymphocyte subsets, prompting significant interest in their development as an off-the-shelf cellular immunotherapeutic. However, their low abundance in circulation, heterogeneity, limited methods for ex vivo expansion, and under-developed methodologies for genetic modification have hindered basic study and clinical application of γδ T cells. Here, we implement a feeder-free, scalable approach for ex vivo manufacture of polyclonal, non-virally modified, gene edited chimeric antigen receptor (CAR)-γδ T cells in support of therapeutic application. Engineered CAR-γδ T cells demonstrate high function in vitro and and in vivo. Longitudinal in vivo pharmacokinetic profiling of adoptively transferred polyclonal CAR-γδ T cells uncover subset-specific responses to IL-15 cytokine armoring and multiplex base editing. Our results present a robust platform for genetic modification of polyclonal CAR-γδ T cells and present unique opportunities to further define synergy and the contribution of discrete, engineered CAR-γδ T cell subsets to therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Jacob Bridge
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Matthew J Johnson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jihyun Kim
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sophia Wenthe
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joshua Krueger
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Bryce Wick
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Mitchell Kluesner
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew T Crane
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jason Bell
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joseph G Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
Sok CL, Rossjohn J, Gully BS. The Evolving Portrait of γδ TCR Recognition Determinants. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:543-552. [PMID: 39159405 PMCID: PMC11335310 DOI: 10.4049/jimmunol.2400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/14/2024] [Indexed: 08/21/2024]
Abstract
In αβ T cells, immunosurveillance is enabled by the αβ TCR, which corecognizes peptide, lipid, or small-molecule Ags presented by MHC- and MHC class I-like Ag-presenting molecules, respectively. Although αβ TCRs vary in their Ag recognition modes, in general they corecognize the presented Ag and the Ag-presenting molecule and do so in an invariable "end-to-end" manner. Quite distinctly, γδ T cells, by way of their γδ TCR, can recognize ligands that extend beyond the confines of MHC- and MHC class I-like restrictions. From structural studies, it is now becoming apparent that γδ TCR recognition modes can break the corecognition paradigm and deviate markedly from the end-to-end docking mechanisms of αβ TCR counterparts. This brief review highlights the emerging portrait of how γδ TCRs can recognize diverse epitopes of their Ags in a manner reminiscent to how Abs recognize Ags.
Collapse
MESH Headings
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Humans
- Animals
- Antigen Presentation/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Epitopes, T-Lymphocyte/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Chhon Ling Sok
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK
| | - Benjamin S. Gully
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Kulma I, Na-Bangchang K, Carvallo Herrera A, Ndubuisi IT, Iwasaki M, Tomono H, Morita CT, Okamura H, Mukae H, Tanaka Y. Analysis of the Effector Functions of Vδ2 γδ T Cells and NK Cells against Cholangiocarcinoma Cells. Cells 2024; 13:1322. [PMID: 39195212 PMCID: PMC11352430 DOI: 10.3390/cells13161322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare disease characterized by malignant cells derived from the epithelial cells of the biliary duct system. Despite extensive treatments, the prognosis for CCA remains poor, emphasizing the critical need for the development of novel treatments. Considerable attention has been directed towards innate immune effector cells, which can recognize tumor cells independently of the major histocompatibility complex, laying the foundation for the development of off-the-shelf drugs. In this study, we cultured innate immune cells obtained from the peripheral blood of healthy adults and conducted a comparative analysis of the effector functions against CCA cell lines by Vδ2 γδ T cells and NK cells. This analysis was performed using standard short- and long-term cytotoxicity assays, as well as ELISA for IFN-γ. Vδ2 γδ T cells demonstrated cytotoxicity and IFN-γ production in response to CCA cells in a TCR-dependent manner, particularly in the presence of tetrakis-pivaloyloxymethyl 2-(thiazole-2-ylamino)ethylidene-1,1-bisphosphonate, a bisphosphonate prodrug. In contrast, direct killing and antibody-dependent cellular cytotoxicity were relatively slow and weak. Conversely, NK cells displayed potent, direct cytotoxicity against CCA cells. In summary, both Vδ2 γδ T cells and NK cells show promise as innate immune effector cells for adoptive transfer therapy in the context of CCA.
Collapse
Affiliation(s)
- Inthuon Kulma
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (I.K.); (A.C.H.); (I.T.N.)
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12121, Thailand;
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12121, Thailand;
| | - Andrea Carvallo Herrera
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (I.K.); (A.C.H.); (I.T.N.)
| | - Ifeanyi Theodora Ndubuisi
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (I.K.); (A.C.H.); (I.T.N.)
| | - Masashi Iwasaki
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
| | - Hiromi Tomono
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (H.T.); (H.M.)
| | - Craig T. Morita
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA;
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (H.T.); (H.M.)
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (I.K.); (A.C.H.); (I.T.N.)
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
| |
Collapse
|
8
|
Boutin L, Barjon C, Chauvet M, Lafrance L, Senechal E, Bourges D, Vigne E, Scotet E. Camelid-derived Tcell engagers harnessing human γδ T cells as promising antitumor immunotherapeutic agents. Eur J Immunol 2024; 54:e2350773. [PMID: 38804118 DOI: 10.1002/eji.202350773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
In the last decade, there has been a surge in developing immunotherapies to enhance the immune system's ability to eliminate tumor cells. Bispecific antibodies known as T cell engagers (TCEs) present an attractive strategy in this pursuit. TCEs aim to guide cytotoxic T cells toward tumor cells, thereby inducing a strong activation and subsequent tumor cell lysis. In this study, we investigated the activity of different TCEs on both conventional alpha-beta (αβ) T cells and unconventional gamma delta (γδ) T cells. TCEs were built using camelid single-domain antibodies (VHHs) targeting the tumor-associated antigen CEACAM5 (CEA), together with T cell receptor chains or a CD3 domain. We show that Vγ9Vδ2 T cells display stronger in vitro antitumor activity than αβ T cells when stimulated with a CD3xCEA TCE. Furthermore, restricting the activation of fresh human peripheral T cells to Vγ9Vδ2 T cells limited the production of protumor factors and proinflammatory cytokines, commonly associated with toxicity in patients. Taken together, our findings provide further insights that γδ T cell-specific TCEs hold promise as specific, effective, and potentially safe molecules to improve antitumor immunotherapies.
Collapse
Affiliation(s)
- Lola Boutin
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
- Sanofi, Large Molecule Research, Vitry-sur-Seine, France
| | | | - Morgane Chauvet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
- Sanofi, Oncology, Vitry-sur-Seine, France
| | - Laura Lafrance
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Eric Senechal
- Sanofi, Large Molecule Research, Vitry-sur-Seine, France
| | | | | | - Emmanuel Scotet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
9
|
Arias-Badia M, Chang R, Fong L. γδ T cells as critical anti-tumor immune effectors. NATURE CANCER 2024; 5:1145-1157. [PMID: 39060435 DOI: 10.1038/s43018-024-00798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/29/2024] [Indexed: 07/28/2024]
Abstract
While the effector cells that mediate anti-tumor immunity have historically been attributed to αβ T cells and natural killer cells, γδ T cells are now being recognized as a complementary mechanism mediating tumor rejection. γδ T cells possess a host of functions ranging from antigen presentation to regulatory function and, importantly, have critical roles in eliciting anti-tumor responses where other immune effectors may be rendered ineffective. Recent discoveries have elucidated how these differing functions are mediated by γδ T cells with specific T cell receptors and spatial distribution. Their relative resistance to mechanisms of dysfunction like T cell exhaustion has spurred the development of therapeutic approaches exploiting γδ T cells, and an improved understanding of these cells should enable more effective immunotherapies.
Collapse
Affiliation(s)
- Marcel Arias-Badia
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ryan Chang
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Immunotherapy Integrated Research Center, Fred Hutchison Cancer Center, Seattle, WA, USA.
| |
Collapse
|
10
|
Maerz MD, Cross DL, Seshadri C. Functional and biological implications of clonotypic diversity among human donor-unrestricted T cells. Immunol Cell Biol 2024; 102:474-486. [PMID: 38659280 PMCID: PMC11236517 DOI: 10.1111/imcb.12751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/04/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
T cells express a T-cell receptor (TCR) heterodimer that is the product of germline rearrangement and junctional editing resulting in immense clonotypic diversity. The generation of diverse TCR repertoires enables the recognition of pathogen-derived peptide antigens presented by polymorphic major histocompatibility complex (MHC) molecules. However, T cells also recognize nonpeptide antigens through nearly monomorphic antigen-presenting systems, such as cluster of differentiation 1 (CD1), MHC-related protein 1 (MR1) and butyrophilins (BTNs). This potential for shared immune responses across genetically diverse populations led to their designation as donor-unrestricted T cells (DURTs). As might be expected, some CD1-, MR1- and BTN-restricted T cells express a TCR that is conserved across unrelated individuals. However, several recent studies have reported unexpected diversity among DURT TCRs, and increasing evidence suggests that this diversity has functional consequences. Recent reports also challenge the dogma that immune cells are either innate or adaptive and suggest that DURT TCRs may act in both capacities. Here, we review this evidence and propose an expanded view of the role for clonotypic diversity among DURTs in humans, including new perspectives on how DURT TCRs may integrate their adaptive and innate immune functions.
Collapse
Affiliation(s)
- Megan D Maerz
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Molecular Medicine and Mechanisms of Disease Program, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Deborah L Cross
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
11
|
Sumaria N, Fiala GJ, Inácio D, Curado-Avelar M, Cachucho A, Pinheiro R, Wiesheu R, Kimura S, Courtois L, Blankenhaus B, Darrigues J, Suske T, Almeida ARM, Minguet S, Asnafi V, Lhermitte L, Mullighan CG, Coffelt SB, Moriggl R, Barata JT, Pennington DJ, Silva-Santos B. Perinatal thymic-derived CD8αβ-expressing γδ T cells are innate IFN-γ producers that expand in IL-7R-STAT5B-driven neoplasms. Nat Immunol 2024; 25:1207-1217. [PMID: 38802512 PMCID: PMC11224017 DOI: 10.1038/s41590-024-01855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
The contribution of γδ T cells to immune responses is associated with rapid secretion of interferon-γ (IFN-γ). Here, we show a perinatal thymic wave of innate IFN-γ-producing γδ T cells that express CD8αβ heterodimers and expand in preclinical models of infection and cancer. Optimal CD8αβ+ γδ T cell development is directed by low T cell receptor signaling and through provision of interleukin (IL)-4 and IL-7. This population is pathologically relevant as overactive, or constitutive, IL-7R-STAT5B signaling promotes a supraphysiological accumulation of CD8αβ+ γδ T cells in the thymus and peripheral lymphoid organs in two mouse models of T cell neoplasia. Likewise, CD8αβ+ γδ T cells define a distinct subset of human T cell acute lymphoblastic leukemia pediatric patients. This work characterizes the normal and malignant development of CD8αβ+ γδ T cells that are enriched in early life and contribute to innate IFN-γ responses to infection and cancer.
Collapse
MESH Headings
- Animals
- Interferon-gamma/metabolism
- Interferon-gamma/immunology
- Mice
- Humans
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Thymus Gland/immunology
- Receptors, Interleukin-7/metabolism
- Immunity, Innate
- STAT5 Transcription Factor/metabolism
- Signal Transduction/immunology
- Mice, Inbred C57BL
- CD8-Positive T-Lymphocytes/immunology
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- CD8 Antigens/metabolism
- Female
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Interleukin-7/metabolism
Collapse
Affiliation(s)
- Nital Sumaria
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Gina J Fiala
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| | - Daniel Inácio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Curado-Avelar
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Cachucho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rúben Pinheiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Robert Wiesheu
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Lucien Courtois
- Hôpital Necker Enfants-Malades, Université de Paris, Paris, France
| | - Birte Blankenhaus
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Julie Darrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tobias Suske
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Afonso R M Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Vahid Asnafi
- Hôpital Necker Enfants-Malades, Université de Paris, Paris, France
| | | | | | - Seth B Coffelt
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Richard Moriggl
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK.
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
12
|
Elkhamary A, Gerner I, Bileck A, Oreff GL, Gerner C, Jenner F. Comparative proteomic profiling of the ovine and human PBMC inflammatory response. Sci Rep 2024; 14:14939. [PMID: 38942936 PMCID: PMC11213919 DOI: 10.1038/s41598-024-66059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024] Open
Abstract
Understanding the cellular and molecular mechanisms of inflammation requires robust animal models. Sheep are commonly used in immune-related studies, yet the validity of sheep as animal models for immune and inflammatory diseases remains to be established. This cross-species comparative study analyzed the in vitro inflammatory response of ovine (oPBMCs) and human PBMCs (hPBMCs) using mass spectrometry, profiling the proteome of the secretome and whole cell lysate. Of the entire cell lysate proteome (oPBMCs: 4217, hPBMCs: 4574 proteins) 47.8% and in the secretome proteome (oPBMCs: 1913, hPBMCs: 1375 proteins) 32.8% were orthologous between species, among them 32 orthologous CD antigens, indicating the presence of six immune cell subsets. Following inflammatory stimulation, 71 proteins in oPBMCs and 176 in hPBMCs showed differential abundance, with only 7 overlapping. Network and Gene Ontology analyses identified 16 shared inflammatory-related terms and 17 canonical pathways with similar activation/inhibition patterns in both species, demonstrating significant conservation in specific immune and inflammatory responses. However, ovine PMBCs also contained a unique WC1+γδ T-cell subset, not detected in hPBMCs. Furthermore, differences in the activation/inhibition trends of seven canonical pathways and the sets of DAPs between sheep and humans, emphasize the need to consider interspecies differences in translational studies and inflammation research.
Collapse
Affiliation(s)
- A Elkhamary
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Austria
- Department for Surgery, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - I Gerner
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - A Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - G L Oreff
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Austria
| | - C Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - F Jenner
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
13
|
Huang Y, Jiang C, Zhu J, Lin L, Mao M, Yin T, Cai G. Expansion of effector memory Vδ2 neg γδ T cells associates with cytomegalovirus reactivation in allogeneic stem cell transplant recipients. Front Immunol 2024; 15:1397483. [PMID: 38915409 PMCID: PMC11194311 DOI: 10.3389/fimmu.2024.1397483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Background Cytomegalovirus (CMV) reactivation is a significant concern following allogeneic stem cell transplantation. While previous research has highlighted the anti-CMV reactivation effect of γδ T cells in immunocompromised transplant patients, their characterization in recipients at high risk of CMV reactivation remains limited. Methods This study focused on D+/R+ recipients (where both donor and recipient are CMV seropositive) at high risk of CMV reactivation. We analyzed 28 patients who experienced CMV recurrence within 100 days post-allogeneic hematopoietic stem cell transplantation, along with 36 matched recipients who did not experience CMV recurrence. Clinical data from both groups were compared, and risk factors for CMV reactivation were identified. Additionally, CMV viral load was measured, and flow cytometric analysis was conducted to assess changes in peripheral blood γδ T cell proportions, subpopulation distribution, and differentiation status. We also analyzed the CDR3 repertoire of the TCR δ chain in different γδ T cell subsets. Functional analysis was performed by measuring the lysis of CMV-infected cells upon stimulation. Results CMV reactivation post-transplantation was associated with acute graft-versus-host disease (aGvHD) and reactivation of non-CMV herpesviruses. Notably, CMV reactivation led to sustained expansion of γδ T cells, primarily within the Vδ2neg γδ T cell subpopulation, with a trend toward differentiation from Naive to effector memory cells. Analysis of the δ chain CDR3 repertoire revealed a delay in the reconstitution of clonal diversity in Vδ2neg γδ T cells following CMV reactivation, while Vδ2pos T cells remained unaffected. Upon stimulation with CMV-infected MRC5 cells, the Vδ2neg γδ T cell subpopulation emerged as the primary effector cell group producing IFN-γ and capable of lysing CMV-infected cells. Moreover, our findings suggest that NKG2D is not necessary involved in Vδ2neg γδ T cell-mediated anti-CMV cytotoxicity. Conclusion This study provides novel insights into the role of γδ T cells in the immune response to CMV reactivation in transplantation recipients at high risk of CMV infection. Specifically, the Vδ2neg γδ T cell subpopulation appears to be closely associated with CMV reactivation, underscoring their potential role in controlling infection and reflecting CMV reactivation in HSCT patients.
Collapse
Affiliation(s)
- Yiwen Huang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Jiacheng Zhu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Lin Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Minjing Mao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Tong Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Gang Cai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| |
Collapse
|
14
|
Xin W, Huang B, Chi X, Liu Y, Xu M, Zhang Y, Li X, Su Q, Zhou Q. Structures of human γδ T cell receptor-CD3 complex. Nature 2024; 630:222-229. [PMID: 38657677 PMCID: PMC11153141 DOI: 10.1038/s41586-024-07439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Gamma delta (γδ) T cells, a unique T cell subgroup, are crucial in various immune responses and immunopathology1-3. The γδ T cell receptor (TCR), which is generated by γδ T cells, recognizes a diverse range of antigens independently of the major histocompatibility complex2. The γδ TCR associates with CD3 subunits, initiating T cell activation and holding great potential in immunotherapy4. Here we report the structures of two prototypical human Vγ9Vδ2 and Vγ5Vδ1 TCR-CD3 complexes5,6, revealing two distinct assembly mechanisms that depend on Vγ usage. The Vγ9Vδ2 TCR-CD3 complex is monomeric, with considerable conformational flexibility in the TCRγ-TCRδ extracellular domain and connecting peptides. The length of the connecting peptides regulates the ligand association and T cell activation. A cholesterol-like molecule wedges into the transmembrane region, exerting an inhibitory role in TCR signalling. The Vγ5Vδ1 TCR-CD3 complex displays a dimeric architecture, whereby two protomers nestle back to back through the Vγ5 domains of the TCR extracellular domains. Our biochemical and biophysical assays further corroborate the dimeric structure. Importantly, the dimeric form of the Vγ5Vδ1 TCR is essential for T cell activation. These findings reveal organizing principles of the γδ TCR-CD3 complex, providing insights into the unique properties of γδ TCR and facilitating immunotherapeutic interventions.
Collapse
MESH Headings
- Humans
- CD3 Complex/chemistry
- CD3 Complex/immunology
- CD3 Complex/metabolism
- CD3 Complex/ultrastructure
- Cholesterol/metabolism
- Cholesterol/chemistry
- Cryoelectron Microscopy
- Ligands
- Lymphocyte Activation/immunology
- Models, Molecular
- Protein Domains
- Protein Multimerization
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/ultrastructure
- T-Lymphocytes/chemistry
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Signal Transduction
- Cell Membrane/chemistry
- Cell Membrane/metabolism
Collapse
Affiliation(s)
- Weizhi Xin
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bangdong Huang
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Ximin Chi
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Science, Xiamen University, Xiamen, China
| | - Yuehua Liu
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Mengjiao Xu
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuanyuan Zhang
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xu Li
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Qiang Su
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Qiang Zhou
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
15
|
Xu L, Chen F, Fan W, Saito S, Cao D. The role of γδT lymphocytes in atherosclerosis. Front Immunol 2024; 15:1369202. [PMID: 38774876 PMCID: PMC11106432 DOI: 10.3389/fimmu.2024.1369202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Atherosclerosis poses a significant threat to human health, impacting overall well-being and imposing substantial financial burdens. Current treatment strategies mainly focus on managing low-density lipids (LDL) and optimizing liver functions. However, it's crucial to recognize that Atherosclerosis involves more than just lipid accumulation; it entails a complex interplay of immune responses. Research highlights the pivotal role of lipid-laden macrophages in the formation of atherosclerotic plaques. These macrophages attract lymphocytes like CD4 and CD8 to the inflamed site, potentially intensifying the inflammatory response. γδ T lymphocytes, with their diverse functions in innate and adaptive immune responses, pathogen defense, antigen presentation, and inflammation regulation, have been implicated in the early stages of Atherosclerosis. However, our understanding of the roles of γδ T cells in Atherosclerosis remains limited. This mini-review aims to shed light on the characteristics and functions of γδ T cells in Atherosclerosis. By gaining insights into the roles of γδ T cells, we may uncover a promising strategy to mitigate plaque buildup and dampen the inflammatory response, thereby opening new avenues for effectively managing this condition.
Collapse
Affiliation(s)
- LiMin Xu
- Department of Neurosurgery, Shenzhen Entry-Exit Frontier Inspection Hospital, Shenzhen, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
16
|
Lin TD, Rubinstein ND, Fong NL, Smith M, Craft W, Martin-McNulty B, Perry R, Delaney MA, Roy MA, Buffenstein R. Evolution of T cells in the cancer-resistant naked mole-rat. Nat Commun 2024; 15:3145. [PMID: 38605005 PMCID: PMC11009300 DOI: 10.1038/s41467-024-47264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Naked mole-rats (NMRs) are best known for their extreme longevity and cancer resistance, suggesting that their immune system might have evolved to facilitate these phenotypes. Natural killer (NK) and T cells have evolved to detect and destroy cells infected with pathogens and to provide an early response to malignancies. While it is known that NMRs lack NK cells, likely lost during evolution, little is known about their T-cell subsets in terms of the evolution of the genes that regulate their function, their clonotypic diversity, and the thymus where they mature. Here we find, using single-cell transcriptomics, that NMRs have a large circulating population of γδT cells, which in mice and humans mostly reside in peripheral tissues and induce anti-cancer cytotoxicity. Using single-cell-T-cell-receptor sequencing, we find that a cytotoxic γδT-cell subset of NMRs harbors a dominant clonotype, and that their conventional CD8 αβT cells exhibit modest clonotypic diversity. Consistently, perinatal NMR thymuses are considerably smaller than those of mice yet follow similar involution progression. Our findings suggest that NMRs have evolved under a relaxed intracellular pathogenic selective pressure that may have allowed cancer resistance and longevity to become stronger targets of selection to which the immune system has responded by utilizing γδT cells.
Collapse
Affiliation(s)
- Tzuhua D Lin
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | | | - Nicole L Fong
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | - Megan Smith
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | - Wendy Craft
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | | | - Rebecca Perry
- Department of Biological Science, University of Illinois at Chicago, Illinois, IL, USA
| | | | - Margaret A Roy
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | - Rochelle Buffenstein
- Calico Life Sciences LLC, South San Francisco, California, CA, USA.
- Department of Biological Science, University of Illinois at Chicago, Illinois, IL, USA.
| |
Collapse
|
17
|
Ibusuki A, Kawai K, Nitahara-Takeuchi A, Argüello RJ, Kanekura T. TCR signaling and cellular metabolism regulate the capacity of murine epidermal γδ T cells to rapidly produce IL-13 but not IFN-γ. Front Immunol 2024; 15:1361139. [PMID: 38482017 PMCID: PMC10933099 DOI: 10.3389/fimmu.2024.1361139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/08/2024] [Indexed: 04/17/2024] Open
Abstract
Resident epidermal T cells of murine skin, called dendritic epidermal T cells (DETCs), express an invariant γδ TCR that recognizes an unidentified self-ligand expressed on epidermal keratinocytes. Although their fetal thymic precursors are preprogrammed to produce IFN-γ, DETCs in the adult epidermis rapidly produce IL-13 but not IFN-γ early after activation. Here, we show that preprogrammed IFN-γ-producing DETC precursors differentiate into rapid IL-13 producers in the perinatal epidermis. The addition of various inhibitors of signaling pathways downstream of TCR to the in vitro differentiation model of neonatal DETCs revealed that TCR signaling through the p38 MAPK pathway is essential for the functional differentiation of neonatal DETCs. Constitutive TCR signaling at steady state was also shown to be needed for the maintenance of the rapid IL-13-producing capacity of adult DETCs because in vivo treatment with the p38 MAPK inhibitor decreased adult DETCs with the rapid IL-13-producing capacity. Adult DETCs under steady-state conditions had lower glycolytic capacity than proliferating neonatal DETCs. TCR stimulation of adult DETCs induced high glycolytic capacity and IFN-γ production during the late phase of activation. Inhibition of glycolysis decreased IFN-γ but not IL-13 production by adult DETCs during the late phase of activation. These results demonstrate that TCR signaling promotes the differentiation of IL-13-producing DETCs in the perinatal epidermis and is needed for maintaining the rapid IL-13-producing capacity of adult DETCs. The low glycolytic capacity of adult DETCs at steady state also regulates the rapid IL-13 response and delayed IFN-γ production after activation.
Collapse
Affiliation(s)
- Atsuko Ibusuki
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuhiro Kawai
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Dermatology, Kido Hospital, Niigata, Japan
| | - Ayano Nitahara-Takeuchi
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Rafael J. Argüello
- Aix Marseille Université, CNRS, INSERM, CIML, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
18
|
Linti AE, Göbel TW, Früh SP. Chicken γδ T cells proliferate upon IL-2 and IL-12 treatment and show a restricted receptor repertoire in cell culture. Front Immunol 2024; 15:1325024. [PMID: 38420118 PMCID: PMC10900522 DOI: 10.3389/fimmu.2024.1325024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
In chickens, γδ T cells represent a large fraction of peripheral T cells; however, their function remains largely unknown. Here, we describe the selective in vitro expansion of γδ T cells from total splenocytes by stimulation with the cytokines IL-2 and IL-12. Under these conditions, γδ T cells proliferated preferentially and reached frequencies of >95% within three weeks. Although IL-2 alone also triggered proliferation, an increased proliferation rate was observed in combination with IL-12. Most of the expanded cells were γδ TCR and CD8 double-positive. Splenocytes sorted into TCR1+CD8+, TCR1highCD8-, and TCR1lowCD8- subsets proliferated well upon dual stimulation with IL-2/IL-12, indicating that none of the three γδ T cell subsets require bystander activation for proliferation. TCR1+CD8+ cells maintained CD8 surface expression during stimulation, whereas CD8- subpopulations showed varied levels of CD8 upregulation, with the highest upregulation observed in the TCR1high subset. Changes in the γδ T-cell receptor repertoire during cell culture from day 0 to day 21 were analyzed by next-generation sequencing of the γδ variable regions. Overall, long-term culture led to a restricted γ and δ chain repertoire, characterized by a reduced number of unique variable region clonotypes, and specific V genes were enriched at day 21. On day 0, the δ chain repertoire was highly diverse, and the predominant clonotypes differed between animals, while the most frequent γ-chain clonotypes were shared between animals. However, on day 21, the most frequent clonotypes in both the γ and δ chain repertoires were different between animals, indicating that selective expansion of dominant clonotypes during stimulation seems to be an individual outcome. In conclusion, IL-2 and IL-12 were sufficient to stimulate the in vitro outgrowth of γδ T cells. Analyses of the TCR repertoire indicate that the culture leads to an expansion of individual T cell clones, which may reflect previous in vivo activation. This system will be instrumental in studying γδ T cell function.
Collapse
Affiliation(s)
- Antonia E. Linti
- Department of Veterinary Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas W. Göbel
- Department of Veterinary Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simon P. Früh
- Department of Veterinary Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Veterinary Medicine, Institute of Virology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
19
|
Zhu T, Zhu L, Sheng C, Wu D, Gu Q, Jiang Z, Xu J, Fu G, Jiang Y. Hyperactivation and enhanced cytotoxicity of reduced CD8 + gamma delta T cells in the intestine of patients with Crohn's disease correlates with disease activity. BMC Immunol 2024; 25:15. [PMID: 38336646 PMCID: PMC10858568 DOI: 10.1186/s12865-024-00606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND AND AIMS We aimed to investigate the immune characteristics of intestinal CD8+ gamma delta T (CD8+ γδ T) cells in Crohn's disease (CD) and their correlation with disease activity. METHODS The study cohorts included 21 CD patients and 21 healthy individuals. CD8+ γδ T cells were isolated from human ileal mucosa for detection by flow cytometry. The activation or inhibition status of cells was detected by detecting the expression of activation marker HLA-DR and the immunosuppressive molecule PD-1 on cells. The cytotoxicity of cells was assessed by detecting the expression of cytotoxic molecules (Perforin, Granzyme B, and TRAIL) in cells. Ratios of investigated cells were calculated as prediction factors by receiver operating characteristic curve (ROC) analysis. RESULTS The study revealed a reduction in intestinal CD8+ γδT cells among active CD patients, with a more pronounced reduction observed in moderately active patients compared to mildly active patients. Moreover, active CD patients exhibited heightened activation levels in their intestinal CD8+ γδT cells, whereas the activation was comparatively weakened in moderately active patients compared with mildly active patients. Additionally, the cytotoxicity of intestinal CD8+ γδT cells was enhanced solely in mildly active patients, while it was impaired in moderately active patients compared with mildly active patients. Furthermore, HLA-DR+ CD8+ γδT cell ratio, CD8+ γδT ratio, and CD8+ γδT count were identified as indicators in the diagnosis of active CD. Meanwhile, the ratios of Granzyme B+ CD8+ γδT cell and Perforin+ CD8+ γδT cell were identified as indicators that distinguish mildly moderately active CD cases. CONCLUSIONS Intestinal CD8+ γδT was reduced in active CD patients, but their activation and cytotoxicity were enhanced. However, with increased disease activity, intestinal CD8+ γδ T cells became dysfunctional. CD-specific perturbations observed in various phenotypic markers in CD8+ γδ T cells can be used as indicators to assist in diagnosing CD patients.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Pathology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Linlin Zhu
- Department of Gastroenterology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Caixia Sheng
- Department of Pathology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Danju Wu
- Department of Pathology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Qianru Gu
- Department of Pathology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Zhinong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jiaqi Xu
- Department of Pathology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Guoxiang Fu
- Department of Pathology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yujie Jiang
- Department of Pathology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
20
|
Nabors LB, Lamb LS, Goswami T, Rochlin K, Youngblood SL. Adoptive cell therapy for high grade gliomas using simultaneous temozolomide and intracranial mgmt-modified γδ t cells following standard post-resection chemotherapy and radiotherapy: current strategy and future directions. Front Immunol 2024; 15:1299044. [PMID: 38384458 PMCID: PMC10880006 DOI: 10.3389/fimmu.2024.1299044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Cellular therapies, including chimeric antigen receptor T cell therapies (CAR-T), while generally successful in hematologic malignancies, face substantial challenges against solid tumors such as glioblastoma (GBM) due to rapid growth, antigen heterogeneity, and inadequate depth of response to cytoreductive and immune therapies, We have previously shown that GBM constitutively express stress associated NKG2D ligands (NKG2DL) recognized by gamma delta (γδ) T cells, a minor lymphocyte subset that innately recognize target molecules via the γδ T cell receptor (TCR), NKG2D, and multiple other mechanisms. Given that NKG2DL expression is often insufficient on GBM cells to elicit a meaningful response to γδ T cell immunotherapy, we then demonstrated that NKG2DL expression can be transiently upregulated by activation of the DNA damage response (DDR) pathway using alkylating agents such as Temozolomide (TMZ). TMZ, however, is also toxic to γδ T cells. Using a p140K/MGMT lentivector, which confers resistance to TMZ by expression of O(6)-methylguanine-DNA-methyltransferase (MGMT), we genetically engineered γδ T cells that maintain full effector function in the presence of therapeutic doses of TMZ. We then validated a therapeutic system that we termed Drug Resistance Immunotherapy (DRI) that combines a standard regimen of TMZ concomitantly with simultaneous intracranial infusion of TMZ-resistant γδ T cells in a first-in-human Phase I clinical trial (NCT04165941). This manuscript will discuss DRI as a rational therapeutic approach to newly diagnosed GBM and the importance of repeated administration of DRI in combination with the standard-of-care Stupp regimen in patients with stable minimal residual disease.
Collapse
Affiliation(s)
- L B Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - L S Lamb
- IN8Bio, Inc., New York, NY, United States
| | - T Goswami
- IN8Bio, Inc., New York, NY, United States
| | - K Rochlin
- IN8Bio, Inc., New York, NY, United States
| | | |
Collapse
|
21
|
Yang J, Zhu X, Feng J. The Changes in the Quantity of Lymphocyte Subpopulations during the Process of Sepsis. Int J Mol Sci 2024; 25:1902. [PMID: 38339179 PMCID: PMC10855580 DOI: 10.3390/ijms25031902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Sepsis remains a global challenge, especially in low- and middle-income countries, where there is an urgent need for easily accessible and cost-effective biomarkers to predict the occurrence and prognosis of sepsis. Lymphocyte counts are easy to measure clinically, and a large body of animal and clinical research has shown that lymphocyte counts are closely related to the incidence and prognosis of sepsis. This review extensively collected experimental articles related to lymphocyte counts since the unification of the definition of sepsis. The article categorizes and discusses the relationship between absolute lymphocyte counts, intrinsic lymphocyte subsets, effector T-lymphocytes, B-lymphocytes, dendritic cells, and the incidence and prognosis of sepsis. The results indicate that comparisons of absolute lymphocyte counts alone are meaningless. However, in addition to absolute lymphocyte counts, innate lymphocyte subsets, effector T-cells, B-lymphocytes, and dendritic cells have shown certain research value in related studies.
Collapse
Affiliation(s)
- Jiale Yang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
22
|
Das D, Arava S, Khandpur S, Santosh KV, Akhtar S, Sharma A. Dominance and improved survivability of human γδT17 cell subset aggravates the immunopathogenesis of pemphigus vulgaris. Immunol Res 2024; 72:72-81. [PMID: 37620509 DOI: 10.1007/s12026-023-09413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
Human γδ T cells are highly enriched in epithelial cell-dominated compartments like skin. Nonetheless, their function in the pathogenesis of pemphigus vulgaris (PV), an autoimmune skin disorder, is lacking. Therefore, we investigated the functional expression of human γδT cell subsets along with their homing chemokine receptor-ligand and inflammatory cytokines in the immunopathogenesis of PV. Estimation of the frequency of γδT cell subsets by flow cytometry revealed four major subsets of γδ T cells (γδT1, γδT2, γδT17, γδTreg) in both control and PV circulation. The elevated frequency of γδT17 cells producing IL17 and expressing CCR6 receptor suggests their inflammatory and migratory potential in PV. In vitro culture of γδ T cells from patients showed increased mRNA expression of inflammatory cytokines IL17, RORγt, IL23, IL1, and co-stimulatory markers, CD27 and CD70. These findings correlated the role of IL1 and IL23 cytokines that alleviate the Th17 population in PV. Cytotoxic activities of γδ T cells were higher and inflammatory γδT17 cells were localized in the skin of PV whereas γδTreg cells associated TGFβ and FOXP3 were lowered. Hyperinflammatory phenotype of the γδT17 cell subset and its migratory potential might be aiding in the pathogenesis of PV, whereas γδTreg cells fail to suppress these inflammatory responses. Hence, γδT17 cell-associated markers can be targeted for identifying novel therapeutics in PV.
Collapse
Affiliation(s)
- Dayasagar Das
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sudheer Arava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sujay Khandpur
- Department of Dermatology & Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - K V Santosh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Shamima Akhtar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
23
|
Nakashima M, Tanaka Y, Okamura H, Kato T, Imaizumi Y, Nagai K, Miyazaki Y, Murota H. Development of Innate-Immune-Cell-Based Immunotherapy for Adult T-Cell Leukemia-Lymphoma. Cells 2024; 13:128. [PMID: 38247820 PMCID: PMC10814776 DOI: 10.3390/cells13020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/31/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
γδ T cells and natural killer (NK) cells have attracted much attention as promising effector cell subsets for adoptive transfer for use in the treatment of malignant and infectious diseases, because they exhibit potent cytotoxic activity against a variety of malignant tumors, as well as virus-infected cells, in a major histocompatibility complex (MHC)-unrestricted manner. In addition, γδ T cells and NK cells express a high level of CD16, a receptor required for antibody-dependent cellular cytotoxicity. Adult T-cell leukemia-lymphoma (ATL) is caused by human T-lymphotropic virus type I (HTLV-1) and is characterized by the proliferation of malignant peripheral CD4+ T cells. Although several treatments, such as chemotherapy, monoclonal antibodies, and allogeneic hematopoietic stem cell transplantation, are currently available, their efficacy is limited. In order to develop alternative therapeutic modalities, we considered the possibility of infusion therapy harnessing γδ T cells and NK cells expanded using a novel nitrogen-containing bisphosphonate prodrug (PTA) and interleukin (IL)-2/IL-18, and we examined the efficacy of the cell-based therapy for ATL in vitro. Peripheral blood samples were collected from 55 patients with ATL and peripheral blood mononuclear cells (PBMCs) were stimulated with PTA and IL-2/IL-18 for 11 days to expand γδ T cells and NK cells. To expand NK cells alone, CD3+ T-cell-depleted PBMCs were cultured with IL-2/IL-18 for 10 days. Subsequently, the expanded cells were examined for cytotoxicity against ATL cell lines in vitro. The proportion of γδ T cells in PBMCs was markedly low in elderly ATL patients. The median expansion rate of the γδ T cells was 1998-fold, and it was 12-fold for the NK cells, indicating that γδ T cells derived from ATL patients were efficiently expanded ex vivo, irrespective of aging and HTLV-1 infection status. Anti-CCR4 antibodies enhanced the cytotoxic activity of the γδ T cells and NK cells against HTLV-1-infected CCR4-expressing CD4+ T cells in an antibody concentration-dependent manner. Taken together, the adoptive transfer of γδ T cells and NK cells expanded with PTA/IL-2/IL-18 is a promising alternative therapy for ATL.
Collapse
Affiliation(s)
- Maho Nakashima
- Department of Dermatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki 852-8588, Japan
| | - Haruki Okamura
- Department of Tumor Cell Therapy, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - Takeharu Kato
- Department of Hematology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Yoshitaka Imaizumi
- Department of Hematology, National Hospital Organization Nagasaki Medical Center, Omura 856-8562, Japan
| | - Kazuhiro Nagai
- Department of Clinical Laboratory, National Hospital Organization Nagasaki Medical Center, Omura 856-8562, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hiroyuki Murota
- Department of Dermatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
- Leading Medical Research Core Unit, Life Science Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan
| |
Collapse
|
24
|
Kotwal A, Gustafson MP, Bornschlegl S, Dietz AB, Delivanis D, Ryder M. Circulating immunophenotypes are potentially prognostic in follicular cell-derived thyroid cancer. Front Immunol 2024; 14:1325343. [PMID: 38235146 PMCID: PMC10792034 DOI: 10.3389/fimmu.2023.1325343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Background Exploring the immune interface of follicular cell-derived thyroid cancer has prognostic and therapeutic potential. The available literature is lacking for comprehensive immunophenotyping in relation to clinical outcomes. In this study, we identify circulating immunophenotypes associated with thyroid cancer prognosis. Methods We conducted a pilot observational study of adults with follicular cell-derived thyroid cancer who underwent surgery at our tertiary care referral center and had consented for flow cytometry on peripheral blood collected at the time of thyroidectomy. Results Of the 32 included subjects, 20 (62%) had well differentiated, 5 (16%) had poorly differentiated, and 7 (22%) had anaplastic thyroid cancer. The most frequent AJCC stage was 4 (59%) and the ATA risk of recurrence category was high (56%). Patients with AJCC stage 3/4 demonstrated fewer circulating mononuclear cells (CD45+), more monocytes (CD14+), fewer total lymphocytes (CD14-), fewer T cells (CD3+), fewer CD4+ T cells, fewer gamma-delta T cells, fewer natural killer (NK) T-like cells, more myeloid-derived suppressor cells (MDSCs; Lin-CD33+HLADR-), and more effector memory T cells but similar CD8+ T cells compared to stage1/2. Immunophenotype comparisons by ATA risk stratification and course of thyroid cancer were comparable to those observed for stage, except for significant differences in memory T cell subtypes. The median follow-up was 58 months. Conclusions Aggressive follicular cell-derived thyroid cancer either at presentation or during follow-up is associated with down-regulation of the T cell populations specifically CD4+ T cells, gamma-delta T cells, and NK T-like cells but up-regulation of MDSCs and altered memory T cells. These immunophenotypes are potential prognostic biomarkers supporting future investigation for developing targeted immunotherapies against advanced thyroid cancer.
Collapse
Affiliation(s)
- Anupam Kotwal
- Division of Diabetes, Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE, United States
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, United States
| | - Michael P. Gustafson
- Divisions of Experimental Pathology and Transfusion Medicine, Mayo Clinic, Rochester, MN, United States
- Division of Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Svetlana Bornschlegl
- Divisions of Experimental Pathology and Transfusion Medicine, Mayo Clinic, Rochester, MN, United States
| | - Allan B. Dietz
- Divisions of Experimental Pathology and Transfusion Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Danae Delivanis
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, United States
| | - Mabel Ryder
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, United States
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
25
|
Liu S, Wei S, Sun Y, Xu G, Zhang S, Li J. Molecular Characteristics, Functional Definitions, and Regulatory Mechanisms for Cross-Presentation Mediated by the Major Histocompatibility Complex: A Comprehensive Review. Int J Mol Sci 2023; 25:196. [PMID: 38203367 PMCID: PMC10778590 DOI: 10.3390/ijms25010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The major histocompatibility complexes of vertebrates play a key role in the immune response. Antigen-presenting cells are loaded on MHC I molecules, which mainly present endogenous antigens; when MHC I presents exogenous antigens, this is called cross-presentation. The discovery of cross-presentation provides an important theoretical basis for the study of exogenous antigens. Cross-presentation is a complex process in which MHC I molecules present antigens to the cell surface to activate CD8+ T lymphocytes. The process of cross-representation includes many components, and this article briefly outlines the origins and development of MHC molecules, gene structures, functions, and their classical presentation pathways. The cross-presentation pathways of MHC I molecules, the cell lines that support cross-presentation, and the mechanisms of MHC I molecular transporting are all reviewed. After more than 40 years of research, the specific mechanism of cross-presentation is still unclear. In this paper, we summarize cross-presentation and anticipate the research and development prospects for cross-presentation.
Collapse
Affiliation(s)
| | | | | | | | - Shidong Zhang
- Engineering Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.L.); (S.W.); (Y.S.); (G.X.)
| | - Jianxi Li
- Engineering Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.L.); (S.W.); (Y.S.); (G.X.)
| |
Collapse
|
26
|
Quinn KM, Vicencio DM, La Gruta NL. The paradox of aging: Aging-related shifts in T cell function and metabolism. Semin Immunol 2023; 70:101834. [PMID: 37659169 DOI: 10.1016/j.smim.2023.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
T cell survival, differentiation after stimulation, and function are intrinsically linked to distinct cellular metabolic states. The ability of T cells to readily transition between metabolic states enables flexibility to meet the changing energy demands defined by distinct effector states or T cell lineages. Immune aging is characterized, in part, by the loss of naïve T cells, accumulation of senescent T cells, severe dysfunction in memory phenotype T cells in particular, and elevated levels of inflammatory cytokines, or 'inflammaging'. Here, we review our current understanding of the phenotypic and functional changes that occur with aging in T cells, and how they relate to metabolic changes in the steady state and after T cell activation. We discuss the apparent contradictions in the aging T cell phenotype - where enhanced differentiation states and metabolic profiles in the steady state can correspond to a diminished capacity to adapt metabolically and functionally after T cell activation. Finally, we discuss key recent studies that indicate the enormous potential for aged T cell metabolism to induce systemic inflammaging and organism-wide multimorbidity, resulting in premature death.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia; Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniela M Vicencio
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Division of Biomedical Sciences, Warwick Medical School, The University of Warwick, Coventry, UK
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
27
|
Comeau K, Shokoples B, Caillon A, Paradis P, Schiffrin EL. Angiotensin II-Induced Memory γδ T Cells Sensitize Mice to a Mild Hypertensive Stimulus. Am J Hypertens 2023; 36:619-628. [PMID: 37549970 PMCID: PMC10570659 DOI: 10.1093/ajh/hpad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Memory T cells develop during an initial hypertensive episode, sensitizing mice to develop hypertension from further mild hypertensive challenges. We hypothesized that memory γδ T cells develop after a hypertensive challenge and sensitize mice to develop hypertension in response to a subsequent mild hypertensive challenge. METHODS The first aim was to profile memory γδ T cells after a 14-day pressor dose angiotensin II (AngII) infusion (490 ng/kg/min, subcutaneously) in male mice. The second aim was to deplete γδ T cells during a second 14-day subpressor dose AngII challenge (140 ng/kg/min, subcutaneously) in mice pre-exposed to an initial pressor dose AngII challenge. The third aim was to transfer 2.5 × 105 live pre-activated or not γδ T cells from mice that had received a 14-day pressor dose AngII infusion or sham treatment, to naive recipient mice stimulated with a subpressor dose AngII infusion. RESULTS Effector memory γδ T cells increased 5.2-fold in mesenteric vessels and perivascular adipose tissue, and 1.8-fold in mesenteric lymph nodes in pressor dose AngII-infused mice compared with sham-treated mice. Mice depleted of γδ T cells had 14 mm Hg lower systolic blood pressure (SBP) elevation than control mice from day 7 to 14 of subpressor dose AngII infusion. Adoptive transfer of γδ T cells from hypertensive mice induced an 18 mm Hg higher SBP elevation compared with a subpressor dose AngII infusion vs. γδ T cells transferred from sham-treated mice. CONCLUSIONS Memory γδ T cells develop in response to hypertensive stimuli, and contribute to the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Kevin Comeau
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Brandon Shokoples
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Antoine Caillon
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
| |
Collapse
|
28
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Choi H, Kim TG, Jeun SS, Ahn S. Human gamma-delta (γδ) T cell therapy for glioblastoma: A novel alternative to overcome challenges of adoptive immune cell therapy. Cancer Lett 2023; 571:216335. [PMID: 37544475 DOI: 10.1016/j.canlet.2023.216335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/01/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Glioblastoma is the most common brain malignancy with devastating prognosis. Numerous clinical trials using various target therapeutic agents have failed and recent clinical trials using check point inhibitors also failed to provide survival benefits for glioblastoma patients. Adoptive T cell transfer is suggested as a novel therapeutic approach that has exhibited promise in preliminary clinical studies. However, the clinical outcomes are inconsistent, and there are several limitations of current adoptive T cell transfer strategies for glioblastoma treatment. As an alternative cell therapy, gamma-delta (γδ) T cells have been recently introduced for several cancers including glioblastoma. Since the leading role of γδ T cells is immune surveillance by recognizing a broad range of ligands including stress molecules, phosphoantigens, or lipid antigens, recent studies have suggested the potential benefits of γδ T cell transfer against glioblastomas. However, γδ T cells, as a small subset (1-5%) of T cells in human peripheral blood, are relatively unknown compared to conventional alpha-beta (αβ) T cells. In this context, our study introduced γδ T cells as an alternative and novel option to overcome several challenges regarding immune cell therapy in glioblastoma treatment. We described the unique characteristics and advantages of γδ T cells compared to conventional αβ T cells and summarize several recent preclinical studies using human gamma-delta T cell therapy for glioblastomas. Finally, we suggested future direction of human γδ T cell therapy for glioblastomas.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Rebpulic of Korea; Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Rebpulic of Korea; Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Perriman L, Tavakolinia N, Jalali S, Li S, Hickey PF, Amann-Zalcenstein D, Ho WWH, Baldwin TM, Piers AT, Konstantinov IE, Anderson J, Stanley EG, Licciardi PV, Kannourakis G, Naik SH, Koay HF, Mackay LK, Berzins SP, Pellicci DG. A three-stage developmental pathway for human Vγ9Vδ2 T cells within the postnatal thymus. Sci Immunol 2023; 8:eabo4365. [PMID: 37450574 DOI: 10.1126/sciimmunol.abo4365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Vγ9Vδ2 T cells are the largest population of γδ T cells in adults and can play important roles in providing effective immunity against cancer and infection. Many studies have suggested that peripheral Vγ9Vδ2 T cells are derived from the fetal liver and thymus and that the postnatal thymus plays little role in the development of these cells. More recent evidence suggested that these cells may also develop postnatally in the thymus. Here, we used high-dimensional flow cytometry, transcriptomic analysis, functional assays, and precursor-product experiments to define the development pathway of Vγ9Vδ2 T cells in the postnatal thymus. We identify three distinct stages of development for Vγ9Vδ2 T cells in the postnatal thymus that are defined by the progressive acquisition of functional potential and major changes in the expression of transcription factors, chemokines, and other surface markers. Furthermore, our analysis of donor-matched thymus and blood revealed that the molecular requirements for the development of functional Vγ9Vδ2 T cells are delivered predominantly by the postnatal thymus and not in the periphery. Tbet and Eomes, which are required for IFN-γ and TNFα expression, are up-regulated as Vγ9Vδ2 T cells mature in the thymus, and mature thymic Vγ9Vδ2 T cells rapidly express high levels of these cytokines after stimulation. Similarly, the postnatal thymus programs Vγ9Vδ2 T cells to express the cytolytic molecules, perforin, granzyme A, and granzyme K. This study provides a greater understanding of how Vγ9Vδ2 T cells develop in humans and may lead to opportunities to manipulate these cells to treat human diseases.
Collapse
Affiliation(s)
- Louis Perriman
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Australia
- Federation University Australia, Ballarat, Australia
| | - Naeimeh Tavakolinia
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Sedigheh Jalali
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Shuo Li
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Peter F Hickey
- Advanced Genomics Facility and Single Cell Open Research Endeavour (SCORE), Advanced Technology and Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Daniela Amann-Zalcenstein
- Advanced Genomics Facility and Single Cell Open Research Endeavour (SCORE), Advanced Technology and Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - William Wing Ho Ho
- Advanced Genomics Facility and Single Cell Open Research Endeavour (SCORE), Advanced Technology and Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Tracey M Baldwin
- Advanced Genomics Facility and Single Cell Open Research Endeavour (SCORE), Advanced Technology and Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Adam T Piers
- Murdoch Children's Research Institute, Melbourne, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Melbourne, Australia
| | - Igor E Konstantinov
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Melbourne, Australia
- Cardiothoracic Surgery, Royal Children's Hospital, Melbourne, Australia
| | - Jeremy Anderson
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Paul V Licciardi
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, Australia
- Federation University Australia, Ballarat, Australia
| | - Shalin H Naik
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Stuart P Berzins
- Fiona Elsey Cancer Research Institute, Ballarat, Australia
- Federation University Australia, Ballarat, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Daniel G Pellicci
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Melbourne, Australia
| |
Collapse
|
31
|
Mazinani M, Rahbarizadeh F. New cell sources for CAR-based immunotherapy. Biomark Res 2023; 11:49. [PMID: 37147740 PMCID: PMC10163725 DOI: 10.1186/s40364-023-00482-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, in which a patient's own T lymphocytes are engineered to recognize and kill cancer cells, has achieved striking success in some hematological malignancies in preclinical and clinical trials, resulting in six FDA-approved CAR-T products currently available in the market. Despite impressive clinical outcomes, concerns about treatment failure associated with low efficacy or high cytotoxicity of CAR-T cells remain. While the main focus has been on improving CAR-T cells, exploring alternative cellular sources for CAR generation has garnered growing interest. In the current review, we comprehensively evaluated other cell sources rather than conventional T cells for CAR generation.
Collapse
Affiliation(s)
- Marzieh Mazinani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
32
|
Singh A, Adam A, Rodriguez L, Peng BH, Wang B, Xie X, Shi PY, Homma K, Wang T. Oral Supplementation with AHCC ®, a Standardized Extract of Cultured Lentinula edodes Mycelia, Enhances Host Resistance against SARS-CoV-2 Infection. Pathogens 2023; 12:554. [PMID: 37111440 PMCID: PMC10144296 DOI: 10.3390/pathogens12040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has significantly impacted global public health safety and the economy. Multiple antiviral drugs have been developed, and some have received regulatory approval and/or authorization. The use of nutraceuticals can be beneficial for preventing and treating COVID-19 complications. AHCC is a standardized, cultured extract of an edible mushroom Lentinula edodes of the Basidiomycete family of fungi that is enriched in acylated α-1,4-glucans. Here, we evaluated the effects of the oral administration of AHCC on the host response to SARS-CoV-2 infection in two murine models, K18-hACE2 transgenic mice and immunocompetent BALB/c mice. Oral administration of AHCC every other day for one week before and one day post SARS-CoV-2 infection in both strains of mice decreased the viral load and attenuated inflammation in the lungs. AHCC treatment also significantly reduced SARS-CoV-2-induced lethality in the K18-hACE2 mice. AHCC administration enhanced the expansion of γδ T cells in the spleen and lungs before and after viral infection and promoted T helper 1-prone mucosal and systemic T cell responses in both models. In AHCC-fed BALB/c mice, SARS-CoV-2 specific IgG responses were also enhanced. In summary, AHCC supplementation enhances host resistance against mild and severe COVID-19 infection primarily via the promotion of innate and adaptive T cell immune responses in mice.
Collapse
Affiliation(s)
- Ankita Singh
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Leslie Rodriguez
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Binbin Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuping Xie
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kohei Homma
- Research and Development Division, Amino Up Co., Ltd., Sapporo 004-0839, Hokkaido, Japan
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
33
|
Rancan C, Arias-Badia M, Dogra P, Chen B, Aran D, Yang H, Luong D, Ilano A, Li J, Chang H, Kwek SS, Zhang L, Lanier LL, Meng MV, Farber DL, Fong L. Exhausted intratumoral Vδ2 - γδ T cells in human kidney cancer retain effector function. Nat Immunol 2023; 24:612-624. [PMID: 36928415 PMCID: PMC10063448 DOI: 10.1038/s41590-023-01448-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 02/03/2023] [Indexed: 03/18/2023]
Abstract
Gamma delta (γδ) T cells reside within human tissues including tumors, but their function in mediating antitumor responses to immune checkpoint inhibition is unknown. Here we show that kidney cancers are infiltrated by Vδ2- γδ T cells, with equivalent representation of Vδ1+ and Vδ1- cells, that are distinct from γδ T cells found in normal human tissues. These tumor-resident Vδ2- T cells can express the transcriptional program of exhausted αβ CD8+ T cells as well as canonical markers of terminal T-cell exhaustion including PD-1, TIGIT and TIM-3. Although Vδ2- γδ T cells have reduced IL-2 production, they retain expression of cytolytic effector molecules and co-stimulatory receptors such as 4-1BB. Exhausted Vδ2- γδ T cells are composed of three distinct populations that lack TCF7, are clonally expanded and express cytotoxic molecules and multiple Vδ2- T-cell receptors. Human tumor-derived Vδ2- γδ T cells maintain cytotoxic function and pro-inflammatory cytokine secretion in vitro. The transcriptional program of Vδ2- T cells in pretreatment tumor biopsies was used to predict subsequent clinical responses to PD-1 blockade in patients with cancer. Thus, Vδ2- γδ T cells within the tumor microenvironment can contribute to antitumor efficacy.
Collapse
Affiliation(s)
- Chiara Rancan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Marcel Arias-Badia
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Pranay Dogra
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Brandon Chen
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Dvir Aran
- The Taub Faculty of Computer Science and Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hai Yang
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Diamond Luong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Arielle Ilano
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jacky Li
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Hewitt Chang
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Serena S Kwek
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Li Zhang
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Lewis L Lanier
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Maxwell V Meng
- Department of Urology, University of California, San Francisco, CA, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, CA, USA.
| |
Collapse
|
34
|
Murai N, Koyanagi-Aoi M, Terashi H, Aoi T. Re-generation of cytotoxic γδT cells with distinctive signatures from human γδT-derived iPSCs. Stem Cell Reports 2023; 18:853-868. [PMID: 36963392 PMCID: PMC10147660 DOI: 10.1016/j.stemcr.2023.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/26/2023] Open
Abstract
For a long time, ex vivo-expanded peripheral-blood-derived γδT cell (PBγδT)-based immunotherapy has been attractive, and clinical trials have been undertaken. However, the difficulty in expanding cytotoxic γδT cells to an adequate number has been a major limitation to the efficacy of treatment in most cases. We successfully re-generated γδT cells from γδT cell-derived human induced pluripotent stem cells (iPSCs). The iPSC-derived γδT cells (iγδTs) killed several cancer types in a major histocompatibility complex (MHC)-unrestricted manner. Single-cell RNA sequencing (scRNA-seq) revealed that the iγδTs were identical to a minor subset of PBγδTs. Compared with a major subset of PBγδTs, the iγδTs showed a distinctive gene expression pattern: lower CD2, CD5, and antigen-presenting genes; higher CD7, KIT, and natural killer (NK) cell markers. The iγδTs expressed granzyme B and perforin but not interferon gamma (IFNγ). Our data provide a new source for γδT cell-based immunotherapy without quantitative limitation.
Collapse
Affiliation(s)
- Nobuyuki Murai
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan; Division of Plastic Surgery, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan; Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Hiroto Terashi
- Division of Plastic Surgery, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Takashi Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan; Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Hyogo, Japan.
| |
Collapse
|
35
|
Patras L, Shaashua L, Matei I, Lyden D. Immune determinants of the pre-metastatic niche. Cancer Cell 2023; 41:546-572. [PMID: 36917952 PMCID: PMC10170403 DOI: 10.1016/j.ccell.2023.02.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
Primary tumors actively and specifically prime pre-metastatic niches (PMNs), the future sites of organotropic metastasis, preparing these distant microenvironments for disseminated tumor cell arrival. While initial studies of the PMN focused on extracellular matrix alterations and stromal reprogramming, it is increasingly clear that the far-reaching effects of tumors are in great part achieved through systemic and local PMN immunosuppression. Here, we discuss recent advances in our understanding of the tumor immune microenvironment and provide a comprehensive overview of the immune determinants of the PMN's spatiotemporal evolution. Moreover, we depict the PMN immune landscape, based on functional pre-clinical studies as well as mounting clinical evidence, and the dynamic, reciprocal crosstalk with systemic changes imposed by cancer progression. Finally, we outline emerging therapeutic approaches that alter the dynamics of the interactions driving PMN formation and reverse immunosuppression programs in the PMN ensuring early anti-tumor immune responses.
Collapse
Affiliation(s)
- Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lee Shaashua
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
36
|
Eschke M, Moore PF, Chang H, Alber G, Keller SM. Canine peripheral blood TCRαβ T cell atlas: Identification of diverse subsets including CD8A + MAIT-like cells by combined single-cell transcriptome and V(D)J repertoire analysis. Front Immunol 2023; 14:1123366. [PMID: 36911660 PMCID: PMC9995359 DOI: 10.3389/fimmu.2023.1123366] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/25/2023] Open
Abstract
The dog is valued as a companion animal and increasingly recognized as a model for human disorders. Given the importance of T cells in health and disease, comprehensive knowledge of canine T cells can contribute to our understanding of pathogenesis mechanisms and inform the development of new treatment strategies. However, the diversity of canine T cells is still poorly understood mainly due to the lack of species-reactive antibodies for use in flow cytometry. The aim of this study was to generate a detailed atlas of peripheral blood TCRαβ+ T cells of healthy dogs using single-cell RNA-sequencing (scRNAseq) combined with immune repertoire sequencing. A total of 22 TCRαβ+ T cell clusters were identified, which were classified into three major groups: CD4-dominant (11 clusters), CD8A-dominant (8 clusters), and CD4/CD8A-mixed (3 clusters). Based on differential gene expression, distinct differentiation states (naïve, effector, memory, exhausted) and lineages (e.g. CD4 T helper and regulatory T cells) could be distinguished. Importantly, several T cell populations were identified, which have not been described in dogs before. Of particular note, our data provide first evidence for the existence of canine mucosa-associated invariant T cell (MAIT)-like cells, representing one of three newly identified FCER1G+ innate-like CD8A+ T cell populations in the peripheral blood of healthy dogs. In conclusion, using scRNAseq combined with immune repertoire sequencing we were able to resolve canine TCRαβ+ T cell populations at unprecedented resolution. The peripheral blood TCRαβ+ T cell atlas of healthy dogs generated here represents an important reference data set for future studies and is of relevance for identifying new targets for T cell-specific therapies.
Collapse
Affiliation(s)
- Maria Eschke
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Peter F Moore
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Haiyang Chang
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada
| | - Gottfried Alber
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Stefan M Keller
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| |
Collapse
|
37
|
Corsale AM, Di Simone M, Lo Presti E, Dieli F, Meraviglia S. γδ T cells and their clinical application in colon cancer. Front Immunol 2023; 14:1098847. [PMID: 36793708 PMCID: PMC9923022 DOI: 10.3389/fimmu.2023.1098847] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
In recent years, research has focused on colorectal cancer to implement modern treatment approaches to improve patient survival. In this new era, γδ T cells constitute a new and promising candidate to treat many types of cancer because of their potent killing activity and their ability to recognize tumor antigens independently of HLA molecules. Here, we focus on the roles that γδ T cells play in antitumor immunity, especially in colorectal cancer. Furthermore, we provide an overview of small-scale clinical trials in patients with colorectal cancer employing either in vivo activation or adoptive transfer of ex vivo expanded γδ T cells and suggest possible combinatorial approaches to treat colon cancer.
Collapse
Affiliation(s)
- Anna Maria Corsale
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| | - Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| | - Elena Lo Presti
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR)I, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| |
Collapse
|
38
|
Abstract
T cell development is a complex multistep process that requires the coordinated activation of distinct signaling responses and the regulated progression of developing cells (thymocytes) through key stages of maturation. Although sophisticated techniques such as fetal thymus organ culture, in vitro thymocyte culture, and multiparameter flow cytometry-based cell sorting are now widely employed to evaluate thymocyte maturation by experienced laboratories, defects in T cell development can usually be identified with relatively simple flow cytometry screening methods. Here, we provide a basic protocol for assessment of T cell development that will enable laboratories with access to a multi-laser flow cytometer to screen mouse strains, including those generated from embryonic stem cells with targeted gene mutations, for thymocyte maturation defects.
Collapse
Affiliation(s)
- Jan Y M Lee
- Section on Hematopoiesis and Lymphocyte Biology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
39
|
Knight A, Piskacek M, Jurajda M, Prochazkova J, Racil Z, Zackova D, Mayer J. Expansions of tumor-reactive Vdelta1 gamma-delta T cells in newly diagnosed patients with chronic myeloid leukemia. Cancer Immunol Immunother 2022; 72:1209-1224. [PMID: 36376516 PMCID: PMC10110709 DOI: 10.1007/s00262-022-03312-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
AbstractRecent studies have underscored the importance of gamma-delta (γδ) T cells in mediating potent MHC-unrestricted cytotoxicity in numerous malignancies. Here, we analyzed Vδ1 and Vδ2 γδ T cell subsets in newly diagnosed chronic myeloid leukemia (CML) patients (n = 40) who had initiated tyrosine kinase inhibitor (TKI) therapy including imatinib (n = 22), nilotinib (n = 14) and dasatinib (n = 4). Patient peripheral blood samples were analyzed at diagnosis and monitored prospectively at 3, 6, 12 and 18 months post-TKI. γδ T cells isolated from healthy donors and CML patients were used against K562, LAMA-84 and KYO-1 cell lines and against primary CML cells in cytotoxicity assays. We found large expansions of Vδ1 and Vδ2 T cells in patients at diagnosis compared to age-matched healthy donors (n = 40) (p < 0.0001). The γδ T cell reconstitution in patients on imatinib and also on nilotinib showed significant reductions of Vδ1 T cell and Vδ2 T cell absolute counts at 3 months compared to diagnosis. Importantly, Vδ1 and Vδ2 T absolute cell counts remained at normal levels from 3 months throughout the follow-up. Next, we observed susceptibility to specific lysis of primary CML tumor cells by Vδ1 T cells from healthy donors. Furthermore, we determined inherent cytotoxic reactivity by autologous patients’ Vδ1 T lymphocytes against primary CML tumor cells. Finally, the TCR clonality profiles showed in CML patients mostly polyclonal repertoires regardless of the TKI. Our results provide further evidence into γδ T cell antileukemia immunity in CML that might be beneficial for long-term disease control and treatment outcome.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocyte Subsets
- Cell Line
- Leukemia, Myeloid/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
Collapse
Affiliation(s)
- Andrea Knight
- Faculty of Medicine, Department of Pathological Physiology, Masaryk University, Brno, Czech Republic.
| | - Martin Piskacek
- Faculty of Medicine, Department of Pathological Physiology, Masaryk University, Brno, Czech Republic
| | - Michal Jurajda
- Faculty of Medicine, Department of Pathological Physiology, Masaryk University, Brno, Czech Republic
| | - Jirina Prochazkova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and Faculty Hospital Brno, Brno, Czech Republic
| | - Zdenek Racil
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Daniela Zackova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and Faculty Hospital Brno, Brno, Czech Republic.
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and Faculty Hospital Brno, Brno, Czech Republic
| |
Collapse
|
40
|
Singh P, Szaraz‐Szeles M, Mezei Z, Barath S, Hevessy Z. Gender-dependent frequency of unconventional T cells in a healthy adult Caucasian population: A combinational study of invariant NKT cells, γδ T cells, and mucosa-associated invariant T cells. J Leukoc Biol 2022; 112:1155-1165. [PMID: 35587609 PMCID: PMC9790664 DOI: 10.1002/jlb.5a1121-583rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/27/2022] [Indexed: 12/30/2022] Open
Abstract
This study tested the hypothesis of gender bias in frequency of unconventional T cells. Unconventional T cells exist as minor subsets of T cells in peripheral blood. Despite their low number, they play a crucial role in various immune-mediated diseases such as inflammation, autoimmunity, allergy, and cancer. Gender-based frequency of these cells altogether on large number of healthy individuals are unestablished creating hurdles to manifest association with various immune-mediated pathologic conditions. In this study, we used a multicolor flow cytometric panel to identify iNKT cells, γδ T cells, and MAIT cells altogether in the peripheral blood samples of 93 healthy adult males and 109 healthy adult females from the Caucasian population. The results revealed iNKT cell median value (% T cells) in females was higher: 0.114% ranging from 0.011 to 3.84%, than males: 0.076% (p value 0.0292), ranging from 0.007 to 0.816% and found to be negatively correlated with age in females (p value 0.0047). However, γδ T cell median value in males was higher: 2.52% ranging from 0.31 to 16.09%, than females: 1.79% (p value 0.0155), ranging from 0.078 to 12.49% and each gender was negatively correlated with age (male p value 0.0003 and female p value 0.0007). MAIT cell median values were 3.04% ranging from 0.11 to 10.75% in males and 2.67% ranging from 0.2 to 18.36% in females. MAIT cells did not show any statistically significant difference between genders and found to be negatively correlated with age (p value < 0.0001). Our results could be used for further gender-wise investigations of various pathologic conditions such as cancer and their prognosis, autoimmune diseases, allergies, and their pathogenicity.
Collapse
Affiliation(s)
- Parvind Singh
- Department of Laboratory Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Marianna Szaraz‐Szeles
- Department of Laboratory Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Zoltan Mezei
- Department of Laboratory Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Sandor Barath
- Department of Laboratory Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Zsuzsanna Hevessy
- Department of Laboratory Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
41
|
Liou ML, Lahusen T, Li H, Xiao L, Pauza CD. Reducing farnesyl diphosphate synthase levels activates Vγ9Vδ2 T cells and improves tumor suppression in murine xenograft cancer models. Front Immunol 2022; 13:1012051. [PMID: 36275712 PMCID: PMC9581136 DOI: 10.3389/fimmu.2022.1012051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Human Vγ9Vδ2 T cells are attractive candidates for cancer immunotherapy due to their potent capacity for tumor recognition and cytolysis of many tumor cell types. However, efforts to deploy clinical strategies for Vγ9Vδ2 T cell cancer therapy are hampered by insufficient potency. We are pursuing an alternate strategy of modifying tumors to increase the capacity for Vγ9Vδ2 T cell activation, as a means for strengthening the anti-tumor response by resident or ex vivo manufactured Vγ9Vδ2 T cells. Vγ9Vδ2 T cells are activated in vitro by non-peptidic antigens including isopentenyl pyrophosphate (IPP), a substrate of farnesyl diphosphate synthase (FDPS) in the pathway for biosynthesis of isoprenoids. In an effort to improve in vivo potency of Vγ9Vδ2 T cells, we reduced FDPS expression in tumor cells using a lentivirus vector encoding a short-hairpin RNA that targets FDPS mRNA (LV-shFDPS). Prostate (PC3) or hepatocellular carcinoma (Huh-7) cells transduced with LV-shFDPS induced Vγ9Vδ2 T cell stimulation in vitro, resulting in increased cytokine expression and tumor cell cytotoxicity. Immune deficient mice implanted with LV-shFDPS transduced tumor cells showed dramatic responses to intraperitoneal injection of Vγ9Vδ2 T cells with strong suppression of tumor growth. In vivo potency was increased by transducing tumor cells with a vector expressing both shFDPS and human IL-2. Tumor suppression by Vγ9Vδ2 T cells was dose-dependent with greater effects observed in mice injected with 100% LV-shFDPS transduced cells compared to mice injected with a mixture of 50% LV-shFDPS transduced cells and 50% control (no vector) tumor cells. Delivery of LV-shFDPS by intratumoral injection was insufficient to knockdown FDPS in the majority of tumor cells, resulting in insignificant tumor suppression by Vγ9Vδ2 T cells. Thus, Vγ9Vδ2 T cells efficiently targeted and suppressed tumors expressing shFDPS in mouse xenotransplant models. This proof-of-concept study demonstrates the potential for suppression of genetically modified tumors by human Vγ9Vδ2 T cells and indicates that co-expression of cytokines may boost the anti-tumor effect.
Collapse
Affiliation(s)
- Mei-Ling Liou
- American Gene Technologies International Inc., Rockville, MD, United States
| | - Tyler Lahusen
- American Gene Technologies International Inc., Rockville, MD, United States
- *Correspondence: Tyler Lahusen,
| | - Haishan Li
- American Gene Technologies International Inc., Rockville, MD, United States
- Viriom Inc., Rockville, MD, United States
| | - Lingzhi Xiao
- American Gene Technologies International Inc., Rockville, MD, United States
| | - C. David Pauza
- American Gene Technologies International Inc., Rockville, MD, United States
- Viriom Inc., Rockville, MD, United States
| |
Collapse
|
42
|
Identification of distinct functional thymic programming of fetal and pediatric human γδ thymocytes via single-cell analysis. Nat Commun 2022; 13:5842. [PMID: 36195611 PMCID: PMC9532436 DOI: 10.1038/s41467-022-33488-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/21/2022] [Indexed: 12/12/2022] Open
Abstract
Developmental thymic waves of innate-like and adaptive-like γδ T cells have been described, but the current understanding of γδ T cell development is mainly limited to mouse models. Here, we combine single cell (sc) RNA gene expression and sc γδ T cell receptor (TCR) sequencing on fetal and pediatric γδ thymocytes in order to understand the ontogeny of human γδ T cells. Mature fetal γδ thymocytes (both the Vγ9Vδ2 and nonVγ9Vδ2 subsets) are committed to either a type 1, a type 3 or a type 2-like effector fate displaying a wave-like pattern depending on gestation age, and are enriched for public CDR3 features upon maturation. Strikingly, these effector modules express different CDR3 sequences and follow distinct developmental trajectories. In contrast, the pediatric thymus generates only a small effector subset that is highly biased towards Vγ9Vδ2 TCR usage and shows a mixed type 1/type 3 effector profile. Thus, our combined dataset of gene expression and detailed TCR information at the single-cell level identifies distinct functional thymic programming of γδ T cell immunity in human. Knowledge about the ontogeny of T cells in the thymus relies heavily on mouse studies because of difficulty to obtain human material. Here the authors perform a single cell analysis of thymocytes from human fetal and paediatric thymic samples to characterise the development of human γδ T cells in the thymus.
Collapse
|
43
|
Byrne AW, Barrett D, Breslin P, Fanning J, Casey M, Madden JM, Lesellier S, Gormley E. Bovine tuberculosis in youngstock cattle: A narrative review. Front Vet Sci 2022; 9:1000124. [PMID: 36213413 PMCID: PMC9540495 DOI: 10.3389/fvets.2022.1000124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, remains a high-priority global pathogen of concern. The role of youngstock animals in the epidemiology of bTB has not been a focus of contemporary research. Here we have aimed to collate and summarize what is known about the susceptibility, diagnosis, transmission (infectiousness), and epidemiology to M. bovis in youngstock (up to 1-year of age). Youngstock are susceptible to M. bovis infection when exposed, with the capacity to develop typical bTB lesions. Calves can be exposed through similar routes as adults, via residual infection, contiguous neighborhood spread, wildlife spillback infection, and the buying-in of infected but undetected cattle. Dairy systems may lead to greater exposure risk to calves relative to other production systems, for example, via pooled milk. Given their young age, calves tend to have shorter bTB at-risk exposure periods than older cohorts. The detection of bTB varies with age when using a wide range of ante-mortem diagnostics, also with post-mortem examination and confirmation (histological and bacteriological) of infection. When recorded as positive by ante-mortem test, youngstock appear to have the highest probabilities of any age cohort for confirmation of infection post-mortem. They also appear to have the lowest false negative bTB detection risk. In some countries, many calves are moved to other herds for rearing, potentially increasing inter-herd transmission risk. Mathematical models suggest that calves may also experience lower force of infection (the rate that susceptible animals become infected). There are few modeling studies investigating the role of calves in the spread and maintenance of infection across herd networks. One study found that calves, without operating testing and control measures, can help to maintain infection and lengthen the time to outbreak eradication. Policies to reduce testing for youngstock could lead to infected calves remaining undetected and increasing onwards transmission. Further studies are required to assess the risk associated with changes to testing policy for youngstock in terms of the impact for within-herd disease control, and how this may affect the transmission and persistence of infection across a network of linked herds.
Collapse
Affiliation(s)
- Andrew W. Byrne
- One-Health and Welfare Scientific Support Unit, National Disease Control Centre, Department of Agriculture, Food and the Marine, Dublin, Ireland
- *Correspondence: Andrew W. Byrne ;
| | - Damien Barrett
- One-Health and Welfare Scientific Support Unit, National Disease Control Centre, Department of Agriculture, Food and the Marine, Dublin, Ireland
- ERAD, Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - Philip Breslin
- ERAD, Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - June Fanning
- One-Health and Welfare Scientific Support Unit, National Disease Control Centre, Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - Miriam Casey
- Centre for Veterinary Epidemiology and Risk Analysis (CVERA), School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Jamie M. Madden
- Centre for Veterinary Epidemiology and Risk Analysis (CVERA), School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Sandrine Lesellier
- Nancy Laboratory for Rabies and Wildlife (LRFSN), ANSES, Technopole Agricole et Vétérinaire, Malzéville, France
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Laboratory, School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
44
|
Li C, Lin YD, Wang WB, Xu M, Zhang N, Xiong N. Differential regulation of CD8 + CD86 + Vγ1.1 + γδT cell responses in skin barrier tissue protection and homeostatic maintenance. Eur J Immunol 2022; 52:1498-1509. [PMID: 35581932 DOI: 10.1002/eji.202249793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 11/11/2022]
Abstract
Compared to αβT cells, γδT cells are more innate-like and preferentially function as the first line of defense in barrier tissues. Certain populations of γδT cells possess adaptive immune cell properties but their regulation is not well understood. We herein report that while innate-like γδT17 cells dominated in the skin of WT mice, Vγ1.1+ γδT cells with adaptive T cell-like properties predominantly expanded in the skin of TCRβ-/- and B2m-/- mice. Commensal bacteria drove expansion of Vγ1.1+ skin γδT cells, functional properties of which correlated with local immune requirements. That is, Vγ1.1+ skin γδT cells in TCRβ-/- mice were a heterogeneous population; while Vγ1.1+ skin γδT cells in B2m-/- mice were mostly CD8+ CD86+ cells that had a similar function of CD8+ CD86+ skin αβT cells in supporting local Treg cells. We also found that intrinsic TGF-β receptor 2-derived signals in skin CD8+ αβT and γδT cells are required for their expression of CD86, a molecule important in supporting skin Treg cells. Our findings reveal broad functional potentials of γδT cells that are coordinately regulated with αβT cells to help maintain local tissue homeostasis.
Collapse
Affiliation(s)
- Chao Li
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, P. R. China
| | - Yang-Ding Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Wei-Bei Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Ming Xu
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Nu Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Na Xiong
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
- Division of Dermatology and Cutaneous Surgery, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| |
Collapse
|
45
|
Tian HF, Xing J, Tang XQ, Chi H, Sheng XZ, Zhan WB. Cluster of differentiation antigens: essential roles in the identification of teleost fish T lymphocytes. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:303-316. [PMID: 37073166 PMCID: PMC10077257 DOI: 10.1007/s42995-022-00136-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/25/2022] [Indexed: 05/03/2023]
Abstract
Cluster of differentiation (CD) antigens are cell surface molecules expressed on leukocytes and other cells associated with the immune system. Antibodies that react with CD antigens are known to be one of the most essential tools for identifying leukocyte subpopulations. T lymphocytes, as an important population of leukocytes, play essential roles in the adaptive immune system. Many of the CD antigens expressed on T lymphocytes are used as surface markers for T lymphocyte classification, including CD3, CD4 and CD8 molecules. In this review, we summarize the recent advances in the identification of CD molecules on T lymphocytes in teleosts, with emphasis on the functions of CD markers in the classification of T lymphocyte subsets. We notice that genes encoding CD3, co-receptors CD4 and CD8 have been cloned in several fish species and antibodies have been developed to study protein expression in morphological and functional contexts. T lymphocytes can be divided into CD4+ and CD8+ cells discriminated by the expression of CD4 and CD8 molecules in teleost, which are functionally similar to mammalian helper T cells (Th) and cytotoxic T cells (Tc), respectively. Further studies are still needed on the particular characteristics of teleost T cell repertoires and adaptive responses, and results will facilitate the health management and development of vaccines for fish.
Collapse
Affiliation(s)
- Hong-fei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Xiao-qian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Xiu-zhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Wen-bin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
46
|
Pramanik A, Bhattacharyya S. Myeloid derived suppressor cells and innate immune system interaction in tumor microenvironment. Life Sci 2022; 305:120755. [PMID: 35780842 DOI: 10.1016/j.lfs.2022.120755] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022]
Abstract
The tumor microenvironment is a complex domain that not only contains tumor cells but also a plethora of other host immune cells. By nature, the tumor microenvironment is a highly immunosuppressive milieu providing growing conditions for tumor cells. A major immune cell population that contributes most in the development of this immunosuppressive microenvironment is the MDSC, a heterogenous population of immature cells. Although found in small numbers only in the bone marrow of healthy individuals, they readily migrate to the lymph nodes and tumor site during cancer pathogenesis. MDSC mediated disruption of antitumor T cell activity is a major cause of the immunosuppression at the tumor site, but recent findings have shown that MDSC mediated dysfunction of other major immune cells might also play an important role. In this article we will review how crosstalk with MDSC alters the activity of both conventional and unconventional immune cells that inhibits the antitumor immunity and promotes cancer progression.
Collapse
Affiliation(s)
- Anik Pramanik
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia 723104, West Bengal, India
| | - Sankar Bhattacharyya
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia 723104, West Bengal, India.
| |
Collapse
|
47
|
Jin B, Li G, Zhou L, Fan Z. Mechanism Involved in Acute Liver Injury Induced by Intestinal Ischemia-Reperfusion. Front Pharmacol 2022; 13:924695. [PMID: 35694264 PMCID: PMC9185410 DOI: 10.3389/fphar.2022.924695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 12/28/2022] Open
Abstract
Intestinal ischemia-reperfusion (I/R) is a common pathophysiological process, which can occur in many conditions such as acute enteric ischemia, severe burns, small intestinal transplantation, etc,. Ischemia-reperfusion of the intestine is often accompanied by distal organ injury, especially liver injury. This paper outlined the signal pathways and cytokines involved in acute liver injury induced by intestinal I/R: the NF-κB Signaling Pathway, the P66shc Signaling Pathway, the HMGB1 Signaling Pathway, the Nrf2-ARE Signaling Pathway, the AMPK-SIRT-1 Signaling Pathway and other cytokines, providing new ideas for the prevention and treatment of liver injury caused by reperfusion after intestinal I/R.
Collapse
Affiliation(s)
- Binghui Jin
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.,Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Guangyao Li
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.,Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Lin Zhou
- Department of Outpatient, the NO. 967 Hospital of PLA Joint Logistics Support Force, Dalian Medical University, Dalian, China
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.,Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| |
Collapse
|
48
|
Advantages and Challenges of Differential Immune Cell Count Determination in Blood and Milk for Monitoring the Health and Well-Being of Dairy Cows. Vet Sci 2022; 9:vetsci9060255. [PMID: 35737307 PMCID: PMC9229168 DOI: 10.3390/vetsci9060255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
A key challenge of the 21st century will be to provide the growing world population with a sustainable and secure supply of food. Consequently, the dairy farming’s primary task is to lower milk losses and other inefficiencies associated with diseased cows. Moreover, a shift from curative to preventive health management would be desirable for mastitis and a wide variety of other infectious and non-infectious cattle diseases, some of which are known to have profound negative effects on the performance and well-being of cows. Differential cell counting (DCC), a procedure that aims to determine the proportions of different somatic cell types in raw milk samples, has not only the potential to optimize mastitis diagnostics, but it could furthermore serve as a diagnostic tool for monitoring the general and overall health status of dairy cows. Based on a broad search of the literature, the practical utility of various types of DCC is summarized and discussed in this review. Since it might be of advantage to interpret DCC with the aid of data from studies in humans, differences between the immune systems of humans and dairy cattle, with a special focus on surface marker expression profiles and γδ (gamma delta) T-cell characteristics, are also described.
Collapse
|
49
|
McMurray JL, von Borstel A, Taher TE, Syrimi E, Taylor GS, Sharif M, Rossjohn J, Remmerswaal EBM, Bemelman FJ, Vieira Braga FA, Chen X, Teichmann SA, Mohammed F, Berry AA, Lyke KE, Williamson KC, Stubbington MJT, Davey MS, Willcox CR, Willcox BE. Transcriptional profiling of human Vδ1 T cells reveals a pathogen-driven adaptive differentiation program. Cell Rep 2022; 39:110858. [PMID: 35613583 PMCID: PMC9533230 DOI: 10.1016/j.celrep.2022.110858] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/15/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
γδ T cells are generally considered innate-like lymphocytes, however, an ‘‘adaptive-like’’ γδ compartment has now emerged. To understand transcriptional regulation of adaptive γδ T cell immunobiology, we combined single-cell transcriptomics, T cell receptor (TCR)-clonotype assignment, ATAC-seq, and immunophenotyping. We show that adult Vδ1+ T cells segregate into TCF7+LEF1+Granzyme Bneg (Tnaive) or T-bet+Eomes+ BLIMP-1+Granzyme B+ (Teffector) transcriptional subtypes, with clonotypically expanded TCRs detected exclusively in Teffector cells. Transcriptional reprogramming mirrors changes within CD8+ αβ T cells following antigen-specific maturation and involves chromatin remodeling, enhancing cytokine production and cytotoxicity. Consistent with this, in vitro TCR engagement induces comparable BLIMP-1, Eomes, and T-bet expression in naive Vδ1+ and CD8+ T cells. Finally, both human cytomegalovirus and Plasmodium falciparum infection in vivo drive adaptive Vδ1 T cell differentiation from Tnaive to Teffector transcriptional status, alongside clonotypic expansion. Contrastingly, semi-invariant Vγ9+Vδ2+ T cells exhibit a distinct ‘‘innate-effector’’ transcriptional program established by early childhood. In summary, adaptive-like γδ subsets undergo a pathogen-driven differentiation process analogous to conventional CD8+ T cells. Using single-cell transcriptomics, TCR repertoire analysis, ATAC-seq, and immunophenotyping, McMurray et al. show naive Vδ1+ T cells can undergo transcriptional reprogramming to an effector state extremely similar to CD8 TEMRA cells. Infections, including CMV and malaria, drive both clonotypic Vδ1+ T cell expansion and differentiation to this highly conserved effector program.
Collapse
Affiliation(s)
- Jack L McMurray
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Anouk von Borstel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Taher E Taher
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Eleni Syrimi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; Department of Haematology, Birmingham Children's Hospital, Birmingham B4 6NH, UK
| | - Graham S Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Maria Sharif
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Ester B M Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Frederike J Bemelman
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Xi Chen
- Wellcome Sanger Institute, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge CB10 1SD, UK
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Martin S Davey
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Carrie R Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK.
| | - Benjamin E Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
50
|
Kolbe K, Wittner M, Hartjen P, Hüfner AD, Degen O, Ackermann C, Cords L, Stellbrink HJ, Haag F, Schulze zur Wiesch J. Inversed Ratio of CD39/CD73 Expression on γδ T Cells in HIV Versus Healthy Controls Correlates With Immune Activation and Disease Progression. Front Immunol 2022; 13:867167. [PMID: 35529864 PMCID: PMC9074873 DOI: 10.3389/fimmu.2022.867167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
Background γδ T cells are unconventional T cells that have been demonstrated to be crucial for the pathogenesis and potentially for the cure of HIV-1 infection. The ectonucleotidase CD39 is part of the purinergic pathway that regulates immune responses by degradation of pro-inflammatory ATP in concert with CD73. Few studies on the expression of the ectoenzymes CD73 and CD39 on human γδ T cells in HIV have been performed to date. Methods PBMC of n=86 HIV-1-infected patients were compared to PBMC of n=26 healthy individuals using 16-color flow cytometry determining the surface expression of CD39 and CD73 on Vδ1 and Vδ2 T cells in association with differentiation (CD45RA, CD28, CD27), activation and exhaustion (TIGIT, PD-1, CD38, and HLA-DR), and assessing the intracellular production of pro- and anti-inflammatory cytokines (IL-2, TGF-ß, TNF-α, Granzyme B, IL-10, IFN-γ) after in vitro stimulation with PMA/ionomycin. Results CD39 and CD73 expression on γδ T cells were inversed in HIV infection which correlated with HIV disease progression and immune activation. CD39, but not CD73 expression on γδ T cells of ART-treated patients returned to levels comparable with those of healthy individuals. Only a small subset (<1%) of γδ T cells co-expressed CD39 and CD73 in healthy or HIV-infected individuals. There were significantly more exhausted and terminally differentiated CD39+ Vδ1 T cells regardless of the disease status. Functionally, IL-10 was only detectable in CD39+ γδ T cells after in vitro stimulation in all groups studied. Viremic HIV-infected patients showed the highest levels of IL-10 production. The highest percentage of IL-10+ cells was found in the small CD39/CD73 co-expressing γδ T-cell population, both in healthy and HIV-infected individuals. Also, CD39+ Vδ2 T cells produced IL-10 more frequently than their CD39+ Vδ1 counterparts in all individuals regardless of the HIV status. Conclusions Our results point towards a potential immunomodulatory role of CD39+ and CD73+ γδ T cells in the pathogenesis of chronic HIV infection that needs further investigation.
Collapse
Affiliation(s)
- Katharina Kolbe
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
| | - Melanie Wittner
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
- *Correspondence: Melanie Wittner,
| | - Philip Hartjen
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja-Dorothee Hüfner
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Diseases Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olaf Degen
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Diseases Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christin Ackermann
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leon Cords
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Schulze zur Wiesch
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
| |
Collapse
|